JP6044016B2 - High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same - Google Patents

High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same Download PDF

Info

Publication number
JP6044016B2
JP6044016B2 JP2012242148A JP2012242148A JP6044016B2 JP 6044016 B2 JP6044016 B2 JP 6044016B2 JP 2012242148 A JP2012242148 A JP 2012242148A JP 2012242148 A JP2012242148 A JP 2012242148A JP 6044016 B2 JP6044016 B2 JP 6044016B2
Authority
JP
Japan
Prior art keywords
cerium oxide
concentration
nanoparticle layer
oxide nanoparticle
high concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012242148A
Other languages
Japanese (ja)
Other versions
JP2014091646A (en
Inventor
環 長沼
環 長沼
トラベルサ エンリコ
トラベルサ エンリコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012242148A priority Critical patent/JP6044016B2/en
Publication of JP2014091646A publication Critical patent/JP2014091646A/en
Application granted granted Critical
Publication of JP6044016B2 publication Critical patent/JP6044016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、75%以上の高濃度Ce3+を形成し、大気中にて高濃度Ce3+を維持できる蛍石型アンドープ酸化セリウムナノ粒子及びその作製方法に関するものである。 The present invention relates to a fluorite-type undoped cerium oxide nanoparticle layer capable of forming a high concentration Ce 3+ of 75% or more and maintaining the high concentration Ce 3+ in the atmosphere, and a method for producing the same.

通常、大気中に放置したアンドープ酸化セリウムナノ粒子(CNP)は、大気中でより安定なセリウム4価(Ce4+)に支配的となるため、セリウム4価と3価の価数比(Ce4+/Ce3+)は、おおよそ80/20となる。合成されたCNPにおいて、粒子径を2−3nm程度まで小さくすると、高濃度Ce3+を含むCNPが得られる。例えば、非特許文献1には、平均粒径3nmで44%(X線光電子分光(XPS)測定後、全ピーク10本のピークフィッティングから算出)、非特許文献2には、平均粒径2.2nmで84%(XPS測定後、ピーク4本から算出)、非特許文献3には、平均粒径2.6nmで74%(格子膨張法)のCe3+を含むCNPが得られたことがそれぞれ報告されている。しかし、これまでに、Ce3d軌道のXPSスペクトルにてCe4+のみのピーク(〜916cm−1)が検出されない程の高濃度Ce3+を含むアンドープ酸化セリウムナノ粒子の報告はまだない。 Usually, undoped cerium oxide nanoparticles (CNP) left in the atmosphere are dominant in cerium tetravalent (Ce 4+ ), which is more stable in the atmosphere, and therefore the valence ratio of cerium tetravalent to trivalent (Ce 4+ / Ce 3+ ) is approximately 80/20. In the synthesized CNP, when the particle diameter is reduced to about 2-3 nm, CNP containing high concentration Ce 3+ is obtained. For example, Non-Patent Document 1 has an average particle size of 3 nm and 44% (calculated from peak fitting of all 10 peaks after X-ray photoelectron spectroscopy (XPS) measurement). 84% (calculated from 4 peaks after XPS measurement) at 2 nm, and Non-Patent Document 3 shows that CNP containing Ce 3+ with an average particle size of 2.6 nm and 74% (lattice expansion method) was obtained. It has been reported. However, there have been no reports of undoped cerium oxide nanoparticles containing Ce 3+ at such a high concentration that Ce 4+ only peak (˜916 cm −1 ) is not detected in the XPS spectrum of Ce 3d orbital.

一方、金属セリウム基板を酸化させ形成したナノオーダ厚さの酸化セリウムナノ薄膜(ナノ粒子の層ではない)において、表面をアルゴンイオン照射することにより、超真空中で90%以上の高濃度Ce3+が形成できることが報告されている。しかし、雰囲気の酸素分圧が高まると、酸化セリウムナノ薄膜では再び酸化が生じ、形成されたCe3+は安定なCe4+に変換される。酸素雰囲気中15分後には、90%のCe3+濃度は15−40%まで低下することが、非特許文献4において報告されている。 On the other hand, a nano-thick cerium oxide nano thin film (not a nanoparticle layer) formed by oxidizing a metal cerium substrate is irradiated with argon ions on the surface to form a high concentration Ce 3+ of 90% or more in an ultra vacuum. It has been reported that it can be done. However, when the oxygen partial pressure in the atmosphere is increased, oxidation occurs again in the cerium oxide nanofilm, and the formed Ce 3+ is converted to stable Ce 4+ . It is reported in Non-Patent Document 4 that after 15 minutes in an oxygen atmosphere, the 90% Ce 3+ concentration decreases to 15-40%.

同様に金属基板上に形成した酸化セリウムフィルムでは、1000K/60minの熱処理により、高濃度Ce3+が得られている。しかし、700Kの酸化雰囲気では、再酸化が生じCe4+への変換される(非特許文献5)。 Similarly, in the cerium oxide film formed on the metal substrate, high concentration Ce 3+ is obtained by the heat treatment of 1000 K / 60 min. However, in an oxidizing atmosphere of 700K, re-oxidation occurs and is converted to Ce 4+ (Non-patent Document 5).

マイクロ又はナノメートルオーダの粒子径をもつ酸化セリウムナノ粒子をペレット状に成形し(CNP成形体)、超真空雰囲気にてアルゴンイオン照射した場合、わずかではあるがCe3+を形成できる(非特許文献6)。しかし、この場合、非特許文献3の酸化セリウムナノ薄膜にアルゴンイオンを照射した場合のように、高濃度Ce3+を有するXPSスペクトルは得られていない。 When cerium oxide nanoparticles having a particle diameter of the order of micrometer or nanometer are formed into pellets (CNP compact) and irradiated with argon ions in an ultra-vacuum atmosphere, Ce 3+ can be formed to a slight extent (Non-patent Document 6). ). However, in this case, an XPS spectrum having a high concentration Ce 3+ is not obtained as in the case of irradiating argon ions to the cerium oxide nanofilm of Non-Patent Document 3.

Sameer Deshpande, Swanand Patil, Satyanarayana VNT Kuchibhatla, and Sudipta Seal, "Size dependency variation in lattice parameter and vacancy states in nanocrystalline cerium oxide", APPLIED PHYSICS LETTERS 87: 133113 2005Sameer Deshpande, Swanand Patil, Satyanarayana VNT Kuchibhatla, and Sudipta Seal, "Size dependency variation in lattice parameter and vacancy states in nanocrystalline cerium oxide", APPLIED PHYSICS LETTERS 87: 133113 2005 S. Tsunekawa, T. Fukuda, A. Kasuya, "X-ray photoelectron spectroscopy of monodisperse CeO2-x nanoparticles", Surface Science. 457: L437-L440 2000S. Tsunekawa, T. Fukuda, A. Kasuya, "X-ray photoelectron spectroscopy of monodisperse CeO2-x nanoparticles", Surface Science. 457: L437-L440 2000 S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya and T. Fukuda, "Structural study on monosize CeO2-x nano-particles", Nanostruct. Mater. 11: 141-147 1999S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya and T. Fukuda, "Structural study on monosize CeO2-x nano-particles", Nanostruct. Mater. 11: 141-147 1999 J.P. Holgado, G. Munuera, J.P. Espino's, A.R. Gonz'alez-Elipe, "XPS study of oxidation processes of CeO defective layers", Applied Surface Science 158: 164-171 2000J.P. Holgado, G. Munuera, J.P. Espino's, A.R.Gonz'alez-Elipe, "XPS study of oxidation processes of CeO defective layers", Applied Surface Science 158: 164-171 2000 Wende Xiao, Qinlin Guo, E.G. Wang, "Transformation of CeO2 (111) to Ce2O3 (0001) films", Chemical Physics Letters 368: 527-531 2003Wende Xiao, Qinlin Guo, E.G.Wang, "Transformation of CeO2 (111) to Ce2O3 (0001) films", Chemical Physics Letters 368: 527-531 2003 Limei Qiu, Fen Liu, Liangzhong Zhao, Ying Ma, Jiannian Yao, "Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder", Applied Surface Science 252: 4931-4935 2006Limei Qiu, Fen Liu, Liangzhong Zhao, Ying Ma, Jiannian Yao, "Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder", Applied Surface Science 252: 4931-4935 2006

本発明のこのような実情に鑑み、75%以上の高濃度Ce3+を有し、かつ、高濃度Ce3+の状態を大気中にて1ヵ月以上維持できる蛍石型アンドープ酸化セリウムナノ粒子とその作製方法を提供することを課題とする。 In view of such circumstances of the present invention, a fluorite-type undoped cerium oxide nanoparticle layer having a high concentration of Ce 3+ of 75% or more and capable of maintaining a high concentration of Ce 3+ in the atmosphere for one month or more and its It is an object to provide a manufacturing method.

発明1の方法は、基板に酸化セリウムナノ粒子を吸着させてナノオーダ厚さの酸化セリウムナノ粒子層を形成した後、前記酸化セリウムナノ粒子層にアルゴンイオンを照射することにより、濃度75%以上Ce3+を形成し、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヶ月以上、その濃度75%以上のCe 3+ の状態を維持できる大気安定性を有する蛍石型構造のアンドープ酸化セリウム粒子を作製することを特徴とする。 In the method of the invention 1, after the cerium oxide nanoparticles are adsorbed on the substrate to form a nano-order cerium oxide nanoparticle layer, the cerium oxide nanoparticle layer is irradiated with argon ions, whereby Ce 3+ having a concentration of 75% or more is obtained. Fluorite-type undoped cerium oxide particles having an atmospheric stability that can be formed and maintained in a Ce 3+ state with a concentration of 75% or more for at least one month or more in an atmosphere containing oxygen at room temperature and humidity of 60% or less It is characterized by producing a layer .

ここで、大気安定性とは、室温且つ湿度60%以下、酸素を含む大気中にて、少なくとも1ヵ月以上、75%以上の高濃度Ce3+を酸化セリウムナノ粒子に維持できることをいう。 Here, atmospheric stability means that cerium oxide nanoparticles can maintain a high concentration of Ce 3+ of 75% or more for at least one month or more in an atmosphere containing oxygen at room temperature and 60% or less.

また、熱曝露後の大気安定性とは、300℃/10minの熱曝露の後、少なくとも1ヵ月以上大気中において、高濃度Ce3+の状態を維持できることをいう。 The atmospheric stability after heat exposure means that a high concentration Ce 3+ state can be maintained in the air for at least one month after 300 ° C./10 min heat exposure.

発明2の方法は、上記方法において、酸化セリウムナノ粒子層(CNPL)の膜厚を50nm以下とする。   The method of the invention 2 makes the film thickness of the cerium oxide nanoparticle layer (CNPL) 50 nm or less in the above method.

発明3の方法は、上記方法において、アルゴンイオン照射前のCNPLに含まれるCe4+濃度がCe3+濃度に対してリッチであるものを用いる。 The method of the invention 3 uses the above method in which the Ce 4+ concentration contained in CNPL before irradiation with argon ions is richer than the Ce 3+ concentration.

発明4のアンドープ酸化セリウムナノ粒子は、蛍型結晶構造を維持しつつ、濃度75%以上Ce3+ を有し、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヶ月以上、その濃度75%以上のCe 3+ の状態を維持できる大気安定性を有する特徴を有する。 The undoped cerium oxide nanoparticle layer of the invention 4 has a Ce 3+ concentration of 75% or more while maintaining a firefly crystal structure , and at least one month or more in an atmosphere containing oxygen at room temperature and humidity of 60% or less, It has the characteristic of having atmospheric stability that can maintain a Ce 3+ state with a concentration of 75% or more .

発明1〜3により、基板上の酸化セリウムナノ粒子層(CNPL)の厚さを、イオン照射の侵入厚さと同程度にすることにより、アルゴンイオン照射後に高濃度の酸素欠陥をCNPLに形成できる。CNPの内部までに酸素欠陥が導入される結果、電荷補償によりCNPを構成する多くのCe4+はCe3+に変換される。このため、粒子内部からの酸素拡散を極力抑えられることから、高濃度Ce3+を大気圧下で安定して維持できるようになった。そして、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヵ月以上、75%以上の高濃度Ce3+を維持でき、かつ、300℃/10minの熱曝露の後、少なくとも2ヵ月以上安定してその高濃度状態を維持できるようになった。さらに、基板を用いることにより、アルゴンイオン照射面の裏側からの酸化も抑えられる。 According to the first to third aspects, by setting the thickness of the cerium oxide nanoparticle layer (CNPL) on the substrate to the same level as the penetration depth of the ion irradiation, a high concentration oxygen defect can be formed in the CNPL after the argon ion irradiation. As a result of introducing oxygen vacancies into the CNP, a large amount of Ce 4+ constituting the CNP is converted to Ce 3+ by charge compensation. For this reason, since oxygen diffusion from inside the particles can be suppressed as much as possible, a high concentration Ce 3+ can be stably maintained under atmospheric pressure. It can maintain a high concentration of Ce 3+ of 75% or more in an atmosphere containing oxygen at room temperature and humidity of 60% or less for at least one month, and after heat exposure at 300 ° C./10 min for at least two months or more. The high concentration state can be stably maintained. Furthermore, by using a substrate, oxidation from the back side of the argon ion irradiation surface can be suppressed.

発明4により、75%以上の高濃度Ce3+を有し、大気中にて1ヵ月以上高濃度Ce3+を安定して維持できる蛍石型アンドープ酸化セリウムナノ粒子の提供が可能となった。 The invention 4 has 75% or more of the high concentration Ce 3+, was possible to provide a fluorite undoped cerium oxide nanoparticles layer over a month in the atmosphere at a high concentration Ce 3+ can be maintained stably.

本発明によるアンドープ酸化セリウムナノ粒子層への高濃度Ce3+の形成方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the formation method of high concentration Ce3 + to the undoped cerium oxide nanoparticle layer by this invention. アルゴンイオン照射前後の酸化セリウムナノ粒子層(CNPL)におけるCe3d軌道のXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the Ce3d orbit in the cerium oxide nanoparticle layer (CNPL) before and behind argon ion irradiation. 実施例2の高濃度Ce3+を含む酸化セリウムナノ粒子層(CNPL)を大気曝露させ、Ce3+濃度の変化を観察した結果を示す図である。酸化セリウムナノ粒子成形体(CNP成形体)との比較(Ce3+大気安定性)。It is a figure which shows the result of having exposed the cerium oxide nanoparticle layer (CNPL) containing the high concentration Ce3 + of Example 2 to air | atmosphere, and observing the change of Ce3 + density | concentration. Comparison with a cerium oxide nanoparticle compact (CNP compact) (Ce 3 + atmospheric stability). 実施例3のAr照射した酸化セリウムナノ粒子層(CNPL)についてX線回折(XRD)回折実験を行った結果を示す図である。Ar照射条件はRFバイアス出力0、200、300Wとする。It is a figure which shows the result of having conducted the X-ray diffraction (XRD) diffraction experiment about the Ar irradiation cerium oxide nanoparticle layer (CNPL) of Example 3. FIG. Ar irradiation conditions are RF bias output 0, 200, and 300 W. 実施例4のAr照射後の酸化セリウムナノ粒子層について、大気中にて500℃までの熱曝露試験を行い、試験後にCe3+濃度を調べた結果を示す図である。(Ce3+温度依存性)It is a figure which shows the result of having conducted the thermal exposure test to 500 degreeC in air | atmosphere about the cerium oxide nanoparticle layer after Ar irradiation of Example 4, and investigated Ce3 + density | concentration after the test. (Ce 3+ temperature dependence) 実施例5のAr照射後の酸化セリウムナノ粒子層を300℃/10minで熱曝露した後、大気曝露し、その後のCe3+濃度変化を調べた結果を示す図である。(熱曝露後のCe3+大気安定性)It is a figure which shows the result of having investigated the Ce3 + density | concentration change after carrying out the air exposure after exposing the cerium oxide nanoparticle layer after Ar irradiation of Example 5 to 300 degreeC / 10min. (Ce 3+ atmospheric stability after heat exposure)

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の酸化セリウムナノ粒子(CNP)は、75%以上、好ましくは80%以上のCe3+濃度を含み大気安定性を有する蛍石型構造(立方晶)のアンドープ酸化セリウムナノ粒子である。 The cerium oxide nanoparticles (CNP) of the present invention are undoped cerium oxide nanoparticles having a Ce 3+ concentration of 75% or more, preferably 80% or more and having atmospheric stability and cubic stability.

本明細書において、「Ce3+大気安定性」とは、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヵ月以上、75%以上の高濃度Ce3+を酸化セリウムナノ粒子に維持できることをいう。また、「熱曝露後のCe3+大気安定性」とは、300℃/10minの熱曝露の後、少なくとも1ヵ月以上大気中において、高濃度Ce3+の状態を維持できることをいう。 In this specification, “Ce 3+ atmospheric stability” means maintaining a high concentration of Ce 3+ of 75% or more in a cerium oxide nanoparticle layer for at least 1 month or more in an atmosphere containing oxygen at room temperature and humidity of 60% or less. Say what you can do. Further, “Ce 3+ atmospheric stability after heat exposure” means that a high concentration Ce 3+ state can be maintained in the atmosphere for at least one month after 300 ° C./10 min heat exposure.

図1に、本発明によるアンドープ酸化セリウムナノ粒子層(CNPL)に高濃度Ce3+を形成する方法の一例を概念図で示す。 FIG. 1 is a conceptual diagram showing an example of a method for forming a high concentration Ce 3+ in an undoped cerium oxide nanoparticle layer (CNPL) according to the present invention.

図1において、例えばディップ法により基板(1)に酸化セリウムナノ粒子(CNP)(2)を吸着させ、酸化セリウムナノ粒子層(CNPL)(3)を形成した後、アルゴンイオン(4)を照射することにより、75%以上、より好ましくは80%以上の高濃度Ce3+を含む酸化セリウムナノ粒子層(5)を得ることができる。ここで、基板(1)の材料及びCNP(2)のCe4+/Ce3+比に関して特に限定はない。本例では基板にはポリ乳酸基板を用いた。CNPには、Ce4+/Ce3+比が80/20程度の4価支配の汎用CNPを用いることができる。ナノ粒子層(3)の膜厚は、吸着時間とアルゴンイオン照射時間により制御し、イオン照射侵入深さの観点から、50nm以下、好ましくは10nm以下であり、その下限はナノ粒子の直径の1nm程度である。イオン照射条件は、ナノ粒子の脱落と酸素欠陥形成との兼ね合いから、RF出力を300W以下、照射時間を1分程度とすることが望ましい。 In FIG. 1, cerium oxide nanoparticles (CNP) (2) are adsorbed on a substrate (1) by, for example, a dip method to form a cerium oxide nanoparticle layer (CNPL) (3), and then irradiated with argon ions (4). Thus, a cerium oxide nanoparticle layer (5) containing a high concentration Ce 3+ of 75% or more, more preferably 80% or more can be obtained. Here, there is no particular limitation regarding the material of the substrate (1) and the Ce 4+ / Ce 3+ ratio of the CNP (2). In this example, a polylactic acid substrate was used as the substrate. As the CNP, a 4-valent CNP having a Ce 4+ / Ce 3+ ratio of about 80/20 can be used. The film thickness of the nanoparticle layer (3) is controlled by the adsorption time and the argon ion irradiation time, and is 50 nm or less, preferably 10 nm or less, from the viewpoint of ion irradiation penetration depth, and the lower limit is 1 nm of the diameter of the nanoparticle. Degree. As for the ion irradiation conditions, it is desirable that the RF output is 300 W or less and the irradiation time is about 1 minute in consideration of the dropping of the nanoparticles and the formation of oxygen defects.

上記方法によれば、基板(1)上の酸化セリウムナノ粒子層(3)の厚さを調節し、ナノ粒子層(3)の厚さを照射侵入厚さと同程度にすることにより、アルゴンイオン照射を用いて高濃度の酸素欠陥を酸化セリウムナノ粒子層(5)中に形成できるようになる。また、これにより作製されたアンドープ酸化セリウムナノ粒子は、ナノ粒子の内部までに高濃度のCe3+を形成できるため、粒子内部からの酸素拡散を極力抑えられる。さらに、基板(1)を用いることにより、アルゴンイオン照射面の裏側からの酸化も抑えられる。したがって、高濃度Ce3+を大気圧下で安定して維持できるようになると考えられる。その結果、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヵ月以上、75%以上、より好ましくは80%以上のCe3+濃度を含む酸化セリウムナノ粒子を維持できる(Ce3+大気安定性)。さらに、300℃/10minの熱曝露の後、2ヵ月以上安定してその高濃度Ce3+状態が維持できるようになる(熱曝露後のCe3+大気安定性)。 According to the above method, argon ion irradiation is performed by adjusting the thickness of the cerium oxide nanoparticle layer (3) on the substrate (1) and making the thickness of the nanoparticle layer (3) comparable to the irradiation penetration thickness. Can be used to form a high concentration of oxygen defects in the cerium oxide nanoparticle layer (5). Moreover, since the undoped cerium oxide nanoparticles produced thereby can form a high concentration of Ce 3+ up to the inside of the nanoparticles, oxygen diffusion from the inside of the particles can be suppressed as much as possible. Furthermore, by using the substrate (1), oxidation from the back side of the argon ion irradiated surface can be suppressed. Therefore, it is considered that the high concentration Ce 3+ can be stably maintained under atmospheric pressure. As a result, cerium oxide nanoparticles having a Ce 3+ concentration of at least one month, 75% or more, more preferably 80% or more can be maintained in an atmosphere containing oxygen at room temperature and humidity of 60% or less (Ce 3+ atmospheric stability). sex). Furthermore, after the heat exposure at 300 ° C./10 min, the high concentration Ce 3+ state can be stably maintained for 2 months or longer (Ce 3+ atmospheric stability after heat exposure).

