JP6047953B2 - Olefinic resin processability modifier and method for producing the same - Google Patents

Olefinic resin processability modifier and method for producing the same Download PDF

Info

Publication number
JP6047953B2
JP6047953B2 JP2012149787A JP2012149787A JP6047953B2 JP 6047953 B2 JP6047953 B2 JP 6047953B2 JP 2012149787 A JP2012149787 A JP 2012149787A JP 2012149787 A JP2012149787 A JP 2012149787A JP 6047953 B2 JP6047953 B2 JP 6047953B2
Authority
JP
Japan
Prior art keywords
density polyethylene
melt
kneading
resin
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012149787A
Other languages
Japanese (ja)
Other versions
JP2013136718A (en
Inventor
元史 古屋
元史 古屋
隆史 逸見
隆史 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012149787A priority Critical patent/JP6047953B2/en
Publication of JP2013136718A publication Critical patent/JP2013136718A/en
Application granted granted Critical
Publication of JP6047953B2 publication Critical patent/JP6047953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、ポリオレフィンの押出成形加工において、加工性を向上させるために混合する加工性改質材、およびその製造方法に関するものである。   The present invention relates to a processability modifier that is mixed to improve processability in a polyolefin extrusion process, and a method for producing the same.

一般に、高圧ラジカル法によって製造される高圧法低密度ポリエチレンは押出ラミネート加工に際して優れた成膜性を示し、各種の樹脂フィルム、紙、アルミニウム箔等の基材フィルムへの押出ラミネート用途に好適に使用されている。近年、衝撃強度や突刺強度が必要な分野や耐熱性の求められる分野においては、高圧法低密度ポリエチレンでは性能が不足しており、直鎖状低密度ポリエチレンや高密度ポリエチレンが用いられるようになって来ている。しかし、直鎖状低密度ポリエチレンや高密度ポリエチレンはいずれも押出ラミネート成形性に劣るため、単独で用いることは困難であるため、高圧法低密度ポリエチレンなどの加工性改質材を混合して用いられている。ポリオレフィン系樹脂に使用する加工性改質材としては、弾性の高い高圧法低密度ポリエチレンが多く用いられる。このような加工性改質材には、直鎖状低密度ポリエチレンや高密度ポリエチレンの性質を活かすため、できる限り少量の混合で押出ラミネート成形性を向上できることが求められ、加工性改質材の弾性が高いほど、少量の混合で押出ラミネート成形性を向上することができることから、従来の高圧法低密度ポリエチレンよりも効果の高い加工性改質材が求められている。   In general, high-pressure low-density polyethylene produced by the high-pressure radical method exhibits excellent film-forming properties during extrusion laminating and is suitable for use in extrusion laminating to various resin films, paper, base films such as aluminum foil Has been. In recent years, in fields where impact strength and puncture strength are required or in fields where heat resistance is required, high-pressure low-density polyethylene lacks performance, and linear low-density polyethylene and high-density polyethylene have come to be used. Is coming. However, since both linear low density polyethylene and high density polyethylene are inferior in extrusion laminate moldability, it is difficult to use them alone. Therefore, processability modifiers such as high pressure method low density polyethylene are mixed and used. It has been. As the processability modifier used for the polyolefin resin, high-pressure low-density polyethylene having high elasticity is often used. In order to make use of the properties of linear low density polyethylene and high density polyethylene, such processability modifiers are required to be able to improve extrusion laminate formability with as little mixing as possible. Since the higher the elasticity, the better the extrusion laminate formability can be improved with a small amount of mixing, there is a need for a workability modifier that is more effective than conventional high-pressure low-density polyethylene.

ポリオレフィン系樹脂の弾性を高める方法として、既存のポリオレフィン系樹脂に、後処理として電子線や放射線を照射する方法が知られている(例えば、特許文献1、2参照。)。しかし、電子線や放射線を照射する方法は、専用の装置が必要であり、大量の樹脂を処理するためにはコストが高くなる欠点があった。また、既存のポリオレフィン系樹脂と有機化酸化物などのラジカル発生剤を溶融混合することで架橋させ、弾性を高める方法が知られている(例えば、特許文献3参照。)。この方法によれば通常の押出機で処理が可能となるものの、得られる改質材の延伸性が不足しており、直鎖状低密度ポリエチレンや高密度ポリエチレンに混合したものの高速加工性に劣るという問題があった。   As a method for increasing the elasticity of a polyolefin resin, a method of irradiating an existing polyolefin resin with an electron beam or radiation as a post-treatment is known (for example, see Patent Documents 1 and 2). However, the method of irradiating with an electron beam or radiation requires a dedicated device, and has a drawback of increasing the cost for processing a large amount of resin. In addition, a method is known in which an existing polyolefin resin and a radical generator such as an organic oxide are cross-linked by melt mixing to increase elasticity (see, for example, Patent Document 3). According to this method, although it can be processed with a normal extruder, the obtained modifier has insufficient stretchability and is inferior in high-speed processability when mixed with linear low-density polyethylene or high-density polyethylene. There was a problem.

このように、従来の方法では、新規の設備を用いることなく、延伸性を損なわずに加工性改良効果の高い加工性改質材を得ることは困難であった。   As described above, in the conventional method, it is difficult to obtain a workability improving material having a high workability improving effect without impairing stretchability without using new equipment.

特開平9−31256号公報JP-A-9-31256 特開2000−159947号公報JP 2000-159947 A 特許第3044256号公報Japanese Patent No. 3044256

本発明は、上記のような状況を鑑みなされたものであって、高圧法低密度ポリエチレンを用いて、新規の設備を用いることなく、延伸性を損なわずに加工性を大きく改良できるオレフィン系樹脂加工性改質材を提案するものである。   The present invention has been made in view of the situation as described above, and is an olefin resin that can be greatly improved in workability without impairing stretchability by using high-pressure low-density polyethylene without using new equipment. A workability modifier is proposed.

本発明者らは、前記課題を解決すべく鋭意検討した結果、特定の高圧法低密度ポリエチレンを用いた改質材が、延伸性を損なわずに加工性を大きく改良できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a modifier using a specific high-pressure method low-density polyethylene can greatly improve workability without impairing stretchability. It came to be completed.

すなわち、本発明は、高圧法低密度ポリエチレンからなり、下記(A)〜(B)を満たすオレフィン系樹脂加工性改質材に関するものである。
(A)毛管粘度計で測定した260℃における溶融張力が145mN以上
(B)260℃で毛管粘度計で溶融張力を測定する条件において、溶融樹脂を延伸比4.7以上で延伸することが可能
また、(C)〜(E)を満たす条件で高圧法低密度ポリエチレンを溶融混練することを特徴とする、加工性改質材の製造方法に関するものである。
(C)混練温度が130℃以上220℃以下
(D)酸素濃度が0.1%以上21%以下
(E)混練室内における溶融樹脂の充満率が40%以上90%以下
以下に、本発明を詳細に説明する。
That is, the present invention relates to an olefin-based resin processability modifier that is made of high-pressure low-density polyethylene and satisfies the following (A) to (B).
(A) The melt tension at 260 ° C. measured with a capillary viscometer is 145 mN or more. (B) The melt resin can be stretched at a stretch ratio of 4.7 or more under the conditions of measuring the melt tension with a capillary viscometer at 260 ° C. The present invention also relates to a process for producing a workability modifier, characterized by melt-kneading high-pressure low-density polyethylene under conditions that satisfy (C) to (E).
(C) Kneading temperature is 130 ° C. or more and 220 ° C. or less (D) Oxygen concentration is 0.1% or more and 21% or less (E) The filling rate of the molten resin in the kneading chamber is 40% or more and 90% or less. This will be described in detail.

本発明の加工性改質材は、高圧法低密度ポリエチレンを材料としたものである。   The processability improving material of the present invention is made of high-pressure low-density polyethylene.

本発明の加工性改質材の材料として使用する高圧法低密度ポリエチレンの分子量分布については特に制約はないが、元々の弾性が高く加工性改良効果が良好になることから重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6以上であることが好ましく、8以上であることがさらに好ましい。   There is no particular restriction on the molecular weight distribution of the high-pressure low-density polyethylene used as a material for the processability modifier of the present invention, but the weight average molecular weight Mw and number are high because the original elasticity is high and the processability improvement effect is good. The average molecular weight Mn ratio Mw / Mn is preferably 6 or more, and more preferably 8 or more.

本発明の加工性改質材の材料として使用する高圧法低密度ポリエチレンのMFRについては特に制約はないが、元々の弾性が高く加工性改良効果が良好になることから1g/10分以上10g/10分以下であることが好ましく、1g/10分以上5g/10分以下であることがさらに好ましい。   Although there is no restriction | limiting in particular about MFR of the high pressure method low density polyethylene used as a material of the workability modifier of this invention, From the original elasticity being high and workability improvement effect becoming favorable, 1 g / 10min or more 10g / It is preferably 10 minutes or less, more preferably 1 g / 10 minutes or more and 5 g / 10 minutes or less.

本発明の加工性改質材は、バレル直径9.55mmの毛管粘度計に長さが8mm、直径が2.095mm、流入角が90°のダイスを装着し、温度を260℃に設定し、ピストン降下速度を10mm/分、延伸比4.7の条件で測定した溶融張力(以下MS260と記す)の値が145mN以上、好ましくは150mN以上、より好ましくは160mN以上である。溶融張力が145mNよりも低いと、改質材の弾性が低く加工性改良効果が低くなるため好ましくない。 The processability modifier of the present invention is equipped with a capillary viscometer with a barrel diameter of 9.55 mm and a die having a length of 8 mm, a diameter of 2.095 mm, and an inflow angle of 90 °, and the temperature is set to 260 ° C. The value of melt tension (hereinafter referred to as MS 260 ) measured at a piston lowering speed of 10 mm / min and a draw ratio of 4.7 is 145 mN or more, preferably 150 mN or more, more preferably 160 mN or more. When the melt tension is lower than 145 mN, the elasticity of the modifier is low and the effect of improving workability is lowered, which is not preferable.

本発明の加工性改質材は、260℃において毛管粘度計で溶融張力を測定する際の延伸比は4.7以上である。延伸比が4.7未満であると、加工性改質材として直鎖状低密度ポリエチレンや高密度ポリエチレンなどのオレフィン系樹脂と混合した場合の高速性形成が不足するため好ましくない。   The workability modifier of the present invention has a draw ratio of 4.7 or more when the melt tension is measured with a capillary viscometer at 260 ° C. A draw ratio of less than 4.7 is not preferable because high-speed formation is insufficient when mixed with an olefin resin such as linear low-density polyethylene or high-density polyethylene as a processability modifier.

本発明においては、溶融張力MS260を測定する際に延伸比4.7で延伸が可能であれば加工性改質材として良好な性能を有すると判断し、延伸比4.7での延伸ができない場合は加工性改質材として高速成形性が劣ると判断した。 In the present invention, when the melt tension MS 260 is measured, if it can be stretched at a stretch ratio of 4.7, it is judged that it has good performance as a workability modifier, and the stretch at a stretch ratio of 4.7 is determined. When it was not possible, it was judged that high-speed formability was inferior as a workability modifier.

本発明の加工性改質材は、毛管粘度計で測定した260℃におけるMSの溶融混練前後の比が1.8以上であると、溶融混練後の改質材の弾性が高く効果の高い加工性改質材が得られるため好ましい。   When the ratio of before and after melt kneading of MS at 260 ° C. measured by a capillary viscometer is 1.8 or more, the workability modifying material of the present invention has high elasticity and high processing efficiency. Since a property modifier is obtained, it is preferable.

本発明の加工性改質材は、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6以上であることが、分子量分布が広く加工性改良効果が良好になることから好ましく、Mw/Mnが8以上であることがさらに好ましい。   In the processability modifier of the present invention, the ratio Mw / Mn of the weight average molecular weight Mw and the number average molecular weight Mn is preferably 6 or more because the molecular weight distribution is wide and the processability improving effect is good. More preferably, Mn is 8 or more.

本発明の加工性改質材は、高圧法低密度ポリエチレンを用いている。高圧法低密度ポリエチレンを溶融混練することで、弾性を上昇させることができる。溶融混練の方法としては、連続的に処理を行う方法、バッチ式に処理を行う方法がある。その装置としては、単軸押出機、二軸押出機の他、バンバリーミキサー、ロールミキサー、ニーダー、高速回転ミキサー、押出機等の各種混練機が挙げられる。   The workability modifier of the present invention uses high pressure method low density polyethylene. Elasticity can be increased by melt-kneading high-pressure low-density polyethylene. As a method of melt kneading, there are a method in which processing is performed continuously and a method in which processing is performed in a batch manner. Examples of the apparatus include various kneaders such as a banbury mixer, a roll mixer, a kneader, a high-speed rotary mixer, and an extruder in addition to a single-screw extruder and a twin-screw extruder.

本発明の加工性改質材の製造装置は、二軸押出機またはバンバリーミキサーであることが、混練温度、酸素濃度を調整しやすいため好ましい。なお、バンバリーミキサーなどの混練機で溶融混練した後は、単軸押出機、二軸押出機を用いてペレット状に成形することができる。   The apparatus for producing a workability modifier according to the present invention is preferably a twin screw extruder or a Banbury mixer because the kneading temperature and oxygen concentration can be easily adjusted. In addition, after melt-kneading with kneading machines, such as a Banbury mixer, it can shape | mold into a pellet form using a single screw extruder or a twin screw extruder.

本発明の加工性改質材を製造するための溶融混練温度は、130℃以上220℃以下、より好ましくは140℃以上210℃以下、さらに好ましくは145℃以上200℃以下であると、改質材の弾性と延伸性が両立できるだけでなく、溶融混練時の混練機の負荷、生産性の面から好ましい。   The melt kneading temperature for producing the workability modifier of the present invention is 130 ° C. or higher and 220 ° C. or lower, more preferably 140 ° C. or higher and 210 ° C. or lower, and further preferably 145 ° C. or higher and 200 ° C. or lower. Not only can the elasticity and stretchability of the material be compatible, it is preferable from the standpoints of the load on the kneader during melt kneading and productivity.

本発明の加工性改質材を製造するための溶融混練時の酸素濃度は、0.1%以上21%以下であると、改質材の弾性と延伸性が両立できるため好ましい。   The oxygen concentration at the time of melt-kneading for producing the workability modifier of the present invention is preferably 0.1% or more and 21% or less because both the elasticity and stretchability of the modifier can be achieved.

本発明の加工性改質材を製造するための溶融混練時の混練室内の樹脂の充満率は、好ましくは40%以上90%以下、より好ましくは45%以上90%以下である。ここで混練室内の樹脂の充満率とは、押出機の場合は押出機バレルとスクリューとの間の空間中に占める溶融樹脂の割合を、バンバリーミキサーの場合は混合室とローターとの間の空間中に占める溶融樹脂の割合を指す。充満率がこの範囲にあることで、弾性と延伸性が両立できるため好ましい。   The filling rate of the resin in the kneading chamber at the time of melt kneading for producing the workability modifier of the present invention is preferably 40% or more and 90% or less, more preferably 45% or more and 90% or less. Here, the resin filling rate in the kneading chamber is the ratio of the molten resin in the space between the extruder barrel and the screw in the case of an extruder, and the space between the mixing chamber and the rotor in the case of a Banbury mixer. It refers to the proportion of molten resin in the interior. It is preferable for the filling rate to be in this range since both elasticity and stretchability can be achieved.

本発明のオレフィン系樹脂加工性改質材は、直鎖状低密度ポリエチレンや高密度ポリエチレンなどのオレフィン系樹脂と混合することで優れた加工性改質効果を示し、押出ラミネート成形、インフレーションフィルム成形、キャストフィルム成形などの押出成形に好適に用いられる。中でも、加工性改質材に高い弾性が求められる押出ラミネート成形に用いることが好ましい。   The olefinic resin processability modifier of the present invention exhibits excellent processability modification effects when mixed with olefinic resins such as linear low-density polyethylene and high-density polyethylene, extrusion laminate molding, inflation film molding It is suitably used for extrusion molding such as cast film molding. Among them, it is preferable to use it for extrusion laminate molding in which high elasticity is required for the workability modifier.

本発明のオレフィン系樹脂加工性改質材は、直鎖状低密度ポリエチレンや高密度ポリエチレンなどのオレフィン系樹脂と、ペレット同士を混合するドライブレンドの他、バンバリーミキサー、ロールミキサー、ニーダー、高速回転ミキサー、押出機等の各種混練機、好ましくは単軸もしくは二軸押出機を用いて混合・混練する方法などの公知の方法を利用して混合することができ、各種押出成形に用いられる。   The olefinic resin processability modifier of the present invention includes olefinic resins such as linear low density polyethylene and high density polyethylene, and dry blends that mix pellets, as well as Banbury mixers, roll mixers, kneaders, and high-speed rotations. Mixing can be carried out using a known method such as mixing and kneading using various kneaders such as a mixer and an extruder, preferably a single or twin screw extruder, and it can be used for various extrusion molding.

本発明のオレフィン系樹脂加工性改質材を使用することで、従来よりも少量の混合で押出成形加工性を改良することが可能となる。これにより、被混合物の特徴を製品により反映することができる。   By using the olefin-based resin processability modifier of the present invention, it becomes possible to improve the extrusion processability with a smaller amount of mixing than before. Thereby, the characteristics of the mixture can be reflected by the product.

また、本発明のオレフィン系樹脂加工性改質材は、高圧法低密度ポリエチレンを用いて、新規の設備を用いることなく、衛生性を損なわずに製造することができる。   Moreover, the olefin resin processability modifier of the present invention can be produced using high-pressure low-density polyethylene without using new equipment and without sacrificing hygiene.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

以下に、物性、加工性の評価方法を示す。
(1)改質材の溶融張力
23℃に設定した恒温室内において、温度を260℃に設定し、長さが8mm、直径が2.095mm、流入角が90°のダイスを装着したバレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に、改質材18gを充填し、ピストン降下速度を10mm/分、延伸比を4.7に設定し、引き取りに必要な荷重(mN)を溶融張力(MS260)として測定した。
(2)改質材と直鎖状低密度ポリエチレンとの混合物の溶融張力
改質材とメルトマスフローレート20g/10分、密度936kg/mの直鎖状低密度ポリエチレン(東ソー(株)製、ニポロン−LM70K、以下LL−Aと記す)を重量比20/80の割合でドライブレンドし、50mmφのスクリューとストランドダイを有する単軸押出機((株)プラコー製)を用いて設定温度160℃、吐出量25kg/時でストランド状に押出し、ストランドカッター((株)誠和鉄工所製)を用いてペレットとした。この混合物18gを、23℃に設定した恒温室内において、長さが8mm、直径が2.095mm、流入角が90°のダイスを装着した、バレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に充填し、設定温度160℃、ピストン降下速度を10mm/分、延伸比を47に設定し、引き取りに必要な荷重(mN)を溶融張力(MS160)として測定した。
(3)延伸性
溶融張力の測定時において、最大延伸比が4.7以上の場合を○、4.7未満の場合は延伸性に乏しく加工性改質材として×とした。
(4)酸素濃度
押出機の場合はスクリュー直上、バンバリーミキサーの場合は混練直前の混合室内の酸素濃度を、酸素濃度計(新コスモス電機(株)製XP−3180)を用いて計測した。
(5)充満率
押出機の場合は押出機バレルとスクリューとの間の空間の体積を、バンバリーミキサーの場合は混合室とローターとの間の空間の体積を計算し、溶融混練混合する樹脂の体積を空間の体積で除して計算した。
(6)分子量分布
数平均分子量(Mn)および重量平均分子量(Mw)の測定は、GPC法によって行った。
The evaluation methods for physical properties and processability are shown below.
(1) Melt tension of the reformer In a temperature-controlled room set at 23 ° C, the temperature is set at 260 ° C, and the barrel diameter is 9 with a die having a length of 8 mm, a diameter of 2.095 mm, and an inflow angle of 90 °. A .55 mm capillary viscometer (Toyo Seiki Seisakusho, trade name: Capillograph) is filled with 18 g of the reforming material, the piston lowering speed is set to 10 mm / min, the stretch ratio is set to 4.7, and the load necessary for take-up ( mN) was measured as melt tension (MS 260 ).
(2) Melt tension of the mixture of the modifying material and the linear low-density polyethylene The modifying material and the linear low-density polyethylene (made by Tosoh Corporation) having a melt mass flow rate of 20 g / 10 min and a density of 936 kg / m 3 Nipolon-LM70K (hereinafter referred to as LL-A) is dry blended at a weight ratio of 20/80, and a set temperature of 160 ° C. using a single screw extruder (manufactured by Placo) having a 50 mmφ screw and a strand die. Then, it was extruded into a strand shape at a discharge amount of 25 kg / hour, and formed into a pellet using a strand cutter (manufactured by Seiwa Iron Works Co., Ltd.). A capillary viscometer (Toyo Seiki Seisakusho Co., Ltd.) having a barrel diameter of 9.55 mm, fitted with a die having a length of 8 mm, a diameter of 2.095 mm, and an inflow angle of 90 ° in a thermostatic chamber set at 23 ° C. (Product name: Capillograph), the set temperature was 160 ° C., the piston descending speed was set to 10 mm / min, the stretch ratio was set to 47, and the load (mN) required for take-up was measured as the melt tension (MS 160 ).
(3) Stretchability When the melt tension was measured, the case where the maximum stretch ratio was 4.7 or more was marked with ○ as the workability modifier because the stretchability was poor when the maximum stretch ratio was less than 4.7.
(4) Oxygen concentration In the case of an extruder, the oxygen concentration in the mixing chamber immediately before kneading was measured using an oxygen concentration meter (XP-3180 manufactured by New Cosmos Electric Co., Ltd.) in the case of a Banbury mixer.
(5) Filling rate In the case of an extruder, the volume of the space between the extruder barrel and the screw is calculated, and in the case of a Banbury mixer, the volume of the space between the mixing chamber and the rotor is calculated, The volume was calculated by dividing by the volume of space.
(6) Molecular weight distribution The number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by the GPC method.

測定試料を秤量後、HPLC級1,2,4−トリクロロベンゼン(和光純薬工業(株)製)に酸化防止剤としてBHT(和光純薬工業(株)製)を0.1%添加した溶媒に加えて、140℃で1時間振とうして溶解させたものを試料溶液とした。   A solvent in which 0.1% of BHT (manufactured by Wako Pure Chemical Industries, Ltd.) is added as an antioxidant to HPLC grade 1,2,4-trichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.) after weighing the measurement sample. In addition to the sample solution, the sample solution was dissolved by shaking at 140 ° C. for 1 hour.

測定装置として東ソー(株)製HLC−8121GPC/HTを用い、以下のようにして測定した。分離カラムとしてTSKgelGMHHR−H(20)HT(東ソー(株)製、内径7.8mm、長さ30cm)を3本連結して使用した。移動層にはHPLC級1,2,4−トリクロロベンゼン(和光純薬工業(株)製)に酸化防止剤としてBHT(和光純薬工業(株)製)を0.05%添加したものを使用し、140℃に保持した分離カラム中を流速1.0mL/分で移動させた。これに1.0mg/mLに濃度を調整した試料溶液を0.3mL注入し、示差屈折計で分離された試料成分を検出した。標準ポリスチレン(東ソー(株)製)を使用して作成した5次近似曲線を検量線として使用し、分子量分布曲線、数平均分子量(Mn)および重量平均分子量(Mw)を算出した。   Using Tosoh Co., Ltd. HLC-8121GPC / HT as a measuring device, it measured as follows. Three TSKgelGMHHR-H (20) HT (manufactured by Tosoh Corporation, inner diameter 7.8 mm, length 30 cm) were connected and used as a separation column. For the moving layer, HPLC grade 1,2,4-trichlorobenzene (Wako Pure Chemical Industries, Ltd.) with 0.05% BHT (Wako Pure Chemical Industries, Ltd.) added as an antioxidant is used. And moved through a separation column maintained at 140 ° C. at a flow rate of 1.0 mL / min. 0.3 mL of a sample solution whose concentration was adjusted to 1.0 mg / mL was injected into this, and sample components separated by a differential refractometer were detected. A molecular weight distribution curve, a number average molecular weight (Mn), and a weight average molecular weight (Mw) were calculated using a quintic approximation curve prepared using standard polystyrene (manufactured by Tosoh Corporation) as a calibration curve.

MwとMnの比 Mw/Mnを算出し、分子量分布の指標とした。   Mw / Mn ratio Mw / Mn was calculated and used as an index of molecular weight distribution.

実施例1
混練機として、噛合型スクリュー、異方向回転型の二軸押出機(東洋精機製作所、商品名:ラボプラストミル2D25S型)を用い、メルトマスフローレート1.6g/10分、密度919kg/mの高圧法低密度ポリエチレン(東ソー(株)製、ペトロセン360)を、混練温度160℃、吐出量1.7kg/時、スクリュー回転数60rpm、酸素濃度21%と、充満率は80%の条件で溶融混練し、ストランド状に押出し、ストランドカッター((株)誠和鉄工所製)を用いてペレットとした。なお、スクリューは多条フライト型逆リード付(2S25R型)のものを用いた。混練条件および溶融張力の測定結果を表1に記す。オレフィン系樹脂加工性改質材のMw/Mnの値は10.0であった。
Example 1
As a kneading machine, an intermeshing screw, a counter-rotating type twin screw extruder (Toyo Seiki Seisakusho, trade name: Labo Plast Mill 2D25S type), melt mass flow rate 1.6 g / 10 min, density 919 kg / m 3 High-pressure method low-density polyethylene (manufactured by Tosoh Corporation, Petrocene 360) is melted under the conditions of a kneading temperature of 160 ° C., a discharge rate of 1.7 kg / hour, a screw speed of 60 rpm, an oxygen concentration of 21%, and a filling rate of 80%. The mixture was kneaded, extruded into a strand shape, and formed into pellets using a strand cutter (manufactured by Seiwa Iron Works). The screw used was a multi-flight flight type reverse lead (2S25R type). Table 1 shows the kneading conditions and the measurement results of the melt tension. The Mw / Mn value of the olefinic resin processability modifier was 10.0.

得られたペレットと、メルトマスフローレート20g/10分、密度936kg/mの直鎖状低密度ポリエチレン(東ソー(株)製、ニポロン−LM70K、以下LL−Aと記す)を20/80の割合でドライブレンドし、50mmφのスクリューとストランドダイを有する単軸押出機((株)プラコー製)を用いて設定温度160℃、吐出量25kg/時でストランド状に押出し、ストランドカッター((株)誠和鉄工所製)を用いてペレットとした。この混合物について、MS160を測定した結果を表1に示す。 20/80 ratio of the obtained pellets and a linear low density polyethylene having a melt mass flow rate of 20 g / 10 min and a density of 936 kg / m 3 (manufactured by Tosoh Corporation, Nipolon-LM70K, hereinafter referred to as LL-A) And then a strand cutter (Co., Ltd.) using a single screw extruder (made by Plako Co., Ltd.) having a 50 mmφ screw and a strand die and extruding into a strand at a set temperature of 160 ° C. and a discharge rate of 25 kg / hour. (Made by Wako Works) to obtain pellets. Table 1 shows the measurement results of MS 160 for this mixture.

実施例2
混練温度を200℃とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練した。混練条件および溶融張力を表1に記す。
Example 2
A high-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that the kneading temperature was 200 ° C. The kneading conditions and melt tension are shown in Table 1.

実施例3
酸素濃度を5%とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練した。混練条件および溶融張力を表1に記す。
Example 3
High-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that the oxygen concentration was 5%. The kneading conditions and melt tension are shown in Table 1.

実施例4
充満率を50%とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練した。混練条件および溶融張力を表1に記す。
Example 4
A high-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that the filling rate was 50%. The kneading conditions and melt tension are shown in Table 1.

実施例5
混練機として、バンバリーミキサー(南千住製作所製)を用い、混練温度160℃、酸素濃度21%、充満率75%として溶融混練を行った。溶融混練した樹脂を50mmφのスクリューとストランドダイを有する単軸押出機((株)プラコー製)を用いて設定温度180℃、吐出量25kg/時でストランド状に押出し、ストランドカッター((株)誠和鉄工所製)を用いてペレットとした。混練条件および溶融張力を表1に記す。
Example 5
As a kneading machine, a Banbury mixer (manufactured by Minami Senju Seisakusho) was used, and melt kneading was performed at a kneading temperature of 160 ° C., an oxygen concentration of 21%, and a filling rate of 75%. The melt-kneaded resin was extruded into a strand shape at a set temperature of 180 ° C. and a discharge rate of 25 kg / hour using a single-screw extruder having a 50 mmφ screw and a strand die (manufactured by Placo Corporation). (Made by Wako Works) to obtain pellets. The kneading conditions and melt tension are shown in Table 1.

Figure 0006047953
比較例1
メルトマスフローレート1.6g/10分、密度919kg/mの高圧法低密度ポリエチレン(東ソー(株)製、ペトロセン360)とLL−Aを20/80の割合でドライブレンドし、50mmφのスクリューとストランドダイを有する単軸押出機((株)プラコー製)を用いて設定温度160℃、吐出量25kg/時でストランド状に押出し、ストランドカッター((株)誠和鉄工所製)を用いてペレットとした。この混合物について、MS160を測定した。結果を表2に示す。
Figure 0006047953
Comparative Example 1
A melt mass flow rate of 1.6 g / 10 min, a high pressure method low density polyethylene (Tosoh Co., Ltd., Petrocene 360) with a density of 919 kg / m 3 and LL-A are dry blended at a ratio of 20/80, and a 50 mmφ screw Extruded into a strand shape at a set temperature of 160 ° C. and a discharge rate of 25 kg / hour using a single-screw extruder having a strand die (manufactured by Placo) It was. MS 160 was measured for this mixture. The results are shown in Table 2.

比較例2
実施例1において、混練温度を260℃とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練した。混練条件および溶融混練前後の溶融張力を表2に記すが、延伸性に乏しく溶融張力を測定することができなかった。
Comparative Example 2
In Example 1, high-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that the kneading temperature was 260 ° C. The kneading conditions and the melt tension before and after the melt kneading are shown in Table 2, but the stretchability was poor and the melt tension could not be measured.

比較例3
実施例1において、押出機内に窒素を導入して酸素濃度を0.1%未満とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練し、MS260を測定した。この材料を実施例1と同様の方法で直鎖状低密度ポリエチレンと混合し、MS160を測定した。結果を表2に示すが、溶融張力が低かった。
Comparative Example 3
In Example 1, high-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that nitrogen was introduced into the extruder so that the oxygen concentration was less than 0.1%, and MS 260 was measured. This material was mixed with linear low density polyethylene in the same manner as in Example 1, and MS 160 was measured. The results are shown in Table 2, and the melt tension was low.

比較例4
実施例1において、押出機内に酸素を導入して酸素濃度を25%とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練した。混練条件および溶融前後の溶融張力を表2に記すが、延伸性に乏しく溶融張力を測定することができなかった。
Comparative Example 4
In Example 1, high-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that oxygen was introduced into the extruder to make the oxygen concentration 25%. The kneading conditions and the melt tension before and after melting are shown in Table 2, but the stretchability was poor and the melt tension could not be measured.

比較例5
実施例1において、吐出量を2.2kg/時、充満率を98%とした以外は実施例1と同じ条件で高圧法低密度ポリエチレンを溶融混練し、MS260を測定した。この材料を実施例1と同様の方法で直鎖状低密度ポリエチレンと混合し、MS160を測定した。結果を表2に示すが、溶融張力が低かった。
Comparative Example 5
In Example 1, high-pressure low-density polyethylene was melt-kneaded under the same conditions as in Example 1 except that the discharge rate was 2.2 kg / hour and the filling rate was 98%, and MS 260 was measured. This material was mixed with linear low density polyethylene in the same manner as in Example 1, and MS 160 was measured. The results are shown in Table 2, and the melt tension was low.

比較例6
混練機として、20mmφの単軸押出機(東洋精機製作所、商品名:ラボプラストミル)を用い、メルトマスフローレート1.6g/10分、密度919kg/mの高圧法低密度ポリエチレン(東ソー(株)製、ペトロセン360)を、混練温度160℃、吐出量1.7kg/時、酸素濃度21%、充満率は100%の条件で溶融混練し、MS260を測定した。この材料を実施例1と同様の方法で直鎖状低密度ポリエチレンと混合し、MS160を測定した。結果を表2に示すが、溶融張力が低かった。
Comparative Example 6
As a kneading machine, a 20 mmφ single-screw extruder (Toyo Seiki Seisakusho, trade name: Labo Plast Mill) was used. High-pressure low-density polyethylene (Tosoh Corporation) with a melt mass flow rate of 1.6 g / 10 min and a density of 919 kg / m 3. ), Petrocene 360) was melt kneaded at a kneading temperature of 160 ° C., a discharge rate of 1.7 kg / hour, an oxygen concentration of 21%, and a filling rate of 100%, and MS 260 was measured. This material was mixed with linear low density polyethylene in the same manner as in Example 1, and MS 160 was measured. The results are shown in Table 2, and the melt tension was low.

Figure 0006047953
Figure 0006047953

Claims (5)

高圧法低密度ポリエチレンからなり、下記の(A)〜(B)を満たすことを特徴とするオレフィン系樹脂加工性改質材。
(A)毛管粘度計で測定した260℃における溶融張力が145mN以上
(B)260℃で毛管粘度計で溶融張力を測定する条件において、溶融樹脂を延伸比4.7以上で延伸することが可能
An olefin-based resin processability modifier comprising high-pressure method low-density polyethylene and satisfying the following (A) to (B).
(A) The melt tension at 260 ° C. measured with a capillary viscometer is 145 mN or more. (B) The melt resin can be stretched at a stretch ratio of 4.7 or more under the conditions of measuring the melt tension with a capillary viscometer at 260 ° C.
下記の(G)を満たすことを特徴とする請求項1に記載のオレフィン系樹脂加工性改質材。
(G)重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが6以上
The olefin-based resin processability modifier according to claim 1, wherein the following (G) is satisfied.
(G) Ratio Mw / Mn of weight average molecular weight Mw and number average molecular weight Mn is 6 or more
下記の(C)〜(E)を満たす条件で高圧法低密度ポリエチレンを溶融混練することを特徴とする、請求項1又は2に記載のオレフィン系樹脂加工性改質材の製造方法。
(C)混練温度が130℃以上220℃以下
(D)酸素濃度が0.1%以上21%以下
(E)混練室内における溶融樹脂の充満率が40%以上90%以下
The method for producing an olefin-based resin processability modifier according to claim 1 or 2, wherein high-pressure low-density polyethylene is melt-kneaded under conditions satisfying the following (C) to (E).
(C) Kneading temperature is 130 ° C. or more and 220 ° C. or less (D) Oxygen concentration is 0.1% or more and 21% or less (E) The filling rate of the molten resin in the kneading chamber is 40% or more and 90% or less
更に、下記の(F)を満たす条件で高圧法低密度ポリエチレンを溶融混練することを特徴とする、請求項3に記載のオレフィン系樹脂加工性改質材の製造方法。
(F)混練する装置が二軸押出機又はバンバリーミキサー
Furthermore, the manufacturing method of the olefin resin processability modifier of Claim 3 characterized by melt-kneading the high pressure process low density polyethylene on the conditions which satisfy | fill the following (F).
(F) The kneading device is a twin screw extruder or Banbury mixer
請求項1又は2に記載のオレフィン系樹脂加工性改質材を含む樹脂組成物。 A resin composition comprising the olefinic resin processability modifier according to claim 1 or 2.
JP2012149787A 2011-11-30 2012-07-03 Olefinic resin processability modifier and method for producing the same Active JP6047953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149787A JP6047953B2 (en) 2011-11-30 2012-07-03 Olefinic resin processability modifier and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011262580 2011-11-30
JP2011262580 2011-11-30
JP2012149787A JP6047953B2 (en) 2011-11-30 2012-07-03 Olefinic resin processability modifier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013136718A JP2013136718A (en) 2013-07-11
JP6047953B2 true JP6047953B2 (en) 2016-12-21

Family

ID=48912709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149787A Active JP6047953B2 (en) 2011-11-30 2012-07-03 Olefinic resin processability modifier and method for producing the same

Country Status (1)

Country Link
JP (1) JP6047953B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179856A (en) * 1992-09-08 2002-06-26 Mitsui Chemicals Inc Ethylenic copolymer composition
JPH0727495A (en) * 1993-07-12 1995-01-27 Kel Corp Heat exchanger
JPH07278228A (en) * 1994-04-11 1995-10-24 Idemitsu Petrochem Co Ltd Ethylene copolymer
FR2723880B1 (en) * 1994-08-30 1997-01-03 Bp Chemicals Snc PROCESS FOR MODIFYING A POLYETHYLENE IN AN EXTRUDER
JPH1171427A (en) * 1997-07-02 1999-03-16 Idemitsu Petrochem Co Ltd Polyethylene-based resin for forming inflation film and inflation film using the same
DE69811850T2 (en) * 1998-02-13 2003-09-04 Union Carbide Chem Plastic extrusion process
JP4814437B2 (en) * 2001-04-06 2011-11-16 株式会社プライムポリマー Process for producing modified polyethylene resin, modified polyethylene resin and film thereof
EP1408055A4 (en) * 2001-07-03 2004-12-22 Idemitsu Petrochemical Co Polyethylene type resin and method for producing the same and inflation film using the same as base material
JP2004291858A (en) * 2003-03-27 2004-10-21 Mitsubishi Fuso Truck & Bus Corp Extruding foaming board for loading platforms of vehicle
JP2004291489A (en) * 2003-03-27 2004-10-21 Mitsui Chemicals Inc Method for kneading and granulating polyethylene for film
JP2006314490A (en) * 2005-05-12 2006-11-24 Tosoh Corp Medical container
JP2010242057A (en) * 2009-03-19 2010-10-28 Asahi Kasei Chemicals Corp Glass substrate combined sheet
JP5895482B2 (en) * 2011-11-30 2016-03-30 東ソー株式会社 Ethylene polymer composition

Also Published As

Publication number Publication date
JP2013136718A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
EP2351783A1 (en) Aliphatic polycarbonate complex derived from carbon dioxide, and process for producing same
CN105377981A (en) Single pellet polymeric compositions
CN106795344B (en) Polypropylene resin composition and film made therefrom
KR101501835B1 (en) Polypropylene resin composition having high impact resistance and stress whitening resistance
JP6770796B2 (en) Fiber reinforced polypropylene resin composition
WO2015133315A1 (en) Method for melt molding of vinylidene fluoride resin, and melt molded product of vinylidene fluoride resin
JP6047953B2 (en) Olefinic resin processability modifier and method for producing the same
JP6281252B2 (en) High-pressure low-density polyethylene and ethylene polymer composition with excellent processability
JP6492911B2 (en) Laminated film
JP2014058610A (en) Resin molding
JPS6364465B2 (en)
KR100846648B1 (en) Polyolefin series resin film, composition for preparing the same, process for preparing the composition for preparing the same, and apparatus for preparing the same
JP5895482B2 (en) Ethylene polymer composition
JP6115130B2 (en) Processability modifying material and method for producing the same
CA2479190A1 (en) Polyethylene blends
JP7176358B2 (en) Polyolefin resin composition
JPH11166083A (en) Polyethylene-based resin composition
JP3874869B2 (en) High and medium density polyethylene composition for film molding and method for producing the same
KR20100090190A (en) Pellet mixture, molded article and the method for producing the molded article
JP2007146084A (en) Method for continuous production of polyethylene
CN116444740B (en) Chain extender, preparation method and application thereof
CN103788447A (en) Preparation method of long-chain branch high density polyethylene
KR102592484B1 (en) Thermoplastic resin composition and article produced therefrom
JP2014084425A (en) Moldability modifying material for olefin resin, and method for producing the material
EP3495108A1 (en) Method for producing fusible material for three-dimensional molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6047953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151