JP6042604B2 - Magnet strip manufacturing method and manufacturing apparatus - Google Patents

Magnet strip manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP6042604B2
JP6042604B2 JP2011239277A JP2011239277A JP6042604B2 JP 6042604 B2 JP6042604 B2 JP 6042604B2 JP 2011239277 A JP2011239277 A JP 2011239277A JP 2011239277 A JP2011239277 A JP 2011239277A JP 6042604 B2 JP6042604 B2 JP 6042604B2
Authority
JP
Japan
Prior art keywords
cooling roll
ribbon
molten metal
magnet
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011239277A
Other languages
Japanese (ja)
Other versions
JP2013094810A (en
Inventor
紀次 佐久間
紀次 佐久間
秀史 岸本
秀史 岸本
崇 佐塚
崇 佐塚
加藤 晃
晃 加藤
康弘 大西
康弘 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Yonekura Mfg Co Ltd
Original Assignee
Toyota Motor Corp
Yonekura Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Yonekura Mfg Co Ltd filed Critical Toyota Motor Corp
Priority to JP2011239277A priority Critical patent/JP6042604B2/en
Publication of JP2013094810A publication Critical patent/JP2013094810A/en
Application granted granted Critical
Publication of JP6042604B2 publication Critical patent/JP6042604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、急冷凝固による磁石薄帯の製造方法および製造装置に関する。   The present invention relates to a method and apparatus for manufacturing a magnet ribbon by rapid solidification.

ネオジム磁石(NdFe14B)で代表される希土類磁石は、磁束密度が高く極めて強力な永久磁石として種々の用途に用いられている。優れた磁気特性を得るために、ナノサイズの結晶粒または非晶質から成る微細組織を安定して確保する必要がある。そのため、希土類磁石の組成を有する合金溶湯を単ロール法、双ロール法等により急冷凝固させて薄帯(急冷リボン)を形成する方法が行なわれている。 Rare earth magnets typified by neodymium magnets (Nd 2 Fe 14 B) are used in various applications as permanent magnets with high magnetic flux density and extremely high strength. In order to obtain excellent magnetic properties, it is necessary to stably secure a microstructure composed of nano-sized crystal grains or amorphous. Therefore, a method of forming a ribbon (quenched ribbon) by rapidly solidifying a molten alloy having a composition of a rare earth magnet by a single roll method, a twin roll method or the like is performed.

例えば特許文献1には、上記のような急冷凝固により永久磁石を製造する方法が提案されている。   For example, Patent Document 1 proposes a method of manufacturing a permanent magnet by rapid solidification as described above.

しかし、合金溶湯を急冷凝固させる冷却ロール表面の温度が変動し、冷却速度が変動してしまうため、ナノ結晶粒組織または非晶質組織を安定して得ることができず、両者の混在組織となったり、粗大な結晶粒組織が生成したり、これらの3種類の混在組織が生成してしまうため、優れた磁気特性を安定して確保することができないという問題があった。   However, since the temperature of the cooling roll surface that rapidly solidifies the alloy melt fluctuates and the cooling rate fluctuates, it is not possible to stably obtain a nanocrystalline structure or an amorphous structure. Or a coarse crystal grain structure is generated, or these three kinds of mixed structures are generated, and there is a problem that excellent magnetic properties cannot be secured stably.

特許第03248942号Japanese Patent No. 03488942

本発明は、急冷凝固により磁石合金の薄帯を製造する際に、冷却ロール表面の温度変動を防止することにより、均一な微細組織とそれによる優れた磁気特性を達成することができる磁石薄帯を製造する方法および装置を提供することを目的とする。   The present invention provides a magnet ribbon capable of achieving a uniform microstructure and excellent magnetic properties by preventing temperature fluctuations on the surface of the cooling roll when producing a ribbon of magnet alloy by rapid solidification. It is an object of the present invention to provide a method and an apparatus for manufacturing the device.

上記の目的を達成するために、本発明によれば、磁石合金の溶湯を冷却ロールの表面に吐出して急冷凝固する磁石薄帯の製造方法において、
上記冷却ロールを上記磁石薄帯の生成方向に対して垂直に連続して往復移動させることを特徴とする磁石薄帯の製造方法が提供される。
In order to achieve the above object, according to the present invention, in a method for producing a magnet ribbon that rapidly solidifies by discharging a molten metal alloy onto the surface of a cooling roll,
There is provided a method for producing a magnet ribbon, wherein the cooling roll is continuously reciprocated perpendicularly to the magnet ribbon production direction.

上記の目的を達成するために、本発明によれば、磁石合金の溶湯を冷却ロールの表面に吐出して急冷凝固する磁石薄帯の製造装置において、
上記冷却ロールを上記磁石薄帯の生成方向に対して垂直に連続して往復移動させる手段を有することを特徴とする磁石薄帯の製造装置も提供される。
In order to achieve the above object, according to the present invention, in a magnet ribbon manufacturing apparatus that rapidly cools and solidifies by discharging a molten metal alloy onto the surface of a cooling roll,
There is also provided a magnet ribbon manufacturing apparatus comprising means for continuously reciprocating the cooling roll perpendicularly to the magnet ribbon generation direction.

本発明によれば、冷却ロールが溶湯の吐出部位に対して、磁石薄帯の生成方向に対して垂直に、すなわち冷却ロールの回転軸方向に、連続して往復移動するので、冷却ロール表面の同一円周上に集中して溶湯吐出流が当ることがなく常に回転軸方向にシフトした位置に当るので、ロール表面の昇温により溶湯の冷却速度が低下することなく常に安定した冷却速度が維持され、望ましい微細組織が安定して確保できる。   According to the present invention, the cooling roll continuously reciprocates perpendicular to the magnet ribbon generation direction, that is, in the rotation axis direction of the cooling roll, with respect to the molten metal discharge site. Concentrates on the same circumference and does not impinge on the melt discharge flow, and always hits the position shifted in the direction of the rotation axis. Therefore, a stable cooling rate is always maintained without decreasing the cooling rate of the melt due to the temperature rise on the roll surface. Therefore, a desirable fine structure can be secured stably.

図1は、本発明を実施するための冷却ロールによる急冷凝固手段を示す。FIG. 1 shows a rapid solidification means by a cooling roll for carrying out the present invention. 図2は、実施例において用いた単ロール炉を示す。FIG. 2 shows the single roll furnace used in the examples. 図3は、温度測定のための配置を示す。FIG. 3 shows an arrangement for temperature measurement. 図4は、図3において、吐出溶湯と冷却ロール表面との関係を詳細に示す。FIG. 4 shows in detail the relationship between the discharged molten metal and the surface of the cooling roll in FIG. 図5は、実施例と比較例について、吐出時間と冷却速度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the discharge time and the cooling rate for the example and the comparative example. 図6は、比較例について、吐出流の荒れおよび凝着の状態を示す。FIG. 6 shows the state of rough discharge and adhesion of the discharge flow for the comparative example. 図7は、実施例および比較例について、減磁曲線を示すグラフである。FIG. 7 is a graph showing a demagnetization curve for the example and the comparative example. 図8は、実施例および比較例について、焼結体組織のSEM像を示す。FIG. 8 shows SEM images of the sintered body structure for Examples and Comparative Examples.

図1に、本発明を実施するための冷却ロールによる急冷凝固手段を示す。   FIG. 1 shows a rapid solidification means using a cooling roll for carrying out the present invention.

冷却ロールRは回転軸Xの周りをV方向に回転する。磁石合金の溶湯MはノズルNから冷却ロールRの表面Sに吐出されて急冷され、凝固して薄帯(急冷リボン)BとなってD方向に生成する。   The cooling roll R rotates around the rotation axis X in the V direction. The melt M of the magnet alloy is discharged from the nozzle N onto the surface S of the cooling roll R, rapidly cooled, solidified, and formed into a ribbon (quenched ribbon) B in the D direction.

従来は、冷却ロールRの表面Sの同一円周上の位置に溶湯Mが吐出されていたため、溶湯吐出位置の円周上のロール表面Sが昇温してしまい、冷却速度が低下し、望ましい冷却速度が維持できないという問題があった。   Conventionally, since the molten metal M is discharged to a position on the same circumference of the surface S of the cooling roll R, the roll surface S on the circumference of the molten metal discharge position is heated, and the cooling rate is lowered, which is desirable. There was a problem that the cooling rate could not be maintained.

上記従来の問題を解消するために、本発明の特徴は、冷却ロールRが溶湯Mの吐出部位に対して、磁石薄帯Bの生成方向Dに対して垂直に、すなわち冷却ロールRの回転軸X方向に、連続して往復移動(T)する。これにより、冷却ロールRの表面Sの同一円周上の位置に集中して溶湯Mの吐出流が当ることがなく常に回転軸X方向にシフトした別の位置に当るので、ロール表面Sの昇温により溶湯Mの冷却速度が低下することなく常に安定した冷却速度が維持され、望ましい微細組織が安定して確保できる。   In order to eliminate the above-described conventional problems, the present invention is characterized in that the cooling roll R is perpendicular to the generation direction D of the magnet ribbon B with respect to the discharge portion of the molten metal M, that is, the rotation axis of the cooling roll R. Continuously reciprocates (T) in the X direction. As a result, the discharge flow of the molten metal M does not hit the position on the same circumference of the surface S of the cooling roll R and always hits another position shifted in the direction of the rotation axis X. A stable cooling rate is always maintained without lowering the cooling rate of the molten metal M due to the temperature, and a desirable fine structure can be stably secured.

往復移動の速度は、用いる装置について、予備実験により予め設定することができる。本発明者が後述の実施例において用いた装置については、0.1mm/s〜50mm/s程度が望ましい。遅すぎると急冷効果が得られず、速すぎると冷却ロール表面で吐出溶湯流に乱れが生じるため、溶湯と冷却ロール表面との密着性が低下する。   The speed of the reciprocating movement can be set in advance by preliminary experiments for the apparatus to be used. About the apparatus which this inventor used in the Example mentioned later, about 0.1 mm / s-50 mm / s is desirable. If it is too slow, the rapid cooling effect cannot be obtained, and if it is too fast, the discharge molten metal flow is disturbed on the surface of the cooling roll, so that the adhesion between the molten metal and the surface of the cooling roll is lowered.

図1に示したように、溶湯が吐出するノズルNには、溶湯加熱用の誘導コイルHが配備されている。冷却ロールRの表面Sは、誘導コイルHによって加熱作用を受けるため、それによる表面Sの昇温も冷却速度変動の原因となる。   As shown in FIG. 1, an induction coil H for heating the molten metal is provided in the nozzle N that discharges the molten metal. Since the surface S of the cooling roll R is heated by the induction coil H, the temperature rise of the surface S caused by this also causes the cooling rate fluctuation.

これを防止するため、本発明の望ましい形態においては、溶湯Mを吐出直前に加熱するための誘導コイルHに対してロールRの表面Sを遮蔽するために遮蔽板Pを設ける。これにより、冷却ロールRの表面Sが誘導コイルHにより加熱されるのが防止される。   In order to prevent this, in a desirable mode of the present invention, a shielding plate P is provided to shield the surface S of the roll R from the induction coil H for heating the molten metal M immediately before discharging. This prevents the surface S of the cooling roll R from being heated by the induction coil H.

遮蔽板Pを設けない場合には、冷却ロール表面Sの加熱を避けるために、誘導コイルHと冷却ロール表面Sとの間隔を十分に広くとる必要がある。その場合、溶湯Mが誘導コイルHにより加熱される位置と冷却ロール表面Sとの距離が広がり、溶湯Mが表面Sに接触するまでの緩冷却区間が増加するので、急冷効果が低下する。遮蔽板Pを設けることにより、誘導コイルHを冷却ロール表面に近接して配置することができ、急冷効果を高めることができる。   When the shielding plate P is not provided, in order to avoid heating the cooling roll surface S, it is necessary to provide a sufficiently wide interval between the induction coil H and the cooling roll surface S. In this case, the distance between the position where the molten metal M is heated by the induction coil H and the surface S of the cooling roll increases, and the slow cooling interval until the molten metal M contacts the surface S increases, so that the rapid cooling effect decreases. By providing the shielding plate P, the induction coil H can be arranged close to the surface of the cooling roll, and the rapid cooling effect can be enhanced.

遮蔽板Pは、高周波の印加により発熱するので、遮蔽板P自体も水冷パイプを配置する等により冷却することが望ましい。この冷却水として、誘導コイルに通常用いられている冷却水を共用することができる。   Since the shielding plate P generates heat when a high frequency is applied, it is desirable to cool the shielding plate P itself by arranging a water cooling pipe. As this cooling water, the cooling water normally used for the induction coil can be shared.

以下に、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

組成がNd14.7Fe79.035.67Ga0.3Cu0.1Al0.2のネオジム磁石合金をアーク溶解炉にて溶製し、図2に示した単ロール炉にて合金薄帯(急冷リボン)を作製した。図2において、生成した薄帯Bは凝固に伴い細かい薄片状になって、回収機構A内に回収される。表1に作製条件を示す。 A neodymium magnet alloy having a composition of Nd 14.7 Fe 79.03 B 5.67 Ga 0.3 Cu 0.1 Al 0.2 was melted in an arc melting furnace, and in a single roll furnace shown in FIG. An alloy ribbon (quenched ribbon) was prepared. In FIG. 2, the generated ribbon B becomes fine flakes as it solidifies, and is recovered in the recovery mechanism A. Table 1 shows the manufacturing conditions.

ロールの往復移動速度は3mm/sとした。   The reciprocating speed of the roll was 3 mm / s.

Cu製の高周波遮蔽板Pを用いて、誘導コイルHと冷却ロール表面Sとの間を遮蔽した。遮蔽板Pの表面に密着して水冷用のCuパイプを配管し、内部に水温30℃の冷却水を流して遮蔽板Pを冷却した。   Using a high frequency shielding plate P made of Cu, the space between the induction coil H and the cooling roll surface S was shielded. A Cu pipe for water cooling was provided in close contact with the surface of the shielding plate P, and cooling water having a water temperature of 30 ° C. was flowed therein to cool the shielding plate P.

図3に示すように、赤外カメラK(NECアビオ製:TS9230H−A01)にて、凝固前後の溶湯温度を測定し、吐出中の急冷速度を評価した。   As shown in FIG. 3, the melt temperature before and after solidification was measured with an infrared camera K (manufactured by NEC Avio: TS9230H-A01), and the quenching rate during discharge was evaluated.

すなわち図4に示すように、赤外カメラにて溶湯が冷却ロールに接触する直前の範囲を設定し、その範囲内での最高温度をT1とした。冷却ロール表面S上で凝固後に距離L(m)の範囲を設定し、その範囲内での最高温度をT2とした。T1とT2との温度差ΔTから冷却速度を算出した。本実施例においては、L=0.005mとした。   That is, as shown in FIG. 4, the range immediately before the molten metal contacted the cooling roll was set with an infrared camera, and the maximum temperature within the range was defined as T1. A range of distance L (m) was set after solidification on the surface S of the cooling roll, and the maximum temperature within the range was defined as T2. The cooling rate was calculated from the temperature difference ΔT between T1 and T2. In this embodiment, L = 0.005 m.

得られた合金薄帯を放電プラズマ焼結(SPS:Spark Plasma Sintering)により、100MPa加圧下にて、570℃加熱、5min保持で焼結した。   The obtained alloy ribbon was sintered by spark plasma sintering (SPS) under heating at 570 ° C. under a pressure of 100 MPa and holding for 5 minutes.

〔比較例〕
比較例として、冷却ロールの往復移動および遮蔽板の設置を行なわず、他の条件は実施例と同一にして、焼結体を得た。
[Comparative Example]
As a comparative example, the reciprocating movement of the cooling roll and the installation of the shielding plate were not performed, and the other conditions were the same as in the example to obtain a sintered body.

実施例および比較例により得られた焼結体について、VSMによる磁気特性の測定およびSEMによる組織観察を行なった。   About the sintered compact obtained by the Example and the comparative example, the measurement of the magnetic characteristic by VSM and the structure | tissue observation by SEM were performed.

図5に、実施例および比較例について、吐出時間と冷却速度との関係を示す。図示したように、冷却ロールの往復移動および遮蔽板の設置を行なった実施例においては、ほぼ一定に安定した冷却速度が得られた。これに対し、冷却ロールの往復移動および遮蔽板の設置を行なわなかった比較例においては、吐出中に短時間の冷却速度変動(振動的な温度変化)が繰り返され、更に吐出後半では冷却速度が大幅に低下した(図5中○印の部分)。   FIG. 5 shows the relationship between the discharge time and the cooling rate for the example and the comparative example. As shown in the drawing, in the example in which the cooling roll was reciprocated and the shielding plate was installed, a substantially constant and stable cooling rate was obtained. On the other hand, in the comparative example in which the reciprocating movement of the cooling roll and the shielding plate were not performed, the cooling rate fluctuation (oscillating temperature change) for a short time was repeated during the discharge, and the cooling rate was further reduced in the second half of the discharge. It was significantly reduced (the circled portion in FIG. 5).

後半の冷却速度の大幅な低下は、図6に示すように、冷却ロールに溶湯が凝着し、ロール表面の状態が荒れたため、溶湯の凝固過程が不安定になったためであると考えられる。図6(1)はノズルN先端から吐出した溶湯Mが冷却ロール表面Sに衝突する様子を、冷却ロールRの端面方向から撮影した高速度カメラ写真であり、図6(2)はその状態を示す模式図である。溶湯Mが冷却ロール表面Sの同一円周上の位置に吐出されることにより、断続的に冷却ロール表面に凝着し(Z)、周回してきた凝着部Zに吐出された溶湯Mの液滴Yが弾け飛んでいる。   As shown in FIG. 6, the significant decrease in the cooling rate in the latter half is considered to be because the melt solidified on the cooling roll and the roll surface was rough, and the solidification process of the melt became unstable. FIG. 6 (1) is a high-speed camera photograph taken from the end face direction of the cooling roll R, where the molten metal M discharged from the nozzle N tip collides with the cooling roll surface S, and FIG. 6 (2) shows the state. It is a schematic diagram shown. As the molten metal M is discharged to the same circumferential position on the surface of the cooling roll S, the molten metal M is intermittently adhered to the surface of the cooling roll (Z) and discharged to the adhesion portion Z that has circulated. Drop Y is flying.

図7に、実施例および比較例について、VSMによる焼結体の減磁曲線を示す。安定した急冷凝固が達成された実施例は、急冷凝固が不安定であった比較例に比べて保磁力が大幅に向上したことが分かる。   FIG. 7 shows demagnetization curves of the sintered bodies by VSM for the examples and comparative examples. It can be seen that the examples in which stable rapid solidification was achieved had a much improved coercive force than the comparative example in which rapid solidification was unstable.

図8に、実施例および比較例について、焼結組織のSEM像を示す。実施例では均一な微細組織の薄帯から成る焼結組織が得られているのに対し、比較例では焼結組織を構成する薄帯の組織が不均一であり、空隙や酸化物等の異物の混入も認められる。   In FIG. 8, the SEM image of a sintered structure is shown about an Example and a comparative example. In the example, a sintered structure composed of a thin ribbon having a uniform fine structure is obtained, whereas in the comparative example, the structure of the thin band constituting the sintered structure is not uniform, and foreign matters such as voids and oxides are obtained. The mixing of is also accepted.

なお、遮蔽板Pの形状は、特に限定する必要はなく、誘導コイルHと冷却ロール表面Sとの間を遮り、溶湯がノズルから吐出して冷却ロール表面に到達できるように貫通口を備えている必要がある。貫通口の平面形状は、スリット状、円形状等の種々の形状が可能である。本実施例では、図1に示したように、スリットの薄帯生成方向の端部が開口した形状にして、生成した薄帯の進行を妨げないように配慮した。   The shape of the shielding plate P is not particularly limited, and the through hole is provided so that the induction coil H and the cooling roll surface S are shielded and the molten metal can be discharged from the nozzle and reach the cooling roll surface. Need to be. The planar shape of the through hole can be various shapes such as a slit shape and a circular shape. In this embodiment, as shown in FIG. 1, consideration was given so as to prevent the progress of the generated ribbons by making the end portions of the slits in the ribbon generation direction open.

本発明によれば、急冷凝固により磁石合金の薄帯を製造する際に、冷却ロール表面の温度変動を防止することにより、均一な微細組織とそれによる優れた磁気特性を達成することができる磁石薄帯を製造する方法および装置が提供される。   According to the present invention, when producing a ribbon of magnet alloy by rapid solidification, a magnet that can achieve a uniform microstructure and excellent magnetic properties by preventing temperature fluctuations on the surface of the cooling roll. A method and apparatus for manufacturing a ribbon is provided.

R 冷却ロール
S 冷却ロールRの表面
X 冷却ロールRの回転軸
V 冷却ロールRの回転方向
T 冷却ロールRの往復移動方向
M 磁石合金の溶湯
N ノズル
H 誘導コイル
P 誘導コイルと冷却ロール表面との間に設けた遮蔽板
B 磁石合金の薄帯(急冷リボン)
D 薄帯の生成方向
R Cooling roll S Surface of cooling roll R X Rotating shaft of cooling roll R V Rotating direction of cooling roll R T Reciprocating direction of cooling roll R M Molten metal alloy N Nozzle H Induction coil P Induction coil surface and cooling roll surface Shielding plate provided between them B Magnetic alloy ribbon (quenched ribbon)
D Formation direction of ribbon

Claims (2)

磁石合金の溶湯を冷却ロールの表面に吐出して急冷凝固する磁石薄帯の製造方法において、
上記冷却ロールを上記磁石薄帯の生成方向に対して垂直に連続して往復移動させること、および上記冷却ロールの往復移動速度が0.1mm/s〜50mm/sであり、
上記溶湯を吐出直前に加熱するための誘導コイルに対して上記ロールの表面を遮蔽するために遮蔽板を用い、ここで該遮蔽板の貫通口がスリット状で、スリットの薄帯生成方向の端部が開口状であることを特徴とする磁石薄帯の製造方法。
In the manufacturing method of the magnet ribbon that discharges the molten metal alloy onto the surface of the cooling roll and rapidly solidifies,
Reciprocating continuously vertically above cooling roll against the production direction of the magnet strip, and reciprocating speed of the cooling roll is 0.1 mm / s to Ri 50 mm / s der,
A shielding plate is used to shield the surface of the roll against an induction coil for heating the molten metal immediately before discharging, where the through-hole of the shielding plate has a slit shape, and the end of the slit in the ribbon production direction A method for producing a magnet ribbon, wherein the portion is open .
磁石合金の溶湯を冷却ロールの表面に吐出して急冷凝固する磁石薄帯の製造装置において、
上記冷却ロールを上記磁石薄帯の生成方向に対して垂直に連続して往復移動させる手段を有すること、および上記冷却ロールの往復移動速度が0.1mm/s〜50mm/sであり、
上記溶湯を吐出直前に加熱するための誘導コイルに対して上記ロールの表面を遮蔽するために遮蔽板を設け、ここで該遮蔽板の貫通口がスリット状で、スリットの薄帯生成方向の端部が開口状であることを特徴とする磁石薄帯の製造装置。
In a magnet ribbon manufacturing apparatus that rapidly cools and solidifies by discharging a molten metal alloy onto the surface of a cooling roll,
Further comprising means for reciprocating continuously vertically above cooling roll against the production direction of the magnet strip, and reciprocating speed of the cooling roll is 0.1 mm / s to Ri 50 mm / s der,
A shield plate is provided to shield the surface of the roll against the induction coil for heating the molten metal immediately before discharge. Here, the through-hole of the shield plate is slit-like, and the end of the slit in the ribbon production direction is provided. A magnet ribbon manufacturing apparatus characterized in that the portion is open .
JP2011239277A 2011-10-31 2011-10-31 Magnet strip manufacturing method and manufacturing apparatus Expired - Fee Related JP6042604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239277A JP6042604B2 (en) 2011-10-31 2011-10-31 Magnet strip manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239277A JP6042604B2 (en) 2011-10-31 2011-10-31 Magnet strip manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013094810A JP2013094810A (en) 2013-05-20
JP6042604B2 true JP6042604B2 (en) 2016-12-14

Family

ID=48617337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239277A Expired - Fee Related JP6042604B2 (en) 2011-10-31 2011-10-31 Magnet strip manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6042604B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730744B2 (en) * 2011-10-31 2015-06-10 トヨタ自動車株式会社 Magnet strip manufacturing method and manufacturing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044156A (en) * 1983-08-22 1985-03-09 Hitachi Ltd Apparatus for producing light-gauge matellic strip
JPH1085910A (en) * 1996-09-13 1998-04-07 Toshiba Corp Apparatus for quenching molten metal
JPH11254100A (en) * 1998-03-09 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for producing rapid cooled flake and method therefor
JP2002321042A (en) * 2001-04-27 2002-11-05 Hitachi Metals Ltd Manufacturing method for thin amorphous alloy strip and manufacturing equipment for the same

Also Published As

Publication number Publication date
JP2013094810A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5191620B2 (en) Rare earth permanent magnet alloy manufacturing method
KR100562680B1 (en) Method of making rapidly solidified alloy for magnet and apparatus therefor
US11145443B2 (en) R-T-B-based magnet material alloy and method for producing the same
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP6104162B2 (en) Raw material alloy slab for rare earth sintered magnet and method for producing the same
JP5730744B2 (en) Magnet strip manufacturing method and manufacturing apparatus
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP2010182827A (en) Production method of high-coercive force magnet
JP7124356B2 (en) rare earth permanent magnet
JP6042604B2 (en) Magnet strip manufacturing method and manufacturing apparatus
JP6855053B2 (en) Manufacturing method of iron-based boron-based alloy
KR102444802B1 (en) Alloys, magnetic materials, bonded magnets and methods of making them
JP2014223652A (en) Production method of rare earth-iron-based alloy material, rare earth-iron-based alloy material, production method of rare earth-iron-nitrogen-based alloy material, rare earth-iron-nitrogen-based alloy material and rare earth magnet
JP4120253B2 (en) Quenched alloy for nanocomposite magnet and method for producing the same
JP6857392B2 (en) Crystallization heat treatment method for molten metal quenching solidification alloy
TWI496174B (en) Ndfeb magnet and method for producing the same
JP2019062152A (en) Diffusion source
JP2012023190A (en) Manufacturing method of anisotropic rare earth magnet
JP2010227993A (en) Tundish and method for manufacturing r-t-b based alloy using tundish
US20190311851A1 (en) Method of producing nd-fe-b magnet
JP5573444B2 (en) Method for producing rare earth magnet with excellent squareness
JP2014087812A (en) Method of manufacturing rare earth magnet alloy ribbon
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
JP2016082203A (en) Manufacturing method of rare earth magnet alloy ribbon
WO2023038135A1 (en) Magnet material for bond magnets, and magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R151 Written notification of patent or utility model registration

Ref document number: 6042604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees