JP6044926B2 - Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring - Google Patents

Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring Download PDF

Info

Publication number
JP6044926B2
JP6044926B2 JP2012196681A JP2012196681A JP6044926B2 JP 6044926 B2 JP6044926 B2 JP 6044926B2 JP 2012196681 A JP2012196681 A JP 2012196681A JP 2012196681 A JP2012196681 A JP 2012196681A JP 6044926 B2 JP6044926 B2 JP 6044926B2
Authority
JP
Japan
Prior art keywords
atomic concentration
multilayer wiring
current density
wiring
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196681A
Other languages
Japanese (ja)
Other versions
JP2014052832A (en
Inventor
和彦 笹川
和彦 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2012196681A priority Critical patent/JP6044926B2/en
Publication of JP2014052832A publication Critical patent/JP2014052832A/en
Application granted granted Critical
Publication of JP6044926B2 publication Critical patent/JP6044926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本発明は、リザーバ構造を有するビア接続の多層配線について、エレクトロマイグレーション損傷過程におけるビア接続の多層配線の信頼性を評価する信頼性評価シミュレーションプログラム等に関する。   The present invention relates to a reliability evaluation simulation program and the like for evaluating the reliability of a via-connected multilayer wiring in an electromigration damage process for a via-connected multilayer wiring having a reservoir structure.

近年、電子デバイスの高集積化によって、金属配線の微細化が進んでいる。一方、微細化された配線においては高密度電流およびそれに伴うジュール熱の上昇に起因して、エレクトロマイグレーション(Electromigration : EM)による損傷が問題となっている。EMとは、高密度電子流による金属原子の拡散現象である。   In recent years, the miniaturization of metal wiring has been advanced due to the high integration of electronic devices. On the other hand, in miniaturized wiring, damage due to electromigration (EM) is a problem due to high density current and accompanying increase in Joule heat. EM is a diffusion phenomenon of metal atoms due to high-density electron flow.

図9は、リザーバ構造を有する多層配線50を示す。図9に示されるように、ビア接続56を有する多層配線50において、配線端部54n(陰極側−)および54p(陽極側+)から外側へ張り出し部(リザーバ)55nおよび55pを設けることにより、リザーバ効果によってEM損傷による断線を遅延させることが知られている(非特許文献1参照)。この効果は、張り出し部(リザーバ)55nおよび55pから供給される金属原子が金属配線51、52および53への原子のリザーバとなるためである。   FIG. 9 shows a multilayer wiring 50 having a reservoir structure. As shown in FIG. 9, in the multilayer wiring 50 having the via connection 56, by providing projecting portions (reservoirs) 55n and 55p outward from the wiring end portions 54n (cathode side −) and 54p (anode side +), It is known to delay disconnection due to EM damage by the reservoir effect (see Non-Patent Document 1). This effect is because the metal atoms supplied from the overhang portions (reservoirs) 55n and 55p serve as a reservoir of atoms to the metal wirings 51, 52 and 53.

一方、ビア接続ではEM損傷の閾電流密度jthが存在することが知られている。従来、閾電流密度jthの評価方法の研究が行われてきた(非特許文献2参照)。閾電流密度jthは数値シミュレーションによっても評価され、配線における原子濃度分布の生成プロセスがシミュレーションされている。このシミュレーションは、多結晶構造配線におけるEM損傷の支配パラメータAFD genに基づく(非特許文献3参照)。このパラメータは2次元配線形状へ適用可能であり、種々の評価が行われている(非特許文献4参照)。リザーバ効果を考慮したEM損傷評価シミュレーションの開発も試みられてきた(非特許文献5および6参照)。 On the other hand, it is known that a threshold current density j th of EM damage exists in via connection. Conventionally, research on an evaluation method of the threshold current density j th has been performed (see Non-Patent Document 2). The threshold current density j th is also evaluated by numerical simulation, and the generation process of the atomic concentration distribution in the wiring is simulated. This simulation is based on the dominant parameter AFD * gen of the EM damage in the polycrystalline structure wiring (see Non-Patent Document 3). This parameter can be applied to a two-dimensional wiring shape, and various evaluations have been performed (see Non-Patent Document 4). Attempts have also been made to develop an EM damage evaluation simulation considering the reservoir effect (see Non-Patent Documents 5 and 6).

上述した非特許文献3〜6のシミュレーションでは、ボイドが発生、成長し断線に至るEM損傷過程のシミュレーションには至っておらず、リザーバ効果を考慮しつつ配線の信頼性を評価可能なシミュレーション手法は未だに開発されていないという問題があった。そこで、本発明の目的は上記問題を解決するためになされたものであり、リザーバ構造を有するビア接続の多層配線について、ボイドの発生に至るEM損傷過程のシミュレーションを実施し、リザーバ効果を考慮しつつ閾電流密度を評価することにより多層配線の信頼性を評価する信頼性評価シミュレーションプログラム等を提供することにある。   In the simulations of Non-Patent Documents 3 to 6 described above, the simulation of the EM damage process, in which voids are generated, grow, and break, has not been achieved, and a simulation technique that can evaluate the reliability of wiring while taking into account the reservoir effect is still available There was a problem that it was not developed. Therefore, an object of the present invention is to solve the above-mentioned problems. For via connection multilayer wiring having a reservoir structure, simulation of the EM damage process leading to generation of voids is performed, and the reservoir effect is taken into consideration. Another object of the present invention is to provide a reliability evaluation simulation program for evaluating the reliability of multilayer wiring by evaluating the threshold current density.

この発明のビア接続の多層配線の信頼性を評価する信頼性評価シミュレーションプログラムは、リザーバ構造を有するビア接続の多層配線について、エレクトロマイグレーション損傷過程における多層配線の信頼性を評価する信頼性評価シミュレーションプログラムであって、コンピュータに、前記多層配線を二次元的に要素分割する要素分割ステップ、前記要素分割ステップで分割された各要素の初期原子濃度をNとする初期設定ステップ、2次元有限要素法により前記多層配線内の電流密度分布及び温度分布を計算する2次元有限要素法ステップ、前記2次元有限要素法ステップにより計算された前記多層配線内の電流密度分布及び温度分布と記録部に記録された該多層配線材料の物性定数とに基づき、単位時間に単位体積当たりエレクトロマイグレーションにより何個原子が消失するかを示す以下の支配パラメータ(陰極および陽極端の要素とビアとではAFD gen|end、他の要素ではAFD gen)、 The reliability evaluation simulation program for evaluating the reliability of a via-connected multilayer wiring according to the present invention is a reliability evaluation simulation program for evaluating the reliability of a multilayered wiring in an electromigration damage process for a via-connected multilayer wiring having a reservoir structure. An element dividing step for dividing the multilayer wiring into two-dimensional elements, an initial setting step for setting an initial atomic concentration of each element divided in the element dividing step to N 0, and a two-dimensional finite element method The two-dimensional finite element method step for calculating the current density distribution and the temperature distribution in the multilayer wiring, and the current density distribution and the temperature distribution in the multilayer wiring calculated by the two-dimensional finite element method step are recorded in the recording unit. In addition, based on the physical property constants of the multilayer wiring material, Click Toro migration by how many atoms less dominant indicating whether the disappeared parameter (in the element and via the cathode and anode ends AFD * gen | end, the other elements AFD * gen),

ここで、N:原子濃度、D:振動数項、k:ボルツマン定数、T:絶対温度、Qgb:原子拡散の活性化エネルギ、κ:保護膜拘束下の濃度変化と応力変化との間の係数、Ω:原子体積、σT:引張の熱応力、N:σTが作用したときの原子濃度、N:無応力状態における原子濃度、Z:有効電荷数、e:単位電荷、ρ:電気抵抗率、j:電流密度ベクトルのJ方向の成分、∂N/∂l:原子濃度勾配のJ方向成分、δ:結晶粒界の有効幅、θ:微小単位構造とx軸との間の角度、d:平均結晶粒径、Δφ:結晶粒界間の角度に関する定数、Qgb:粒界拡散の活性化エネルギ、D=Zeρj−κΩ/N(∂N/∂x)、D=Zeρj−κΩN(∂N/∂y)であり、 Here, N: atomic concentration, D 0 : frequency term, k: Boltzmann constant, T: absolute temperature, Q gb : activation energy of atomic diffusion, κ: between concentration change and stress change under constraint of protective film Ω: atomic volume, σT: tensile thermal stress, N T : atomic concentration when σT is applied, N 0 : atomic concentration in an unstressed state, Z * : number of effective charges, e: unit charge, ρ : Electric resistivity, j * : J-direction component of current density vector, ∂N / ∂l: J-direction component of atomic concentration gradient, δ: Effective width of grain boundary, θ: Minute unit structure and x-axis Angle, d: average crystal grain size, Δφ: constant related to angle between crystal grain boundaries, Q gb : activation energy of grain boundary diffusion, D x = Z * eρj x −κΩ / N 0 (∂N / ∂ x), D y = Z * eρj y −κΩN 0 (∂N / ∂y),

ここで、β:配線端がx軸となす角度、d:平均結晶粒径、D=Zeρj−κΩ/N(∂N/∂x)、D=Zeρj−κΩN(∂N/∂y)、を計算する支配パラメータ計算ステップ、前記支配パラメータ計算ステップで計算された支配パラメータの値に基づき、θに関する原子濃度N、ここで、N:式2で表されるAFD gbθに含まれるθを0から2πのそれぞれの値としてAFD gbθ値を計算し、その値から求めるθの値毎の原子濃度、を計算する原子濃度N計算ステップ、前記原子濃度N計算ステップで計算されたθの値毎に持っている原子濃度Nを要素内の全てについて平均した原子濃度Nを計算する原子濃度N計算ステップ、δN/δx、δN/δy等、濃度分布の計算ステップ、原子濃度が変化しなくなる定常状態に達したか否かを判断する判断ステップ、前記判断ステップで定常状態に達していないと判断された場合、繰返し計算のための設定を行って、前記支配パラメータ計算ステップへ戻って計算を繰返す繰返ステップを実行させるための多層配線の信頼性を評価する信頼性評価シミュレーションプログラムである。 Here, β: angle formed by the wiring end with the x-axis, d: average crystal grain size, D x = Z * eρj x −κΩ / N 0 (∂N / ∂x), D y = Z * eρj y −κΩN Control parameter calculation step for calculating 0 (∂N / ∂y), based on the control parameter value calculated in the control parameter calculation step, atomic concentration N * with respect to θ, where N * : is the AFD * gbθ the θ included in the AFD * gbθ value calculated as respective values of 2π from 0, the atomic concentration N * calculating step of calculating the atomic concentration, of each value of θ determined from its value, the atomic concentration N * all average atomic concentration N atom concentration N calculation step of calculating for in the atomic concentration has each value of the computed at the computation step theta N * element, δN / δx, δN / δy and the like, Concentration distribution calculation step, atomic concentration A determination step for determining whether or not a steady state is reached at which no change occurs, and if it is determined in the determination step that the steady state has not been reached, a setting for repeated calculation is performed, and the control proceeds to the control parameter calculation step. It is a reliability evaluation simulation program for evaluating the reliability of a multilayer wiring for executing a repeating step of returning and repeating the calculation.

この発明のビア接続の多層配線の許容電流密度向上方法は、リザーバ構造を有するビア接続の多層配線について、本発明の信頼性評価シミュレーションプログラムの実行結果から得られた、定常状態における配線内の原子濃度の最小値がボイド形成に至る臨界の原子濃度の値に一致する際の入力電流密度(閾電流密度)の評価に基づき陰極端のビア側にのみリザーバを設け、該多層配線内部の最小原子濃度を増加させることにより、多層配線の許容電流密度を増加させることを特徴とする。 Allowable current density improved method of via connection of a multilayer wiring of the present invention, the multi-layer wiring via connections having a reservoir structure, reliability evaluation simulation program obtained from the execution result, atoms in the wiring in the steady state of the present invention Based on the evaluation of the input current density (threshold current density) when the minimum concentration value matches the critical atomic concentration value leading to void formation, a reservoir is provided only on the via side of the cathode end, and the minimum atom inside the multilayer wiring The allowable current density of the multilayer wiring is increased by increasing the concentration.

この発明のビア接続の多層配線構造は、リザーバ構造を有するビア接続の多層配線構造において、本発明の信頼性評価シミュレーションプログラムの実行結果から得られた、定常状態における配線内の原子濃度の最小値がボイド形成に至る臨界の原子濃度の値に一致する際の入力電流密度(閾電流密度)の評価に基づき陰極端のビア側にのみリザーバを設け、該多層配線内部の最小原子濃度を増加させることにより、多層配線の許容電流密度を増加させることを特徴とする。
The via-connected multilayer wiring structure of the present invention is the minimum value of the atomic concentration in the wiring in the steady state obtained from the execution result of the reliability evaluation simulation program of the present invention in the via-connected multilayer wiring structure having the reservoir structure. Based on the evaluation of the input current density (threshold current density) when the value matches the critical atomic concentration value that leads to void formation, a reservoir is provided only on the via side at the cathode end to increase the minimum atomic concentration inside the multilayer wiring Thus, the allowable current density of the multilayer wiring is increased.

本発明では、EM損傷支配パラメータを用いた本数値シミュレーションを実施することにより、集積回路配線におけるリザーバ効果の評価を行った。本数値シミュレーションは、まず電流密度分布および温度分布を2次元FE分析(有限要素法による分析。一般的には数値解析としてもよい。)により計算する。上記解析結果(電流密度分布および温度分布)とディスク等に記録された薄膜特性(配線材料の物性定数)とから各要素における上記支配パラメータ(AFD gen|end、AFD gen)を計算する。次に、θに関する原子濃度Nを上記支配パラメータの値に基づき計算する。各要素における原子濃度Nはすべてのθの値についてのNの平均により計算する。δN/δx、δN/δy等、濃度分布の計算を行い、臨界原子濃度または原子濃度が変化しなくなる定常状態に達したか否かを判断し、達したと判断した場合は終了し、そうでないと判断した場合は、上記支配パラメータの計算を繰返す。 In the present invention, the reservoir effect in the integrated circuit wiring is evaluated by performing this numerical simulation using the EM damage control parameter. In this numerical simulation, first, a current density distribution and a temperature distribution are calculated by two-dimensional FE analysis (analysis by a finite element method. Generally, numerical analysis may also be used). The dominant parameters (AFD * gen | end , AFD * gen ) in each element are calculated from the analysis results (current density distribution and temperature distribution) and thin film characteristics (physical property constants of the wiring material) recorded on a disk or the like. Next, the atomic concentration N * related to θ is calculated based on the value of the dominant parameter. The atomic concentration N in each element is calculated by the average of N * for all values of θ. Calculating the concentration distribution of δN / δx, δN / δy, etc., determining whether the critical atom concentration or the steady state where the atomic concentration does not change has been reached, and if it has been reached, the process ends; otherwise If it is determined, the above calculation of the control parameter is repeated.

本数値シミュレーションにより、陰極端側にリザーバを設けると、配線内部の最小原子濃度が増加し、配線の許容電流密度が増加することがわかった。また、リザーバを有する配線に許容値以上の電流が作用した場合、陰極側のビア部で原子濃度はボイド発生の臨界値に到達するため、ボイド発生箇所は陰極側のビア部であると評価できた。即ち、許容値以上の電流が作用した場合、陰極側のビア部にボイドが発生することが実験事実と符合していることがわかったため、本数値シミュレーションによる結果は妥当であると言える。つまり、従来あまり行われない陰極端側のみにリザーバを設けることを行うと、配線の許容電流密度が増加し、損傷しにくくなることがわかった。以上により、リザーバ構造を有するビア接続の多層配線について、ボイドの発生に至るEM損傷過程の本数値シミュレーションを実施し、リザーバ効果を考慮しつつ閾(許容)電流密度を評価することにより配線の信頼性を評価するシミュレーション方法等を提供することができるという効果がある。   From this numerical simulation, it was found that when a reservoir is provided on the cathode end side, the minimum atomic concentration inside the wiring increases and the allowable current density of the wiring increases. In addition, when a current exceeding the allowable value is applied to the wiring having a reservoir, the atomic concentration reaches the critical value of void generation at the cathode side via portion, and therefore, the void generation point can be evaluated as the cathode side via portion. It was. That is, it can be said that the result of this numerical simulation is appropriate because it is found that the void is generated in the via portion on the cathode side when the current exceeding the allowable value is applied, which is consistent with the experimental fact. In other words, it has been found that if the reservoir is provided only on the cathode end side, which has not been performed so far, the allowable current density of the wiring increases and it is difficult to damage. As described above, for the via connection multi-layer wiring having the reservoir structure, the numerical simulation of the EM damage process leading to the void generation is performed, and the threshold (allowable) current density is evaluated while considering the reservoir effect. It is possible to provide a simulation method for evaluating the performance.

多結晶構造のモデルを示す図である。It is a figure which shows the model of a polycrystalline structure. 本数値シミュレーションまたは方法の流れを示すフローチャートである。It is a flowchart which shows the flow of this numerical simulation or method. 繰返し計算による配線の原子濃度分布の時間に伴う変化をグラフで示す図である。It is a figure which shows the change with time of the atomic concentration distribution of wiring by repetition calculation with a graph. 本数値シミュレーションで評価した4種類の配線構造を示す図である。It is a figure which shows four types of wiring structures evaluated by this numerical simulation. 定常状態でのすべての要素における原子濃度Nの最小値と想定した電流密度jとの関係をグラフで示す図である。It is a figure which shows the relationship between the minimum value of atomic concentration N * in all the elements in a steady state, and the assumed current density j with a graph. サンプル1、2および3の配線に沿った原子濃度N/Nの分布をグラフで示す図である。Samples 1, 2 and 3 of the distribution of atomic concentration N / N 0 along the line illustrates graphically. 本数値シミュレーション終了時の原子濃度分布をグラフで示す図であるIt is a figure which shows the atomic concentration distribution at the time of completion | finish of this numerical simulation with a graph 本発明のシミュレーションプログラムを実行するコンピュータの内部回路30を示すブロック図である。It is a block diagram which shows the internal circuit 30 of the computer which executes the simulation program of this invention. リザーバ構造を有する多層配線50を示す図である。It is a figure which shows the multilayer wiring 50 which has a reservoir structure.

本発明では、リザーバを有する配線の信頼性評価法を開発するための第一段階として、ボイド発生に至る許容電流密度の評価と許容値以上の電流を作用させたときのボイド発生箇所の評価とを行うためのEM損傷の本発明の数値シミュレーションプログラム(または数値シミュレーション方法。以下、単に「本数値シミュレーション」と言う。)方法を開発した。以下、各実施例について図面を参照して詳細に説明する。   In the present invention, as a first step for developing a reliability evaluation method for a wiring having a reservoir, an evaluation of an allowable current density leading to void generation and an evaluation of a void generation location when a current exceeding the allowable value is applied. A numerical simulation program (or a numerical simulation method of the present invention for EM damage) for carrying out the following is developed. Hereinafter, each embodiment will be described in detail with reference to the drawings.

本数値シミュレーションプログラムを構築するために、EM損傷の支配パラメータAFD genが用いられる(非特許文献3参照)。当該パラメータはEM損傷に起因する原子流束の定式化で与えられる。原子濃度勾配(応力勾配)に起因するバックフローと拡散率における金属配線内で生成された応力の効果とを考慮したEM原子流束Jは式1で与えられる(非特許文献7参照)。 In order to construct this numerical simulation program, the dominant parameter AFD * gen of EM damage is used (see Non-Patent Document 3). This parameter is given by the formulation of atomic flux due to EM damage. The EM atomic flux J considering the backflow caused by the atomic concentration gradient (stress gradient) and the effect of the stress generated in the metal wiring on the diffusivity is given by Equation 1 (see Non-Patent Document 7).

ここで、N:原子濃度、D:振動数項、k:ボルツマン定数、T:絶対温度、Qgb:原子拡散の活性化エネルギ、κ:保護膜拘束下の濃度変化と応力変化との間の係数、Ω:原子体積、σT:引張の熱応力、N:σTが作用したときの原子濃度、N:無応力状態における原子濃度、Z:有効電荷数、e:単位電荷、ρ:電気抵抗率、j:電流密度ベクトルのJ方向の成分、∂N/∂l:原子濃度勾配のJ方向成分である。 Here, N: atomic concentration, D 0 : frequency term, k: Boltzmann constant, T: absolute temperature, Q gb : activation energy of atomic diffusion, κ: between concentration change and stress change under constraint of protective film Ω: atomic volume, σT: tensile thermal stress, N T : atomic concentration when σT is applied, N 0 : atomic concentration in an unstressed state, Z * : number of effective charges, e: unit charge, ρ : Electric resistivity, j * : J direction component of current density vector, ∂N / ∂l: J direction component of atomic concentration gradient.

本数値シミュレーションでは保護層で覆われた広いCu配線を想定したため、結晶粒界拡散(grain boundary diffusion)を主要な拡散メカニズムとして仮定した。非特許文献8、9によれば広いCu配線(interconnetcs)において、結晶粒界はEM経路(path)となる。発明者らは原子流束発散を計算するモデルを導入した(非特許文献10参照)。そこで、発明者はCu配線に関しても当該モデルに基づいてEM損傷の支配パラメータを用いた。   In this numerical simulation, since a wide Cu wiring covered with a protective layer was assumed, grain boundary diffusion was assumed as a main diffusion mechanism. According to Non-Patent Documents 8 and 9, the crystal grain boundary becomes an EM path in wide Cu wiring (interconnetcs). The inventors have introduced a model for calculating atomic flux divergence (see Non-Patent Document 10). Therefore, the inventors used the dominant parameter of EM damage based on the model for Cu wiring.

微小単位構造(後述)に出入りする原子を考慮すると、多結晶構造配線の原子流束発散は式2で与えられるように定式化される。   Considering atoms entering and exiting a minute unit structure (described later), the atomic flux divergence of the polycrystalline structure wiring is formulated as given by Equation 2.

ここで、C gbはDδ/kを表しており、結晶粒界の有効幅をδで示す。dは平均結晶サイズ、Δφは結晶粒界間の相対角度に関連した定数、jおよびjはデカルト座標系における電流密度ベクトルjのx、y成分、θは微小単位構造とx軸との間の角度である。図1(A)は多結晶構造のモデルを示し、図1(B)は図1(A)の一部拡大図(微小単位構造)を示す。図1(A)中では金属配線(Metal line)10の一部拡大図が示されており、当該拡大図において金属結晶粒12はサイズdの矩形(6角形のGrain)で表されている。図1(B)に示される微小単位構造では結晶粒界(Grain Boundary)1(アラビア数字)、2(アラビア数字)および3(アラビア数字)、微小単位構造とx軸との間の角度θ、定数Δφ等が示されている。 Here, C * gb represents D 0 δ / k, and the effective width of the crystal grain boundary is represented by δ. d is the average crystal size, Δφ is a constant related to the relative angle between the grain boundaries, j x and j y are the x and y components of the current density vector j in the Cartesian coordinate system, and θ is the micro unit structure and the x axis. Is the angle between. FIG. 1A shows a model of a polycrystalline structure, and FIG. 1B shows a partially enlarged view (micro unit structure) of FIG. In FIG. 1 (A), a partially enlarged view of a metal line (Metal line) 10 is shown. In the enlarged view, the metal crystal grains 12 are represented by a rectangle of size d (hexagonal grain). In the fine unit structure shown in FIG. 1B, grain boundaries 1 (Arabic numerals), 2 (Arabic numerals) and 3 (Arabic numerals), an angle θ between the minute unit structure and the x-axis, A constant Δφ and the like are shown.

式2のAFD genの正の値のみの期待値がEM損傷を支配するパラメータAFD genを表し、多結晶構造配線におけるボイド形成に関して式3が得られる。 The expected value of only the positive value of AFD * gen in Equation 2 represents the parameter AFD * gen that governs EM damage, and Equation 3 is obtained for void formation in the polycrystalline structure wiring.

式3は単位時間、単位体積当たりで減少する原子数を意味する。   Equation 3 means the number of atoms decreasing per unit time and unit volume.

配線端部では、原子流に関する境界条件を上記パラメータの形成に与える必要がある。つまり、配線の陰極端では原子の流入はなく陽極端では原子の流出はないからである。当該境界条件は、可能なゼロ流束を図1(B)に示される微小単位構造内に各θ範囲について割当てることにより表すことができる。表1は原子流束に関する上記境界条件を示す(非特許文献11参照)。表1中のJ1(アラビア数字)、J2(アラビア数字)、J3(アラビア数字)等の1(アラビア数字)、2(アラビア数字)および3(アラビア数字)は図1の結晶粒界(Grain Boundary)1(アラビア数字)、2(アラビア数字)および3(アラビア数字)の1(アラビア数字)、2(アラビア数字)および3(アラビア数字)である。 At the end of the wiring, it is necessary to give a boundary condition regarding the atomic flow to the formation of the parameter. That is, there is no inflow of atoms at the cathode end of the wiring and no outflow of atoms at the anode end. The boundary condition can be expressed by assigning a possible zero flux for each θ range in the micro unit structure shown in FIG. Table 1 shows the boundary conditions regarding the atomic flux (see Non-Patent Document 11). In Table 1, 1 (Arabic numerals) , 2 (Arabic numerals) and 3 (Arabic numerals) such as J1 (Arabic numerals) , J2 (Arabic numerals) and J3 (Arabic numerals) are the grain boundaries in FIG. (Grain Boundary) 1 (Arabic numeral), 2 (Arabic numeral), 2 (Arabic numeral), 2 (Arabic numeral) and 3 (Arabic numeral).

以上より、図1(B)に示される微小単位構造内の原子の出入りを考慮すると、ビア接続配線端部における原子流束発散AFD gen|endは式4により与えられる。 From the above, considering the entry and exit of atoms in the minute unit structure shown in FIG. 1B, the atomic flux divergence AFD * gen | end at the end of the via connection wiring is given by Equation 4.

ここで、δ:結晶粒界の有効幅、β:配線端がx軸となす角度(図1(B)参照)、d:平均結晶粒径、Qgb:粒界拡散の活性化エネルギ、D=Zeρj−κΩ/N(∂N/∂x)、D=Zeρj−κΩN(∂N/∂y)である。原子流束勾配AFD gen|endは結晶粒界における流束発散の量を表し、単位時間、単位体積当たりで減少する原子数を意味する。 Where δ is the effective width of the crystal grain boundary, β is the angle between the wiring end and the x-axis (see FIG. 1B), d is the average crystal grain size, Q gb is the activation energy of the grain boundary diffusion, D x = Z * eρj x− κΩ / N 0 (∂N / ∂x), and D y = Z * eρj y −κΩN 0 (∂N / ∂y). The atomic flux gradient AFD * gen | end represents the amount of flux divergence at the grain boundary, and means the number of atoms decreasing per unit time and unit volume.

上記EM損傷の支配パラメータを用いて、配線内における原子濃度分布の本数値シミュレーションを数種類の入力電流密度j、基板温度Tを条件として実行した。評価される配線は二次元的に要素分割し、原子濃度分布の生成プロセスは上記支配パラメータに基づき各要素の原子濃度を変化させながらシミュレートした。温度に関する境界条件は配線の両端に与え、電流密度に関する境界条件はビア位置に与えた。原子流は金属配線の周囲では遮断した。端部のパラメータであるAFD gen|endは陰極および陽極端の要素とビアとで用い、AFD genは他の要素で用いた。 Using this EM damage dominant parameter, this numerical simulation of the atomic concentration distribution in the wiring was performed under conditions of several types of input current density j and substrate temperature T s . The wiring to be evaluated was divided into two-dimensional elements, and the generation process of the atomic concentration distribution was simulated while changing the atomic concentration of each element based on the above governing parameters. The boundary condition related to temperature was given to both ends of the wiring, and the boundary condition related to current density was given to the via position. The atomic flow was interrupted around the metal wiring. The end parameter AFD * gen | end was used for the cathode and anode end elements and vias, and AFD * gen was used for the other elements.

図2は、本数値シミュレーションまたは方法の流れをフローチャートで示す。図2に示されるように、要素の初期原子濃度をNとする。まず、電流密度分布および温度分布を2次元FE分析(有限要素法。一般的には数値解析としてもよい。)により計算する(ステップS10)。上記分析結果(電流密度分布および温度分布)とディスク38(後述)等に記録された薄膜特性(配線材料の物性定数。非特許文献4参照)とから各要素における上記支配パラメータ(AFD gen|end、AFD gen)を計算する(ステップS12、S14)。時間経過に伴い配線内の原子濃度分布は変化し、これら支配パラメータ値も変化する。次に、θに関する原子濃度Nを上記支配パラメータの値に基づき計算する。各要素における原子濃度Nはすべてのθの値についてのNの平均により計算する。δN/δx、δN/δy等の濃度分布の計算も行う(以上、ステップS16)。臨界原子濃度または原子濃度が変化しなくなる定常状態に達したか否かを判断し(ステップS18)、達したと判断した場合は終了し、そうでないと判断した場合はステップS14へ戻って計算を繰返す。繰り返すときは、ステップS16の結果の、N、δN/δx、δN/δyを使って、ステップS14の計算を行う。 FIG. 2 shows a flow chart of the present numerical simulation or method. As shown in FIG. 2, the initial atomic concentration of the element is N 0 . First, the current density distribution and the temperature distribution are calculated by two-dimensional FE analysis (finite element method. Generally, numerical analysis may be used) (step S10). Based on the analysis results (current density distribution and temperature distribution) and thin film characteristics recorded on the disk 38 (described later) and the like (physical property constants of wiring materials; see Non-Patent Document 4), the above dominant parameters (AFD * gen | end , AFD * gen ) are calculated (steps S12 and S14). As the time elapses, the atomic concentration distribution in the wiring changes, and these dominant parameter values also change. Next, the atomic concentration N * related to θ is calculated based on the value of the dominant parameter. The atomic concentration N in each element is calculated by the average of N * for all values of θ. Calculation of concentration distributions such as δN / δx and δN / δy is also performed (step S16). It is determined whether or not a critical atomic concentration or a steady state where the atomic concentration does not change is reached (step S18). If it is determined that it has been reached, the process ends. If not, the process returns to step S14 to perform calculation. Repeat. When iterating, the calculation in step S14 is performed using N, δN / δx, and δN / δy as the result of step S16.

本数値シミュレーションでは各要素に2種類の原子濃度(N、N)を使っている。一つは、式2で表されるAFD gbθに含まれるθ(図1参照)を0から2πのそれぞれの値としてAFD gbθ値を計算し、その値から求める原子濃度(N)である。よって、Nはθの値毎に計算される。もう一つは、θの値毎に持っているNを要素内の全てについて平均した原子濃度Nである。このNが要素の原子濃度として、式2で用いられている。原子濃度の初期値NからEM損傷前の要素内の原子数がわかる。AFD genまたはAFD gen|endは、単位時間に単位体積当たりEMにより何個原子が消失するかを求めるパラメータであるから、この値から1計算ステップの間にどのくらい要素から原子が消失するかを計算することができ、時間経過後の要素の原子濃度Nを求めることができる。要素の原子濃度N(とその勾配δN/δx、δN/δy等も)が変化すると、それらの関数であるAFD genまたはAFD gen|endの値も変化する。これによる時間ステップを進行させた繰り返し計算を行う。繰り返し計算はある入力電流密度を仮定して行う。 In this numerical simulation, two types of atomic concentrations (N * , N) are used for each element. One is to calculate the AFD * gbθ value with θ (see FIG. 1) included in the AFD * gbθ represented by the expression 2 as values of 0 to 2π, and the atomic concentration (N * ) obtained from the value. is there. Therefore, N * is calculated for each value of θ. The other is the atomic concentration N obtained by averaging the N * values for each value of θ for all of the elements. This N is used in Equation 2 as the atomic concentration of the element. From the initial value N 0 of the atomic concentration, the number of atoms in the element before EM damage is known. AFD * gen or AFD * gen | end is a parameter for determining how many atoms are lost by EM per unit volume per unit time. From this value, how many atoms are lost from one element during one calculation step. And the atomic concentration N of the element after the elapse of time can be obtained. When the atomic concentration N of the element (and its gradient δN / δx, δN / δy, etc.) changes, the value of AFD * gen or AFD * gen | end that is a function thereof also changes. Iterative calculation is performed with the time step progressed. The iterative calculation is performed assuming a certain input current density.

図3は、繰返し計算による配線の原子濃度分布の時間に伴う変化をグラフで示す。図3で横軸は配線中央部(図4参照)からの距離(μm。負が陰極側で正が陽極側)、縦軸は原子濃度(N/N)である。原図では繰返し数(step。時間の経過)が色分けされて示されている(青色:5000ステップ、赤色:10,000ステップ、緑色:20,000ステップ、紫色:30,000ステップ)。図3に示されるように、繰返し数が多くなるほど(時間の経過に伴い)、同じ位置における原子濃度は変化していき、十分に時間が経過すると原子濃度が変化しなくなる定常状態になることがわかる。図3に示されるように、時間経過に伴い、要素毎のN*、さらにはNが変化していき、その後濃度分布が定常状態になる。 FIG. 3 is a graph showing the change with time of the atomic concentration distribution of the wiring by repeated calculation. In FIG. 3, the horizontal axis represents the distance (μm from the center of the wiring (see FIG. 4), negative is the cathode side and positive is the anode side), and the vertical axis is the atomic concentration (N / N 0 ). In the original drawing, the number of repetitions (step; the passage of time) is shown in different colors (blue: 5000 steps, red: 10,000 steps, green: 20,000 steps, purple: 30,000 steps). As shown in FIG. 3, as the number of repetitions increases (with the passage of time), the atomic concentration at the same position changes, and after a sufficient amount of time has passed, a steady state may occur where the atomic concentration does not change. Recognize. As shown in FIG. 3, as time elapses, N * and N for each element change, and then the concentration distribution becomes a steady state.

図4は、本数値シミュレーションで評価した4種類の配線構造を示す。図4で図9と同じ符号を付した個所は同じ要素を示すため、説明は省略する。図4(A)は両端にリザーバがないサンプル1を示し、図4(B)は陰極ビアにリザーバを配置したサンプル2を示し、図4(C)は陽極ビアにリザーバを配置したサンプル3を示し、図4(D)は陰極ビアおよび陽極ビアの両方にリザーバを配置したサンプル4を示す。図4(A)〜(D)に示すような直線形状のCu配線を想定し、リザーバの有無が閾電流密度の大きさに与える影響を評価した。図4(A)〜(D)に示すように、リザーバがない場合(サンプル1)、陽極端から密度jの電流を入力し、陰極端からjの電流を出力する(矢印参照)。両端に想定したビア間の距離は150(μm)、配線52の幅Wは10(μm)、厚さtは410(nm)である。リザーバがある場合(サンプル2および3)も同様に150(μm)離れたビア間で密度jの電流を入出力した。張り出し部55n、55Pの長さはいずれも25(μm)である。本数値シミュレーションは各々のサンプルにおいて、基板温度573(K)下で、3種類の電流密度を想定して実施した。   FIG. 4 shows four types of wiring structures evaluated by this numerical simulation. In FIG. 4, the parts denoted by the same reference numerals as those in FIG. 4A shows sample 1 without a reservoir at both ends, FIG. 4B shows sample 2 in which the reservoir is arranged in the cathode via, and FIG. 4C shows sample 3 in which the reservoir is arranged in the anode via. FIG. 4D shows Sample 4 in which reservoirs are arranged in both the cathode and anode vias. Assuming a linear Cu wiring as shown in FIGS. 4A to 4D, the influence of the presence or absence of the reservoir on the magnitude of the threshold current density was evaluated. As shown in FIGS. 4A to 4D, when there is no reservoir (sample 1), a current of density j is input from the anode end, and a current of j is output from the cathode end (see arrow). The distance between vias assumed at both ends is 150 (μm), the width W of the wiring 52 is 10 (μm), and the thickness t is 410 (nm). Similarly, when there was a reservoir (samples 2 and 3), a current of density j was input / output between vias separated by 150 (μm). The lengths of the overhang portions 55n and 55P are both 25 (μm). This numerical simulation was performed for each sample assuming three types of current densities under a substrate temperature of 573 (K).

本数値シミュレーションにおいて、Cu配線は表2で示される特性定数を有するものと想定した(非特許文献12〜16参照)。   In this numerical simulation, it was assumed that the Cu wiring had the characteristic constants shown in Table 2 (see Non-Patent Documents 12 to 16).

入力電流密度は、0.2、0.4および0.6(MA/cm)の3つの値を想定した。環境温度はすべてのサンプル1〜4において573(K)と想定した。 As the input current density, three values of 0.2, 0.4, and 0.6 (MA / cm 2 ) were assumed. The environmental temperature was assumed to be 573 (K) in all samples 1-4.

想定した電流密度が小さい場合は、配線内の原子濃度Nの最小値がボイド形成に至る臨界の原子濃度N minに達することなく配線内の原子濃度分布が変化しなくなる定常状態となる。配線内における原子濃度の最小値がちょうどN minに一致する電流密度を閾電流密度とし、配線の許容電流密度として評価する。閾電流密度より小さい電流密度で本数値シミュレーションを実行後、原子濃度分布の定常状態を得た。図5(A)は、定常状態でのすべての要素における原子濃度Nの最小値と想定した電流密度jとの関係を示すグラフである。図5(A)で横軸は電流密度(MA/cm)、縦軸は最小原子濃度(N/N)であり、各サンプル1〜4毎にプロットした。詳しくは、定常状態になった原子濃度Nの配線内での最小値を、仮定した入力電流密度に対してプロットした。図5(A)に示されるように、各サンプル1〜4のプロットを結ぶ線と臨界の原子濃度(N min/N)の線との交点から閾電流密度が評価される。図5(B)はこのようにして評価された各サンプル1〜4についての閾電流密度jth(MA)を示す。配線内の原子濃度NがN minの値に達するとボイドができて損傷するモデルとなっているため、定常になった時にちょうど配線内の原子濃度Nの最小値がN minの値になる入力電流密度を図5(A)に示されるグラフの交点から求め、それを閾電流密度jthとして評価する。 When the assumed current density is small, the atomic concentration distribution in the wiring does not change without the minimum value of the atomic concentration N * in the wiring reaching the critical atomic concentration N * min that leads to void formation. A current density at which the minimum value of the atomic concentration in the wiring is exactly equal to N * min is defined as a threshold current density, and the allowable current density of the wiring is evaluated. After executing this numerical simulation at a current density smaller than the threshold current density, a steady state of atomic concentration distribution was obtained. FIG. 5A is a graph showing the relationship between the minimum value of the atomic concentration N * and the assumed current density j in all elements in the steady state. In FIG. 5A, the horizontal axis represents current density (MA / cm 2 ), and the vertical axis represents minimum atomic concentration (N * / N 0 ), which is plotted for each sample 1 to 4. Specifically, the minimum value in the wiring of the atomic concentration N * in the steady state was plotted against the assumed input current density. As shown in FIG. 5A, the threshold current density is evaluated from the intersection of the line connecting the plots of the samples 1 to 4 and the line of the critical atomic concentration (N * min / N 0 ). FIG. 5B shows the threshold current density j th (MA) for each of the samples 1 to 4 evaluated in this way. When the atomic concentration N * in the wiring reaches a value of N * min , voids are formed and the model is damaged. Therefore, when the steady state is reached, the minimum value of the atomic concentration N * in the wiring is just N * min . The input current density that becomes a value is obtained from the intersection of the graph shown in FIG. 5A, and is evaluated as the threshold current density j th .

図5(A)、(B)に示されるように、サンプル1と4の閾電流密度jthはほとんど同じである。これに対して、サンプル2では閾電流密度jthはサンプル1および4の閾電流密度jthより大きい。サンプル3では閾電流密度jthはサンプル1および4の閾電流密度jthより小さい。リザーバが陰極ビア側に配置されたサンプル2の場合、閾電流密度jthは他のサンプルより大きくなった。これは、定常状態におけるビア間通電部の原子濃度分布はサンプル1と3とでは変化しないが、サンプル2の分布はそれらよりも高い濃度となり配線内の原子濃度の最小値も増加したためと考えられる。つまり、サンプル2は他の形状のサンプルよりも多く電流を流すことができるため、EM損傷しにくい形状であるということができる。 As shown in FIGS. 5A and 5B, the threshold current densities j th of the samples 1 and 4 are almost the same. In contrast, samples 2, threshold current density j th is the threshold current density greater than j th samples 1 and 4. Sample 3 The threshold current density j th is the threshold current density j th smaller samples 1 and 4. In the case of the sample 2 in which the reservoir is disposed on the cathode via side, the threshold current density j th is larger than that of the other samples. This is thought to be because the atomic concentration distribution of the via-via energization portion in the steady state does not change between samples 1 and 3, but the distribution of sample 2 is higher than those and the minimum value of the atomic concentration in the wiring also increases. . In other words, since the sample 2 can flow more current than other shape samples, it can be said that the sample 2 has a shape that is not easily damaged by EM.

図6は、サンプル1、2および3の配線に沿った原子濃度N/Nの分布を示すグラフである。図6で横軸は配線中央部(図4参照)からの距離(μm。負が陰極側で正が陽極側)、縦軸は原子濃度(N/N)であり、サンプル1は実線、サンプル2は破線、サンプル3はピッチの短い破線で示す。サンプルはすべて入力電流密度が等しい。式1によれば、電流密度が等しい場合、EMの駆動力は等しい。このため、定常状態では原子濃度の傾きは互いに対応している。一方、リザーバでは電流密度はほとんどゼロであり、EMの駆動力はない。従って、定常状態ではリザーバにおける傾きはほとんど水平となる。質量の法則によれば、サンプル2における原子濃度分布はサンプル1における分布から広域的に上方へシフトすることになる。 FIG. 6 is a graph showing the distribution of atomic concentration N / N 0 along the wirings of Samples 1, 2, and 3. In FIG. 6, the horizontal axis is the distance (μm from the center of the wiring (see FIG. 4) (negative is the cathode side and positive is the anode side), the vertical axis is the atomic concentration (N / N 0 ), and Sample 1 is a solid line. Sample 2 is indicated by a broken line, and sample 3 is indicated by a broken line with a short pitch. All samples have the same input current density. According to Equation 1, when the current density is equal, the driving force of the EM is equal. For this reason, in the steady state, the gradients of atomic concentrations correspond to each other. On the other hand, in the reservoir, the current density is almost zero and there is no driving force of EM. Therefore, in the steady state, the inclination in the reservoir is almost horizontal. According to the law of mass, the atomic concentration distribution in sample 2 shifts upward from the distribution in sample 1 in a wide area.

図7は、本数値シミュレーション終了時の原子濃度分布を示すグラフである。図7で横軸は配線中央部(図4参照)からの距離(μm。負が陰極側で正が陽極側)、縦軸は原子濃度N(1/μm)、入力電流密度j=2.0(MA/cm)でありサンプル3について示す。図7はNの分布であるため、各要素に複数のNがありそれらをプロットしていることから、太い線にみえている。図7に示されるように、陰極側のビア部において濃度がN minに達し、ボイドが発生すると考えられた。この結果は実験におけるボイド発生箇所(非特許文献17参照)に一致する。 FIG. 7 is a graph showing the atomic concentration distribution at the end of the numerical simulation. In FIG. 7, the horizontal axis is the distance (μm from the center of the wiring (see FIG. 4) (negative is the cathode side and positive is the anode side), and the vertical axis is the atomic concentration N * (1 / μm 3 ) 2.0 (MA / cm 2 ) and shown for sample 3. 7 for the distribution of N *, since plots they have multiple N * to each element, it is seen in thick line. As shown in FIG. 7, it was considered that the concentration reached N * min in the via portion on the cathode side and voids were generated. This result coincides with the void generation location in the experiment (see Non-Patent Document 17).

以上より、本発明の実施例1によれば、EM損傷支配パラメータを用いた本数値シミュレーションを実施することにより、集積回路配線におけるリザーバ効果の評価を行った。本数値シミュレーションは、まず電流密度分布および温度分布を2次元FE分析(有限要素法。一般的には数値解析でもよい。)により計算する。上記解析結果(電流密度分布および温度分布)とディスク38(後述)等に記録された薄膜特性(配線材料の物性定数。非特許文献4参照)とから各要素における上記支配パラメータ(AFD gen|end、AFD gen)を計算する。次に、θに関する原子濃度Nを上記支配パラメータの値に基づき計算する。各要素における原子濃度Nはすべてのθの値についてのNの平均により計算する。臨界原子濃度または原子濃度が変化しなくなる定常状態に達したか否かを判断し、達したと判断した場合は終了し、そうでないと判断した場合は上記支配パラメータの計算を繰返す。本数値シミュレーションにより、陰極端側にリザーバを設けると、配線内部の最小原子濃度が増加し、配線の許容電流密度が増加することがわかった。また、リザーバを有する配線に許容値以上の電流が作用した場合、陰極側のビア部で原子濃度はボイド発生の臨界値に到達するため、ボイド発生箇所は陰極側のビア部であると評価できた。即ち、許容値以上の電流が作用した場合、陰極側のビア部にボイドが発生することが実験事実と符合していることがわかったため、本数値シミュレーションによる結果は妥当であると言える。つまり、従来あまり行われない陰極端側のみにリザーバを設けることを行うと、配線の許容電流密度が増加し、損傷しにくくなることがわかった。以上により、リザーバ構造を有するビア接続の多層配線について、ボイドの発生に至るEM損傷過程の本数値シミュレーションを実施し、リザーバ効果を考慮しつつ閾電流密度を評価することにより配線の信頼性を評価するシミュレーション方法等を提供することができた。リザーバ構造を有するビア接続の多層配線構造において、陰極端のビア側にのみリザーバを設け、当該多層配線内部の最小原子濃度を増加させることにより、多層配線の許容電流密度を増加させるビア接続の多層配線構造を提供することができた。 As mentioned above, according to Example 1 of this invention, the reservoir effect in integrated circuit wiring was evaluated by implementing this numerical simulation using EM damage control parameters. In this numerical simulation, first, the current density distribution and the temperature distribution are calculated by two-dimensional FE analysis (finite element method. Generally, numerical analysis may be used). Based on the analysis results (current density distribution and temperature distribution) and thin film characteristics (physical property constants of the wiring material, see Non-Patent Document 4) recorded on the disk 38 (described later), the dominant parameter (AFD * gen | end , AFD * gen ). Next, the atomic concentration N * related to θ is calculated based on the value of the dominant parameter. The atomic concentration N in each element is calculated by the average of N * for all values of θ. It is determined whether or not a critical atomic concentration or a steady state where the atomic concentration does not change is reached. If it is determined that it has been reached, the process ends. If not, the above control parameter calculation is repeated. From this numerical simulation, it was found that when a reservoir is provided on the cathode end side, the minimum atomic concentration inside the wiring increases and the allowable current density of the wiring increases. In addition, when a current exceeding the allowable value is applied to the wiring having a reservoir, the atomic concentration reaches the critical value of void generation at the cathode side via portion, and therefore, the void generation point can be evaluated as the cathode side via portion. It was. That is, it can be said that the result of this numerical simulation is appropriate because it is found that the void is generated in the via portion on the cathode side when the current exceeding the allowable value is applied, which is consistent with the experimental fact. In other words, it has been found that if the reservoir is provided only on the cathode end side, which has not been performed so far, the allowable current density of the wiring increases and it is difficult to damage. As described above, the reliability of the wiring is evaluated by conducting this numerical simulation of the EM damage process leading to the occurrence of voids in the via-connected multilayer wiring having a reservoir structure, and evaluating the threshold current density in consideration of the reservoir effect. We were able to provide a simulation method and so on. In a via-connected multilayer wiring structure having a reservoir structure, a reservoir is provided only on the cathode end via side, and the minimum atomic concentration inside the multilayer wiring is increased, thereby increasing the allowable current density of the multilayer wiring. A wiring structure could be provided.

図8は、本発明のシミュレーションプログラムを実行するPC等のコンピュータの内部回路30を示すブロック図である。図8に示されるように、CPU31、ROM32、RAM33、画像制御部36、コントローラ37、入力制御部40および外部I/F部42はバス43に接続されている。図8において、上述の本発明のシミュレーションプログラムは、ROM32、ディスク38またはDVD若しくはCD−ROM39等の記録媒体(脱着可能な記録媒体を含む)に記録されている。ディスク38等の記録媒体(記録部)には、上述した表2で示される物性定数等の薄膜特性が記録されている。シミュレーションプログラムは、ROM32からバス43を介し、あるいはディスク38またはDVD若しくはCD−ROM39等の記録媒体からコントローラ37を経由してバス43を介しRAM33へロードされる。画像制御部36は、シミュレーションプログラムによる計算結果のデータをVRAM35へ送出する。表示部34はVRAM35から送出された上記データ等を表示する。VRAM35は表示部34の一画面分のデータ容量に相当する容量を有している画像メモリである。入力操作部41はコンピュータに入力、指定等を行うためのマウス、キーボード、タッチパネル、スイッチ等の入力装置であり、入力制御部40は入力操作部41と接続され入力制御等を行う。外部I/F部42はコンピュータ(CPU)31の外部と接続する際のインタフェース機能を有している。   FIG. 8 is a block diagram showing an internal circuit 30 of a computer such as a PC that executes the simulation program of the present invention. As shown in FIG. 8, the CPU 31, ROM 32, RAM 33, image control unit 36, controller 37, input control unit 40 and external I / F unit 42 are connected to a bus 43. In FIG. 8, the above-described simulation program of the present invention is recorded on a recording medium (including a removable recording medium) such as a ROM 32, a disk 38, a DVD or a CD-ROM 39. Thin film characteristics such as physical constants shown in Table 2 are recorded on a recording medium (recording unit) such as the disk 38. The simulation program is loaded into the RAM 33 from the ROM 32 via the bus 43 or from a recording medium such as the disk 38 or DVD or CD-ROM 39 via the controller 37 via the bus 43. The image control unit 36 sends the data of the calculation result by the simulation program to the VRAM 35. The display unit 34 displays the above data sent from the VRAM 35. The VRAM 35 is an image memory having a capacity corresponding to the data capacity of one screen of the display unit 34. The input operation unit 41 is an input device such as a mouse, a keyboard, a touch panel, and a switch for performing input, designation, and the like to the computer. The input control unit 40 is connected to the input operation unit 41 and performs input control and the like. The external I / F unit 42 has an interface function when connecting to the outside of the computer (CPU) 31.

上述のようにコンピュータ(CPU)31が本発明のシミュレーションプログラムを実行することにより、本発明の目的を達成することができる。シミュレーションプログラムは上述のようにDVD若しくはCD−ROM39等の記録媒体の形態でコンピュータ(CPU)31に供給することができ、シミュレーションプログラムを記録したDVD若しくはCD−ROM39等の記録媒体も同様に本発明を構成することになる。シミュレーションプログラムを記録した記録媒体としては上述された記録媒体の他に、例えばメモリ・カード、メモリ・スティック、光ディスク等を用いることができる。   As described above, the computer (CPU) 31 executes the simulation program of the present invention, whereby the object of the present invention can be achieved. The simulation program can be supplied to the computer (CPU) 31 in the form of a recording medium such as a DVD or a CD-ROM 39 as described above, and a recording medium such as a DVD or a CD-ROM 39 on which the simulation program is recorded is similarly applied to the present invention. Will be configured. As a recording medium on which the simulation program is recorded, for example, a memory card, a memory stick, an optical disk, or the like can be used in addition to the recording medium described above.

本発明の活用例として、ビア接続を有する多層配線(特に集積回路配線)における許容電流密度の向上(増加)に適用することができる。   As an application example of the present invention, the present invention can be applied to improvement (increase) of allowable current density in a multilayer wiring (in particular, integrated circuit wiring) having via connection.

10 金属配線、 12 金属結晶粒、 30 コンピュータの内部回路、 31 CPU、 32 ROM、 33 RAM、34 表示部、 35 VRAM、 36 画像制御部、 37 コントローラ、 38 ディスク、 39 DVD若しくはCD−ROM、 40 入力制御部、 41 入力操作部、 42 外部I/F部、 43 バス、 50 多層配線、 51、52、53 金属配線、 54n、54P 配線端部、 55n、55p 張り出し部(リザーバ)、 56 ビア接続。   10 metal wiring, 12 metal crystal grains, 30 internal circuit of computer, 31 CPU, 32 ROM, 33 RAM, 34 display unit, 35 VRAM, 36 image control unit, 37 controller, 38 disk, 39 DVD or CD-ROM, 40 Input control unit, 41 Input operation unit, 42 External I / F unit, 43 Bus, 50 Multi-layer wiring, 51, 52, 53 Metal wiring, 54n, 54P Wiring end, 55n, 55p Overhang (reservoir), 56 Via connection .

Fu, C. M. et al., Width Dependence of The Effectiveness of ReservoirLength in Improving Electromigration for Cu/Low-k Interconnects,Microelectronics Reliability,Vol.50, No.9-11, (2010), pp.1332-1335.Fu, C. M. et al., Width Dependence of The Effectiveness of ReservoirLength in Improving Electromigration for Cu / Low-k Interconnects, Microelectronics Reliability, Vol.50, No.9-11, (2010), pp.1332-1335. e.g. Hau-Riege, C.S., MicroelectronicsReliability, Vol.44 (2004), pp.195-205.e.g.Hau-Riege, C.S., MicroelectronicsReliability, Vol.44 (2004), pp.195-205. Abe, H., Sasagawa, K. and Saka, M., InternationalJournal of Fracture, Vol.138 (2006), pp.219-240.Abe, H., Sasagawa, K. and Saka, M., International Journal of Fracture, Vol.138 (2006), pp.219-240. Sasagawa, K. et al., Evaluation of Threshold Current Density of Electromigration Damage in Interconnect Tree with Angled Cu Lines, Proc. 12thInt. Conf. on Electronics Materials and Packaging, (2010), pp.110-116.Sasagawa, K. et al., Evaluation of Threshold Current Density of Electromigration Damage in Interconnect Tree with Angled Cu Lines, Proc. 12thInt. Conf. On Electronics Materials and Packaging, (2010), pp.110-116. Hieu, N. V. et al., Effect of Current Crowding on Electromigration Lifetime Investigated by Simulation and Experiment, Computational Materials Science, Vol.49 (2010), pp. S235-S238.Hieu, N. V. et al., Effect of Current Crowding on Electromigration Lifetime Investigated by Simulation and Experiment, Computational Materials Science, Vol.49 (2010), pp.S235-S238. Tan, C. M. et al., Applications of Finite Element Methods for Reliability Study of ULSI Interconnections, Microelectronics Reliability, in Press.Tan, C. M. et al., Applications of Finite Element Methods for Reliability Study of ULSI Interconnections, Microelectronics Reliability, in Press. Sasagawa, K. et al., Governing Parameter for Electromigration Damage in the Polycrystalline Line with a Passivation Layer,Journal of Applied Physics, Vol.91, (2002), pp.1882-1890.Sasagawa, K. et al., Governing Parameter for Electromigration Damage in the Polycrystalline Line with a Passivation Layer, Journal of Applied Physics, Vol.91, (2002), pp.1882-1890. Lin, M. H., Chang, K. P., Su, K. C. and Wang, T.Microelectronics Reliability, Vol.47, (2007), pp.2100-2108.Lin, M. H., Chang, K. P., Su, K. C. and Wang, T. Microelectronics Reliability, Vol. 47, (2007), pp. 2100-2108. Hu, C. -K., R. Rosenberg, and K. Y. Lee, Applied Physics Letters, Vol.74, Iss.20 (1999), pp.2945-2947.Hu, C. -K., R. Rosenberg, and K. Y. Lee, Applied Physics Letters, Vol.74, Iss.20 (1999), pp.2945-2947. Sasagawa, K., Hasegawa, M., Saka, M. and Abe,H., Journal of Applied Physics, Vol.91, (2002), pp.1882-1890.Sasagawa, K., Hasegawa, M., Saka, M. and Abe, H., Journal of Applied Physics, Vol.91, (2002), pp.1882-1890. Hasegawa, M,. Sasagawa, K., Saka, M. and Abe,H., Proc. of IPACK’03 (CD-ROM), ASME (2003), IPACK2003-35064.Hasegawa, M ,. Sasagawa, K., Saka, M. and Abe, H., Proc. Of IPACK’03 (CD-ROM), ASME (2003), IPACK2003-35064. Choi, Z. S., Ronig, R. and Thompson, C. V.,Journal of Applied Physics, Vol. 102(2007), 083509.Choi, Z. S., Ronig, R. and Thompson, C. V., Journal of Applied Physics, Vol. 102 (2007), 083509. Hu, C. K., Gignac, L. and Rosenberg, R.,Microelectronics Reliability, Vol. 46, (2006), pp.213-231.Hu, C. K., Gignac, L. and Rosenberg, R., Microelectronics Reliability, Vol. 46, (2006), pp.213-231. Gan, C. L., Thompson, C. V., Pey, K. L., and Choi, W. K., Journal of Applied Physics, Vol. 94, (2003), pp.1222-1228.Gan, C. L., Thompson, C. V., Pey, K. L., and Choi, W. K., Journal of Applied Physics, Vol. 94, (2003), pp.1222-1228. Figliola, R. S., Beasley, D. E., Theory and Design for Mechanical Measurements, Second-ed. New York: John Wiley & Sons, Inc.,(1995).Figliola, R.S., Beasley, D.E., Theory and Design for Mechanical Measurements, Second-ed.New York: John Wiley & Sons, Inc., (1995). Sasagawa, K., Hasegawa, M., Yoshida, N., Saka,M. and Abe, H., Proc. of InterPACK’03 (CD-ROM), ASME, 2003, IPACK2003-35065.Sasagawa, K., Hasegawa, M., Yoshida, N., Saka, M. and Abe, H., Proc. Of InterPACK’03 (CD-ROM), ASME, 2003, IPACK2003-35065. Vairagar, A. V. et al., Reservoir Effect on Electromigration Mechanisms in Dual-damascene Cu Interconnect Structures, Microelectronic Engineering,Vol.82, (2005), pp.675-679.Vairagar, A. V. et al., Reservoir Effect on Electromigration Mechanisms in Dual-damascene Cu Interconnect Structures, Microelectronic Engineering, Vol.82, (2005), pp.675-679.

Claims (3)

リザーバ構造を有するビア接続の多層配線について、エレクトロマイグレーション損傷過程におけるビア接続の多層配線の信頼性を評価する信頼性評価シミュレーションプログラムであって、コンピュータに、
前記多層配線を二次元的に要素分割する要素分割ステップ、
前記要素分割ステップで分割された各要素の初期原子濃度をNとする初期設定ステップ、
2次元有限要素法により前記多層配線内の電流密度分布及び温度分布を計算する2次元有限要素法ステップ、
前記2次元有限要素法ステップにより計算された前記多層配線内の電流密度分布及び温度分布と記録部に記録された該多層配線材料の物性定数とに基づき、単位時間に単位体積当たりエレクトロマイグレーションにより何個原子が消失するかを示す以下の支配パラメータ(陰極および陽極端の要素とビアとではAFD gen|end、他の要素ではAFD gen)、
ここで、N:原子濃度、D:振動数項、k:ボルツマン定数、T:絶対温度、Qgb:原子拡散の活性化エネルギ、κ:保護膜拘束下の濃度変化と応力変化との間の係数、Ω:原子体積、σT:引張の熱応力、N:σTが作用したときの原子濃度、N:無応力状態における原子濃度、Z:有効電荷数、e:単位電荷、ρ:電気抵抗率、j:電流密度ベクトルのJ方向の成分、∂N/∂l:原子濃度勾配のJ方向成分、δ:結晶粒界の有効幅、θ:微小単位構造とx軸との間の角度、d:平均結晶粒径、Δφ:結晶粒界間の角度に関する定数、Qgb:粒界拡散の活性化エネルギ、D=Zeρj−κΩ/N(∂N/∂x)、D=Zeρj−κΩN(∂N/∂y)であり、
ここで、β:配線端がx軸となす角度、d:平均結晶粒径、D=Zeρj−κΩ/N(∂N/∂x)、D=Zeρj−κΩN(∂N/∂y)、
を計算する支配パラメータ計算ステップ、
前記支配パラメータ計算ステップで計算された支配パラメータの値に基づき、θに関する原子濃度N、ここで、N:式2で表されるAFD gbθに含まれるθを0から2πのそれぞれの値としてAFD gbθ値を計算し、その値から求めるθの値毎の原子濃度、を計算する原子濃度N計算ステップ、
前記原子濃度N計算ステップで計算されたθの値毎に持っている原子濃度Nを要素内の全てについて平均した原子濃度Nを計算する原子濃度N計算ステップ、
原子濃度が変化しなくなる定常状態に達したか否かを判断する判断ステップ、
前記判断ステップで定常状態に達していないと判断された場合、繰返し計算のための設定を行って、前記支配パラメータ計算ステップへ戻って計算を繰返す繰返ステップを実行させるためのビア接続の多層配線の信頼性を評価する信頼性評価シミュレーションプログラム。
A reliability evaluation simulation program for evaluating the reliability of a via-connected multilayer wiring in a process of electromigration damage for a via-connected multilayer wiring having a reservoir structure,
An element dividing step of dividing the multilayer wiring into two-dimensional elements;
An initial setting step in which the initial atomic concentration of each element divided in the element division step is N 0 ;
A two-dimensional finite element method step of calculating a current density distribution and a temperature distribution in the multilayer wiring by a two-dimensional finite element method;
Based on the current density distribution and temperature distribution in the multilayer wiring calculated by the two-dimensional finite element method step and the physical constants of the multilayer wiring material recorded in the recording section, what is caused by electromigration per unit volume per unit time? or are shown below governing parameters pieces atoms disappears (at the element and via the cathode and anode ends AFD * gen | end, the other elements AFD * gen),
Here, N: atomic concentration, D 0 : frequency term, k: Boltzmann constant, T: absolute temperature, Q gb : activation energy of atomic diffusion, κ: between concentration change and stress change under constraint of protective film Ω: atomic volume, σT: tensile thermal stress, N T : atomic concentration when σT is applied, N 0 : atomic concentration in an unstressed state, Z * : number of effective charges, e: unit charge, ρ : Electric resistivity, j * : J-direction component of current density vector, ∂N / ∂l: J-direction component of atomic concentration gradient, δ: Effective width of grain boundary, θ: Minute unit structure and x-axis Angle, d: average crystal grain size, Δφ: constant related to angle between crystal grain boundaries, Q gb : activation energy of grain boundary diffusion, D x = Z * eρj x −κΩ / N 0 (∂N / ∂ x), D y = Z * eρj y −κΩN 0 (∂N / ∂y),
Here, β: angle formed by the wiring end with the x-axis, d: average crystal grain size, D x = Z * eρj x −κΩ / N 0 (∂N / ∂x), D y = Z * eρj y −κΩN 0 (∂N / ∂y),
Dominant parameter calculation step, which calculates
Based on the value of the dominant parameter calculated in the dominant parameter calculation step, the atomic concentration N * related to θ, where N * : θ included in AFD * gbθ represented by Equation 2 is a value from 0 to 2π An atomic concentration N * calculation step for calculating an AFD * gbθ value as, and calculating an atomic concentration for each θ value obtained from that value,
Atomic concentration N calculating step of calculating the atomic concentration N * calculated atomic concentration N averaged for all in the calculated atomic concentration has for each value of theta N * element in step,
A determination step for determining whether or not a steady state has been reached at which the atomic concentration does not change;
If the determination step determines that the steady state has not been reached, a multi-layer wiring with via connection is used to perform a repetitive step by performing settings for repetitive calculation and returning to the dominant parameter calculation step to repeat the calculation. A reliability evaluation simulation program that evaluates the reliability of a computer.
リザーバ構造を有するビア接続の多層配線について、請求項1記載の信頼性評価シミュレーションプログラムの実行結果から得られた、定常状態における配線内の原子濃度の最小値がボイド形成に至る臨界の原子濃度の値に一致する際の入力電流密度(閾電流密度)の評価に基づき陰極端のビア側にのみリザーバを設け、該多層配線内部の最小原子濃度を増加させることにより、多層配線の許容電流密度を増加させることを特徴とするビア接続の多層配線の許容電流密度向上方法。 For a via-connected multilayer wiring having a reservoir structure, the minimum value of the atomic concentration in the wiring in a steady state obtained from the execution result of the reliability evaluation simulation program according to claim 1 is a critical atomic concentration that leads to void formation. Based on the evaluation of the input current density (threshold current density) when the values match, the reservoir is provided only on the via side of the cathode end, and the minimum atomic concentration inside the multilayer wiring is increased, thereby increasing the allowable current density of the multilayer wiring. A method of improving an allowable current density of a via-connected multi-layer wiring, characterized by increasing the number of vias. リザーバ構造を有するビア接続の多層配線構造において、請求項1記載の信頼性評価シミュレーションプログラムの実行結果から得られた、定常状態における配線内の原子濃度の最小値がボイド形成に至る臨界の原子濃度の値に一致する際の入力電流密度(閾電流密度)の評価に基づき陰極端のビア側にのみリザーバを設け、該多層配線内部の最小原子濃度を増加させることにより、多層配線の許容電流密度を増加させることを特徴とするビア接続の多層配線構造。 In a via-connected multi-layer wiring structure having a reservoir structure , the critical atomic concentration at which the minimum value of the atomic concentration in the wiring in the steady state is obtained from the execution result of the reliability evaluation simulation program according to claim 1 leads to void formation Based on the evaluation of the input current density (threshold current density) when the value matches the above value, the reservoir is provided only on the via side of the cathode end, and the minimum atomic concentration inside the multilayer wiring is increased, thereby allowing the allowable current density of the multilayer wiring. Via connection multilayer wiring structure characterized by increasing
JP2012196681A 2012-09-06 2012-09-06 Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring Active JP6044926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196681A JP6044926B2 (en) 2012-09-06 2012-09-06 Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196681A JP6044926B2 (en) 2012-09-06 2012-09-06 Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring

Publications (2)

Publication Number Publication Date
JP2014052832A JP2014052832A (en) 2014-03-20
JP6044926B2 true JP6044926B2 (en) 2016-12-14

Family

ID=50611277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196681A Active JP6044926B2 (en) 2012-09-06 2012-09-06 Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring

Country Status (1)

Country Link
JP (1) JP6044926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861610B2 (en) * 2017-11-07 2021-04-21 株式会社荏原製作所 Plating analysis method, plating analysis system, and computer program for plating analysis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221383B2 (en) * 1997-12-17 2001-10-22 日本電気株式会社 Multilayer wiring structure of semiconductor device
JP2926568B1 (en) * 1998-02-25 1999-07-28 九州日本電気株式会社 Semiconductor integrated circuit and its wiring method
JP4298842B2 (en) * 1999-04-19 2009-07-22 独立行政法人科学技術振興機構 Metal wiring reliability evaluation apparatus and method, and recording medium storing program for metal wiring reliability evaluation
JP2001351919A (en) * 2000-06-05 2001-12-21 Nec Corp Wiring fault analysis method
JP4611602B2 (en) * 2002-05-29 2011-01-12 ルネサスエレクトロニクス株式会社 Wiring design method
JP4515131B2 (en) * 2004-03-30 2010-07-28 独立行政法人科学技術振興機構 Atomic concentration distribution evaluation system due to EM damage of multilayer wiring
JP4889040B2 (en) * 2007-09-21 2012-02-29 独立行政法人科学技術振興機構 Metal wiring reliability evaluation apparatus and method, and recording medium storing program for metal wiring reliability evaluation

Also Published As

Publication number Publication date
JP2014052832A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
Basaran et al. Damage mechanics of electromigration induced failure
US7511378B2 (en) Enhancement of performance of a conductive wire in a multilayered substrate
Sukharev Beyond Black’s equation: Full-chip EM/SM assessment in 3D IC stack
Abé et al. Electromigration failure of metal lines
He et al. Circuit level interconnect reliability study using 3D circuit model
JP6044926B2 (en) Reliability evaluation simulation program for evaluating reliability of via connection multilayer wiring, method for improving allowable current density of via connection multilayer wiring, and via connection multilayer wiring
Bashir et al. Towards a chip level reliability simulator for copper/low-k backend processes
JP3189778B2 (en) Wiring temperature rise simulation method
JP5333420B2 (en) Semiconductor integrated circuit wiring verification method, wiring verification apparatus, and wiring verification program
Abbasinasab et al. Blech effect in interconnects: Applications and design guidelines
Antonova et al. Finite elements for electromigration analysis
US10013523B2 (en) Full-chip assessment of time-dependent dielectric breakdown
TW201812622A (en) Method for analyzing an electromigration rule violation in an integrated circuit
Cai et al. Evaluation of electromigration coupling different physics fields in numerical simulation
US8307319B2 (en) Integrated circuit reliability
Jeon et al. Analysis of the reservoir effect on electromigration reliability
Sukharev et al. Theoretical predictions of EM-induced degradation in test-structures and on-chip power grids with analytical and numerical analysis
Hau-Riege New methodologies for interconnect reliability assessments of integrated circuits
Li et al. Minimum void size and 3-parameter lognormal distribution for EM failures in Cu interconnects
Weide-Zaage et al. Life time characterization for a highly robust metallization
Takaya et al. Computational evaluation of optimal reservoir and sink lengths for threshold current density of electromigration damage considering void and hillock formation
JP4515131B2 (en) Atomic concentration distribution evaluation system due to EM damage of multilayer wiring
Kanapady et al. Influence of temperature gradient on electromigration failures in 3D packaging
Huang et al. Full-chip electromigration assessment: Effect of cross-layout temperature and thermal stress distributions
JP3579332B2 (en) Method and apparatus for predicting damage to wiring structure having protective film on surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6044926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250