本発明の高濃度Ce3+含有アンドープ酸化セリウムナノ粒子を高温で用いる場合には、大気環境温度を300℃以下とすることが望ましい。 When the high-concentration Ce 3+ containing undoped cerium oxide nanoparticles of the present invention are used at a high temperature, it is desirable that the atmospheric environment temperature be 300 ° C. or lower.

次に、本発明の実施例を述べる。
(実施例1)
ポリ乳酸基板にディップ法により酸化セリウムナノ粒子層(CNPL)を形成した。酸化セリウムナノ粒子の平均粒径は3nm以下であり、アルゴンイオン照射前のCNPLの膜厚は10−20nmであった。また、真空中のXPS測定の結果、Ar照射前のCNPLのCe4+濃度は、約70〜80%、Ce3+濃度は約20〜30%であった。
Next, examples of the present invention will be described.
Example 1
A cerium oxide nanoparticle layer (CNPL) was formed on a polylactic acid substrate by dipping. The average particle diameter of the cerium oxide nanoparticles was 3 nm or less, and the film thickness of CNPL before irradiation with argon ions was 10-20 nm. Further, as a result of XPS measurement in vacuum, the Ce 4+ concentration of CNPL before Ar irradiation was about 70 to 80%, and the Ce 3+ concentration was about 20 to 30%.

次に、上記のCNPLに、RF出力300Wで1分間、アルゴンイオンを照射し、75%以上の高濃度Ce3+を含む本発明の実施例のCNPLを形成した。 Next, the CNPL was irradiated with argon ions at an RF output of 300 W for 1 minute to form a CNPL of an example of the present invention containing a high concentration of Ce 3+ of 75% or more.

図2に、アルゴンイオン照射前後のCNPLにおけるCe3dスペクトルを示す。横軸が結合エネルギー(eV)、縦軸はスペクトル強度(任意単位)である。この図から、アルゴンイオン照射後にはCe4+のみに由来する916cm−1のピークが完全に消えており、高濃度Ce3+を含むCNPLが形成されていることが確認できる
(実施例2、比較例)
また、図3に、上記実施例1と同様にして作製した高濃度Ce3+含有の酸化セリウムナノ粒子層(CNPL)を大気曝露させ、Ce3+濃度の変化を観察した。横軸が大気曝露時間、縦軸はXPS測定結果より全ピーク10本の強度から算出したCe3+濃度である。また、比較例として、実施例1において用いたアルゴンイオン照射前の酸化セリウムナノ粒子(CNP)を用いて、直径4mm×厚さ1mmのCNP成形体を作製し、上記実施例と同条件でアルゴンイオン照射し、比較例とした。このCNP成形体についても同様に大気曝露させ、Ce3+濃度の変化を観察した。
FIG. 2 shows Ce3d spectra in CNPL before and after argon ion irradiation. The horizontal axis represents the binding energy (eV), and the vertical axis represents the spectral intensity (arbitrary unit). From this figure, it can be confirmed that the peak of 916 cm −1 derived only from Ce 4+ disappears completely after irradiation with argon ions, and CNPL containing high concentration Ce 3+ is formed .
(Example 2, comparative example)
Further, in FIG. 3, a high concentration Ce 3+ containing cerium oxide nanoparticle layer (CNPL) produced in the same manner as in Example 1 was exposed to the atmosphere, and the change in the Ce 3+ concentration was observed. The horizontal axis represents the atmospheric exposure time, and the vertical axis represents the Ce 3+ concentration calculated from the intensity of all 10 peaks from the XPS measurement result. As a comparative example, a CNP compact having a diameter of 4 mm and a thickness of 1 mm was produced using the cerium oxide nanoparticles (CNP) before irradiation with argon ions used in Example 1, and argon ions were formed under the same conditions as in the above examples. Irradiated and used as a comparative example. The CNP compact was exposed to the air in the same manner, and changes in Ce 3+ concentration were observed.

図3より、比較例のCNP成形体では、大気曝露2h以降から再酸化が生じ、Ce3+が減少しはじめ、遅くとも3日後にはCe4+が支配的(Ce4+>80%)となった。一方、実施例1のCNPLでは、少なくとも47日間は、80%以上の高濃度Ce3+が維持できることが確認された。
(実施例3)
また、図4に、上記実施例1と同様にして作製した高濃度Ce3+含有のCNPLについてX線回折(XRD)回折実験を行った結果を示す。この図から、上記実施例1で作製した高濃度Ce3+含有のCNPLは、Ceの結晶構造ではなく、CeOの蛍石型構造であることが確認された。
(実施例4)
また、図5に、上記実施例1と同様にして作製した高濃度Ce3+含有のCNPLについて、大気中にて500℃までの熱曝露試験を行い、試験後のCe3+濃度を調べた。熱曝露時間は10minとした。
From FIG. 3, in the CNP molded body of the comparative example, re-oxidation occurred after exposure to the atmosphere for 2 h, Ce 3+ began to decrease, and Ce 4+ became dominant (Ce 4+ > 80%) after 3 days at the latest. On the other hand, in the CNPL of Example 1, it was confirmed that a high concentration Ce 3+ of 80% or more can be maintained for at least 47 days.
Example 3
FIG. 4 shows the results of X-ray diffraction (XRD) diffraction experiments performed on CNPL containing high concentration Ce 3+ produced in the same manner as in Example 1. From this figure, it was confirmed that the CNPL containing high concentration Ce 3+ produced in Example 1 has a CeO 2 fluorite structure, not a Ce 2 O 3 crystal structure.
Example 4
Further, in FIG. 5, a high-concentration Ce 3+ containing CNPL produced in the same manner as in Example 1 was subjected to a heat exposure test up to 500 ° C. in the atmosphere, and the Ce 3+ concentration after the test was examined. The heat exposure time was 10 min.

図5から、300℃を超えると再酸化がはじまり、300℃から350℃の温度範囲において、Ce3+濃度が約20%まで低下しはじめ、350℃以上の温度ではアルゴンイオン照射前のCe3+濃度の状態に戻った。
(実施例5)
さらに、図6に示すように、上記実施例1と同様にして作製した高濃度Ce3+含有のCNPLについて、300℃/10minで熱曝露を行った後、大気曝露し、その後のCe3+濃度変化を調べた。その結果、高濃度Ce3+の状態が少なくとも2ヵ月維持できることが確認された。
From FIG. 5, when the temperature exceeds 300 ° C., reoxidation starts, and in the temperature range from 300 ° C. to 350 ° C., the Ce 3+ concentration starts to decrease to about 20%, and at a temperature of 350 ° C. or higher, the Ce 3+ concentration before irradiation with argon ions. Returned to the state.
(Example 5)
Further, as shown in FIG. 6, the high concentration Ce 3+ containing CNPL produced in the same manner as in Example 1 was exposed to heat at 300 ° C./10 min, then exposed to the atmosphere, and then changed in Ce 3+ concentration. I investigated. As a result, it was confirmed that the high concentration Ce 3+ state could be maintained for at least 2 months.

本発明の「高濃度Ce3+大気安定性を有する蛍石型アンドープ酸化セリウムナノ粒子」は、燃料電池材料、酸素貯蔵材料、自動車用排気ガス触媒などへの応用の可能性が期待される。 The “fluorite-type undoped cerium oxide nanoparticle layer having high concentration Ce 3+ atmospheric stability” of the present invention is expected to be applicable to fuel cell materials, oxygen storage materials, automobile exhaust gas catalysts, and the like.

1 基板
2 酸化セリウムナノ粒子(CNP)
3 酸化セリウムナノ粒子層(CNPL)
4 アルゴンイオン
5 高濃度Ce3+を有する酸化セリウムナノ粒子層
1 Substrate 2 Cerium oxide nanoparticles (CNP)
3 Cerium oxide nanoparticle layer (CNPL)
4 Argon ions 5 Cerium oxide nanoparticle layer with high concentration of Ce 3+

Claims (4)

基板に酸化セリウムナノ粒子を吸着させてナノオーダ厚さの酸化セリウムナノ粒子層を形成した後、前記酸化セリウムナノ粒子層にアルゴンイオンを照射することにより、濃度75%以上Ce3+を形成し、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヶ月以上、その濃度75%以上のCe 3+ の状態を維持できる大気安定性を有する蛍石型構造のアンドープ酸化セリウム粒子を作製する方法。 After the cerium oxide nanoparticles are adsorbed on the substrate to form a nano-order cerium oxide nanoparticle layer, the cerium oxide nanoparticle layer is irradiated with argon ions to form Ce 3+ having a concentration of 75% or more at room temperature and humidity A method for producing an undoped cerium oxide particle layer having an atmospheric stability capable of maintaining a Ce 3+ state at a concentration of 75% or more in an atmosphere containing oxygen of 60% or less and oxygen for at least one month or more . 酸化セリウムナノ粒子層の膜厚が50nm以下であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the cerium oxide nanoparticle layer has a thickness of 50 nm or less. アルゴンイオン照射前の酸化セリウムナノ粒子層に含まれるCe4+濃度がCe3+濃度に対してリッチであることを特徴とする請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the Ce 4+ concentration contained in the cerium oxide nanoparticle layer before irradiation with argon ions is richer than the Ce 3+ concentration. 濃度75%以上Ce3+ を有し、室温かつ湿度60%以下、酸素を含む大気中にて、少なくとも1ヶ月以上、その濃度75%以上のCe 3+ の状態を維持できる大気安定性を有する蛍石型構造のアンドープ酸化セリウム粒子 It has a Ce 3+ or more concentration of 75% at room temperature and a humidity of 60% or less, in the atmosphere containing oxygen, firefly having at least 1 month or more, air stability capable of maintaining a state of the concentration of 75% or more of Ce 3+ Undoped cerium oxide particle layer with stone structure.
JP2012242148A 2012-11-01 2012-11-01 High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same Expired - Fee Related JP6044016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242148A JP6044016B2 (en) 2012-11-01 2012-11-01 High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242148A JP6044016B2 (en) 2012-11-01 2012-11-01 High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014091646A JP2014091646A (en) 2014-05-19
JP6044016B2 true JP6044016B2 (en) 2016-12-14

Family

ID=50935997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242148A Expired - Fee Related JP6044016B2 (en) 2012-11-01 2012-11-01 High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same

Country Status (1)

Country Link
JP (1) JP6044016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132701B1 (en) * 2016-02-04 2020-07-10 주식회사 엘지화학 Tray Having Stopper for Accommodating Battery Cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270835A (en) * 2004-03-25 2005-10-06 Hitachi Chem Co Ltd Fine particle structural body, its precursor composition, its production method, and its application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132701B1 (en) * 2016-02-04 2020-07-10 주식회사 엘지화학 Tray Having Stopper for Accommodating Battery Cell

Also Published As

Publication number Publication date
JP2014091646A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
Choi et al. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets
Hartmann et al. Defect chemistry of oxide nanomaterials with high surface area: Ordered mesoporous thin films of the oxygen storage catalyst CeO2–ZrO2
Babu et al. Dopant-mediated oxygen vacancy tuning in ceria nanoparticles
Suresh et al. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method
Xiong et al. Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances
Victoria et al. An insight in the structural, morphological, electrical and optical properties of spray pyrolysed Co3O4 thin films
Mohamed et al. Growth of undoped and Fe doped TiO 2 nanostructures and their optical and photocatalytic properties
Zarkov et al. Chemical solution deposition of pure and Gd-doped ceria thin films: structural, morphological and optical properties
Kumar et al. Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping
Echeverrigaray et al. Reducible oxide and allotropic transition induced by hydrogen annealing: synthesis routes of TiO2 thin films to tailor optical response
Kuchibhatla et al. An unexpected phase transformation of ceria nanoparticles in aqueous media
He et al. Stability investigation of the titanium-based eco-friendly perovskite-like antifluorite Cs 2 TiBr 6
Drmosh et al. Room-temperature detection of hydrogen by platinum-decorated tin oxide thin films augmented by heat-treatment
JP6044016B2 (en) High-concentration cerium trivalent fluorite-type undoped cerium oxide nanoparticle layer with excellent atmospheric stability and method for producing the same
Harilal et al. Electrical and optical properties of NdAlO3 synthesized by an optimized combustion process
Matović et al. Synthesis, calcination and characterization of nanosized ceria powders by self-propagating room temperature method
CN107619045B (en) Method for in-situ preparation of small-size metal oxide on graphene
Balamurugan et al. Synthesis of anatase and rutile mixed phase titanium dioxide nanoparticles using simple solution combustion method
Prekajski et al. Thermal stability of Ce1− xBixO2− δ (x= 0.1–0.5) solid solution
Lv et al. Oxygen vacancies-modified S-scheme heterojunction of Bi-doped La2Ti2O7 and La-doped Bi4Ti3O12 to improve the NO gas removal avoiding NO2 product
Ha et al. N-doped mesoporous inverse opal structures for visible-light photocatalysts
KR101409164B1 (en) Titanium oxynitride having titanium deficiency type halite structure
Jeyanthi et al. Structural and spectroscopic studies of rare earths doped ceria (RELa, Sc, Yb: CeO2) nanopowders
Yue et al. Yttria stabilized zirconia derived from metal–organic frameworks
Suresh et al. Impact of mole concentration on the structural and optical properties of nebulized spray coated cerium oxide thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6044016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees