JP6045890B2 - MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite - Google Patents

MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite Download PDF

Info

Publication number
JP6045890B2
JP6045890B2 JP2012260207A JP2012260207A JP6045890B2 JP 6045890 B2 JP6045890 B2 JP 6045890B2 JP 2012260207 A JP2012260207 A JP 2012260207A JP 2012260207 A JP2012260207 A JP 2012260207A JP 6045890 B2 JP6045890 B2 JP 6045890B2
Authority
JP
Japan
Prior art keywords
mcm
zeolite
type
type zeolite
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012260207A
Other languages
Japanese (ja)
Other versions
JP2014105135A (en
Inventor
高橋 範行
範行 高橋
理寛 山▲崎▼
理寛 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2012260207A priority Critical patent/JP6045890B2/en
Publication of JP2014105135A publication Critical patent/JP2014105135A/en
Application granted granted Critical
Publication of JP6045890B2 publication Critical patent/JP6045890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

本発明は、新規な結晶構造を有するMCM−22型ゼオライトに関するものであり、より詳細には、芳香族炭化水素精製触媒として好適に使用されるMCM−22型ゼオライトに関する。   The present invention relates to an MCM-22 type zeolite having a novel crystal structure, and more particularly to an MCM-22 type zeolite suitably used as an aromatic hydrocarbon purification catalyst.

ベンゼン、トルエン、キシレン(C8 芳香族)等の芳香族炭化水素からオレフィン、ジオレフィン等の不飽和化合物を除去する目的で、従来から精製処理が行われている。この精製処理は、BTX等の芳香族炭化水素中に含まれる不飽和化合物を、芳香族炭化水素へのアルキル化によって多環芳香族化合物に変えたり、また重合により二量体乃至三量体としたりすることによって高分子量化し、高沸点留分として除去するというものである。この重合に際しては、トルエンやキシレン等のアルキル芳香族化合物の不均化反応や異性化反応を引き起こすことも知られている。 Benzene, toluene, xylene olefins from aromatic hydrocarbons (C 8 aromatics), etc., for the purpose of removing unsaturated compounds diolefins such purification process is conventional. In this purification treatment, an unsaturated compound contained in an aromatic hydrocarbon such as BTX is changed to a polycyclic aromatic compound by alkylation to an aromatic hydrocarbon, or is converted into a dimer or trimer by polymerization. To increase the molecular weight and remove it as a high-boiling fraction. In this polymerization, it is also known to cause a disproportionation reaction or an isomerization reaction of an alkyl aromatic compound such as toluene or xylene.

上記の精製処理には、不飽和化合物の芳香族アルキル化触媒や重合触媒として作用し且つ不均化等の副反応が少ないという観点から、各種のゼオライトが使用されており、特にMCM−22と称される合成ゼオライトが芳香族炭化水素の精製処理用の触媒として最も高性能品であると認識されている(例えば特許文献1参照)。   In the above purification treatment, various zeolites are used from the viewpoint of acting as an aromatic alkylation catalyst or polymerization catalyst for unsaturated compounds and having few side reactions such as disproportionation, and particularly with MCM-22. Synthetic zeolite called is recognized as the most high-performance product as a catalyst for refining aromatic hydrocarbons (see, for example, Patent Document 1).

また、高結晶性のMCM−22型ゼオライトの製造方法としては、SiO源とAl源とを、アルカリ及びテンプレートであるヘキサメチレンイミンの存在下で水熱反応せしめ、反応物を焼成してヘキサメチレンイミンを除去する方法が知られている(特許文献2参照)。 In addition, as a method for producing a highly crystalline MCM-22 type zeolite, SiO 2 source and Al 2 O 3 source are hydrothermally reacted in the presence of alkali and template hexamethyleneimine, and the reaction product is calcined. A method of removing hexamethyleneimine is known (see Patent Document 2).

特表2003−513026号公報Japanese translation of PCT publication No. 2003-513026 特表2009−526739号公報Special table 2009-526739 gazette

ところで、炭化水素系精製触媒として使用されるMCM−22型ゼオライトにおいても、未だ改良の余地があり、特に触媒寿命が短いという問題がある。特に、MCM−22型ゼオライトは、他の鉱物系の触媒に比してコスト高であり、従って、触媒寿命が短いということが工業的には致命的であり、その触媒寿命の延長が望まれている。   By the way, the MCM-22 type zeolite used as the hydrocarbon purification catalyst still has room for improvement, and there is a problem that the catalyst life is particularly short. In particular, MCM-22 type zeolite is expensive compared to other mineral-based catalysts, and therefore it is industrially fatal that the catalyst life is short, and it is desired to extend the catalyst life. ing.

従って本発明の目的は、炭化水素系精製触媒としての触媒寿命が大幅に延長された新規なMCM−22型ゼオライトを提供することにある。   Accordingly, an object of the present invention is to provide a novel MCM-22 type zeolite having a greatly extended catalyst life as a hydrocarbon purification catalyst.

本発明者等は、結晶性の高いMCM−22型の製造方法について多くの実験を行った結果、ゼオライト骨格合成時の反応条件やその後の熱履歴を調整することにより、c軸方向の結晶成長が抑制され且つ特定の環境に在る4配位Alが一定のレベルで存在している新規な結晶構造のMCM−22型ゼオライトが得られ、しかも、かかるMCM−22型ゼオライトは、炭化水素系精製触媒としての触媒寿命が、従来公知のMCM−22型ゼオライトに比して著しく延長していることを見出し、本発明を完成させるに至った。   As a result of conducting many experiments on the production method of the highly crystalline MCM-22 type, the present inventors have adjusted the reaction conditions during the synthesis of the zeolite skeleton and the subsequent thermal history to thereby grow the crystal in the c-axis direction. Is obtained, and MCM-22 type zeolite having a novel crystal structure in which tetracoordinate Al existing in a specific environment is present at a certain level is obtained. It has been found that the catalyst life as a refining catalyst is remarkably extended as compared with conventionally known MCM-22 type zeolite, and the present invention has been completed.

即ち、本発明によれば、XRDで測定される(101)面のピーク強度Pと(102)面のピーク強度Pとの比(P/P)が0.10〜0.60の範囲にあると共に、27Al−固体NMRで59.5±2.0に観測される4配位Alのピーク強度比Iq4が0.14〜0.70の範囲にあることを特徴とするMCM−22型ゼオライトが提供される。このMCM−22型ゼオライトは好適には、アンモニアTPD法により測定されるアンモニア脱離量が、吸着エンタルピーが130〜150kJ/molの範囲において、1.05〜2.50mol/kgである。
本発明によれば、また、上記のMCM−22型ゼオライトからなる芳香族炭化水素精製触媒が提供される。
That is, according to the present invention, the ratio (P 1 / P 2 ) between the peak intensity P 1 of the (101) plane and the peak intensity P 2 of the (102) plane measured by XRD is 0.10 to 0.60. MCM, characterized in that the peak intensity ratio Iq4 of tetracoordinated Al observed in 59.5 ± 2.0 by 27 Al-solid NMR is in the range of 0.14 to 0.70. A −22 type zeolite is provided. This MCM-22 type zeolite preferably has an ammonia desorption amount measured by an ammonia TPD method of 1.05 to 2.50 mol / kg when the adsorption enthalpy is in the range of 130 to 150 kJ / mol.
According to the present invention, there is also provided an aromatic hydrocarbon refining catalyst comprising the above MCM-22 type zeolite.

ゼオライトは、規則的な管状細孔(チャンネル)と空洞(キャビティ)とを有する陰イオン性の骨格と、この陰イオンを相殺する陽イオンとの組み合わせからなるアルカリ(またはアルカリ土類金属)含有含水アルミノケイ酸塩であり、SiO或いはAlOの四面体が3次元網目状に連なった基本骨格の結晶構造を有している。このようなゼオライトは、この基本骨格により形成される細孔のパターンに応じて種々の構造コードが与えられている。MCM−22型ゼオライトは、MWW型に属するものであり、下記式;
・[AlSi72−X144
はNa等のカチオンであり、
xは、0<x<6.5を満足する数である、
で表される組成の結晶骨格を有しており、Al或いはSiの一部はTiで同型置換されていてもよい。
Zeolite has an alkali (or alkaline earth metal) -containing water content composed of a combination of an anionic skeleton having regular tubular pores (channels) and cavities (cavities) and a cation that counteracts the anions. It is an aluminosilicate and has a basic skeletal crystal structure in which SiO 4 or AlO 4 tetrahedrons are linked in a three-dimensional network. Such zeolites are given various structural codes according to the pattern of pores formed by this basic skeleton. MCM-22 type zeolite belongs to the MWW type and has the following formula:
M + X · [Al X Si 72-X O 144]
M + is a cation such as Na;
x is a number satisfying 0 <x <6.5.
And a part of Al or Si may be isomorphously substituted with Ti.

本発明のMCM−22型ゼオライトは、MWW型に属する基本骨格を有していながら、X線回折(XRD)により測定される(101)面のピーク強度Pと(102)面のピーク強度Pとの比(P/P)が0.10〜0.60の範囲にある。即ち、このゼオライトは、(102)面に比して(101)面の成長が抑制されていることを示している。
さらに、本発明のMCM−22型ゼオライトは、NMRで59.5±2.0ppmにピークを示す4配位Alのピーク強度比Iq4がかなり高いレベルにあり、特定の環境に在るAlO四面体の連鎖を多く含んでいる。
Although the MCM-22 type zeolite of the present invention has a basic skeleton belonging to the MWW type, the peak intensity P 1 of the (101) plane and the peak intensity P of the (102) plane measured by X-ray diffraction (XRD). the ratio between the 2 (P 1 / P 2) is in the range of from 0.10 to 0.60. That is, this zeolite shows that the growth of the (101) plane is suppressed as compared to the (102) plane.
Furthermore, the MCM-22 type zeolite of the present invention has a 4-coordinated Al peak intensity ratio Iq4 that shows a peak at 59.5 ± 2.0 ppm by NMR at a considerably high level, and the AlO 4 tetrahedral surface in a specific environment. Contains many body chains.

上記のような構造を有する本発明のMCM−22型ゼオライトは、後述する実施例に示されているように、芳香族炭化水素精製触媒として著しく延長された触媒寿命を有している。即ち、このような触媒寿命の延長は、実験的に確認されたものであり、理論的解明には至っていないが、その延長は驚くべきほどに顕著である。例えば、上記のXRDによるピーク強度比(P/P)やNMRによる4配位Alのピーク強度比Iq4が上述した範囲外である比較例1〜3のMCM−22型ゼオライトは、その触媒寿命(詳細な実験方法は実施例参照)は220〜240時間程度であるが、実施例1〜4の本発明のMCM−22型ゼオライトでの触媒寿命は400時間以上であり、触媒寿命が著しく向上していることが判る。 The MCM-22 type zeolite of the present invention having the structure as described above has a significantly extended catalyst life as an aromatic hydrocarbon refining catalyst, as shown in the Examples described later. That is, such an extension of the catalyst life has been experimentally confirmed and has not yet been theoretically elucidated, but the extension is surprisingly remarkable. For example, the MCM-22 type zeolites of Comparative Examples 1 to 3 in which the peak intensity ratio (P 1 / P 2 ) by XRD and the peak intensity ratio Iq4 of 4-coordinated Al by NMR are outside the above-described range are the catalysts. The lifetime (refer to the examples for detailed experimental methods) is about 220 to 240 hours, but the catalyst lifetimes of the MCM-22 type zeolites of the present invention of Examples 1 to 4 are 400 hours or more, and the catalyst lifetime is remarkably high. It turns out that it is improving.

また、本発明のMCM−22型ゼオライトは、好ましくはアンモニアTPD法により測定されるアンモニア脱離量が、吸着エンタルピーが130〜150kJ/molの範囲で1.05〜2.50mol/kgである。アンモニア脱離量がこのような高い値を示すことにより、触媒活性に関し、従来公知のMCM−22型ゼオライトと同等以上のレベルにあることを示している。   The MCM-22 type zeolite of the present invention preferably has an ammonia desorption amount measured by an ammonia TPD method of 1.05 to 2.50 mol / kg when the adsorption enthalpy is in the range of 130 to 150 kJ / mol. When the ammonia desorption amount shows such a high value, it indicates that the catalyst activity is at a level equal to or higher than that of conventionally known MCM-22 type zeolite.

上述の通り、本発明によれば良好な触媒活性を示すとともに触媒寿命が著しく延長された、炭化水素系精製触媒として極めて有用なMCM−22型ゼオライトが得られる。   As described above, according to the present invention, it is possible to obtain MCM-22 type zeolite which is very useful as a hydrocarbon purification catalyst, which exhibits good catalytic activity and has a significantly extended catalyst life.

本発明のMCM−22型ゼオライト(J−2)のX線回折像を示す図。The figure which shows the X-ray-diffraction image of the MCM-22 type | mold zeolite (J-2) of this invention.

<MCM−22型ゼオライトの製造>
本発明のMCM−22型ゼオライトは、SiO源・Al源・アルカリ及びテンプレートであるヘキサメチレンイミンを脱イオン水と混合し、この混合物をオートクレーブ中で水熱反応せしめ、得られた反応物を焼成してヘキサメチレンイミンを除去するというプロセスを経て合成される。
<Manufacture of MCM-22 type zeolite>
The MCM-22 type zeolite of the present invention was obtained by mixing SiO 2 source / Al 2 O 3 source / alkali and hexamethyleneimine as a template with deionized water and hydrothermally reacting the mixture in an autoclave. It is synthesized through a process of removing the hexamethyleneimine by baking the reaction product.

上記のプロセスを経て合成されるという点では、従来公知のMCM−22型ゼオライトと同様であるが、本発明では、XRDで測定される(101)面のピーク強度Pと(102)面のピーク強度Pとの比(P/P)を0.10〜0.60の範囲とし、且つ27Al−固体NMRで59.5±2.0ppm(以下、60ppm付近と略す)に観測される4配位Alのピーク強度比Iq4が0.14〜0.70の範囲とするために、水熱反応時の反応条件や、水熱反応後の熱履歴に関して、従来公知の製造方法にはみられない設定をすることが重要である。以下、これらを考慮して、本発明のMCM−22型ゼオライトを製造する方法について説明する。 It is the same as the conventionally known MCM-22 type zeolite in that it is synthesized through the above process, but in the present invention, the peak intensity P 1 of the (101) plane and the (102) plane measured by XRD are used. The ratio (P 1 / P 2 ) with the peak intensity P 2 is in the range of 0.10 to 0.60, and observation is made at 59.5 ± 2.0 ppm (hereinafter, abbreviated as 60 ppm) by 27 Al-solid NMR. In order to set the peak intensity ratio Iq4 of tetracoordinated Al to be in the range of 0.14 to 0.70, regarding the reaction conditions during the hydrothermal reaction and the thermal history after the hydrothermal reaction, a conventionally known production method is used. It is important to make settings that are not visible. Hereinafter, in consideration of these, the method for producing the MCM-22 type zeolite of the present invention will be described.

まず、原料として用いるSiO源としては、ケイ酸ソーダに代表されるケイ酸アルカリや二酸化ケイ素(シリカ)を使用することができるが、特に反応を均一且つ迅速に進行させるため、微細なシリカ、例えばコロイダルシリカが好適に使用される。
また、Al源としては、反応を迅速に進行させるため、アルミン酸ナトリウム(NaAlO)等のアルミン酸アルカリが好適に使用される。
SiO源とAl源との量比は、MWW型構造の骨格を形成し得るように設定され、例えば、SiOとAlとのモル比(SiO/Al)で15〜50、好ましくは28〜45の範囲に設定される。
First, as the SiO 2 source used as a raw material, alkali silicate represented by sodium silicate and silicon dioxide (silica) can be used, but in order to make the reaction proceed uniformly and rapidly, fine silica, For example, colloidal silica is preferably used.
Further, as the Al 2 O 3 source, alkali aluminate such as sodium aluminate (NaAlO 2 ) is preferably used in order to allow the reaction to proceed rapidly.
The quantity ratio between the SiO 2 source and the Al 2 O 3 source is set so as to form a skeleton having an MWW type structure. For example, the molar ratio between SiO 2 and Al 2 O 3 (SiO 2 / Al 2 O 3 ) In the range of 15-50, preferably 28-45.

テンプレートとして使用されるヘキサメチレンイミン(以下、HMIと略すことがある)は、通常、SiO1モル当り0.2〜1.0モルの範囲とするのがよい。このようなテンプレートを使用することで、後述する水熱反応により、MCM−22型ゼオライトの結晶の基本骨格が形成される。 Hexamethyleneimine (hereinafter sometimes abbreviated as HMI) used as a template is usually in the range of 0.2 to 1.0 mole per mole of SiO 2 . By using such a template, a basic skeleton of crystals of MCM-22 type zeolite is formed by a hydrothermal reaction described later.

また、アルカリとしては、Na、K、Liに代表されるアルカリ金属の水酸化物が使用され、通常、SiO1モル当り0.1〜0.2モルの範囲に設定される。 As the alkali, Na, K, alkali metal hydroxide typified by Li is used, it is typically in the range of SiO 2 1 mol per 0.1 to 0.2 moles.

上述したSiO源、Al源、HMI及びアルカリは脱イオン水に混合されて水熱反応に供されるが、この水分量は、通常、SiO100質量部当り600〜2000質量部である。 The above-mentioned SiO 2 source, Al 2 O 3 source, HMI and alkali are mixed with deionized water and subjected to a hydrothermal reaction. The amount of water is usually 600 to 2000 parts by mass per 100 parts by mass of SiO 2. It is.

尚、水熱反応を速やかに進行せしめ、比較的低い温度で結晶化させるために、NaCl等の鉱化剤を使用することもできる。このような鉱化剤は、通常、SiO1モル当り0.001〜0.1モルの量で使用される。 A mineralizer such as NaCl can also be used in order to allow the hydrothermal reaction to proceed rapidly and to crystallize at a relatively low temperature. Such mineralizing agent is generally used in an amount of SiO 2 1 mole per 0.001 mol.

水熱反応は、オートクレーブ中で行われるが、この水熱反応はある程度以上の強撹拌下で行うことが必要である。この撹拌が弱すぎると、XRDによるピーク強度比(P/P)が前述した範囲を超えてしまう。即ち、(101)面の成長が(102)面の成長度合いに近くなってしまい、また、特定の環境に在るAlOの四面体の成長も不十分となり、NMRによる4配位Alのピーク強度比Iq4が低い値となってしまい、この結果、芳香族炭化水素精製触媒としての触媒寿命を延長することができなくなってしまう。MCM−22型ゼオライトの結晶構造を形成するための反応時間はかなり長く、このため、撹拌条件が結晶の成長に大きな影響を及ぼすものと思われる。
尚、具体的な撹拌条件は、水熱反応に供する液量等によって異なるため、予めラボ実験を行って、目的とする液量に応じて回転数などの撹拌条件を設定することが必要である。
The hydrothermal reaction is performed in an autoclave, but this hydrothermal reaction needs to be performed with a certain degree of strong stirring. If this stirring is too weak, the peak intensity ratio (P 1 / P 2 ) by XRD exceeds the range described above. That is, the growth of the (101) plane is close to the degree of growth of the (102) plane, and the growth of the tetrahedron of AlO 4 in a specific environment is insufficient, and the peak of tetracoordinated Al by NMR. The intensity ratio Iq4 becomes a low value, and as a result, the catalyst life as an aromatic hydrocarbon purification catalyst cannot be extended. The reaction time for forming the crystal structure of the MCM-22 type zeolite is considerably long, and it is considered that the stirring conditions have a great influence on the crystal growth.
Since specific stirring conditions vary depending on the amount of liquid used for the hydrothermal reaction, it is necessary to conduct a laboratory experiment in advance and set the stirring conditions such as the number of rotations according to the target liquid volume. .

さらに、本発明のMCM−22型ゼオライトを製造するためには、反応温度及び反応時間も適宜の範囲に設定することが必要である。
例えば水熱反応の温度は、比較的低温領域とすることが必要であり、具体的には100〜200℃、特に120〜158℃の範囲とするのがよい。この反応温度が高いと、(101)面の成長が促進されてしまい、やはり、XRDによるピーク強度比(P/P)が前述した範囲を超えてしまう。
また、反応時間は、反応温度や液量などによって多少異なり、厳密に規定することはできないが、通常は48〜168時間、好ましくは72〜168時間程度とする。即ち、反応時間が長くなるほど、(101)面が成長し、XRDによるピーク強度比(P/P)が前述した範囲を超えてしまうこととなる。また、反応時間が短すぎると、当然のことながらゼオライトの基本骨格が十分に形成されない。
Furthermore, in order to produce the MCM-22 type zeolite of the present invention, it is necessary to set the reaction temperature and the reaction time within appropriate ranges.
For example, the temperature of the hydrothermal reaction needs to be in a relatively low temperature range, and specifically, it may be in the range of 100 to 200 ° C., particularly 120 to 158 ° C. When this reaction temperature is high, the growth of the (101) plane is promoted, and the peak intensity ratio (P 1 / P 2 ) by XRD exceeds the aforementioned range.
The reaction time varies somewhat depending on the reaction temperature, liquid volume, etc., and cannot be strictly defined, but is usually 48 to 168 hours, preferably about 72 to 168 hours. That is, as the reaction time becomes longer, the (101) plane grows, and the peak intensity ratio (P 1 / P 2 ) by XRD exceeds the above-described range. If the reaction time is too short, it is natural that the basic framework of zeolite is not sufficiently formed.

水熱反応後は、室温まで冷却した後、オートクレーブ中から反応生成物を取り出し、常法により、ろ過、脱イオン水による洗浄を行い、適宜、乾燥を行った後、焼成を行うことにより、テンプレートとして使用されたHMIを分解除去し、これにより、反応に使用されたアルカリ金属の種類に応じて、例えばNa型、K型などのMCM−22型ゼオライトを得ることができる。   After the hydrothermal reaction, after cooling to room temperature, the reaction product is taken out from the autoclave, filtered, washed with deionized water by a conventional method, appropriately dried, and then baked to obtain a template. As a result, HMI used as a catalyst can be decomposed and removed to obtain MCM-22 type zeolite such as Na type and K type according to the kind of alkali metal used in the reaction.

上記のようにしてMCM−22型ゼオライトを得ることができるが、特に本発明のMCM−22型ゼオライトを製造する場合には、高温での熱履歴を避けることが必要であり、具体的には、700℃よりも低い温度で、テンプレート除去のための焼成を行うことが必要である。即ち、水熱反応による生成物が700℃以上の温度に加熱されると、結晶中のAlOの四面体の構造破壊が生じ、4配位Alのピーク強度比Iq4が低い値となり、また、結晶中の(101)面の成長が促進されてしまい、XRDによるピーク強度比(P/P)が前述した範囲を超えてしまうこともあり、目的とする触媒寿命の向上が実現できなくなってしまう。 Although the MCM-22 type zeolite can be obtained as described above, it is necessary to avoid the heat history at high temperature, particularly when the MCM-22 type zeolite of the present invention is produced. It is necessary to perform baking for removing the template at a temperature lower than 700 ° C. That is, when the product of the hydrothermal reaction is heated to a temperature of 700 ° C. or higher, AlO 4 tetrahedron structural breakage in the crystal occurs, and the peak intensity ratio Iq4 of tetracoordinate Al becomes a low value, The growth of the (101) plane in the crystal is promoted, and the peak intensity ratio (P 1 / P 2 ) by XRD may exceed the aforementioned range, so that the target catalyst life cannot be improved. End up.

<MCM−22型ゼオライトの特性及び用途>
上記のようにして得られる本発明のMCM−22型ゼオライトは、結晶中の(101)面の成長が抑制されており、XRDで測定される(101)面のピーク強度Pと(102)面のピーク強度Pとの比(P/P)が0.10〜0.60の範囲にある。また、特定の環境に在るAlOの四面体も一定レベル以上の割合で存在しており、27Al−固体NMRで60ppm付近に観測される4配位Alのピーク強度比Iq4が0.14〜0.70の範囲にある。
このようなXRDによるピーク強度比(P/P)とNMRによるピーク強度比Iq4を有しているため、後述する実施例にも示されているように、芳香族炭化水素中に含まれるオレフィンやジオレフィンなどの不飽和炭化水素を、蒸留により分離可能な重合体の形態に転換せしめる芳香族炭化水素精製触媒としての触媒寿命が大幅に延長されたものとなっている。
<Characteristics and use of MCM-22 type zeolite>
In the MCM-22 type zeolite of the present invention obtained as described above, the growth of the (101) plane in the crystal is suppressed, and the peak intensity P 1 of the (101) plane measured by XRD and (102) the ratio of the peak intensity P 2 faces (P 1 / P 2) is in the range of 0.10 to 0.60. Further, AlO 4 tetrahedrons present in a specific environment are also present at a certain level or higher, and the peak intensity ratio Iq4 of tetracoordinated Al observed at around 60 ppm by 27 Al-solid NMR is 0.14. It is in the range of ~ 0.70.
Since it has such a peak intensity ratio (P 1 / P 2 ) by XRD and a peak intensity ratio Iq4 by NMR, it is contained in aromatic hydrocarbons as shown in Examples described later. The catalyst life as an aromatic hydrocarbon refining catalyst that converts unsaturated hydrocarbons such as olefins and diolefins into a polymer form separable by distillation is greatly extended.

また、このような本発明のMCM−22型ゼオライトは、好ましくはアンモニアTPD法により測定されるアンモニア脱離量が、吸着エンタルピーが130〜150kJ/molの範囲で1.05〜2.50mol/kg、と高い値を示す。   Further, the MCM-22 type zeolite of the present invention preferably has an ammonia desorption amount measured by an ammonia TPD method of 1.05 to 2.50 mol / kg when the adsorption enthalpy is in the range of 130 to 150 kJ / mol. , And a high value.

アンモニアTPD法において、吸着熱は固体酸強度に、アンモニア脱離量は固体酸量に関係付けられる。即ち、アンモニアTPD法は、後述する実施例に記載されているように、塩基プローブ分子であるアンモニアを試料の固体に吸着させ、温度を連続的に上昇させることによって脱離するアンモニアの量及び温度を同時測定するというものである。弱い酸点に吸着しているアンモニアが低温で脱離し(吸着熱が低い範囲での脱離に相当)、強い酸点に吸着しているアンモニアが高温で脱離する(吸着熱が高い範囲での脱離に相当)こととなる。従来、BTX等の芳香族炭化水素の精製処理において、オレフィンやジオレフィンなどの不飽和炭化水素化合物のアルキル化や重合といった反応は、触媒中に単純に酸強度の高い固体酸の量が多いほど促進されるものと考えられてきた。しかしながら、このような反応に寄与する固体酸は、吸着エンタルピーとして130〜150kJ/molの範囲に対応する酸強度のものに限られ、これ以外の酸強度の範囲にある固体酸は、副反応を促進し、触媒寿命を低下させてしまう。従って、触媒性能の評価では、このような吸着エンタルピーの範囲でのアンモニア脱離量が重要なパラメータとなる。   In the ammonia TPD method, the heat of adsorption is related to the solid acid strength, and the ammonia desorption amount is related to the solid acid amount. That is, in the ammonia TPD method, as described in the examples described later, the amount and temperature of ammonia desorbed by adsorbing ammonia, which is a base probe molecule, to a solid sample and continuously increasing the temperature. Are measured simultaneously. Ammonia adsorbed on weak acid sites desorbs at low temperatures (equivalent to desorption in a low adsorption heat range), and ammonia adsorbed on strong acid sites desorbs at high temperatures (in a high adsorption heat range). Is equivalent to detachment). Conventionally, in the purification treatment of aromatic hydrocarbons such as BTX, reactions such as alkylation and polymerization of unsaturated hydrocarbon compounds such as olefins and diolefins are performed simply by increasing the amount of solid acid having high acid strength in the catalyst. It has been thought to be promoted. However, solid acids that contribute to such reactions are limited to those with acid strengths corresponding to the range of 130 to 150 kJ / mol as adsorption enthalpies, and solid acids with other acid strengths range from side reactions. Promotes and reduces catalyst life. Therefore, in the evaluation of the catalyst performance, the amount of ammonia desorption within such an adsorption enthalpy range is an important parameter.

本発明のMCM−22型ゼオライトは、上記の通りアンモニア脱離量が高い値であることで、触媒寿命が延長されたばかりか、触媒活性の点でも、従来公知のものと同等以上のレベルにあることを示している。   The MCM-22 type zeolite of the present invention has a high ammonia desorption amount as described above, so that not only the catalyst life is extended, but also in terms of catalyst activity, it is at or above the level of conventionally known ones. It is shown that.

尚、上記のような触媒活性や触媒寿命は、ゼオライト充填層を通過させた後蒸留により高沸点留分を除去した芳香族炭化水素について、オレフィン分の含有量の指標となる臭素指数を求めることにより評価することができる。   For the catalytic activity and catalyst life as described above, the bromine index, which is an index of the olefin content, is obtained for aromatic hydrocarbons that have been passed through the zeolite packed bed and then removed by high-boiling fraction by distillation. Can be evaluated.

このように、本発明のMCM−22型ゼオライトは、BTXなどの芳香族炭化水素の精製触媒として優れた特性を有しており、その使用形態に応じて、粒度調整して使用に供される。
例えば、芳香族炭化水素の精製処理をバッチで行う場合には、その粒径は一般に20〜40μm、特に25〜35μmのメジアン径の粉末に調整され、固定床で用いる場合は、一般に粒径が、0.25〜1.0mmの範囲の粒状物の形態に調整される。粒子形状は、球状、顆粒状、立方体状、タブレット状、円柱状、不定形状等の何れの形状であってもよい。
As described above, the MCM-22 type zeolite of the present invention has excellent characteristics as a purification catalyst for aromatic hydrocarbons such as BTX, and is used after adjusting the particle size according to the use form. .
For example, when the purification process of aromatic hydrocarbons is performed in batches, the particle size is generally adjusted to 20 to 40 μm, particularly 25 to 35 μm median diameter powder, and when used in a fixed bed, the particle size is generally , Adjusted to a granular form in the range of 0.25 to 1.0 mm. The particle shape may be any shape such as a spherical shape, a granular shape, a cubic shape, a tablet shape, a cylindrical shape, and an indefinite shape.

また、上述した本発明のMCM−22型ゼオライトは、Na型等のアルカリイオン型に限定されるものではなく、例えばアルカリイオンをアンモニウムイオンやカルシウム等のアルカリ土類金属のイオンにイオン交換した形態で使用に供することもできるし、また、プロトン型(H)にイオン交換して使用することもできる。このイオン交換は、イオン交換するイオンを含む塩(例えば硝酸アンモニウム)や硫酸等を用いての中和処理によっても行うことができる。
尚、例えば、本発明のMCM−22型ゼオライトを硝酸アンモニウム水溶液等で処理してアンモニウム型に変化させた後、これを焼成することによってもプロトン型にイオン交換することができるが、このような焼成を行う場合にも、前述した理由により、700℃以上の高温での焼成は避けなければならない。
Further, the above-described MCM-22 type zeolite of the present invention is not limited to the alkali ion type such as Na type, and for example, the form in which alkali ions are ion-exchanged with ions of alkaline earth metals such as ammonium ions and calcium. It can also be used for use, or can be used after ion-exchanged to the proton form (H + ). This ion exchange can also be performed by a neutralization treatment using a salt (for example, ammonium nitrate) or sulfuric acid containing ions to be ion exchanged.
In addition, for example, the MCM-22 type zeolite of the present invention can be changed to the ammonium type by treating it with an aqueous ammonium nitrate solution and the like, and then calcinated to be ion-exchanged to the proton type. Even in the case of performing baking, firing at a high temperature of 700 ° C. or more must be avoided for the above-described reason.

本発明のMCM−22型ゼオライトは、芳香族炭化水素の精製触媒として好適に使用することができるが、勿論、オレフィンの重合触媒としても使用することができるし、公知のMCM−22型ゼオライトと同様の用途に使用することができる。   The MCM-22 type zeolite of the present invention can be suitably used as a purification catalyst for aromatic hydrocarbons, but of course can also be used as a polymerization catalyst for olefins. It can be used for similar applications.

本発明を次の実験例で説明する。
尚、以下の実験例での各種物性の測定は、以下の方法により行った。
The invention is illustrated by the following experimental example.
The various physical properties in the following experimental examples were measured by the following methods.

(1)化学組成
Si、AlとNaの各元素は、加圧成型機で作成したペレットについて、(株)リガク製RIX2100を用いてXRF測定を行った。
H2Oについては、セイコーインスツル(株)製EXSTAR6000を用い、110〜1000℃の質量減少量として測定した。測定条件は、昇温速度10℃/分、空気流速200cm/分とした。
これらの測定結果からSiO2/Al2O3(SAR)、Na2O/SiO2、H2O/SiO2のモル比を算出した。
(1) Chemical composition Each element of Si, Al, and Na was subjected to XRF measurement using a RIX2100 manufactured by Rigaku Corporation on pellets produced by a pressure molding machine.
The H 2 O, using Seiko Instruments Co. EXSTAR6000, was measured as weight loss of 110 to 1,000 ° C.. The measurement conditions were a heating rate of 10 ° C./min and an air flow rate of 200 cm 3 / min.
From these measurement results, the molar ratio of SiO 2 / Al 2 O 3 (SAR), Na 2 O / SiO 2 , and H 2 O / SiO 2 was calculated.

(2)比表面積
Micromeritics社製TriStar3000を用いて測定を行った。比表面積は比圧が0.05から0.25の吸着枝側窒素吸着等温線からBET法で解析した。
(2) Specific surface area It measured using TriStar3000 made from Micromeritics. The specific surface area was analyzed by the BET method from the adsorption side nitrogen adsorption isotherm having a specific pressure of 0.05 to 0.25.

(3)XRDによるピーク強度比(P/P
試料1gを、食塩水で飽和させたデシケータ中で調湿させた。NBS法(“Standard X-ray diffraction powder patterns”, NBS Monograph,25(1971).)で試料をホルダーに充填し、測定角度2θが3〜15[deg]の範囲でXRD測定を行った。その際の測定条件は、電圧40[V]電流40[mA]、D Slit & S Slit:2/3、V Slit:10[mm]、R Slit 0.3[mm]、Step:0.02[deg]であった。各試料について、2θ=8°付近の(101)と2θ=10°付近の(102)の回折ピーク面積強度PとPをそれぞれ求め、その試料の強度比(P/P)を決定した。
(3) Peak intensity ratio by XRD (P 1 / P 2 )
A 1 g sample was conditioned in a desiccator saturated with saline. A sample was filled in a holder by the NBS method (“Standard X-ray diffraction powder patterns”, NBS Monograph, 25 (1971).), And XRD measurement was performed in a measurement angle 2θ of 3 to 15 [deg]. The measurement conditions at that time are as follows: voltage 40 [V] current 40 [mA], D Slit & S Slit: 2/3, V Slit: 10 [mm], R Slit 0.3 [mm], Step: 0.02 [deg] there were. For each sample, the diffraction peak area intensities P 1 and P 2 of (101) near 2θ = 8 ° and (102) near 2θ = 10 ° are obtained, and the intensity ratio (P 1 / P 2 ) of the sample is obtained. Were determined.

(4)NMRによる4配位Alのピーク強度比(Iq4)
各試料の27Al−MASNMRの測定は、日本電子(株)製JEOL CMX400型のNMR装置を用い、食塩水で飽和させたデシケータ中で調湿させた試料をセルに充填し秤量してから、下記の条件で測定を行った。
観測周波数104.170MHz、パルス遅延1sec、パルス幅4μsec(27Al 10゜パルス)
試料回転数 10 kHz、化学シフト基準硫酸アルミニウム飽和水溶液(外部基準:0.0ppm)。
得られた四配位アルミニウムのスペクトルを解析ソフトのDeltaで波形分離し、66、60、および53ppm付近のピークに分割した。触媒学会の参照触媒JRC-Z-HY5.6における60ppm付近ピークの質量あたり面積に対する各試料の60ppm付近ピークの質量あたり面積の比を、その試料のIq4とした。
(4) Peak intensity ratio of tetracoordinated Al by NMR (Iq4)
The measurement of 27 Al-MAS NMR of each sample was carried out by using a JEOL CMX400 type NMR device manufactured by JEOL Ltd., filling a cell with a sample conditioned in a desiccator saturated with saline, and weighing it. Measurement was performed under the following conditions.
Observation frequency 104.170MHz, pulse delay 1 sec, pulse width 4μsec (27 Al 10 ° pulse)
Sample rotation speed 10 kHz, chemical shift standard saturated aqueous solution of aluminum sulfate (external standard: 0.0 ppm).
The spectrum of the resulting tetracoordinated aluminum was separated into waveforms by analysis software Delta and divided into peaks around 66, 60, and 53 ppm. The ratio of the area per mass of the peak near 60 ppm of each sample to the area per mass of the peak near 60 ppm in the reference catalyst JRC-Z-HY5.6 of the Catalysis Society was defined as Iq4 of the sample.

(5)アンモニア脱離量(アンモニアTPD法)
試料約0.1gを日本ベル製TPD−AT−1型昇温脱離装置の石英セル(内径10mm)にセットし、O(60cmmin−1、1atm)流通下、773Kまで10Kmin−1で昇温し、到達温度で1hr保った。その後Oを流通させたまま373Kまで放冷した後に真空脱気し、100TorrのNHを導入して30min間吸着させ、その後30min間脱気した後に水蒸気処理を行った。水蒸気処理としては、100℃で約25Torrの蒸気圧の水蒸気を導入、そのまま30min保ち、30min脱気、再び30min水蒸気導入、再び30min脱気の順に繰り返した。その後He 0.041mmols−1を減圧(100Torr、13.3kPa)に保ちながら流通させ、100℃で30min保った後に試料床を10Kmin−1で1073Kまで昇温し、出口気体を質量分析計(ANELVA M−QA 100F)で分析した。W/Fは13kgs/mである。
測定に際しては質量数(m/e)16のマススペクトルを記録した。終了後に1mol%−NH/He標準ガスをさらにヘリウムで希釈してNH濃度0、0.1、0.2、0.3、0.4mol%,合計流量が0.041mmols−1となるようにして検出器に流通させ、スペクトルを記録し、アンモニアの検量線を作成して検出器強度を補正した。
得られたTPDスペクトルから酸強度分布(Cw/ΔH)への変換は、鳥取大学大学院工学研究科/工学部研究報告,40,23(2009)に従って行った。得られた酸強度分布から、吸着エンタルピー(ΔH)が130〜150kJ/molの範囲におけるアンモニア脱離量(Cw)を算出した。
(5) Ammonia desorption amount (ammonia TPD method)
About 0.1 g of a sample was set in a quartz cell (inner diameter: 10 mm) of a TPD-AT-1 type thermal desorption apparatus manufactured by Nippon Bell, and 10 Kmin up to 773 K under O 2 (60 cm 3 min −1 , 1 atm) flow. The temperature was raised at 1 and kept at the ultimate temperature for 1 hr. Thereafter, the mixture was allowed to cool to 373 K while O 2 was circulated, then vacuum degassed, 100 Torr NH 3 was introduced and adsorbed for 30 min, and then degassed for 30 min, followed by steam treatment. As the water vapor treatment, water vapor having a vapor pressure of about 25 Torr was introduced at 100 ° C., maintained for 30 minutes as it was, repeated for 30 minutes, degassing again for 30 minutes, and degassing again for 30 minutes . Thereafter, He 0.041 mmols −1 was circulated while maintaining a reduced pressure (100 Torr, 13.3 kPa), and after maintaining at 100 ° C. for 30 min, the sample bed was heated to 1073 K at 10 Kmin −1 , and the outlet gas was changed to a mass spectrometer (ANELVA). M-QA 100F). W / F is 13 kgs / m 3 .
During the measurement, a mass spectrum having a mass number (m / e) 16 was recorded. After completion, the 1 mol% -NH 3 / He standard gas is further diluted with helium, and the NH 3 concentration becomes 0, 0.1, 0.2, 0.3, 0.4 mol%, and the total flow rate becomes 0.041 mmols −1. The spectrum was recorded, and a calibration curve of ammonia was prepared to correct the detector intensity.
Conversion from the obtained TPD spectrum to acid strength distribution (Cw / ΔH) was performed according to Tottori University Graduate School of Engineering / Faculty of Engineering Research Report, 40, 23 (2009). From the obtained acid strength distribution, the ammonia desorption amount (Cw) in the range of adsorption enthalpy (ΔH) of 130 to 150 kJ / mol was calculated.

(6)触媒寿命(通油試験)
芳香族炭化水素成分の測定は、JIS K2536-3に準拠し、島津製作所(株)製ガスクロマトグラフGC-2010を用いて測定した。また、臭素指数(Br-Index、以下、BIと略記)は、平沼産業(株)製電量滴定式BR-7で測定した。
供試油の成分を表1に示す。なお、供試油のBI(BI0)は646であった。
(6) Catalyst life (oil passage test)
The aromatic hydrocarbon component was measured using a gas chromatograph GC-2010 manufactured by Shimadzu Corporation in accordance with JIS K2536-3. The bromine index (Br-Index, hereinafter abbreviated as BI) was measured by the coulometric titration BR-7 manufactured by Hiranuma Sangyo Co., Ltd.
Table 1 shows the components of the test oil. The sample oil BI (BI 0 ) was 646.

Figure 0006045890
通油試験は、試料を、24〜60meshの篩で整粒し、150℃3時間乾燥した後、試験に使用した。I.D.φ=5mmの試料管に試料を0.3g充填し、温度180℃、圧力1.5MPa、WHSV=15hr-1の条件で通油した。12時間毎に採取した試料管出口油のBIを測定し、得られた破過曲線をA.Wheeler & A.J.Robell,J.Catal.,13,299(1969).に記載の下記式で解析して触媒寿命tsを求めた。
Figure 0006045890
In the oil permeation test, the sample was sized with a sieve of 24 to 60 mesh, dried at 150 ° C. for 3 hours, and then used for the test. A sample tube with IDφ = 5 mm was filled with 0.3 g of sample, and oiled under conditions of temperature 180 ° C., pressure 1.5 MPa, WHSV = 15 hr −1 . BI of the sample tube outlet oil collected every 12 hours was measured, and the obtained breakthrough curve was analyzed by the following formula described in A. Wheeler & AJ Robell, J. Catal., 13, 299 (1969). t s was determined.

Figure 0006045890
ただし、BI0:入り口BI[mg/100g]、BI:t時間後における出口BI[mg/100g]、k0:初期触媒一次反応速度定数[1/hr]でkA以下の値であり、kA:オレフィン吸着速度定数[1/hr]、W:触媒質量[g]、F:通油量[g/hr]、WS:ts 時間後における触媒重量あたり吸着した高沸点オレフィン重量[mg/100g]、WHSV:空間速度[1/hr]。
Figure 0006045890
However, BI 0: entrance BI [mg / 100g], BI : outlet BI [mg / 100g] after t time, k 0: a k A following values in the initial catalytic order rate constant [1 / hr], k A : Olefin adsorption rate constant [1 / hr], W: Catalyst mass [g], F: Oil flow rate [g / hr], W S : Weight of high boiling olefin adsorbed per catalyst weight after ts hours [mg / 100g], WHSV: space velocity [1 / hr].

以下の各実験例につき、採用したSiO/Al仕込みモル比、NaCl/SiOモル比、水熱反応条件(撹拌速度、反応時間及び反応温度)、HMI除去のための焼成温度、NH型からH型に変換するための焼成温度を表2に示した。また、得られた各サンプルにつき、各種物性、及び芳香族炭化水素精製触媒としての評価(触媒寿命Ts)を表3に示した。 For each of the following experimental examples, the employed SiO 2 / Al 2 O 3 charged molar ratio, NaCl / SiO 2 molar ratio, hydrothermal reaction conditions (stirring speed, reaction time and reaction temperature), firing temperature for HMI removal, Table 2 shows the firing temperature for converting the NH 4 type to the H type. Table 3 shows various physical properties and evaluations (catalyst lifetime Ts) as aromatic hydrocarbon refining catalysts for each sample obtained.

<比較例1>
(1)ゼオライト合成工程
23.08g(SiO2換算で9.23g)のコロイダルシリカ(LudoxHS−40)、及び7.61gのヘキサメチレンイミン(HMI)を、プラスチックビーカー中で混合撹拌してA液を調製した。一方、0.27gのNaAlO(Al換算で0.17g)、0.60gのNaOH、及び0.48gのNaClを別のプラスチックビーカーで124.2gの脱イオン水に溶解させてB液を調製した。B液を撹拌しつつ、A液をプラスチックの滴下漏斗で30分かけてB液に滴下した。その後、30分撹拌を継続した。
<Comparative Example 1>
(1) Zeolite synthesis process
Liquid A was prepared by mixing and stirring 23.08 g (9.23 g in terms of SiO 2 ) of colloidal silica (Ludox HS-40) and 7.61 g of hexamethyleneimine (HMI) in a plastic beaker. On the other hand, 0.27 g of NaAlO 2 (0.17 g in terms of Al 2 O 3 ), 0.60 g of NaOH, and 0.48 g of NaCl were dissolved in 124.2 g of deionized water in another plastic beaker, and the solution B was dissolved. Prepared. While stirring the B liquid, the A liquid was dropped into the B liquid with a plastic dropping funnel over 30 minutes. Thereafter, stirring was continued for 30 minutes.

得られた混合液を2個のポリテトラフルオロエチレン容器に等量ずつ入れて専用ステンレス製オートクレーブにセットした。次いで、タンブリング回転用シャフトを備えた水熱合成用オーブンのシャフトに、このオートクレーブを取り付け、150℃、15rpmで84時間、水熱合成を行った。この後、室温まで冷却後、オートクレーブの内容物を取り出し、吸引ろ過、および脱イオン水での洗浄を3回繰り返した。得られたケーキを100℃で3時間乾燥させた。   An equal amount of the obtained mixed solution was put into two polytetrafluoroethylene containers and set in a dedicated stainless steel autoclave. Next, the autoclave was attached to the shaft of a hydrothermal synthesis oven equipped with a tumbling rotation shaft, and hydrothermal synthesis was performed at 150 ° C. and 15 rpm for 84 hours. Thereafter, after cooling to room temperature, the contents of the autoclave were taken out, suction filtration, and washing with deionized water were repeated three times. The obtained cake was dried at 100 ° C. for 3 hours.

次いで、マッフル炉(昇温速度2℃/min)を用い、上記の乾燥物を580℃で3時間焼成してHMIを除去してNa型のMCM−22ゼオライトを得た。   Next, using a muffle furnace (heating rate 2 ° C./min), the dried product was calcined at 580 ° C. for 3 hours to remove HMI to obtain Na-type MCM-22 zeolite.

(2)イオン交換工程
上記のようにして得られたNa型のMCM−22ゼオライト7.2gを、10.8gの0.5N硝酸アンモニウムと共に、270mlの脱イオン水が入れられた1000mlの三角フラスコに加え、撹拌子で撹拌しながら75℃で24時間イオン交換した。撹拌終了後、吸引ろ過、脱イオン水による洗浄を2回行い、100℃の乾燥機中で2時間乾燥させてNH型のMCM−22ゼオライトを得た。
上記のNH型のMCM−22ゼオライトを、マッフル炉(昇温速度2℃/分)にて540℃で4時間焼成することで、H型のMCM−22ゼオライト(H−1)を得た。
(2) Ion Exchange Step 7.2 g of Na-type MCM-22 zeolite obtained as described above was placed in a 1000 ml Erlenmeyer flask containing 270 ml of deionized water together with 10.8 g of 0.5N ammonium nitrate. In addition, ion exchange was performed at 75 ° C. for 24 hours while stirring with a stirring bar. After completion of the stirring, suction filtration and washing with deionized water were performed twice, followed by drying in a dryer at 100 ° C. for 2 hours to obtain NH 4 type MCM-22 zeolite.
The NH 4 type MCM-22 zeolite (H-1) was obtained by calcining the NH 4 type MCM-22 zeolite in a muffle furnace (heating rate 2 ° C./min) at 540 ° C. for 4 hours. .

<比較例2>
(1)ゼオライト合成工程
175g(SiO2換算で70g)のコロイダルシリカと59.0gのHMIを混合してA液を調製し、5.07gのNaOHと、6.28gのNaAlO(Al換算で3.89g)、1.37gのNaCl、を945gの脱イオン水に混合してB液を調製した。上記のB液を攪拌しつつ、A液をプラスチックの滴下漏斗で30分かけてB液に滴下し、その後30分攪拌を継続した。得られた混合液を、内容量1.5Lの耐圧硝子工業(株)社製オートクレープに入れ、150℃、60rpmで85時間水熱合成を行った。室温まで冷却後、オートクレープの内容物を取り出し、吸引ろ過、および脱イオン水での洗浄をpHが11以下になるまでに繰り返した。得られたケーキを110℃で3時間かけて乾燥させた後、マッフル炉(昇温速度2℃/分)を用い700℃で4時間焼成し、HMIを除去してNa型のMCM−22ゼオライトを得た。
<Comparative example 2>
(1) Zeolite synthesis step 175 g (70 g in terms of SiO 2 ) of colloidal silica and 59.0 g of HMI are mixed to prepare solution A. 5.07 g of NaOH and 6.28 g of NaAlO 2 (Al 2 O The liquid B was prepared by mixing 3.89 g in terms of 3 ) and 1.37 g of NaCl with 945 g of deionized water. While stirring the above-mentioned B liquid, A liquid was dripped at the B liquid with the plastic dropping funnel over 30 minutes, and stirring was continued for 30 minutes after that. The obtained mixed solution was put into an autoclave manufactured by Pressure Glass Industrial Co., Ltd. having an internal volume of 1.5 L, and hydrothermal synthesis was performed at 150 ° C. and 60 rpm for 85 hours. After cooling to room temperature, the contents of the autoclave were taken out, suction filtration, and washing with deionized water were repeated until the pH was 11 or less. The cake obtained was dried at 110 ° C. for 3 hours and then calcined at 700 ° C. for 4 hours using a muffle furnace (heating rate 2 ° C./min) to remove HMI and Na-type MCM-22 zeolite. Got.

(2)イオン交換工程
次いで、得られた乾燥ケークを粗砕してから水に分散し、固形分1%の懸濁液を得た。この懸濁液にゼオライトと同質量の硝酸アンモニウムを加え、攪拌しながら80℃で4時間イオン交換した。pHが6から7程度になるまで水洗し、110℃で乾燥した。得られた乾燥ケーキを粗砕してから、580℃で4時間焼成して、H型のMCM−22ゼオライト(H−2)を得た。
(2) Ion Exchange Step Next, the obtained dried cake was crushed and then dispersed in water to obtain a suspension having a solid content of 1%. Ammonium nitrate of the same mass as the zeolite was added to this suspension, and ion exchange was performed at 80 ° C. for 4 hours with stirring. It was washed with water until the pH reached about 6 to 7, and dried at 110 ° C. The obtained dried cake was roughly crushed and then calcined at 580 ° C. for 4 hours to obtain H-type MCM-22 zeolite (H-2).

<比較例3>
水熱合成を158時間行った以外は、比較例2のゼオライト合成工程およびイオン交換工程と同様にして、H型のMCM−22ゼオライト(H−3)を得た。
<Comparative Example 3>
H-type MCM-22 zeolite (H-3) was obtained in the same manner as the zeolite synthesis step and ion exchange step of Comparative Example 2 except that hydrothermal synthesis was performed for 158 hours.

<実施例1>
水熱合成を138時間行い、HMIの除去のための焼成温度を580℃とした以外は、比較例2のゼオライト合成工程と同様にして、Na型のMCM−22ゼオライト(J−1)を得た。
<Example 1>
Na-type MCM-22 zeolite (J-1) was obtained in the same manner as the zeolite synthesis step of Comparative Example 2 except that hydrothermal synthesis was performed for 138 hours and the calcination temperature for removing HMI was 580 ° C. It was.

<実施例2>
実施例1で得られたNa型のMCM−22ゼオライト(J−1)を水に分散し、固形分1%の懸濁液を得た。この懸濁液にゼオライトと同量の硝酸アンモニウムを加え、攪拌しながら80℃で4時間イオン交換した。pHが6から7程度になるまで水洗し、110℃で乾燥し、得られた乾燥ケーキを粗砕してから、540℃で4時間焼成してH型のMCM−22ゼオライト(J−2)を得た。
尚、得られたH型のMCM−22ゼオライト(J−2)のXRDチャートを図1に示した。
<Example 2>
The Na-type MCM-22 zeolite (J-1) obtained in Example 1 was dispersed in water to obtain a suspension having a solid content of 1%. The same amount of ammonium nitrate as the zeolite was added to this suspension, and ion exchange was performed at 80 ° C. for 4 hours with stirring. Washed with water until the pH reached about 6 to 7, dried at 110 ° C., coarsely crushed the dried cake, and calcined at 540 ° C. for 4 hours to form H-type MCM-22 zeolite (J-2) Got.
An XRD chart of the obtained H-type MCM-22 zeolite (J-2) is shown in FIG.

<実施例3>
HMIを41.3g、NaOHを4.92g、NaAlOを4.64g(Al換算で2.88g)、鉱化剤としてのNaClを不使用、水熱合成時間を137時間、HMI除去のための焼成温度を580℃、とした以外は、比較例2のゼオライト合成工程と同様にして、Na型のMCM−22ゼオライト(J−3)を得た。
<Example 3>
41.3 g of HMI, 4.92 g of NaOH, 4.64 g of NaAlO 2 (2.88 g in terms of Al 2 O 3 ), no NaCl as a mineralizer, hydrothermal synthesis time of 137 hours, removal of HMI Na-type MCM-22 zeolite (J-3) was obtained in the same manner as the zeolite synthesis step of Comparative Example 2 except that the calcination temperature for was 580 ° C.

<実施例4>
実施例3で得られたNa型のMCM−22ゼオライト(J−3)を粗砕してから水に分散し、固形分1%の懸濁液を得た。この懸濁液にゼオライトと同量の硝酸アンモニウムを加え、攪拌しながら80℃で4時間イオン交換した。pHが6から7程度になるまで水洗し、110℃で乾燥した。得られた乾燥ケーキを粗砕してから、540℃で4時間焼成して、H型のMCM−22ゼオライト(J−4)を得た。
<Example 4>
The Na-type MCM-22 zeolite (J-3) obtained in Example 3 was roughly crushed and then dispersed in water to obtain a suspension having a solid content of 1%. The same amount of ammonium nitrate as the zeolite was added to this suspension, and ion exchange was performed at 80 ° C. for 4 hours with stirring. It was washed with water until the pH reached about 6 to 7, and dried at 110 ° C. The obtained dried cake was roughly crushed and then calcined at 540 ° C. for 4 hours to obtain H-type MCM-22 zeolite (J-4).

<比較例4>
HMI除去の焼成温度を700℃とした以外は実施例3と同様にしてNa型のMCM−22ゼオライトを合成した。次いで(J−3)に代えてこのNa型MCM−22ゼオライトを用いた以外は実施例4と同様にして、H型のMCM−22ゼオライト(H−4)を得た。
<Comparative example 4>
Na-type MCM-22 zeolite was synthesized in the same manner as in Example 3 except that the calcination temperature for removing HMI was 700 ° C. Next, an H-type MCM-22 zeolite (H-4) was obtained in the same manner as in Example 4 except that this Na-type MCM-22 zeolite was used instead of (J-3).

<実施例5>
実施例3で得られたNa型のMCM−22ゼオライト(J−3)を粗砕してから5質量%の硫酸水に分散し、攪拌しながら室温で3時間中和処理した。pHが4から5程度になるまで水洗し、110℃で乾燥した。得られた乾燥ケーキを粗砕して、H型のMCM−22ゼオライト(J−5)を得た。
<Example 5>
The Na-type MCM-22 zeolite (J-3) obtained in Example 3 was roughly crushed and then dispersed in 5% by mass sulfuric acid, and neutralized at room temperature for 3 hours with stirring. It was washed with water until the pH reached about 4 to 5, and dried at 110 ° C. The obtained dried cake was roughly crushed to obtain H-type MCM-22 zeolite (J-5).

Figure 0006045890
Figure 0006045890

Figure 0006045890
Figure 0006045890

Claims (3)

XRDで測定される(101)面のピーク強度Pと(102)面のピーク強度Pとの比(P/P)が0.10〜0.60の範囲にあると共に、27Al−固体NMRで59.5±2.0ppmに観測される4配位Alのピーク強度比Iq4が0.14〜0.70の範囲にあることを特徴とするMCM−22型ゼオライト。 The ratio (P 1 / P 2 ) between the peak intensity P 1 of the (101) plane and the peak intensity P 2 of the (102) plane measured by XRD is in the range of 0.10 to 0.60, and 27 Al -MCM-22 type zeolite characterized in that the peak intensity ratio Iq4 of tetracoordinated Al observed at 59.5 ± 2.0 ppm by solid state NMR is in the range of 0.14 to 0.70. アンモニアTPD法により測定されるアンモニア脱離量が、吸着エンタルピーが130〜150kJ/molの範囲において、1.05〜2.50mol/kgであることを特徴とする請求項1に記載のMCM−22型ゼオライト。   2. The MCM-22 according to claim 1, wherein an ammonia desorption amount measured by an ammonia TPD method is 1.05 to 2.50 mol / kg in an adsorption enthalpy range of 130 to 150 kJ / mol. Type zeolite. 請求項1又は2に記載のMCM−22型ゼオライトからなる芳香族炭化水素精製触媒。   An aromatic hydrocarbon purification catalyst comprising the MCM-22 type zeolite according to claim 1 or 2.
JP2012260207A 2012-11-28 2012-11-28 MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite Active JP6045890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260207A JP6045890B2 (en) 2012-11-28 2012-11-28 MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260207A JP6045890B2 (en) 2012-11-28 2012-11-28 MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite

Publications (2)

Publication Number Publication Date
JP2014105135A JP2014105135A (en) 2014-06-09
JP6045890B2 true JP6045890B2 (en) 2016-12-14

Family

ID=51026935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260207A Active JP6045890B2 (en) 2012-11-28 2012-11-28 MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite

Country Status (1)

Country Link
JP (1) JP6045890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099458A (en) * 2017-11-28 2019-06-24 国立研究開発法人産業技術総合研究所 Mww-type zeolite and manufacturing method therefor, and cracking catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647820B2 (en) * 2015-09-04 2020-02-14 日揮触媒化成株式会社 Coating solution for forming transparent film, method for producing coating solution for forming transparent film, substrate with transparent film, and method for manufacturing substrate with transparent film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043512A (en) * 1988-10-06 1991-08-27 Mobil Oil Corp. Alkylaromatic isomerization process
JP4810037B2 (en) * 1999-09-20 2011-11-09 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Alkylation of aromatic compounds
US8057664B2 (en) * 2005-11-17 2011-11-15 Exxonmobil Chemical Patents, Inc. Process for reducing bromine index of hydrocarbon feedstocks
KR101247894B1 (en) * 2008-07-28 2013-03-26 엑손모빌 케미칼 패턴츠 인코포레이티드 A novel molecular sieve composition emm-13, a method of making and a process of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099458A (en) * 2017-11-28 2019-06-24 国立研究開発法人産業技術総合研究所 Mww-type zeolite and manufacturing method therefor, and cracking catalyst
JP7267537B2 (en) 2017-11-28 2023-05-02 国立研究開発法人産業技術総合研究所 MWW-type zeolite, method for producing same, and cracking catalyst

Also Published As

Publication number Publication date
JP2014105135A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5271266B2 (en) UZM-22 aluminosilicate zeolite, method for its preparation and method for using UZM-22
RU2601462C2 (en) Emm-22 molecular sieve, its synthesis and application
TWI469953B (en) Aromatic alkylation process using uzm-37 aluminosilicate zeolite
KR102632794B1 (en) Molecular sieve SSZ-113, its synthesis and uses
US9662642B2 (en) Synthesis of aluminosilicate zeolite SSZ-98
CN106794998B (en) Removal of occluded alkali metal cations from MSE framework type molecular sieves
TWI513659B (en) Uzm-37 aluminosilicate zeolite
WO2010080242A2 (en) Uzm-27 family of crystalline aluminosilicate compositions, a method of preparing the compositions and methods of using the compositions
KR102676404B1 (en) Molecular sieve SSZ-110, its synthesis and uses
KR20150066584A (en) Aromatic transalkylation using uzm-44 aluminosilicate zeolite
JP2016519043A (en) EMM-25 molecular sieve material, its synthesis and use
CN108622914A (en) The method that IZM-2 zeolites are synthesized in the presence of template 1,6- bis- (methyl piperidine) hexane dihydroxides
KR20190082918A (en) Aluminum-substituted molecular sieve CIT-13
KR20180136477A (en) Synthesis of molecular sieve SSZ-98
WO2017205243A1 (en) High charge density metallophosphate molecular sieves
KR102697497B1 (en) Method for continuous synthesis of zeolite materials using seed loaded by organic template
JP2021500286A (en) Molecular Sieve SZZ-112, its synthesis and use
KR102517895B1 (en) Manufacturing method of zeolite SSZ-98
JP2018528145A (en) Synthesis of aluminosilicate RTH framework type zeolite
JP2017197398A (en) Manufacturing method of mse type zeolite
JP6045890B2 (en) MCM-22 type zeolite having novel crystal structure and aromatic hydrocarbon purification catalyst comprising said zeolite
JP7050794B2 (en) Molecular Sheave SSZ-111, its synthesis and use
KR102541358B1 (en) Molecular Sieve SSZ-109, Synthesis and Uses thereof
US10807874B2 (en) Mordenite zeolite and production method therefor
JP5894559B2 (en) Y-85 and modified LZ-210 zeolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6045890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250