JP6041745B2 - Manufacturing method and manufacturing apparatus for composite structure - Google Patents

Manufacturing method and manufacturing apparatus for composite structure Download PDF

Info

Publication number
JP6041745B2
JP6041745B2 JP2013083902A JP2013083902A JP6041745B2 JP 6041745 B2 JP6041745 B2 JP 6041745B2 JP 2013083902 A JP2013083902 A JP 2013083902A JP 2013083902 A JP2013083902 A JP 2013083902A JP 6041745 B2 JP6041745 B2 JP 6041745B2
Authority
JP
Japan
Prior art keywords
reinforcing member
induction heating
temperature
composite structure
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013083902A
Other languages
Japanese (ja)
Other versions
JP2014205298A (en
Inventor
智彦 鴫原
智彦 鴫原
陽介 筏井
陽介 筏井
勇輝 加美
勇輝 加美
孝之 星野
孝之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013083902A priority Critical patent/JP6041745B2/en
Priority to US14/057,595 priority patent/US9333730B2/en
Priority to CN201310498702.2A priority patent/CN103770327B/en
Publication of JP2014205298A publication Critical patent/JP2014205298A/en
Application granted granted Critical
Publication of JP6041745B2 publication Critical patent/JP6041745B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、複合構造体の製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a composite structure.

自動車のフェンダー、ルーフ等の自動車用外装部品は、一般に、鉄鋼等の金属板で形成されている。前記金属板は、燃費向上、生産コスト低減のために、肉薄に形成されて軽量化することが検討されている。   Automotive exterior parts such as automobile fenders and roofs are generally formed of a metal plate such as steel. In order to improve the fuel efficiency and reduce the production cost, it is considered that the metal plate is formed thin and light.

しかし、前記金属板を肉薄にすると所要の剛性を得られないことがあるので、補強部材としての樹脂製のリブ材を、被補強部材としての該金属板の一面に設けた複合構造体とすることにより、剛性を確保することが考えられる。   However, since the required rigidity may not be obtained if the metal plate is thinned, a resin-made rib material as a reinforcing member is a composite structure provided on one surface of the metal plate as a member to be reinforced. Therefore, it is conceivable to ensure rigidity.

前記複合構造体の製造方法としては、従来、加熱装置で加熱した金属板を搬送ロボットでリブ成形押圧装置へ搬送し、該リブ成形押圧装置において、溶融樹脂を吐出してリブ材に成形し、該リブ材を該金属板の表面に押圧ローラで押圧して前記複合構造体を形成する方法が知られている(例えば特許文献1参照)。   As a manufacturing method of the composite structure, conventionally, a metal plate heated by a heating device is transported to a rib forming pressing device by a transport robot, and in the rib forming pressing device, molten resin is discharged to form a rib material, A method of forming the composite structure by pressing the rib material against the surface of the metal plate with a pressing roller is known (for example, see Patent Document 1).

特開2011−16275号公報JP 2011-16275 A

しかしながら、従来の製造方法は、溶融樹脂から成形した前記リブ材を前記押圧ローラで前記金属板に押圧して前記複合構造体を形成するために、該リブ材の形状によっては該リブ材の成形機構が複雑になるとともに、該リブ材を冷却して固化する必要があり該複合体の形成速度が低くなるという不都合がある。また、従来の製造方法は、加熱された前記金属板の温度が前記搬送ロボットによる搬送中に低下し、前記リブ材の溶着不良が発生することがあるという問題がある。   However, in the conventional manufacturing method, the rib material formed from a molten resin is pressed against the metal plate by the pressing roller to form the composite structure. Depending on the shape of the rib material, the rib material is molded. As the mechanism becomes complicated, the rib material needs to be cooled and solidified, resulting in a disadvantage that the formation speed of the composite is lowered. Further, the conventional manufacturing method has a problem that the temperature of the heated metal plate is lowered during the transfer by the transfer robot, and the welding failure of the rib material may occur.

そこで、予め成形された熱可塑性樹脂製成形体からなる補強部材を該熱可塑性樹脂の軟化温度以上の温度に加熱し、前記金属板に溶着することが考えられる。そして、前記補強部材を前記軟化温度以上の温度に加熱する方法として、該補強部材の熱可塑性樹脂に磁性体を含有させて該磁性体を誘導加熱コイルによって誘導加熱することにより、該磁性体から該熱可塑性樹脂に熱伝導させて該補強部材を昇温させることが考えられる。   Therefore, it is conceivable to heat a reinforcing member made of a preformed thermoplastic resin molded body to a temperature equal to or higher than the softening temperature of the thermoplastic resin and weld it to the metal plate. Then, as a method of heating the reinforcing member to a temperature equal to or higher than the softening temperature, a magnetic material is contained in the thermoplastic resin of the reinforcing member, and the magnetic material is induction heated by an induction heating coil. It is conceivable that the temperature of the reinforcing member is increased by conducting heat to the thermoplastic resin.

しかしながら、前記誘導加熱により前記補強部材を前記熱可塑性樹脂の軟化温度以上の温度に加熱しようとすると、前記誘導加熱コイルが長大化することがあり、高電圧が必要になるという不都合がある。   However, if the reinforcing member is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin by the induction heating, the induction heating coil may be lengthened and a high voltage is required.

そこで、本発明は、高電圧を用いることなく、補強部材を溶着可能に加熱することができる複合構造体の製造方法及び製造装置を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method and manufacturing apparatus of a composite structure which can heat a reinforcement member so that welding is possible, without using a high voltage.

前記目的を達成するために、本発明は、補強部材を被補強部材の一面に備える複合構造体の製造方法であって、磁性体を含有する熱可塑性樹脂からなり、長尺体である補強部材を供給する工程と、互いに並列に接続された複数の誘導加熱手段で該磁性体を誘導加熱することにより、該補強部材を該熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する工程と、該温度範囲に加熱された該補強部材を該被補強部材の一面に溶着する工程とを備えることを特徴とする。 To achieve the above object, the present invention, the reinforcing member to a method of manufacturing a composite structure comprising on one side of the reinforcing member, Ri Do a thermoplastic resin containing a magnetic material, a long body reinforcement Heating the reinforcing member to a temperature range higher than the softening temperature of the thermoplastic resin and lower than the deterioration temperature by inductively heating the magnetic body with a plurality of induction heating means connected in parallel with each other. And a step of welding the reinforcing member heated to the temperature range to one surface of the member to be reinforced.

本発明の製造方法では、まず、磁性体を含有する熱可塑性樹脂からなり、長尺体である補強部材を供給した後、複数の誘導加熱手段で該磁性体を誘導加熱することにより、該磁性体から該熱可塑性樹脂に熱伝導させ、該補強部材を熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する。次に、前記温度範囲に加熱された前記補強部材を前記被補強部材の一面に溶着することにより、複合構造体を得ることができる。 In the production method of the present invention, first, made of a thermoplastic resin containing a magnetic material elements, after supplying the reinforcing member is a long body, by induction heating of the magnetic body with a plurality of induction heating means, the The magnetic material is thermally conducted to the thermoplastic resin, and the reinforcing member is heated to a temperature range not lower than the softening temperature and lower than the deterioration temperature of the thermoplastic resin. Next, a composite structure can be obtained by welding the reinforcing member heated to the temperature range to one surface of the member to be reinforced.

本発明の製造方法によれば、前記複数の誘導加熱手段が互いに並列に接続されているので、該複数の誘導加熱手段のインダクタンスの合計値が大きくなることを防ぐことができる。これにより、前記複数の誘導加熱手段に印加する電圧を小さくすることができるため、高電圧を用いることなく、前記補強部材を前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱して溶着可能にすることができる。   According to the manufacturing method of the present invention, since the plurality of induction heating means are connected in parallel to each other, it is possible to prevent the total value of the inductances of the plurality of induction heating means from increasing. Accordingly, since the voltage applied to the plurality of induction heating means can be reduced, the reinforcing member is heated to a temperature range higher than the softening temperature of the thermoplastic resin and lower than the deterioration temperature without using a high voltage. Can be welded.

また、本発明の製造方法において、前記複数の誘導加熱手段は、互いに昇温速度が異なることが好ましい。互いに昇温速度が異なる複数の誘導加熱手段を組み合わせることにより、前記補強部材を加熱する際に低温領域及び高温領域それぞれにおける昇温速度を制御することができる。   In the production method of the present invention, it is preferable that the plurality of induction heating means have different heating rates. By combining a plurality of induction heating means having different heating rates, the heating rate in each of the low temperature region and the high temperature region can be controlled when the reinforcing member is heated.

また、本発明の製造方法において、前記複数の誘導加熱手段は、前記補強部材の供給側ほど昇温速度が小さく排出側ほど昇温速度が大きいものとすることができる。この場合には、まず、供給側において前記補強部材を小さい昇温速度で前記熱可塑性樹脂の軟化温度未満で該軟化温度に近い温度領域まで加熱した後に、該補強部材を前記供給側から排出側に移動させ、次に、排出側において該補強部材を大きい昇温速度で前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する。供給側において前記補強部材を前記軟化温度に近い温度領域まで小さい昇温速度で予備加熱した後に、排出側において前記温度範囲に大きい昇温速度で加熱することができるので、高温領域での加熱時間を短縮することができる。また、排出側において大量の補強部材を一括して加熱することができるので、所定の長さを備える補強部材のバッチ処理に好適である。   Further, in the manufacturing method of the present invention, the plurality of induction heating means can be configured such that the temperature rising rate is smaller on the supply side of the reinforcing member and the temperature raising rate is higher on the discharge side. In this case, first, the reinforcing member is heated to a temperature region below the softening temperature of the thermoplastic resin at a low temperature increase rate on the supply side and close to the softening temperature, and then the reinforcing member is discharged from the supply side to the discharge side. Next, on the discharge side, the reinforcing member is heated to a temperature range higher than the softening temperature of the thermoplastic resin and lower than the deterioration temperature at a high temperature rising rate. Since the reinforcing member can be preheated to a temperature range close to the softening temperature on the supply side at a small temperature increase rate and then heated to the temperature range on the discharge side at a large temperature increase rate, the heating time in the high temperature range Can be shortened. Moreover, since a large amount of reinforcing members can be heated together on the discharge side, it is suitable for batch processing of reinforcing members having a predetermined length.

ところで、本発明の製造方法においては、前記磁性体から前記熱可塑性樹脂に熱伝導することにより前記補強部材が加熱されるので、前記排出側の誘導加熱手段の昇温速度があまりにも大きいと、該補強部材が該排出側の誘導加熱手段から排出された後も前記熱可塑性樹脂が昇温して劣化温度に達し、該補強部材が劣化する虞がある。   By the way, in the manufacturing method of the present invention, since the reinforcing member is heated by conducting heat from the magnetic body to the thermoplastic resin, if the heating rate of the discharge-side induction heating means is too high, Even after the reinforcing member is discharged from the induction heating means on the discharge side, the thermoplastic resin may be heated to reach a deterioration temperature, and the reinforcing member may be deteriorated.

そこで、本発明の製造方法において、前記複数の誘導加熱手段は、前記補強部材の供給側ほど昇温速度が大きく排出側ほど昇温速度が小さいものとすることができる。この場合には、まず、前記補強部材を大きい昇温速度で前記熱可塑性樹脂の軟化温度未満で該軟化温度に近い温度領域まで加熱した後に、該補強部材を前記供給側から排出側に移動させ、次に、該補強部材を小さい昇温速度で前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する。前記補強部材の排出側において小さい昇温速度で加熱するので、前記温度範囲により確実に制御して加熱することができる。   Therefore, in the manufacturing method of the present invention, the plurality of induction heating means can be configured such that the temperature rise rate is larger on the supply side of the reinforcing member and the temperature rise rate is lower on the discharge side. In this case, first, the reinforcing member is heated to a temperature range below the softening temperature of the thermoplastic resin at a high temperature rising rate and close to the softening temperature, and then the reinforcing member is moved from the supply side to the discharge side. Next, the reinforcing member is heated to a temperature range not lower than the softening temperature and lower than the deterioration temperature of the thermoplastic resin at a low temperature rising rate. Since heating is performed at a small temperature increase rate on the discharge side of the reinforcing member, the heating can be reliably controlled by the temperature range.

また、前記目的を達成するために、本発明は、磁性体を含有する熱可塑性樹脂からなり、長尺体である補強部材を被補強部材の一面に備える複合構造体の製造装置であって、該補強部材を供給する供給手段と、互いに並列に接続され、該補強部材を該熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に誘導加熱する複数の誘導加熱手段と、該温度範囲に加熱された該補強部材を該被補強部材の一面に溶着する溶着手段とを備えることを特徴とする。 In order to achieve the above object, the present invention is Ri Do a thermoplastic resin containing a magnetic material, an apparatus for producing a composite structure comprising a reinforcing member which is elongate body on one side of the reinforcement member A supply means for supplying the reinforcing member; a plurality of induction heating means connected in parallel to each other for induction heating the reinforcing member to a temperature range not lower than the softening temperature of the thermoplastic resin and lower than the deterioration temperature; and the temperature range. And welding means for welding the reinforcing member heated to one surface of the member to be reinforced.

本発明の製造装置では、まず、供給手段により磁性体を含有する熱可塑性樹脂からなり、長尺体である補強部材を供給した後に、複数の誘導加熱手段により該磁性体を誘導加熱する。これにより、前記磁性体から前記熱可塑性樹脂に熱伝導させ、前記補強部材を熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する。次に、溶着手段で前記温度範囲に加熱された前記補強部材を前記被補強部材の一面に溶着することにより、複合構造体を得ることができる。 In the manufacturing apparatus of the present invention, first, made of a thermoplastic resin containing a Ri磁 material elements by the feed means, after supplying the reinforcing member is a long body, induction heating magnetic body by a plurality of induction heating means To do. Thereby, heat conduction is performed from the magnetic body to the thermoplastic resin, and the reinforcing member is heated to a temperature range higher than the softening temperature of the thermoplastic resin and lower than the deterioration temperature. Next, a composite structure can be obtained by welding the reinforcing member heated to the temperature range by the welding means to one surface of the member to be reinforced.

本発明の製造装置によれば、前記複数の誘導加熱手段が互いに並列に接続されているので、該複数の誘導加熱手段のインダクタンスの合計値が大きくなることを防ぐことができる。これにより、前記複数の誘導加熱手段に印加する電圧を小さくすることができるため、高電圧を用いることなく、前記補強部材を前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱して溶着可能にすることができる。   According to the manufacturing apparatus of the present invention, since the plurality of induction heating means are connected in parallel to each other, it is possible to prevent the total value of the inductances of the plurality of induction heating means from increasing. Accordingly, since the voltage applied to the plurality of induction heating means can be reduced, the reinforcing member is heated to a temperature range higher than the softening temperature of the thermoplastic resin and lower than the deterioration temperature without using a high voltage. Can be welded.

また、本発明の製造装置において、前記複数の誘導加熱手段は、互いに磁束密度が異なることが好ましい。磁束密度が異なることにより互いに昇温速度が異なる誘導加熱手段を複数組み合わせることにより、前記補強部材を加熱する際に低温領域及び高温領域それぞれにおける昇温速度を制御することができる。   In the manufacturing apparatus of the present invention, it is preferable that the plurality of induction heating means have different magnetic flux densities. By combining a plurality of induction heating means having different heating rates with different magnetic flux densities, the heating rate in each of the low temperature region and the high temperature region can be controlled when the reinforcing member is heated.

また、本発明の製造装置において、前記複数の誘導加熱手段は、前記補強部材の供給側ほど磁束密度が小さく排出側ほど磁束密度が大きくなるように設けられているものであってもよい。この場合には、まず、供給側に設けられた磁束密度の小さい誘導加熱手段により、前記補強部材を小さい昇温速度で前記熱可塑性樹脂の軟化温度未満で該軟化温度に近い温度領域まで加熱した後に、該補強部材を前記供給側から排出側に移動させる。次に、排出側に設けられ前記供給側の誘導加熱手段よりも磁束密度の大きい誘導加熱手段により、該供給側の誘導加熱手段で加熱された前記補強部材を大きい昇温速度で前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する。供給側において前記補強部材を前記軟化温度に近い温度領域まで小さい昇温速度で予備加熱した後に、排出側において前記温度範囲に大きい昇温速度で加熱することができるので、高温領域での加熱時間を短縮することができる。また、排出側において大量の補強部材を一括して加熱することができるので、所定の長さを備える補強部材のバッチ処理に好適である。   In the manufacturing apparatus of the present invention, the plurality of induction heating means may be provided so that the magnetic flux density is smaller on the supply side of the reinforcing member and the magnetic flux density is larger on the discharge side. In this case, first, the reinforcing member was heated to a temperature range close to the softening temperature below the softening temperature of the thermoplastic resin at a low heating rate by induction heating means having a small magnetic flux density provided on the supply side. Later, the reinforcing member is moved from the supply side to the discharge side. Next, the reinforcing member heated by the supply-side induction heating means is heated at a high temperature increase rate by the induction heating means provided on the discharge side and having a magnetic flux density larger than that of the supply-side induction heating means. To a temperature range above the softening temperature and below the degradation temperature. Since the reinforcing member can be preheated to a temperature range close to the softening temperature on the supply side at a small temperature increase rate and then heated to the temperature range on the discharge side at a large temperature increase rate, the heating time in the high temperature range Can be shortened. Moreover, since a large amount of reinforcing members can be heated together on the discharge side, it is suitable for batch processing of reinforcing members having a predetermined length.

また、本発明の製造装置において、前記複数の誘導加熱手段は、前記補強部材の供給側ほど磁束密度が大きく排出側ほど磁束密度が小さくなるように設けられているものであってもよい。この場合には、まず、供給側に設けられた磁束密度の大きい誘導加熱手段により前記補強部材を大きい昇温速度で前記熱可塑性樹脂の軟化温度未満で該軟化温度に近い温度領域まで加熱した後に、該補強部材を前記供給側から排出側に移動させる。次に、排出側に設けられ前記供給側よりも磁束密度の小さい誘導加熱手段により、該供給側の誘導加熱手段で加熱された前記補強部材を小さい昇温速度で前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する。排出側において前記補強部材を磁束密度の小さい誘導加熱手段により小さい昇温速度で加熱するので、前記温度範囲により確実に制御して加熱することができる。   In the manufacturing apparatus of the present invention, the plurality of induction heating means may be provided such that the magnetic flux density is larger on the supply side of the reinforcing member and the magnetic flux density is smaller on the discharge side. In this case, first, after the reinforcing member is heated to a temperature range close to the softening temperature below the softening temperature of the thermoplastic resin at a large heating rate by the induction heating means having a large magnetic flux density provided on the supply side. The reinforcing member is moved from the supply side to the discharge side. Next, the reinforcing member heated by the induction heating means on the supply side is provided at the discharge side with a magnetic flux density smaller than that of the supply side, and the softening temperature of the thermoplastic resin is equal to or higher than the softening temperature of the thermoplastic resin. And it heats to the temperature range below the deterioration temperature. On the discharge side, the reinforcing member is heated to the induction heating means having a low magnetic flux density at a lower temperature increase rate, so that the reinforcing member can be reliably controlled and heated by the temperature range.

本発明の実施形態の複合構造体製造装置の構成を示す側面図。The side view which shows the structure of the composite structure manufacturing apparatus of embodiment of this invention. 本発明の実施形態の複合構造体製造装置における誘導加熱コイルの第1の配置例を示す模式図。The schematic diagram which shows the 1st example of arrangement | positioning of the induction heating coil in the composite structure manufacturing apparatus of embodiment of this invention. 本発明の実施形態の複合構造体製造装置における誘導加熱コイルを第2の配置例を示す模式図。The schematic diagram which shows the 2nd example of arrangement | positioning of the induction heating coil in the composite structure manufacturing apparatus of embodiment of this invention.

次に、添付の図面を参照しながら本発明の実施形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

図1に示す本実施形態の複合構造体製造装置1は、自動車用外装部品に用いられる例えば厚さ0.7mmの鉄鋼製の金属板Mの一面に熱可塑性樹脂からなる補強部材Pを溶着することにより補強した複合構造体を製造するための装置である。金属板Mは、本発明における被補強部材に相当する。前記被補強部材として金属板Mに代えて樹脂製の板材を用いることも可能である。   The composite structure manufacturing apparatus 1 of the present embodiment shown in FIG. 1 welds a reinforcing member P made of a thermoplastic resin to one surface of a metal plate M made of steel having a thickness of 0.7 mm, for example, used for an automobile exterior part. It is an apparatus for manufacturing the composite structure reinforced by this. The metal plate M corresponds to a member to be reinforced in the present invention. It is also possible to use a resin plate instead of the metal plate M as the member to be reinforced.

補強部材Pは、磁性体を含有する熱可塑性樹脂製の長尺状成形体からなる。前記磁性体としては、例えばフェライト系SUS、鉄鋼、軟鉄、鋼鉄、ニッケル等からなり、直径80〜150μm、長さ1〜3mmの繊維状体を用いることができる。前記熱可塑性樹脂としては、例えば、スチレン系エラストマーを用いることができる。補強部材Pは、前記熱可塑性樹脂に対して前記磁性体を30〜60質量%の範囲で含有し、該磁性体が該熱可塑性樹脂に分散されている。   The reinforcing member P is formed of a long molded body made of a thermoplastic resin containing a magnetic body. As the magnetic body, for example, a fibrous body made of ferrite SUS, steel, soft iron, steel, nickel, etc., having a diameter of 80 to 150 μm and a length of 1 to 3 mm can be used. As the thermoplastic resin, for example, a styrene elastomer can be used. The reinforcing member P contains the magnetic body in a range of 30 to 60% by mass with respect to the thermoplastic resin, and the magnetic body is dispersed in the thermoplastic resin.

複合構造体製造装置1は、ボビンBに巻回された長尺状成形体の補強部材Pを中継ローラRを介して引き出し、補強部材Pを、その始端側から末端側に向かって順に、ジグJに載置された金属板Mの一面に溶着することにより金属板Mを補強する。複合構造体製造装置1は、筐体2内に収容されていて、図示しないロボットにより金属板Mの上方において任意の位置に移動可能である。筐体2には、補強部材Pを内部に供給する供給口2aと、補強部材Pが排出される排出口2bとが設けられている。   The composite structure manufacturing apparatus 1 draws out the reinforcing member P of the elongated molded body wound around the bobbin B through the relay roller R, and pulls out the reinforcing member P in order from the start end side toward the end side. The metal plate M is reinforced by welding to one surface of the metal plate M placed on J. The composite structure manufacturing apparatus 1 is accommodated in the housing 2 and can be moved to an arbitrary position above the metal plate M by a robot (not shown). The housing 2 is provided with a supply port 2a for supplying the reinforcing member P to the inside and a discharge port 2b for discharging the reinforcing member P.

複合構造体製造装置1は、供給口2aに近い側から遠い側へ順に、ボビンBに巻回された補強部材Pを引き出して筐体2内に連続供給する1対の送りローラ3と、補強部材Pを誘導加熱によって溶着可能に加熱する誘導加熱機4と、補強部材Pを所定の位置で切断するカッタ5と、筐体2の底部に設けられ、排出口2bから排出された補強部材Pを金属板Mに押圧することにより溶着する押圧ローラ6とを備える。また、複合構造体製造装置1は、誘導加熱機4の下方の筐体2の底部に設けられ、金属板Mの表面を脱脂洗浄する大気プラズマ洗浄機7を備える。   The composite structure manufacturing apparatus 1 includes a pair of feed rollers 3 that sequentially pull out the reinforcing member P wound around the bobbin B and continuously supply it into the housing 2 from the side closer to the supply port 2a to the side farther from the supply port 2a. An induction heater 4 that heats the member P so as to be welded by induction heating, a cutter 5 that cuts the reinforcing member P at a predetermined position, and a reinforcing member P that is provided at the bottom of the housing 2 and is discharged from the outlet 2b. And a pressure roller 6 that is welded by pressing the metal plate M against the metal plate M. Moreover, the composite structure manufacturing apparatus 1 includes an atmospheric plasma cleaner 7 that is provided at the bottom of the casing 2 below the induction heater 4 and degreases and cleans the surface of the metal plate M.

誘導加熱機4は、補強部材Pに含まれる前記磁性体を誘導加熱することにより、該磁性体から前記熱可塑性樹脂に熱伝導させ、補強部材Pを溶着可能に加熱することができる。誘導加熱機4は、図示しない電源に互いに並列に接続された複数の誘導加熱コイルを備え、本実施形態では、補強部材Pの供給側に設けられた第1の誘導加熱コイル4aと、補強部材Pの排出側に設けられた第2の誘導加熱コイル4bとを備えている。第1の誘導加熱コイル4aは、第2の誘導加熱コイル4bよりも大きい磁束密度を備えることにより、第2の誘導加熱コイルよりも大きい昇温速度で補強部材Pを加熱することができる。第1の誘導加熱コイル4aは、例えば、コイル単位長さにおける巻数を大きくしたり、コイル長さを短くすることにより、第2のコイル4bよりも大きい磁束密度に設定することができる。尚、本実施形態では、2つの誘導加熱コイル4a,4bを用いる場合について説明するが、複数であればその数は限定されない。   The induction heater 4 can heat the reinforcing member P so that it can be welded by inductively heating the magnetic body contained in the reinforcing member P to cause heat conduction from the magnetic body to the thermoplastic resin. The induction heater 4 includes a plurality of induction heating coils connected in parallel to a power source (not shown). In the present embodiment, the first induction heating coil 4a provided on the supply side of the reinforcing member P, and the reinforcing member And a second induction heating coil 4b provided on the P discharge side. The first induction heating coil 4a can heat the reinforcing member P at a higher temperature increase rate than the second induction heating coil by providing a magnetic flux density larger than that of the second induction heating coil 4b. The first induction heating coil 4a can be set to a magnetic flux density larger than that of the second coil 4b, for example, by increasing the number of turns in the coil unit length or shortening the coil length. In addition, although this embodiment demonstrates the case where two induction heating coils 4a and 4b are used, the number will not be limited if it is plurality.

次に、複合構造体製造装置1による複合構造体の製造方法を説明する。まず、ボビンBに巻回された長尺状成形体の補強部材Pを中継ローラRを介して送りローラ3で引き出し、誘導加熱機4の第1の誘導加熱コイル4a及び第2の誘導加熱コイル4bの内方へ連続供給する。   Next, the manufacturing method of the composite structure by the composite structure manufacturing apparatus 1 is demonstrated. First, the reinforcing member P of the long molded body wound around the bobbin B is pulled out by the feed roller 3 through the relay roller R, and the first induction heating coil 4a and the second induction heating coil of the induction heater 4 are extracted. Continuous supply to the inside of 4b.

次に、誘導加熱機4により補強部材Pを溶着可能に加熱する。まず、第1の誘導加熱コイル4aで前記磁性体を誘導加熱することにより、補強部材Pを例えば350℃/秒の第1の昇温速度で前記熱可塑性樹脂の軟化温度未満で該軟化温度に近い温度領域まで加熱する。   Next, the reinforcing member P is heated by the induction heater 4 so as to be welded. First, by inductively heating the magnetic body with the first induction heating coil 4a, the reinforcing member P is brought to the softening temperature below the softening temperature of the thermoplastic resin at a first heating rate of 350 ° C./second, for example. Heat to a near temperature range.

次に、補強部材Pが供給側から排出側へ移動した後に、第2の誘導加熱コイル4bで前記磁性体を誘導加熱することにより、補強部材Pを例えば200℃/秒の第2の昇温速度で前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲まで加熱し、溶着可能にさせる。ここで、第2の昇温速度は、第1の昇温速度よりも小さく設定されている。   Next, after the reinforcing member P moves from the supply side to the discharge side, the magnetic body is induction-heated by the second induction heating coil 4b, whereby the reinforcing member P is heated at a second temperature of, for example, 200 ° C./second. The thermoplastic resin is heated at a speed to a temperature range not lower than the softening temperature of the thermoplastic resin and lower than the deterioration temperature, thereby enabling welding. Here, the second temperature increase rate is set to be smaller than the first temperature increase rate.

次に、誘導加熱機4により溶着可能に加熱された補強部材Pを第2の誘導加熱コイル4aから排出した後に、大気プラズマ洗浄機7によって脱脂洗浄された金属板Mと押圧ローラ6,6との間に供給する。このとき、金属板Mと押圧ローラ6との間に送り込まれる角度を小さくすることにより、補強部材Pにおいて該角度の曲げによって生じる応力を低減することができる。   Next, after discharging the reinforcing member P heated so as to be welded by the induction heater 4 from the second induction heating coil 4a, the metal plate M depressurized and cleaned by the atmospheric plasma cleaner 7 and the pressing rollers 6, 6 Supply during. At this time, by reducing the angle sent between the metal plate M and the pressing roller 6, the stress generated by the bending of the angle in the reinforcing member P can be reduced.

次に、溶着可能に加熱された補強部材Pを押圧ローラ6で金属板Mの表面に押圧する。このとき、補強部材Pは溶着可能な状態であるので、金属板Mを加熱しなくても補強部材Pを金属板Mに溶着することができる。   Next, the reinforcing member P heated so as to be welded is pressed against the surface of the metal plate M by the pressing roller 6. At this time, since the reinforcing member P is in a weldable state, the reinforcing member P can be welded to the metal plate M without heating the metal plate M.

そして、金属板Mに溶着された補強部材Pの長さが金属板Mの補強すべき所定の長さに近づいたとき、カッタ5で補強部材Pを切断することにより補強部材Pの供給が停止する。また、切断された補強部材Pを押圧ローラ6,6で押圧して補強部材Pの末端まで金属板Mに溶着することにより、金属板Mが所定の長さの補強部材Pにより補強された複合構造体を得ることができる。   Then, when the length of the reinforcing member P welded to the metal plate M approaches a predetermined length to be reinforced of the metal plate M, the supply of the reinforcing member P is stopped by cutting the reinforcing member P with the cutter 5. To do. Further, the cut reinforcing member P is pressed by the pressing rollers 6 and 6 and welded to the metal plate M up to the end of the reinforcing member P, whereby the metal plate M is reinforced by the reinforcing member P having a predetermined length. A structure can be obtained.

複合構造体製造装置1は、図示しないロボットを介して長尺状成形体の補強部材Pの始端側から末端側に向かって移動するとともに金属板Mの幅方向に移動しながら、上記の動作を繰り返し行う。   The composite structure manufacturing apparatus 1 performs the above operation while moving in the width direction of the metal plate M while moving from the start end side to the end side of the reinforcing member P of the elongated shaped body via a robot (not shown). Repeat.

本実施形態の複合構造体製造装置1によれば、2つの誘導加熱コイル4a,4bが互いに並列に前記電源に接続されているので、該2つの誘導加熱コイル4a,4bが互いに直列に接続している場合と比較して、インダクタンスの合計値を小さくすることができる。これにより、2つの誘導加熱コイル4a,4bに印加する電圧を小さくすることができるため、前記電源として高電圧を用いることなく、補強部材Pを前記熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱して溶着可能にすることができる。   According to the composite structure manufacturing apparatus 1 of the present embodiment, since the two induction heating coils 4a and 4b are connected to the power supply in parallel with each other, the two induction heating coils 4a and 4b are connected in series with each other. Compared with the case where it is, the total value of an inductance can be made small. Thereby, since the voltage applied to the two induction heating coils 4a and 4b can be reduced, the reinforcing member P is made to be not less than the softening temperature of the thermoplastic resin and less than the deterioration temperature without using a high voltage as the power source. Heating to a temperature range enables welding.

また、本実施形態の複合構造体製造装置1では、長尺状成形体からなる補強部材Pを溶着可能に加熱した後に、金属板Mに溶着する工程で該補強部材Pを所定の長さに切断しているが、予め所定の長さに切断された成形体からなる補強部材Pを溶着可能に加熱し金属板Mに溶着するようにしてもよい。   In the composite structure manufacturing apparatus 1 of the present embodiment, the reinforcing member P made of a long shaped body is heated so as to be welded, and then the reinforcing member P is made to have a predetermined length in the step of welding to the metal plate M. Although it cut | disconnects, you may make it weld to the metal plate M by heating so that the reinforcement member P which consists of a molded object previously cut | disconnected by predetermined length so that welding is possible.

また、本実施形態の複合構造体製造装置1では、磁束密度が異なることで昇温速度が異なる複数の誘導加熱コイル4a,4bを組み合わせることにより、補強部材Pを加熱する際に低温領域及び高温領域それぞれにおける昇温速度を制御することができる。以下、その具体的方法について説明する。   Moreover, in the composite structure manufacturing apparatus 1 of this embodiment, when the reinforcement member P is heated by combining a plurality of induction heating coils 4a and 4b having different magnetic flux densities and different heating rates, the low temperature region and the high temperature are increased. The temperature increase rate in each region can be controlled. The specific method will be described below.

はじめに、図2を参照しながら、3つの誘導加熱コイル8a,8b,8cが、補強部材Pの供給側ほど磁束密度が大きく排出側ほど磁束密度が小さくなるように設けられている場合について説明する。   First, the case where the three induction heating coils 8a, 8b, and 8c are provided so that the magnetic flux density is larger on the supply side of the reinforcing member P and the magnetic flux density is smaller on the discharge side will be described with reference to FIG. .

図2(a)に示すように、本実施形態の複合構造体製造装置1では、補強部材Pの供給側から排出側へ順に、第1の誘導加熱コイル8a、第2の誘導加熱コイル8b及び第3の誘導加熱コイル8cが設けられ、各誘導加熱コイル8a,8b,8cは電源9に互いに並列に接続している。各誘導加熱コイル8a,8b,8cは、導線の直径、コイルの半径及びコイル単位長さにおける巻数が互いに同一であり、コイル長さのみが異なっている。各誘導加熱コイル8a,8b,8cは、それぞれのコイル長さAa,Ab,AcがAa<Ab<Acであることにより、補強部材Pの供給側ほど大きく排出側ほど小さい磁束密度を備えている。   As shown in FIG. 2 (a), in the composite structure manufacturing apparatus 1 of the present embodiment, the first induction heating coil 8a, the second induction heating coil 8b, and the reinforcement member P are sequentially supplied from the supply side to the discharge side. A third induction heating coil 8c is provided, and each induction heating coil 8a, 8b, 8c is connected to the power source 9 in parallel with each other. Each induction heating coil 8a, 8b, 8c has the same wire diameter, coil radius, and number of turns in the coil unit length, and only the coil length is different. Each induction heating coil 8a, 8b, 8c has a magnetic flux density that is larger on the supply side of the reinforcing member P and smaller on the discharge side because the coil lengths Aa, Ab, Ac are Aa <Ab <Ac. .

補強部材Pは、供給側から排出側へ移動しながら、各誘導加熱コイル8a,8b,8cによって順に加熱される。このときの補強部材Pを構成する熱可塑性樹脂及び磁性体の温度を図2(b)に示す。前記熱可塑性樹脂の温度は、補強部材Pの温度とみなすことができる。   The reinforcing member P is sequentially heated by the induction heating coils 8a, 8b, and 8c while moving from the supply side to the discharge side. FIG. 2B shows the temperatures of the thermoplastic resin and the magnetic body constituting the reinforcing member P at this time. The temperature of the thermoplastic resin can be regarded as the temperature of the reinforcing member P.

補強部材Pを第1の誘導加熱コイル8aに供給する直前において、前記熱可塑性樹脂温度及び磁性体の温度はともに温度Toである。   Immediately before supplying the reinforcing member P to the first induction heating coil 8a, the temperature of the thermoplastic resin and the temperature of the magnetic body are both the temperature To.

次に、補強部材Pを第1の誘導加熱コイル8aに供給して排出する。この結果、第1の誘導加熱コイル8aにより前記磁性体が誘導加熱されて温度Tmaに昇温し、該磁性体から前記熱可塑性樹脂に熱が伝導して該熱可塑性樹脂が温度Traに昇温する。   Next, the reinforcing member P is supplied to the first induction heating coil 8a and discharged. As a result, the magnetic body is induction-heated by the first induction heating coil 8a and the temperature is raised to the temperature Tma. Heat is conducted from the magnetic body to the thermoplastic resin, and the thermoplastic resin is raised to the temperature Tra. To do.

次に、補強部材Pを第2の誘導加熱コイル8bに供給して排出する。この結果、第2の誘導加熱コイル8bにより前記磁性体が誘導加熱されて温度Tmbに昇温し、該磁性体から前記熱可塑性樹脂に熱が伝導して該熱可塑性樹脂が温度Trbに昇温する。このとき、第2の誘導加熱コイル8bは、第1の誘導加熱コイル8aよりも小さい磁束密度を備えることにより、第1の誘導加熱コイル8aよりも小さい昇温速度を備えるので、前記熱可塑性樹脂の温度Trbを軟化温度Ts未満で該軟化温度Tsに近い温度領域に制御することができる。   Next, the reinforcing member P is supplied to the second induction heating coil 8b and discharged. As a result, the magnetic body is induction-heated by the second induction heating coil 8b and the temperature is raised to the temperature Tmb. Heat is conducted from the magnetic body to the thermoplastic resin, and the thermoplastic resin is heated to the temperature Trb. To do. At this time, the second induction heating coil 8b is provided with a magnetic flux density smaller than that of the first induction heating coil 8a, and thus has a heating rate lower than that of the first induction heating coil 8a. The temperature Trb can be controlled to a temperature range lower than the softening temperature Ts and close to the softening temperature Ts.

次に、補強部材Pを第3の誘導加熱コイル8cに供給して排出する。この結果、第3の誘導加熱コイル8cにより前記磁性体が誘導加熱されて温度Tmcに昇温し、該磁性体から前記熱可塑性樹脂に熱が伝導して該熱可塑性樹脂が温度Trcに昇温する。このとき、第3の誘導加熱コイル8cは、第2の誘導加熱コイル8bよりもさらに小さい磁束密度を備えることにより、第2の誘導加熱コイル8bよりもさらに小さい昇温速度を備えるので、前記熱可塑性樹脂の温度Trcを前記熱可塑性樹脂の軟化温度Ts以上且つ劣化温度Tdの温度範囲に確実に制御することができる。   Next, the reinforcing member P is supplied to the third induction heating coil 8c and discharged. As a result, the magnetic body is inductively heated by the third induction heating coil 8c and the temperature is raised to the temperature Tmc. Heat is conducted from the magnetic body to the thermoplastic resin, and the thermoplastic resin is heated to the temperature Trc. To do. At this time, the third induction heating coil 8c is provided with a magnetic flux density smaller than that of the second induction heating coil 8b, and thus has a temperature increase rate smaller than that of the second induction heating coil 8b. The temperature Trc of the plastic resin can be reliably controlled to be within the temperature range of the softening temperature Ts of the thermoplastic resin and the deterioration temperature Td.

次に、図3を参照しながら、3つの誘導加熱コイル8a,8b,8cが、補強部材Pの供給側ほど磁束密度が小さく排出側ほど磁束密度が大きくなるように設けられている場合について説明する。   Next, the case where the three induction heating coils 8a, 8b, and 8c are provided so that the magnetic flux density is smaller on the supply side of the reinforcing member P and the magnetic flux density is larger on the discharge side will be described with reference to FIG. To do.

図3(a)に示すように、本実施形態の複合構造体製造装置1では、第1の誘導加熱コイル8a、第2の誘導加熱コイル8b及び第3の誘導加熱コイル8cは、導線の直径、コイルの半径及びコイル単位長さにおける巻数が互いに同一であり、コイル長さのみが異なっている。各誘導加熱コイル8a,8b,8cは、それぞれのコイル長さAa,Ab,AcがAa>Ab>Acであることにより、補強部材Pの供給側ほど小さく排出側ほど大きい磁束密度を備えている。   As shown in FIG. 3A, in the composite structure manufacturing apparatus 1 of the present embodiment, the first induction heating coil 8a, the second induction heating coil 8b, and the third induction heating coil 8c have a diameter of a conducting wire. The number of turns in the coil radius and the coil unit length is the same, and only the coil length is different. Each induction heating coil 8a, 8b, 8c has a magnetic flux density that is smaller on the supply side of the reinforcing member P and larger on the discharge side because the coil lengths Aa, Ab, Ac are Aa> Ab> Ac. .

補強部材Pは、供給側から排出側へ移動しながら、各誘導加熱コイル8a,8b,8cにより順に加熱される。このときの補強部材Pを構成する熱可塑性樹脂及び磁性体の温度を図3(b)に示す。   The reinforcing member P is sequentially heated by the induction heating coils 8a, 8b, and 8c while moving from the supply side to the discharge side. FIG. 3B shows the temperatures of the thermoplastic resin and the magnetic body constituting the reinforcing member P at this time.

補強部材Pを第1の誘導加熱コイル8aに供給する直前において、前記熱可塑性樹脂温度及び磁性体の温度はともに温度Toである。   Immediately before supplying the reinforcing member P to the first induction heating coil 8a, the temperature of the thermoplastic resin and the temperature of the magnetic body are both the temperature To.

次に、補強部材Pを第1の誘導加熱コイル8aに供給して排出する。この結果、第1の誘導加熱コイル8aにより前記磁性体が誘導加熱されて温度Tmaに昇温し、該磁性体から前記熱可塑性樹脂に熱が伝導して該熱可塑性樹脂が温度Traに昇温する。   Next, the reinforcing member P is supplied to the first induction heating coil 8a and discharged. As a result, the magnetic body is induction-heated by the first induction heating coil 8a and the temperature is raised to the temperature Tma. Heat is conducted from the magnetic body to the thermoplastic resin, and the thermoplastic resin is raised to the temperature Tra. To do.

次に、補強部材Pを第2の誘導加熱コイル8bに供給して排出する。この結果、第2の誘導加熱コイル8bにより前記磁性体が誘導加熱されて温度Tmbに昇温し、該磁性体から前記熱可塑性樹脂に熱が伝導して該熱可塑性樹脂が温度Trbに昇温する。このとき、第2の誘導加熱コイル8bは、第1の誘導加熱コイル8aよりも大きい磁束密度を備えることにより、第1の誘導加熱コイル8aよりも大きい昇温速度を備えるので、前記熱可塑性樹脂の温度Trbを軟化温度Ts未満で該軟化温度Tsに近い温度領域に急速に昇温することができる。   Next, the reinforcing member P is supplied to the second induction heating coil 8b and discharged. As a result, the magnetic body is induction-heated by the second induction heating coil 8b and the temperature is raised to the temperature Tmb. Heat is conducted from the magnetic body to the thermoplastic resin, and the thermoplastic resin is heated to the temperature Trb. To do. At this time, the second induction heating coil 8b is provided with a magnetic flux density larger than that of the first induction heating coil 8a, so that the second induction heating coil 8b has a higher heating rate than the first induction heating coil 8a. The temperature Trb can be rapidly raised to a temperature range close to the softening temperature Ts below the softening temperature Ts.

次に、補強部材Pを第3の誘導加熱コイル8cに供給して排出する。この結果、第3の誘導加熱コイル8cにより前記磁性体が誘導加熱されて温度Tmcに昇温し、該磁性体から前記熱可塑性樹脂に熱が伝導して該熱可塑性樹脂が温度Trcに昇温する。このとき、第3の誘導加熱コイル8cは、第2の誘導加熱コイル8bよりもさらに大きい磁束密度を備えることにより、第2の誘導加熱コイル8bよりもさらに大きい昇温速度を備えるので、前記熱可塑性樹脂の温度Trcを前記熱可塑性樹脂の軟化温度Ts以上且つ劣化温度Tdの温度範囲にさらに急速に昇温することができる。これにより、前記熱可塑性樹脂の軟化温度Ts付近の高温領域において、第3の誘導加熱コイル8cによる補強部材Pの加熱時間を短縮することができる。   Next, the reinforcing member P is supplied to the third induction heating coil 8c and discharged. As a result, the magnetic body is inductively heated by the third induction heating coil 8c and the temperature is raised to the temperature Tmc. Heat is conducted from the magnetic body to the thermoplastic resin, and the thermoplastic resin is heated to the temperature Trc. To do. At this time, the third induction heating coil 8c is provided with a higher magnetic flux density than the second induction heating coil 8b, and thus has a higher heating rate than the second induction heating coil 8b. The temperature Trc of the plastic resin can be further rapidly increased to a temperature range of the softening temperature Ts of the thermoplastic resin and the deterioration temperature Td. Thereby, the heating time of the reinforcing member P by the third induction heating coil 8c can be shortened in a high temperature region near the softening temperature Ts of the thermoplastic resin.

1…複合構造体の製造装置、 3…供給手段(送りローラ)、 4a,4b,8a,8b,8c…誘導加熱手段(誘導加熱コイル)、 6…溶着手段(押圧ローラ)、 M…金属板(被補強部材)、 P…補強部材、 Td…熱可塑性樹脂の劣化温度、 Ts…熱可塑性樹脂の軟化温度。
DESCRIPTION OF SYMBOLS 1 ... Composite structure manufacturing apparatus, 3 ... Supply means (feed roller), 4a, 4b, 8a, 8b, 8c ... Induction heating means (induction heating coil), 6 ... Welding means (pressing roller), M ... Metal plate (Reinforced member), P: Reinforcing member, Td: Deterioration temperature of thermoplastic resin, Ts: Softening temperature of thermoplastic resin.

Claims (8)

被補強部材の一面に補強部材を備える複合構造体の製造方法であって、
磁性体を含有する熱可塑性樹脂からなり、長尺体である補強部材を供給する工程と、
互いに並列に接続された複数の誘導加熱手段で該磁性体を誘導加熱することにより、該補強部材を該熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する工程と、
該温度範囲に加熱された該補強部材を該被補強部材の一面に溶着する工程とを備えることを特徴とする複合構造体の製造方法。
A method of manufacturing a composite structure including a reinforcing member on one side of a member to be reinforced,
Ri Do a thermoplastic resin containing a magnetic material, and supplying a reinforcing member is a long body,
Heating the reinforcing member to a temperature range higher than the softening temperature of the thermoplastic resin and lower than the deterioration temperature by induction heating the magnetic body with a plurality of induction heating means connected in parallel to each other;
And a step of welding the reinforcing member heated to the temperature range to one surface of the member to be reinforced.
請求項1記載の複合構造体の製造方法において、
前記複数の誘導加熱手段は、互いに昇温速度が異なることを特徴とする複合構造体の製造方法。
In the manufacturing method of the composite structure of Claim 1 ,
The method for manufacturing a composite structure, wherein the plurality of induction heating means have different heating rates.
請求項2記載の複合構造体の製造方法において、
前記複数の誘導加熱手段は、前記補強部材の供給側ほど昇温速度が小さく排出側ほど昇温速度が大きいことを特徴とする複合構造体の製造方法。
In the manufacturing method of the composite structure of Claim 2 ,
The method of manufacturing a composite structure, wherein the plurality of induction heating means has a temperature rising rate that is smaller on a supply side of the reinforcing member and a temperature rising rate is higher on a discharge side.
請求項2記載の複合構造体の製造方法において、
前記複数の誘導加熱手段は、前記補強部材の供給側ほど昇温速度が大きく排出側ほど昇温速度が小さいことを特徴とする複合構造体の製造方法。
In the manufacturing method of the composite structure of Claim 2 ,
The method of manufacturing a composite structure, wherein the plurality of induction heating means has a temperature rising rate larger toward a supply side of the reinforcing member and a temperature rising rate lower toward a discharge side.
被補強部材の一面に補強部材を備える複合構造体の製造装置であって、
磁性体を含有する熱可塑性樹脂からなり、長尺体である補強部材を供給する供給手段と、
互いに並列に接続され、該磁性体を誘導加熱することにより該補強部材を該熱可塑性樹脂の軟化温度以上且つ劣化温度未満の温度範囲に加熱する複数の誘導加熱手段と、
該温度範囲に加熱された該補強部材を該被補強部材の一面に溶着する溶着手段とを備えることを特徴とする複合構造体の製造装置。
An apparatus for manufacturing a composite structure including a reinforcing member on one surface of a member to be reinforced,
Ri Do a thermoplastic resin containing a magnetic material, a supply means for supplying a reinforcing member is a long body,
A plurality of induction heating means connected in parallel to each other and inductively heating the magnetic body to heat the reinforcing member to a temperature range not lower than the softening temperature of the thermoplastic resin and lower than the deterioration temperature;
An apparatus for manufacturing a composite structure, comprising: welding means for welding the reinforcing member heated to the temperature range to one surface of the member to be reinforced.
請求項5記載の複合構造体の製造装置において、
前記複数の誘導加熱手段は、互いに磁束密度が異なることを特徴とする複合構造体の製造装置。
In the manufacturing apparatus of the composite structure according to claim 5 ,
The apparatus for manufacturing a composite structure, wherein the plurality of induction heating means have different magnetic flux densities.
請求項6記載の複合構造体の製造装置において、
前記複数の誘導加熱手段は、前記補強部材の供給側ほど磁束密度が小さく排出側ほど磁束密度が大きくなるように設けられていることを特徴とする複合構造体の製造装置。
In the composite structure manufacturing apparatus according to claim 6 ,
The apparatus for manufacturing a composite structure, wherein the plurality of induction heating means are provided such that a magnetic flux density is smaller on a supply side of the reinforcing member and a magnetic flux density is larger on a discharge side.
請求項6記載の複合構造体の製造装置において、
前記複数の誘導加熱手段は、前記補強部材の供給側ほど磁束密度が大きく排出側ほど磁束密度が小さくなるように設けられていることを特徴とする複合構造体の製造装置。
In the composite structure manufacturing apparatus according to claim 6 ,
The apparatus for manufacturing a composite structure, wherein the plurality of induction heating means are provided such that a magnetic flux density is larger on a supply side of the reinforcing member and a magnetic flux density is smaller on a discharge side.
JP2013083902A 2012-10-22 2013-04-12 Manufacturing method and manufacturing apparatus for composite structure Expired - Fee Related JP6041745B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013083902A JP6041745B2 (en) 2013-04-12 2013-04-12 Manufacturing method and manufacturing apparatus for composite structure
US14/057,595 US9333730B2 (en) 2012-10-22 2013-10-18 Manufacturing method for composite structure
CN201310498702.2A CN103770327B (en) 2012-10-22 2013-10-22 Manufacturing method for composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083902A JP6041745B2 (en) 2013-04-12 2013-04-12 Manufacturing method and manufacturing apparatus for composite structure

Publications (2)

Publication Number Publication Date
JP2014205298A JP2014205298A (en) 2014-10-30
JP6041745B2 true JP6041745B2 (en) 2016-12-14

Family

ID=52119285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083902A Expired - Fee Related JP6041745B2 (en) 2012-10-22 2013-04-12 Manufacturing method and manufacturing apparatus for composite structure

Country Status (1)

Country Link
JP (1) JP6041745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700930B1 (en) * 2015-05-26 2017-01-31 (주)예천화학 Sealing machine for films

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302007A (en) * 1987-06-02 1988-12-08 Honda Motor Co Ltd Heating method for fiber reinforced thermoplastic resin sheet
GB8724241D0 (en) * 1987-10-15 1987-11-18 Metal Box Plc Laminated metal sheet
JPH0735096B2 (en) * 1992-06-23 1995-04-19 クインライト電子精工株式会社 Hot plate type continuous welding device for synthetic resin sheets
US7984738B2 (en) * 2007-06-26 2011-07-26 Emabond Solutions Llc Temperature controlled polymer composition for inductive control heating using electrical conductive and magnetic particles
US8884201B2 (en) * 2008-09-15 2014-11-11 The Boeing Company Systems and methods for fabrication of thermoplastic components
JP2011228160A (en) * 2010-04-21 2011-11-10 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus and induction heating method
JP2012038621A (en) * 2010-08-09 2012-02-23 Mitsui Eng & Shipbuild Co Ltd Induction heater and method for induction heating

Also Published As

Publication number Publication date
JP2014205298A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US9333730B2 (en) Manufacturing method for composite structure
JP5696992B2 (en) Resin molding apparatus and resin molding method
KR101718967B1 (en) 3d printer having multiple induction heating head
KR20170033396A (en) Device and method for producing composite sheets using multiple lamination
JP6432689B2 (en) Composite material manufacturing method, composite material manufacturing apparatus, composite material preform and composite material
KR20170011951A (en) Metal alloy filament on printer
KR101667505B1 (en) High-frequency induction heating device and processing device
JP2020527519A (en) Induction seal device
JP2022009993A5 (en) Manufacturing method of induction heating coil
JP6041745B2 (en) Manufacturing method and manufacturing apparatus for composite structure
JP5606578B2 (en) Reinforcing method and reinforcing device
US20130059125A1 (en) Manufacturing apparatus and manufacturing method of composite structural member
JP5814907B2 (en) Sealing device
JP5659094B2 (en) Induction heating device
JP2013226810A (en) Resin molding manufacturing method using electromagnetic induction heating type mold apparatus
JP2014083718A (en) Reinforcement apparatus
JP6462033B2 (en) Manufacturing method of molded products
JP6040546B2 (en) Electromagnetic induction heating mold equipment for resin molding
JP2012214041A (en) Method for manufacturing resin molding using electromagnetic induction heating type mold apparatus for resin molding
JP6184993B2 (en) Molded product manufacturing apparatus, molded product manufacturing method, and molded product
JP6059907B2 (en) Conductive fiber reinforced resin heat processing apparatus and system using the same
JP2014143144A (en) High-frequency induction heating apparatus
US20170312854A1 (en) Method for producing a tube from metal
JP6531266B2 (en) METHOD FOR MANUFACTURING METAL PARTS AND APPARATUS FOR MANUFACTURING METAL PARTS
JP2010214451A (en) Tube working device and tube working method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R150 Certificate of patent or registration of utility model

Ref document number: 6041745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees