JP6041173B2 - Electrolyte composite member, electrolyte / electrode composite member - Google Patents

Electrolyte composite member, electrolyte / electrode composite member Download PDF

Info

Publication number
JP6041173B2
JP6041173B2 JP2016011771A JP2016011771A JP6041173B2 JP 6041173 B2 JP6041173 B2 JP 6041173B2 JP 2016011771 A JP2016011771 A JP 2016011771A JP 2016011771 A JP2016011771 A JP 2016011771A JP 6041173 B2 JP6041173 B2 JP 6041173B2
Authority
JP
Japan
Prior art keywords
layer
porous body
composite member
electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016011771A
Other languages
Japanese (ja)
Other versions
JP2016103488A (en
Inventor
竹内 久雄
久雄 竹内
松浦 尚
尚 松浦
千尋 平岩
千尋 平岩
奈保 水原
奈保 水原
山口 篤
山口  篤
真嶋 正利
正利 真嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016011771A priority Critical patent/JP6041173B2/en
Publication of JP2016103488A publication Critical patent/JP2016103488A/en
Application granted granted Critical
Publication of JP6041173B2 publication Critical patent/JP6041173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池の構成部材に利用される電解質複合部材、電解質/電極複合部材、及び電解質複合部材の製造方法に関するものである。特に、イオン伝導の抵抗を低減でき、強度に優れる電解質複合部材、及び電解質/電極複合部材に関するものである。   The present invention relates to an electrolyte composite member, an electrolyte / electrode composite member, and a method for producing an electrolyte composite member used as a constituent member of a fuel cell. In particular, the present invention relates to an electrolyte composite member and an electrolyte / electrode composite member that can reduce the resistance of ion conduction and are excellent in strength.

水素をエネルギー源とする燃料電池の利用が検討されている。燃料電池は、燃料ガス(一般に水素を含む)に接触するアノード電極(一般に燃料極と呼ばれる)と、酸素を含有するガス(一般に空気)に接触するカソード電極(一般に空気極と呼ばれる)と、両電極間に配置される電解質層とを具える。代表的には、アノード電極と、電解質層と、カソード電極とで構成される単セルを、インターコネクタを介して積層した積層構造体(一般にセルスタックと呼ばれる)が利用される。   The use of fuel cells using hydrogen as an energy source is being studied. A fuel cell has both an anode electrode (generally called a fuel electrode) that contacts a fuel gas (generally containing hydrogen), a cathode electrode (commonly called an air electrode) that contacts a gas containing oxygen (generally air), and both. And an electrolyte layer disposed between the electrodes. Typically, a laminated structure (generally referred to as a cell stack) is used in which single cells each composed of an anode electrode, an electrolyte layer, and a cathode electrode are stacked via an interconnector.

燃料電池の一つに、高効率で、Pt等の高価な材料が不要な固体金属酸化物燃料電池:SOFCがある。SOFCでは、電解質として、イオン伝導性を有する金属酸化物から構成された固体電解質層を具える。上記金属酸化物は、酸素イオン伝導性を有するイットリア安定化ジルコニア:YSZが代表的である(特許文献1)。近年、イットリウム添加ジルコン酸バリウム:BZYなどの水素イオン伝導性(プロトン伝導性)を有する金属酸化物が上述の酸素イオン伝導体の代替材料として期待されている。   One type of fuel cell is SOFC: a solid metal oxide fuel cell that is highly efficient and does not require expensive materials such as Pt. The SOFC includes a solid electrolyte layer made of a metal oxide having ionic conductivity as an electrolyte. The metal oxide is typically yttria stabilized zirconia: YSZ having oxygen ion conductivity (Patent Document 1). In recent years, metal oxides having hydrogen ion conductivity (proton conductivity) such as yttrium-added barium zirconate: BZY are expected as an alternative material for the above-described oxygen ion conductor.

SOFCに具えるアノード電極は、Niといった電極用触媒とYSZといった電解質材料とを混合したサーメット、カソード電極は、ストロンチウム添加マンガン酸ランタン:LSM等の金属酸化物が代表的である。各電極は、固体電解質層との界面に上述のガスが十分に到達できるように、一般に、微細な空孔を有する多孔質体から構成される。多孔質体は、例えば、スラリーコーティング法などによって製造された粉末層が挙げられる。   The anode electrode included in the SOFC is typically a cermet obtained by mixing an electrode catalyst such as Ni and an electrolyte material such as YSZ, and the cathode electrode is typically a metal oxide such as strontium-added lanthanum manganate: LSM. Each electrode is generally composed of a porous body having fine pores so that the gas described above can sufficiently reach the interface with the solid electrolyte layer. As for a porous body, the powder layer manufactured by the slurry coating method etc. is mentioned, for example.

特開2005-285451号公報JP 2005-285451 A

SOFCに対して、イオン伝導の抵抗が低く、かつ高強度な構成の開発が望まれている。   It is desired to develop a high-strength structure that has low ionic conduction resistance and high SOFC.

イオン伝導の抵抗を低減するためには、固体電解質層の厚さを薄くすることが効果的である。しかし、固体電解質層を薄くすると、強度の低下が懸念される。   In order to reduce the ion conduction resistance, it is effective to reduce the thickness of the solid electrolyte layer. However, when the solid electrolyte layer is made thin, there is a concern about a decrease in strength.

上記強度の低下を補うために、固体電解質層に隣接する電極層の厚さを厚くして、セル全体として強度を高くすることが考えられる。しかし、電極層の厚さを厚くすると、ガスと固体電解質層との間での物質(ここでは、主として原子。以下、断りが無い限り同様)の移動が妨げられて、過電圧増加の原因となる。   In order to compensate for the decrease in the strength, it is conceivable to increase the strength of the entire cell by increasing the thickness of the electrode layer adjacent to the solid electrolyte layer. However, if the thickness of the electrode layer is increased, the movement of a substance (here, mainly atoms, hereinafter the same unless otherwise noted) is hindered between the gas and the solid electrolyte layer, causing an increase in overvoltage. .

例えば、電極層のうち、アノード電極を厚くする場合を考える。固体電解質層から離れた電極層の表面において燃料ガスからH原子が分解・生成されると、このH原子は、電極層表面や電極層内部を拡散して固体電解質層に搬送される。そのため、H原子の搬送速度は、概ね高いとはいえない。一方、固体電解質層に近い電極層表面において燃料ガスからH原子が分解・生成されると、このH原子は固体電解質層に容易に搬送される。しかし、燃料ガスが固体電解質層近傍の電極層表面に達するためには、電極層を構成する多孔質体の細孔を通る必要がある。従って、電極層の厚さを厚くすると、ガスが細孔を通過する距離が長くなって、ガスから固体電解質層への物質の搬送抵抗が大きくなる。その結果、ガスと固体電解質層との間でのH原子の搬送速度が低下し、固体電解質層の薄肉化によるイオン伝導の抵抗の低減効果が十分に反映されない。上述の搬送抵抗の増大は、カソード電極を厚くする場合にも同様に生じ得る。   For example, consider a case where the anode electrode is made thicker in the electrode layer. When H atoms are decomposed and generated from the fuel gas on the surface of the electrode layer away from the solid electrolyte layer, the H atoms diffuse on the electrode layer surface and inside the electrode layer and are transported to the solid electrolyte layer. Therefore, it cannot be said that the transport speed of H atoms is generally high. On the other hand, when H atoms are decomposed and generated from the fuel gas on the surface of the electrode layer close to the solid electrolyte layer, the H atoms are easily transported to the solid electrolyte layer. However, in order for the fuel gas to reach the surface of the electrode layer near the solid electrolyte layer, it is necessary to pass through the pores of the porous body constituting the electrode layer. Therefore, when the thickness of the electrode layer is increased, the distance that the gas passes through the pores is increased, and the conveyance resistance of the substance from the gas to the solid electrolyte layer is increased. As a result, the transport speed of H atoms between the gas and the solid electrolyte layer is lowered, and the effect of reducing the resistance of ion conduction due to the thinning of the solid electrolyte layer is not sufficiently reflected. The increase in the conveyance resistance described above can occur similarly when the cathode electrode is thickened.

特に、アノード電極がサーメットから構成される場合には、更に搬送抵抗が大きい。具体的には、固体電解質層から離れた電極層の表面において燃料ガスからH原子が分解・生成されると、このH原子の一部は、サーメット中の電解質材料から構成されるネットワークを通って固体電解質層に達する。このときの物質の搬送抵抗は、電解質材料のみから構成される純粋な電解質を通過する場合に比較して大きく、H原子の搬送速度が十分に高いとはいえない。また、サーメットの形成には、通常、高温処理(焼き付け)を行う。この処理によって、電解質材料と電極用触媒とが反応し、両者の性能が損なわれることがある。この現象は、電解質材料が、水素イオン伝導体であるペロブスカイト型酸化物において顕著である。   In particular, when the anode electrode is composed of cermet, the conveyance resistance is even greater. Specifically, when H atoms are decomposed and generated from the fuel gas on the surface of the electrode layer away from the solid electrolyte layer, some of these H atoms pass through a network composed of the electrolyte material in the cermet. Reach the solid electrolyte layer. The transport resistance of the substance at this time is large compared to the case of passing through a pure electrolyte composed only of an electrolyte material, and it cannot be said that the transport speed of H atoms is sufficiently high. In addition, the cermet is usually formed by high temperature treatment (baking). By this treatment, the electrolyte material and the electrode catalyst may react to impair the performance of both. This phenomenon is remarkable in the perovskite oxide in which the electrolyte material is a hydrogen ion conductor.

また、カソード電極を従来の多孔質体で構成すると、電極用触媒を多孔質体に付着させるための方法に制約があり、生産性に劣る。   In addition, when the cathode electrode is composed of a conventional porous body, the method for attaching the electrode catalyst to the porous body is limited, and the productivity is poor.

そこで、本発明の目的の一つは、イオン伝導の抵抗が低く、高強度な電解質複合部材、及び電解質/電極複合部材を提供することにある。また、本発明の他の目的は、上記電解質複合部材の製造に適した電解質複合部材の製造方法を提供することにある。   Accordingly, one of the objects of the present invention is to provide an electrolyte composite member and an electrolyte / electrode composite member having low ion conduction resistance and high strength. Another object of the present invention is to provide a method for manufacturing an electrolyte composite member suitable for manufacturing the above electrolyte composite member.

(1) 本発明の電解質複合部材は、金属酸化物から構成される固体電解質層と、上記固体電解質層の少なくとも一面に、金属酸化物から構成された三次元の網目状の多孔体からなる多孔体層とを具える。上記固体電解質層と上記多孔体とが一体に形成されている。上記多孔体の平均気孔径が100μm以上であり、上記多孔体の気孔率が50%以上である。本発明の電解質複合部材は、燃料電池に利用される。   (1) The electrolyte composite member of the present invention includes a solid electrolyte layer composed of a metal oxide, and a porous body composed of a three-dimensional network porous body composed of a metal oxide on at least one surface of the solid electrolyte layer. With body layer. The solid electrolyte layer and the porous body are integrally formed. The average pore diameter of the porous body is 100 μm or more, and the porosity of the porous body is 50% or more. The electrolyte composite member of the present invention is used for a fuel cell.

本発明の電解質複合部材は、固体電解質層と特定の多孔体層とが一体構造であるため、固体電解質層の厚さが薄くても、多孔体層によって固体電解質層を補強でき、強度に優れる。また、固体電解質層が薄いことで、本発明の電解質複合部材は、イオン伝導の抵抗を低減できる。つまり、本発明の電解質複合部材は、固体電解質層の薄膜化と、機械的強度の確保とを両立できる。また、本発明の電解質複合部材は、上記多孔体の気孔径が大きく、かつ気孔を十分に具えることから、ガスの搬送抵抗の低減、ガスから固体電解質層への物質(ここでは主として分子)の搬送抵抗の低減、搬送速度の向上を図ることができる。従って、本発明の電解質複合部材を燃料電池の構成部材に利用した場合、電池特性に優れる燃料電池を構築できると期待される。また、本発明の電解質複合部材は、上記多孔体の気孔径が大きいことから、多孔体層の形成も容易であり、生産性にも優れる。   In the electrolyte composite member of the present invention, the solid electrolyte layer and the specific porous body layer have an integral structure. Therefore, even if the thickness of the solid electrolyte layer is thin, the solid electrolyte layer can be reinforced by the porous body layer and has excellent strength. . In addition, since the solid electrolyte layer is thin, the electrolyte composite member of the present invention can reduce the resistance of ion conduction. That is, the electrolyte composite member of the present invention can achieve both a reduction in the thickness of the solid electrolyte layer and securing of mechanical strength. Further, the electrolyte composite member of the present invention has a large pore diameter of the porous body and sufficient pores, so that the gas transport resistance is reduced, and the substance from the gas to the solid electrolyte layer (here mainly molecules). The conveyance resistance can be reduced and the conveyance speed can be improved. Therefore, when the electrolyte composite member of the present invention is used as a constituent member of a fuel cell, it is expected that a fuel cell excellent in cell characteristics can be constructed. In addition, the electrolyte composite member of the present invention is easy to form a porous body layer and excellent in productivity because the porous body has a large pore diameter.

(2)上記固体電解質層の平均厚さが300μm以下である形態が挙げられる。   (2) An embodiment in which the average thickness of the solid electrolyte layer is 300 μm or less is mentioned.

上記形態は、固体電解質層の厚さが薄いことから、固体電解質層内におけるイオン伝導の抵抗をより低減できる。   In the above embodiment, since the thickness of the solid electrolyte layer is thin, the resistance of ionic conduction in the solid electrolyte layer can be further reduced.

(3)上記多孔体の平均気孔径が300μm以上2mm以下である形態が挙げられる。   (3) A form in which the average pore diameter of the porous body is 300 μm or more and 2 mm or less is mentioned.

上記形態は、上記多孔体の気孔が十分に大きいことから、搬送抵抗の低減を図ることができる。かつ、上記形態は、気孔が大き過ぎないため、高い強度を維持できる。   In the above embodiment, since the pores of the porous body are sufficiently large, it is possible to reduce the conveyance resistance. And the said form can maintain high intensity | strength since a pore is not too large.

(4)上記多孔体の気孔率が80%以上99%以下である形態が挙げられる。   (4) A form in which the porosity of the porous body is 80% or more and 99% or less.

上記形態は、上記多孔体の気孔が十分に多いことから、燃料電池のガスの搬送抵抗を低減できる。また、上記形態は、固体電解質層を構成する電解質とガスとの接触面積が広く、反応速度を向上できる。かつ、上記形態は、気孔が多過ぎないため、高い強度を維持できる。   In the above embodiment, since the porous body has a sufficient number of pores, the gas transport resistance of the fuel cell can be reduced. Moreover, the said form has a wide contact area of the electrolyte and gas which comprise a solid electrolyte layer, and can improve reaction rate. And since the said form does not have too many pores, it can maintain high intensity | strength.

(5)上記固体電解質層を構成する上記金属酸化物、及び上記多孔体を構成する上記金属酸化物は、安定化ジルコニア、又は希土類元素を含有するペロブスカイト型酸化物である形態が挙げられる。   (5) The metal oxide constituting the solid electrolyte layer and the metal oxide constituting the porous body may be stabilized zirconia or a perovskite oxide containing a rare earth element.

YSZなどの安定化ジルコニアは、耐熱性に優れる。従って、金属酸化物が安定化ジルコニアである形態は、作動温度が高いSOFC(代表的には800℃〜1000℃程度)の構成部材に好適に利用できる。BZYなどの希土類元素を含有するペロブスカイト型酸化物は、イオン伝導の抵抗が低いため、低温で高いプロトン伝導率を達成できる。従って、金属酸化物が希土類元素を含有するペロブスカイト型酸化物である形態は、作動温度が低いSOFC(代表的には600℃以下)の構成部材に好適に利用できる。   Stabilized zirconia such as YSZ has excellent heat resistance. Therefore, the form in which the metal oxide is stabilized zirconia can be suitably used for a component of SOFC (typically about 800 ° C. to 1000 ° C.) having a high operating temperature. Perovskite-type oxides containing rare earth elements such as BZY have low ionic conduction resistance and can therefore achieve high proton conductivity at low temperatures. Therefore, the form in which the metal oxide is a perovskite oxide containing a rare earth element can be suitably used for a component of SOFC (typically 600 ° C. or lower) having a low operating temperature.

(6)本発明の電解質/電極複合部材は、上記本発明の電解質複合部材を具え、上記多孔体層を構成する上記多孔体の表面、及び上記固体電解質層の上記多孔体側の表面に電極用触媒が付着されてなる電極層を具える。   (6) The electrolyte / electrode composite member of the present invention comprises the electrolyte composite member of the present invention, and is used for electrodes on the surface of the porous body constituting the porous body layer, and on the surface of the solid electrolyte layer on the porous body side. An electrode layer having a catalyst attached thereto is provided.

本発明の電解質/電極複合部材は、固体電解質層と、電極層を構成する特定の多孔体とが一体構造であるため、固体電解質層の厚さが薄くても、多孔体によって固体電解質層を補強できる。更に、上記多孔体の表面は、触媒用電極によっても補強される。従って、本発明の電解質/電極複合部材は、固体電解質層の厚さが薄くても、機械的強度に優れる。また、本発明の電解質/電極複合部材は、固体電解質層が薄いことで、イオン伝導の抵抗を低減できる。更に、電極層に特定の多孔体を具えることから、本発明の電解質/電極複合部材は、ガスの搬送抵抗の低減、ガスから固体電解質層への物質(ここでは分子、原子)の搬送抵抗の低減、搬送速度の向上を図ることができる。従って、本発明の電解質/電極複合部材を燃料電池の構成部材に利用した場合、電池特性に優れる燃料電池を構築できると期待される。更に、本発明の電解質/電極複合部材は、生産性に優れる本発明の電解質複合部材を構成部材とすることで、生産性にも優れる。また、多孔体層を構成する多孔体が特定の気孔径及び気孔率を満たすことから、多孔体の表面だけでなく、固体電解質層の多孔体側の表面にも、電極用触媒を容易に付着できて、本発明の電解質/電極複合部材は、生産性に優れる。また、本発明の電解質/電極複合部材は、電極層の形成にあたり、電解質材料と電極用触媒との反応を防止できる。   In the electrolyte / electrode composite member of the present invention, since the solid electrolyte layer and the specific porous body constituting the electrode layer have an integral structure, even if the thickness of the solid electrolyte layer is thin, the solid electrolyte layer is formed by the porous body. Can be reinforced. Furthermore, the surface of the porous body is also reinforced by a catalyst electrode. Therefore, the electrolyte / electrode composite member of the present invention is excellent in mechanical strength even when the solid electrolyte layer is thin. Moreover, the electrolyte / electrode composite member of the present invention can reduce the resistance of ion conduction because the solid electrolyte layer is thin. Further, since the electrode layer includes a specific porous body, the electrolyte / electrode composite member of the present invention reduces the gas transport resistance, and the transport resistance of a substance (here, molecules and atoms) from the gas to the solid electrolyte layer. Can be reduced and the conveyance speed can be improved. Therefore, when the electrolyte / electrode composite member of the present invention is used as a constituent member of a fuel cell, it is expected that a fuel cell having excellent battery characteristics can be constructed. Furthermore, the electrolyte / electrode composite member of the present invention is excellent in productivity by using the electrolyte composite member of the present invention having excellent productivity as a constituent member. In addition, since the porous body constituting the porous body layer satisfies the specific pore diameter and porosity, the electrode catalyst can be easily attached not only to the surface of the porous body but also to the surface of the solid electrolyte layer on the porous body side. Thus, the electrolyte / electrode composite member of the present invention is excellent in productivity. Moreover, the electrolyte / electrode composite member of the present invention can prevent the reaction between the electrolyte material and the electrode catalyst in forming the electrode layer.

上記本発明の電解質複合部材の製造には、例えば、以下の二つの製造方法:形態α、形態βを利用することができる。いずれの形態も、ニッケルセルメットと呼ばれる三次元の網目状の金属多孔体の製造手法を応用した過程を含む。   For the production of the electrolyte composite member of the present invention, for example, the following two production methods: Form α and Form β can be used. Each form includes a process in which a technique for producing a three-dimensional network metal porous body called nickel cermet is applied.

(7)本発明の電解質複合部材の製造方法:形態αは、以下の工程を具える。
含浸物の形成工程:金属酸化物からなる粉末を含むスラリーを樹脂発泡体に含浸して含浸物を形成する工程。
スラリー層の形成工程:金属酸化物からなる粉末を含むスラリーを用いてスラリー層を形成する工程。
熱処理工程:上記スラリー層の上に上記含浸物を載置して、上記スラリー層と上記含浸物との積層体に熱処理を施す工程。
上記熱処理は、上記含浸物から上記樹脂発泡体を除去する第一の熱処理と、上記樹脂発泡体に付着していた上記スラリーから三次元の網目状の金属酸化物の多孔体を形成し、かつ上記スラリー層から燃料電池の固体電解質層に利用される金属酸化物の緻密体を形成する第二の熱処理とを具える。
(7) Manufacturing method of electrolyte composite member of the present invention: Form α includes the following steps.
Impregnation forming step: A step of impregnating a resin foam with a slurry containing metal oxide powder to form an impregnation.
Slurry layer forming step: A step of forming a slurry layer using a slurry containing a powder made of a metal oxide.
Heat treatment step: a step of placing the impregnated material on the slurry layer and subjecting the laminate of the slurry layer and the impregnated material to heat treatment.
The heat treatment includes a first heat treatment for removing the resin foam from the impregnated material, a three-dimensional network metal oxide porous body from the slurry adhering to the resin foam, and And a second heat treatment for forming a metal oxide dense body used for the solid electrolyte layer of the fuel cell from the slurry layer.

形態αの製造方法は、気孔径が大きく(例えば、平均気孔径が100μm以上)、気孔率が高い多孔体(例えば、気孔率が50%以上の多孔体)を具える電解質複合部材を容易に製造できる。また、形態αの製造方法では、含浸物に用いるスラリーと、スラリー層に用いるスラリーとを同材質にも異なる材質にもできる。従って、形態αの製造方法では、多孔体と緻密体との構成材料が同材質である電解質複合部材だけでなく、多孔体と緻密体との構成材料が異なっていながら、両者が一体構造である電解質複合部材を製造できる。更に、形態αの製造方法では、スラリー層の厚さを精度よく制御できるため、緻密体の厚さを調整し易い。   The production method of form α facilitates an electrolyte composite member having a porous body having a large pore diameter (for example, an average pore diameter of 100 μm or more) and a high porosity (for example, a porous body having a porosity of 50% or more). Can be manufactured. In the manufacturing method of form α, the slurry used for the impregnation and the slurry used for the slurry layer can be made of the same material or different materials. Therefore, in the manufacturing method of form α, not only the electrolyte composite member in which the constituent material of the porous body and the dense body is the same material, but also the constituent material of the porous body and the dense body are different, but both have an integral structure. An electrolyte composite member can be manufactured. Furthermore, in the manufacturing method of the form α, the thickness of the slurry layer can be controlled with high accuracy, so that it is easy to adjust the thickness of the dense body.

(8)本発明の電解質複合部材の製造方法:形態βは、以下の工程を具える。
含浸物の形成工程:金属酸化物からなる粉末を含むスラリーを樹脂発泡体に含浸して含浸物を形成する工程。
スラリー層の形成工程:上記含浸物を載置面の上に配置し、上記載置面の上に上記スラリーを溜めてスラリー層を形成し、上記スラリー層と、上記樹脂発泡体に上記スラリーが付着した含浸物とを具える積層体を形成する工程。
熱処理工程:上記積層体に熱処理を施す工程。
上記熱処理は、上記含浸物から上記樹脂発泡体を除去する第一の熱処理と、上記樹脂発泡体に付着していた上記スラリーから三次元の網目状の金属酸化物の多孔体を形成し、かつ上記スラリー層から燃料電池の固体電解質層に利用される金属酸化物の緻密体を形成する第二の熱処理とを具える。
(8) Manufacturing method of electrolyte composite member of the present invention: Form β includes the following steps.
Impregnation forming step: A step of impregnating a resin foam with a slurry containing metal oxide powder to form an impregnation.
Slurry layer forming step: The impregnated material is placed on a placement surface, the slurry is stored on the placement surface to form a slurry layer, and the slurry is formed on the slurry layer and the resin foam. Forming a laminate comprising the impregnated material adhered thereto;
Heat treatment step: a step of subjecting the laminate to a heat treatment.
The heat treatment includes a first heat treatment for removing the resin foam from the impregnated material, a three-dimensional network metal oxide porous body from the slurry adhering to the resin foam, and And a second heat treatment for forming a metal oxide dense body used for the solid electrolyte layer of the fuel cell from the slurry layer.

形態βの製造方法も、上述の形態αと同様に、気孔径が大きく、気孔率が高い多孔体を具える電解質複合部材を容易に製造できる。形態βの製造方法では、多孔体と緻密体との構成材料が同材質である電解質複合部材を製造できる。   The production method of form β can also easily produce an electrolyte composite member having a porous body having a large pore diameter and a high porosity, as in the case of form α described above. In the manufacturing method of form β, an electrolyte composite member in which the constituent material of the porous body and the dense body is the same material can be manufactured.

本発明の電解質複合部材及び本発明の電解質/電極複合部材は、イオン伝導の抵抗を低減でき、強度に優れる。本発明の電解質複合部材の製造方法は、上記本発明の電解質複合部材を生産性よく製造できる。   The electrolyte composite member of the present invention and the electrolyte / electrode composite member of the present invention can reduce the resistance of ion conduction and are excellent in strength. The method for producing an electrolyte composite member of the present invention can produce the electrolyte composite member of the present invention with high productivity.

(A)は、実施形態1の電解質複合部材の概略構成図、(B)は、実施形態2の電解質/電極複合部材の概略構成図、(C)は、実施形態3の電解質/電極複合部材の概略構成図である。(A) is a schematic configuration diagram of an electrolyte composite member of Embodiment 1, (B) is a schematic configuration diagram of an electrolyte / electrode composite member of Embodiment 2, and (C) is an electrolyte / electrode composite member of Embodiment 3. FIG. 形態αの製造方法を説明する工程説明図である。It is process explanatory drawing explaining the manufacturing method of form (alpha). 形態βの製造方法を説明する工程説明図である。It is process explanatory drawing explaining the manufacturing method of form (beta).

以下、図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施形態1]
図1(A)を参照して、実施形態1の電解質複合部材1を説明する。電解質複合部材1は、固体電解質層10と、三次元の網目状の多孔体から構成された多孔体層11とを具える積層体であり、燃料電池の構成部材に利用される。固体電解質層10及び多孔体層11のいずれも金属酸化物で構成されている。電解質複合部材1は、固体電解質層10と多孔体層11とが一体に形成されている点を最大の特徴とする。
[Embodiment 1]
With reference to FIG. 1 (A), an electrolyte composite member 1 of Embodiment 1 will be described. The electrolyte composite member 1 is a laminated body including a solid electrolyte layer 10 and a porous body layer 11 composed of a three-dimensional network porous body, and is used as a constituent member of a fuel cell. Both the solid electrolyte layer 10 and the porous body layer 11 are made of a metal oxide. The electrolyte composite member 1 is characterized in that the solid electrolyte layer 10 and the porous body layer 11 are integrally formed.

(固体電解質層)
固体電解質層10を構成する金属酸化物は、燃料電池(特にSOFC)に利用されているイオン伝導性を有する種々の材質のものが挙げられる。酸素イオン伝導性を有する金属酸化物は、安定化ジルコニア、特にY(イットリウム)を添加したYSZなどが挙げられる。水素イオン伝導性を有する金属酸化物は、希土類元素を添加したペロブスカイト型酸化物などが挙げられる。より具体的には、BZY、BCY(BaCeO3-Y2O3)、BZYとBCYとの固溶体などが挙げられる。
(Solid electrolyte layer)
Examples of the metal oxide constituting the solid electrolyte layer 10 include various materials having ion conductivity used for fuel cells (especially SOFC). Examples of the metal oxide having oxygen ion conductivity include stabilized zirconia, particularly YSZ to which Y (yttrium) is added. Examples of the metal oxide having hydrogen ion conductivity include a perovskite oxide to which a rare earth element is added. More specifically, examples include BZY, BCY (BaCeO 3 —Y 2 O 3 ), and a solid solution of BZY and BCY.

固体電解質層10の厚さは、薄いほどイオン伝導の抵抗を低減できて好ましい。例えば、平均厚さは、300μm以下、更に100μm以下が挙げられる。   The thinner the solid electrolyte layer 10 is, the more preferable it is because the resistance of ion conduction can be reduced. For example, the average thickness is 300 μm or less, and further 100 μm or less.

固体電解質層10の形状は、適宜選択することができる。図1では平たい膜状を示すが、円筒状などの立体的な形状とすることができる。   The shape of the solid electrolyte layer 10 can be selected as appropriate. Although a flat film shape is shown in FIG. 1, it can be a three-dimensional shape such as a cylindrical shape.

(多孔体層)
多孔体層11を構成する金属酸化物は、例えば、YSZなどの安定化ジルコニア、BZYやBCYなどの希土類元素を添加したペロブスカイト型酸化物などが挙げられる。多孔体層11を構成する金属酸化物は、固体電解質層10を構成する金属酸化物と同じ材質である形態、固体電解質層10を構成する金属酸化物とは異なる材質である形態のいずれも取り得る。前者の場合、両層10,11を構成する金属酸化物は連続している。後者の場合、両層10,11を構成する金属酸化物は材質の界面が生じるものの、実質的に継ぎ目の無い一体の成形体となっている。
(Porous body layer)
Examples of the metal oxide constituting the porous layer 11 include stabilized zirconia such as YSZ, and perovskite oxide added with rare earth elements such as BZY and BCY. The metal oxide composing the porous body layer 11 takes either the form of the same material as the metal oxide composing the solid electrolyte layer 10 or the form of a material different from the metal oxide composing the solid electrolyte layer 10. obtain. In the former case, the metal oxides constituting both layers 10 and 11 are continuous. In the latter case, the metal oxide composing both layers 10 and 11 is an integrally formed body that is substantially seamless, although an interface between the materials occurs.

多孔体層11を構成する多孔体は、気孔が大きく、かつ気孔が多いほど、(1)ガスの搬送抵抗を低減できて、固体電解質層10にガスを導入し易い、(2)ガスから固体電解質層10への物資の搬送抵抗を低減でき、搬送速度を高められる、(3)後述する電極用触媒の付着作業性にも優れる、という優れた効果を奏する。従って、本発明では、多孔体の平均気孔径を100μm以上、かつ気孔率を50%以上とする。   The porous body constituting the porous body layer 11 has larger pores and more pores. (1) The gas transport resistance can be reduced, and the gas can be easily introduced into the solid electrolyte layer 10. It is possible to reduce the conveyance resistance of the material to the electrolyte layer 10 and increase the conveyance speed, and (3) excellent effects such as excellent adhesion workability of the electrode catalyst described later. Therefore, in the present invention, the average pore diameter of the porous body is 100 μm or more, and the porosity is 50% or more.

平均気孔径は、200μm以上、更に300μm以上が挙げられる。但し、気孔径が大き過ぎると、多孔体自体の強度の低下から補強効果の低下を招くため、平均気孔径は2mm以下が好ましい。   The average pore diameter is 200 μm or more, and further 300 μm or more. However, if the pore diameter is too large, the strength of the porous body itself is reduced and the reinforcing effect is lowered. Therefore, the average pore diameter is preferably 2 mm or less.

気孔率は、60%以上、更に80%以上が好ましい。但し、気孔率が多過ぎると、多孔体自体の強度の低下から補強効果の低下を招くため、気孔率は、99%以下が好ましい。平均気孔径が1mm以上、気孔率が90%〜97%程度の多孔体が上述の(1)〜(3)の効果に加えて、製造性にも優れて利用し易い。   The porosity is preferably 60% or more, more preferably 80% or more. However, if the porosity is too high, the reinforcing effect is reduced due to the decrease in the strength of the porous body itself. Therefore, the porosity is preferably 99% or less. In addition to the effects (1) to (3) described above, a porous material having an average pore diameter of 1 mm or more and a porosity of about 90% to 97% is excellent in manufacturability and easy to use.

多孔体層11は、固体電解質層10の少なくとも一面に、固体電解質層10を構成する金属酸化物に一体に形成されて、固体電解質層10の補強材として機能する。そのため、固体電解質層10が、薄い場合でも、また一般に強度に劣るとされるペロブスカイト型酸化物から構成されている場合でも、多孔体層11の補強によって、電解質複合部材1は、強度に優れる。従って、固体電解質層10と多孔体層11とが一体化された構成は、固体電解質層10がペロブスカイト型酸化物から構成される場合の強度の向上に効果的であるといえる。固体電解質層10の一面のみに多孔体層11を具える形態であっても、補強効果を十分に得られる。   The porous body layer 11 is formed integrally with the metal oxide constituting the solid electrolyte layer 10 on at least one surface of the solid electrolyte layer 10 and functions as a reinforcing material for the solid electrolyte layer 10. Therefore, even when the solid electrolyte layer 10 is thin or is made of a perovskite oxide that is generally inferior in strength, the electrolyte composite member 1 is excellent in strength due to reinforcement of the porous body layer 11. Therefore, it can be said that the configuration in which the solid electrolyte layer 10 and the porous body layer 11 are integrated is effective in improving the strength when the solid electrolyte layer 10 is made of a perovskite oxide. Even if the porous body layer 11 is provided only on one surface of the solid electrolyte layer 10, a sufficient reinforcing effect can be obtained.

また、多孔体層11は、電解質複合部材1を燃料電池に利用する場合、後述する電極層21(図1(B))の一部を構成し、ガスと固体電解質層10との間の物質の搬送経路に利用される。つまり、多孔体層11は、燃料電池の電極層の構成部材と補強材との機能を兼用する。   Further, when the electrolyte composite member 1 is used for a fuel cell, the porous layer 11 constitutes a part of an electrode layer 21 (FIG. 1 (B)) described later, and is a substance between the gas and the solid electrolyte layer 10. It is used for the transport route. That is, the porous body layer 11 serves both as a constituent member of the electrode layer of the fuel cell and a reinforcing material.

多孔体層11の厚さは適宜選択することができる。厚いほど、固体電解質層10の補強効果を高められるが、ガスやイオンなどの搬送抵抗の増大を招く。従って、多孔体層11の厚さは10mm以下が好ましく、1mm〜5mm程度が利用し易いと考えられる。   The thickness of the porous body layer 11 can be appropriately selected. As the thickness increases, the effect of reinforcing the solid electrolyte layer 10 can be enhanced, but this increases the transport resistance of gases and ions. Therefore, the thickness of the porous body layer 11 is preferably 10 mm or less, and it is considered that about 1 mm to 5 mm is easy to use.

(製造方法)
<形態α>
電解質複合部材1の製造方法として、例えば、以下の製造方法:形態αが挙げられる。以下、図2を参照して、形態αの製造方法を説明する。この製造方法は、含浸物の形成工程→スラリー層の形成工程→熱処理工程という手順によって、電解質複合部材1を製造する。
(Production method)
<Form α>
Examples of the method for producing the electrolyte composite member 1 include the following production method: Form α. Hereinafter, with reference to FIG. 2, a production method of form α will be described. In this manufacturing method, the electrolyte composite member 1 is manufactured by the procedure of impregnation forming step → slurry layer forming step → heat treatment step.

含浸物の形成にあたり、まず、樹脂発泡体200を用意する。樹脂発泡体200の構成樹脂は、ウレタンなどが挙げられる。多孔体層11を構成する多孔体の気孔径及び気孔率、形状、厚さは、焼結時の収縮によって若干低下することもあるが、樹脂発泡体200の気孔径及び気孔率、形状、厚さに概ね依存する。従って、上記多孔体が所望の仕様となるように樹脂発泡体200の仕様を選択する。図2では、板状の樹脂発泡体200を示す。   In forming the impregnated material, first, a resin foam 200 is prepared. Examples of the constituent resin of the resin foam 200 include urethane. The pore diameter, porosity, shape and thickness of the porous body constituting the porous body layer 11 may slightly decrease due to shrinkage during sintering, but the pore diameter, porosity, shape and thickness of the resin foam 200 It depends largely on the size. Therefore, the specification of the resin foam 200 is selected so that the porous body has a desired specification. In FIG. 2, a plate-like resin foam 200 is shown.

また、この工程では、金属酸化物からなる粉末を含むスラリーを用意する。スラリーに用いる原料粉末は、熱処理(焼結)後に所望の組成の金属酸化物が得られるように材質や配合比などを選択する。原料粉末は、金属酸化物粉末のみ、金属酸化物粉末にその他の化合物(例えば、金属炭酸塩)からなる粉末を混合した混合粉末のいずれも利用できる。   In this step, a slurry containing a powder made of a metal oxide is prepared. The raw material powder used for the slurry is selected in terms of material and blending ratio so that a metal oxide having a desired composition can be obtained after heat treatment (sintering). As the raw material powder, either a metal oxide powder alone or a mixed powder obtained by mixing a metal oxide powder with a powder made of another compound (for example, metal carbonate) can be used.

スラリーの溶媒は、水、エタノール、有機溶媒などが挙げられる。また、スラリー全体を100質量%とするとき、分散剤及び有機物バインダを合計で1質量%以上15質量%以下の範囲で含有するスラリーとすると、利用し易い。分散剤や有機物バインダはいずれも、燃料電池の固体電解質層の形成に利用されている公知のものが利用できる。原料粉末と溶媒などとの混合には、ボールミル、ロールミル、V型ミキサーなどを利用することができる。   Examples of the solvent for the slurry include water, ethanol, and an organic solvent. Further, when the total slurry is 100% by mass, it is easy to use the slurry if it contains a dispersant and an organic binder in a total range of 1% by mass to 15% by mass. As the dispersant and the organic binder, known ones used for forming a solid electrolyte layer of a fuel cell can be used. A ball mill, a roll mill, a V-type mixer or the like can be used for mixing the raw material powder and the solvent.

そして、この含浸物の形成工程では、図2(A)に示すように用意したスラリー100を樹脂発泡体200に含浸して含浸物300を形成する。   In this impregnation forming step, the slurry 100 prepared as shown in FIG. 2 (A) is impregnated into the resin foam 200 to form the impregnation 300.

次に、スラリー層の形成にあたり、含浸物の形成工程と同様にして、スラリー100を用意する。そして、図2(A)に示すようにスクリーン印刷などを利用してスラリー層110を形成する。ここでは、フィルム210の上にスラリー層110を形成している。フィルム210は、ポリエチレンテレフタレート(PET)などからなる適宜なものが利用できる。スラリー100が付着し難いように、表面にフッ素樹脂加工が施されたフィルム210を利用すると、作業性に優れる。フィルム210は、樹脂発泡体200を載置可能な面積を有すればよく、大きさや厚さは特に問わない。また、フィルム210以外の上にスラリー層110を形成することもできる。   Next, in forming the slurry layer, the slurry 100 is prepared in the same manner as the impregnation forming step. Then, as shown in FIG. 2A, the slurry layer 110 is formed using screen printing or the like. Here, the slurry layer 110 is formed on the film 210. As the film 210, an appropriate film made of polyethylene terephthalate (PET) or the like can be used. Use of a film 210 having a surface treated with fluororesin so that the slurry 100 does not easily adhere is excellent in workability. The film 210 only needs to have an area on which the resin foam 200 can be placed, and the size and thickness are not particularly limited. Further, the slurry layer 110 can be formed on a layer other than the film 210.

次に、図2(B)に示すように、スラリー層110の上に含浸物300を載置して、スラリー層110と含浸物300との積層体を形成する。上述の含浸物の形成工程とスラリー層の形成工程とは並行して行い、含浸物300内のスラリーとスラリー層110との双方が完全に乾燥しない間に積層体を形成することが好ましい。なお、含浸物300は、ある程度乾燥させると、積層時にスラリーが垂れ難く、取り扱い易い。積層させた後、スラリーを完全に乾燥させてから、積層体をフィルム210から取り外す。   Next, as shown in FIG. 2B, the impregnated product 300 is placed on the slurry layer 110 to form a laminated body of the slurry layer 110 and the impregnated product 300. It is preferable that the above-described impregnation forming step and the slurry layer forming step are performed in parallel, and the laminate is formed while both the slurry in the impregnation 300 and the slurry layer 110 are not completely dried. In addition, when the impregnated product 300 is dried to some extent, the slurry does not easily drip at the time of lamination and is easy to handle. After the lamination, the slurry is completely dried, and then the laminate is removed from the film 210.

そして、上述の積層体に熱処理を施す。この熱処理は、含浸物300から樹脂発泡体200、及び有機バインダなどを除去する第一の熱処理と、樹脂発泡体200に付着していたスラリーから多孔体層11を構成する三次元の網目状の多孔体を形成し、かつスラリー層110から固体電解質層10となる緻密な金属酸化物:緻密体を形成する第二の熱処理(焼結)とを具える。第一の熱処理と第二の熱処理とを分けて行うことで、樹脂発泡体200などの除去、多孔体(焼結体)の形成、緻密体(焼結体)の形成、及び多孔体と緻密体との一体化を確実に行える。この熱処理を経て、電解質複合部材1(図2(C))が得られる。   And the above-mentioned laminated body is heat-treated. This heat treatment includes a first heat treatment for removing the resin foam 200, the organic binder, and the like from the impregnated product 300, and a three-dimensional network-like structure that forms the porous body layer 11 from the slurry adhering to the resin foam 200. A dense metal oxide that forms the porous body and becomes the solid electrolyte layer 10 from the slurry layer 110: a second heat treatment (sintering) that forms the dense body. By performing the first heat treatment and the second heat treatment separately, the removal of the resin foam 200, the formation of the porous body (sintered body), the formation of the dense body (sintered body), and the porous body and the dense body Integration with the body can be performed reliably. Through this heat treatment, electrolyte composite member 1 (FIG. 2C) is obtained.

第一の熱処理条件は、樹脂発泡体200の材質に応じて適宜選択するとよい。例えば、雰囲気:大気又は酸素、加熱温度:500℃以上1000℃以下、保持時間:0.1時間以上10時間以下が挙げられる。   The first heat treatment condition may be appropriately selected according to the material of the resin foam 200. For example, atmosphere: air or oxygen, heating temperature: 500 ° C. or higher and 1000 ° C. or lower, holding time: 0.1 hour or longer and 10 hours or shorter.

第二の熱処理条件は、スラリー100に用いた原料粉末の材質などに応じて適宜選択するとよい。例えば、雰囲気:酸素、加熱温度:1100℃以上1800℃以下、保持時間:0.2時間以上5時間以下が挙げられる。YSZの場合、酸素雰囲気でも大気雰囲気でもよい。第一の熱処理と第二の熱処理との間に室温程度までの冷却工程を挟んで、両熱処理を段階的に行ってもよいが、連続して行うと加熱に必要なエネルギーを削減でき、生産性に優れる。   The second heat treatment condition may be appropriately selected according to the material of the raw material powder used for the slurry 100. For example, atmosphere: oxygen, heating temperature: 1100 ° C. to 1800 ° C., holding time: 0.2 hours to 5 hours. In the case of YSZ, an oxygen atmosphere or an air atmosphere may be used. Both heat treatments may be performed in stages by interposing a cooling process to about room temperature between the first heat treatment and the second heat treatment. However, if the heat treatment is performed continuously, the energy required for heating can be reduced and production can be performed. Excellent in properties.

<形態β>
電解質複合部材1を製造する別の製造方法として、例えば、以下の製造方法:形態βが挙げられる。以下、図3を参照して形態βの製造方法を説明する。この製造方法は、含浸物の形成工程→スラリー層の形成工程→熱処理工程という手順によって電解質複合部材1を製造する。形態βの製造方法における基本的な事項は、上述の形態αと同様であるため、異なる点を主に説明する。
<Form β>
Another manufacturing method for manufacturing the electrolyte composite member 1 includes, for example, the following manufacturing method: Form β. Hereinafter, the production method of Form β will be described with reference to FIG. In this manufacturing method, the electrolyte composite member 1 is manufactured in the order of impregnation forming step → slurry layer forming step → heat treatment step. Since the basic matter in the manufacturing method of form β is the same as that of form α described above, different points will be mainly described.

含浸物の形成工程では、作製したスラリー100を用意した樹脂発泡体200に含浸して(図3(A))、含浸物300を形成する。そして、スラリー層の形成工程では、含浸物300を用いてスラリー層110を形成する点が形態αとの相違する。具体的には、含浸物300を載置面(ここではフィルム210)の上に配置し、載置面の上にスラリーを溜めてスラリー層110を形成する(図3(B))。   In the impregnation forming step, the prepared slurry 100 is impregnated into the prepared resin foam 200 (FIG. 3A) to form the impregnation 300. In the slurry layer forming step, the point that the slurry layer 110 is formed using the impregnated material 300 is different from the form α. Specifically, the impregnated product 300 is placed on a placement surface (here, the film 210), and slurry is accumulated on the placement surface to form a slurry layer 110 (FIG. 3B).

ここで、樹脂発泡体200の表面は、気孔によって凹凸が生じている。そのため、平滑な載置面の上に樹脂発泡体200を配置すると、樹脂発泡体200は、上記凹凸によって載置面に対して点接触するように載置される。つまり、樹脂発泡体200と載置面との間には、上記凹凸に応じた微細な空間が生じ得る。この空間にスラリーを溜めて、スラリー層110を形成する。スラリーは、自重によって載置面側に容易に溜まる。従って、載置面の上に含浸物300を静置した状態を保持すれば、含浸したスラリーの一部によって所望の厚さのスラリー層110を載置面の上に形成できる。スラリー層110が形成されたら、スラリーを完全に乾燥してフィルム210から取り外し、スラリー層110と、樹脂発泡体200にスラリーが付着した含浸物300とを具える積層体が得られる。載置面をフィルム210とすると、上述のようにフィルム210を容易に除去できる。   Here, the surface of the resin foam 200 is uneven due to pores. Therefore, when the resin foam 200 is disposed on a smooth placement surface, the resin foam 200 is placed so as to make point contact with the placement surface due to the unevenness. That is, a fine space corresponding to the unevenness can be generated between the resin foam 200 and the placement surface. Slurry is accumulated in this space to form a slurry layer 110. The slurry easily accumulates on the placement surface side due to its own weight. Therefore, if the impregnated material 300 is kept stationary on the mounting surface, the slurry layer 110 having a desired thickness can be formed on the mounting surface by a part of the impregnated slurry. When the slurry layer 110 is formed, the slurry is completely dried and removed from the film 210, and a laminate including the slurry layer 110 and the impregnated product 300 with the slurry attached to the resin foam 200 is obtained. When the mounting surface is the film 210, the film 210 can be easily removed as described above.

熱処理工程では、上記積層体に、上述の形態αと同様に熱処理(好ましくは多段の熱処理)を施す。この熱処理を経て、電解質複合部材1(図3(C))が得られる。   In the heat treatment step, the laminate is subjected to heat treatment (preferably multistage heat treatment) in the same manner as in the above-described form α. Through this heat treatment, an electrolyte composite member 1 (FIG. 3C) is obtained.

[実施形態2]
図1(B)を参照して、実施形態2の電解質/電極複合部材2を説明する。電解質/電極複合部材2は、固体電解質層10と、固体電解質層10の一面に設けられた電極層21とを具える積層体であり、燃料電池の構成部材に利用される。固体電解質層10の一面は、三次元の網目状の多孔体が一体に形成されている。電極層21は、主として、上記多孔体と、上記多孔体の表面及び固体電解質層10の多孔体側の表面に付着された電極用触媒(図示せず)とで構成されている。従って、電解質/電極複合部材2は、固体電解質層10と、電極層21を構成する多孔体とが一体に形成された部材である。そして、電解質/電極複合部材2は、電解質複合部材1を主要素とし、電解質複合部材1に具える多孔体層11を構成する多孔体の表面と固体電解質層10の多孔体側の表面とに電極用触媒が付着されて構成されている。
[Embodiment 2]
With reference to FIG. 1 (B), the electrolyte / electrode composite member 2 of Embodiment 2 will be described. The electrolyte / electrode composite member 2 is a laminate including a solid electrolyte layer 10 and an electrode layer 21 provided on one surface of the solid electrolyte layer 10, and is used as a constituent member of a fuel cell. One surface of the solid electrolyte layer 10 is integrally formed with a three-dimensional mesh-like porous body. The electrode layer 21 is mainly composed of the porous body and an electrode catalyst (not shown) attached to the surface of the porous body and the surface of the solid electrolyte layer 10 on the porous body side. Therefore, the electrolyte / electrode composite member 2 is a member in which the solid electrolyte layer 10 and the porous body constituting the electrode layer 21 are integrally formed. The electrolyte / electrode composite member 2 includes the electrolyte composite member 1 as a main element, the electrode on the surface of the porous body constituting the porous body layer 11 included in the electrolyte composite member 1, and the surface on the porous body side of the solid electrolyte layer 10. The catalyst for use is attached.

電極層21は、電極用触媒からなる層が反応で生じた電子を取り出す導電層として機能し、電解質材料からなる多孔体がイオンの補助的な伝導経路として機能し、アノード電極又はカソード電極に利用される。電解質材料からなる多孔体の表面及び固体電解質層10の多孔体側の表面に、これらの表面に沿って電極用触媒が付着されることで、電極層も多孔体となる。この点から、電極用触媒と固体電解質層10との間の物質の搬送抵抗の増加を緩和できる。   The electrode layer 21 functions as a conductive layer in which a layer made of an electrode catalyst extracts electrons generated by the reaction, and a porous body made of an electrolyte material functions as an auxiliary conduction path for ions, and is used for an anode electrode or a cathode electrode. Is done. The electrode layer is also made porous by attaching the electrode catalyst along the surfaces of the porous body made of the electrolyte material and the surface of the solid electrolyte layer 10 on the porous body side. From this point, the increase in the conveyance resistance of the substance between the electrode catalyst and the solid electrolyte layer 10 can be mitigated.

電極用触媒の材質は、金属単体、金属酸化物、金属と金属酸化物との混合物(例えば、サーメット)が挙げられる。金属単体や混合物に含む金属は、Ni、Pd、Pt、Ir、Os、Rh、Ra、Co、Feなどが挙げられる。金属酸化物は、LSM、ランタンストロンチウムコバルト鉄:LSCFなどが挙げられる。混合物に含む金属酸化物は、YSZなどの安定化ジルコニア、BZY、BCYなどの電解質と同じ材料などが挙げられる。特に、多孔体を構成する金属酸化物と混合物中の金属酸化物とが同じ材質である場合、密着性に優れて好ましい。   Examples of the material for the electrode catalyst include simple metals, metal oxides, and mixtures of metals and metal oxides (for example, cermet). Examples of the metal contained in the simple metal or mixture include Ni, Pd, Pt, Ir, Os, Rh, Ra, Co, and Fe. Examples of the metal oxide include LSM and lanthanum strontium cobalt iron: LSCF. Examples of the metal oxide contained in the mixture include the same materials as the electrolyte such as stabilized zirconia such as YSZ, BZY, and BCY. In particular, when the metal oxide constituting the porous body and the metal oxide in the mixture are the same material, it is preferable because of excellent adhesion.

電極用触媒は、例えば、以下の手法(1)〜(3)などによって固体電解質層及び多孔体層に付着できる。(1)金属、金属酸化物、及び金属と金属酸化物とを含む混合物(例えば、サーメット)から選択される1種の無機材料の粉末を含むスラリーを塗布する方法。(2)スラリーに代えて、金属塩の溶液、有機金属化合物液体、及び有機金属化合物液体の溶液から選択される1種の液を塗布する方法。これら(1),(2)では、塗布後、乾燥、適宜焼き付けを行う。(3)金属単体の場合、無電解めっき法などのめっき法、スパッタ法などの蒸着法。この場合、電極用触媒となる金属層を多孔体などに直接形成できる。公知の手法を利用することができる。   The electrode catalyst can be attached to the solid electrolyte layer and the porous layer by the following methods (1) to (3), for example. (1) A method of applying a slurry containing powder of one kind of inorganic material selected from metal, metal oxide, and a mixture (for example, cermet) containing metal and metal oxide. (2) A method of applying one kind of liquid selected from a solution of a metal salt, an organometallic compound liquid, and an organometallic compound liquid instead of the slurry. In these (1) and (2), after coating, drying and baking are performed as appropriate. (3) In the case of a single metal, a plating method such as electroless plating or a vapor deposition method such as sputtering. In this case, the metal layer serving as the electrode catalyst can be directly formed on the porous body. A known method can be used.

電極用触媒からなる層の厚さは、適宜選択することができる。例えば、平均厚さが0.1μm〜10μm程度が挙げられる。   The thickness of the layer made of the electrode catalyst can be appropriately selected. For example, the average thickness is about 0.1 μm to 10 μm.

電解質/電極複合部材2は、電解質複合部材1に具える多孔体の表面が電極用触媒によって機械的に補強されている。従って、電解質/電極複合部材2は、固体電解質層10が薄い場合でも、多孔体に加えて電極用触媒によって強度をより効果的に高められる。また、電極用触媒の形成に際して、多孔体の気孔径が上述のように十分に大きいため、多孔体の全域に亘って、及び固体電解質層10の多孔体側の表面に電極用触媒の付着を良好に、かつ容易に行えて、電解質/電極複合部材2も生産性に優れる。更に、電解質/電極複合部材2は、電解質複合部材1の形成と、電極用触媒からなる層の形成とを、独立に行える。詳しくは、多孔体を形成するための熱処理(焼結)と、例えば、電極層21を形成するための熱処理(焼き付け)とが独立している。そのため、電極用触媒からなる層の形成にあたり、電極用触媒と電解質材料とが反応して、それぞれの特性が劣化することを防止できる。   In the electrolyte / electrode composite member 2, the surface of the porous body included in the electrolyte composite member 1 is mechanically reinforced by the electrode catalyst. Therefore, even when the solid electrolyte layer 10 is thin, the electrolyte / electrode composite member 2 can be more effectively increased in strength by the electrode catalyst in addition to the porous body. Further, when the electrode catalyst is formed, the pore diameter of the porous body is sufficiently large as described above, so that the electrode catalyst adheres well to the entire area of the porous body and to the surface of the solid electrolyte layer 10 on the porous body side. In addition, the electrolyte / electrode composite member 2 is excellent in productivity. Further, the electrolyte / electrode composite member 2 can independently form the electrolyte composite member 1 and the layer made of the electrode catalyst. Specifically, the heat treatment (sintering) for forming the porous body and the heat treatment (baking) for forming the electrode layer 21 are independent, for example. Therefore, in forming the layer composed of the electrode catalyst, it is possible to prevent the electrode catalyst and the electrolyte material from reacting with each other and degrading the respective characteristics.

[実施形態3]
次に、図1(C)を参照して、別の形態の電解質/電極複合部材3を説明する。電解質/電極複合部材3は、固体電解質層10の一面に電極層21を具える点が実施形態2と共通し、固体電解質層10の他面に、電極用触媒のみからなる電極層31を具える点が異なる。電極層31の形成には、上述した手法(1)〜(3)などを利用できる。
[Embodiment 3]
Next, another form of the electrolyte / electrode composite member 3 will be described with reference to FIG. The electrolyte / electrode composite member 3 is common to the second embodiment in that the electrode layer 21 is provided on one surface of the solid electrolyte layer 10, and the electrode layer 31 including only the electrode catalyst is provided on the other surface of the solid electrolyte layer 10. Is different. For the formation of the electrode layer 31, the above-described methods (1) to (3) can be used.

電解質/電極複合部材3は、実施形態2と同様に固体電解質層10が薄い場合でも、多孔体に加えて電極用触媒によって補強されて、高い強度を有する。また、電解質/電極複合部材3は、実施形態2と同様に製造時における部材の特性劣化を抑制できる上に、生産性にも優れる。そして、電解質/電極複合部材3は、固体電解質層10の両面に電極層21,31を具えることで、各電極層21,31をアノード電極、カソード電極とする燃料電池の単セルとして好適に利用できる。   The electrolyte / electrode composite member 3 is reinforced by the electrode catalyst in addition to the porous body and has high strength even when the solid electrolyte layer 10 is thin as in the second embodiment. In addition, the electrolyte / electrode composite member 3 can suppress the deterioration of the characteristics of the member during production as in the second embodiment, and is excellent in productivity. The electrolyte / electrode composite member 3 includes electrode layers 21 and 31 on both surfaces of the solid electrolyte layer 10 so that each electrode layer 21 and 31 is preferably used as a single cell of a fuel cell having an anode electrode and a cathode electrode. Available.

[試験例]
上述の形態αの製造方法、又は形態βの製造方法を利用して、金属酸化物から構成された緻密体(固体電解質層)と多孔体とが一体に形成された電解質複合部材を作製し、この電解質複合部材を用いて燃料電池を作製し、電池特性を調べた。
[Test example]
Using the manufacturing method of form α described above or the manufacturing method of form β, an electrolyte composite member in which a dense body (solid electrolyte layer) composed of a metal oxide and a porous body are integrally formed, A fuel cell was fabricated using this electrolyte composite member, and the cell characteristics were examined.

(試料No.1)
試料No.1は、形態αの製造方法によって作製した。所定量のBaの炭酸塩からなる粉末と、ZrO2粉末と、Y2O3粉末とを用意し、溶媒としてエタノールを添加して混合した後、乾燥して混合粉末を得た。この混合粉末を酸素中、1400℃に加熱して反応させた。その後、粉砕して、Yの添加量が20mol%であるBZY(化学式:BaZr0.8Y0.2O3-δ、3-δは理想的にはYの添加量の1/2(ここでは0.1))粉末を合成した。作製したBZY粉末に、分散剤及び有機物バインダを合計で4質量%添加し、溶媒としてエタノールを添加して、ボールミルで20Hr混合し、スラリーを調製した。平均気孔径が約1.2mm、厚さが4mmの発泡ウレタンを用意し、この発泡ウレタンに作製したスラリーを含浸させた含浸物を作製した。
(Sample No.1)
Sample No. 1 was produced by the production method of form α. A powder made of a predetermined amount of Ba carbonate, ZrO 2 powder, and Y 2 O 3 powder were prepared, ethanol was added as a solvent, mixed, and dried to obtain a mixed powder. This mixed powder was reacted by heating to 1400 ° C. in oxygen. Then, it is pulverized and BZY in which the addition amount of Y is 20 mol% (chemical formula: BaZr 0.8 Y 0.2 O 3-δ , 3-δ is ideally 1/2 of the addition amount of Y (here 0.1)) A powder was synthesized. A total of 4% by mass of a dispersant and an organic binder was added to the prepared BZY powder, ethanol was added as a solvent, and the mixture was mixed for 20 hours with a ball mill to prepare a slurry. A foamed urethane having an average pore diameter of about 1.2 mm and a thickness of 4 mm was prepared, and an impregnated product in which the foamed urethane was impregnated with the slurry was prepared.

上述のスラリーと同じスラリーを用意し、表面がフッ素樹脂加工されたフィルムの上に用意したスラリーをスクリーン印刷して、スラリー層を形成した。   The slurry same as the above-mentioned slurry was prepared, and the slurry prepared on the film by which the surface was processed with the fluororesin was screen-printed, and the slurry layer was formed.

上記スラリー層が完全に乾燥しない間に、先に作製した半乾燥状態の含浸物をスラリー層の上に載置して、積層体を形成した。スラリー層の厚さは約100μmであった。乾燥後、乾燥した積層体をフィルムから取り外し、この積層体に、大気中、600℃×1Hrの熱処理を施して樹脂(ここでは発泡ウレタン)と分散剤及び有機物バインダとを除去した。その後、1気圧の酸素中、1600℃×2Hrの熱処理(焼結)を施して、焼結体を得た。   While the slurry layer was not completely dried, the previously produced semi-dried impregnation material was placed on the slurry layer to form a laminate. The thickness of the slurry layer was about 100 μm. After drying, the dried laminate was removed from the film, and this laminate was subjected to a heat treatment at 600 ° C. × 1 Hr in the atmosphere to remove the resin (here, foamed urethane), the dispersant, and the organic binder. Thereafter, heat treatment (sintering) at 1600 ° C. × 2 Hr in oxygen at 1 atmosphere was performed to obtain a sintered body.

得られた焼結体は、BZYから構成された緻密体の一面に、BZYから構成された三次元の網目状の多孔体が連続的に形成された複合構造体である。多孔体の気孔率は約95%、多孔体の平均気孔径は約1.2mm、緻密体の平均厚さは約80μm、焼結体の全体厚さは約3mmであった。気孔率は、多孔体の見かけの体積と質量とから推定した。平均気孔径と緻密体の平均厚さとは、焼結体の切断面を光学顕微鏡及び電子顕微鏡によって観察して求めた。平均気孔径は、20mm角の測定用試料を複数用意し(n=3)、各測定用試料について気孔径を求め、n=3の平均値とした。平均厚さは、上記切断面から任意の5点を測定点として抽出し、各測定点での厚さを求め、5点の厚さの平均とした。   The obtained sintered body is a composite structure in which a three-dimensional network porous body composed of BZY is continuously formed on one surface of a dense body composed of BZY. The porosity of the porous body was about 95%, the average pore diameter of the porous body was about 1.2 mm, the average thickness of the dense body was about 80 μm, and the total thickness of the sintered body was about 3 mm. The porosity was estimated from the apparent volume and mass of the porous body. The average pore diameter and the average thickness of the dense body were determined by observing the cut surface of the sintered body with an optical microscope and an electron microscope. For the average pore diameter, a plurality of 20 mm square measurement samples were prepared (n = 3), the pore diameter was determined for each measurement sample, and the average value was n = 3. For the average thickness, arbitrary 5 points were extracted from the cut surface as measurement points, the thickness at each measurement point was obtained, and the average of the thicknesses of the 5 points was obtained.

得られた焼結体(電解質複合部材)の一面側(緻密体の一面側)に存在する多孔体の表面と、この緻密体の多孔体側の表面とに、無電解めっき法によってアノード電極用触媒:Pdを被覆して、多孔体の網目に沿って三次元的に形成されたPd層と、緻密体の多孔体側の表面に形成されたPd層とを具える電極層を形成した。Pd層の厚さは約1μmであった。この工程により、緻密体:固体電解質層の一面に電極層が一体に形成された電解質/電極複合部材が得られる。焼結体の他面(緻密体の他面)に、カソード電極用触媒:LSCF(La-Sr-Co-Fe-O)からなる粉末のスラリーを塗布して、乾燥後、水素雰囲気中、800℃×1時間加熱して、LSCFからなる電極層(粉末層)を形成した。この電極層(粉末層)の厚さは約10μmであった。この工程により、BZYの緻密体を固体電解質層とし、BZYの多孔体の表面と緻密体の表面の一部とにPd層を具える電極層をアノード電極、LSCFからなる層をカソード電極とするセルが得られる。得られたセルを用いて、水素を燃料として動作温度:600℃で最大発電電力密度を測定したところ、150mW/cm2であった。 A catalyst for anode electrode is formed on the surface of the porous body existing on one side (one side of the dense body) of the obtained sintered body (electrolyte composite member) and the surface of the dense body on the porous body side by electroless plating. : Pd was coated to form an electrode layer including a Pd layer formed three-dimensionally along the mesh of the porous body and a Pd layer formed on the surface of the dense body on the porous body side. The thickness of the Pd layer was about 1 μm. By this step, an electrolyte / electrode composite member in which the electrode layer is integrally formed on one surface of the dense body: the solid electrolyte layer is obtained. Apply the slurry of the cathode electrode catalyst: LSCF (La-Sr-Co-Fe-O) powder to the other side of the sintered body (the other side of the dense body), and after drying, in a hydrogen atmosphere, 800 The electrode layer (powder layer) made of LSCF was formed by heating at 1 ° C. for 1 hour. The thickness of this electrode layer (powder layer) was about 10 μm. By this process, the dense body of BZY is used as the solid electrolyte layer, the electrode layer including the Pd layer on the surface of the porous body of BZY and a part of the surface of the dense body is used as the anode electrode, and the layer made of LSCF is used as the cathode electrode. A cell is obtained. Using the obtained cell, the maximum generated power density was measured at an operating temperature of 600 ° C. using hydrogen as a fuel, and it was 150 mW / cm 2 .

(試料No.2)
試料No.2は、形態βの製造方法によって作製した。Y2O3を添加した安定化ZrO2粉末:YSZ粉末に、分散剤及び有機物バインダを合計で5質量%添加し、溶媒として水を添加して、ボールミルで20Hr混合し、スラリーを調製した。平均気孔径が約2mm、厚さが10mmの発泡ウレタンを用意し、この発泡ウレタンに作製したスラリーを含浸させた含浸物を作製した。
(Sample No.2)
Sample No. 2 was produced by the production method of Form β. Stabilized ZrO 2 powder to which Y 2 O 3 was added: 5% by mass of a dispersant and an organic binder were added to YSZ powder in total, water was added as a solvent, and the mixture was mixed for 20 hours with a ball mill to prepare a slurry. A foamed urethane having an average pore diameter of about 2 mm and a thickness of 10 mm was prepared, and an impregnated product in which the foamed urethane was impregnated with the slurry was prepared.

上記スラリーが完全に乾かない間に、表面がフッ素樹脂加工されたフィルム上に含浸物を載置した。含浸物を静置すると、発泡ウレタンに付着したスラリーの一部は、フィルム上に流れ落ち、フィルム上にスラリーが溜まってスラリー層が形成される。ここでは、平均厚さが約250μmのスラリー層が形成された。スラリー層を具える積層体を乾燥した後、フィルムから取り外し、この積層体に、大気中、600℃×1Hrの熱処理を施して樹脂などを除去した。その後、1気圧の大気中、1400℃×2Hrの熱処理(焼結)を施して、焼結体を得た。   While the slurry was not completely dried, the impregnated material was placed on a film whose surface was processed with a fluororesin. When the impregnated product is allowed to stand, a part of the slurry adhering to the urethane foam flows down on the film, and the slurry accumulates on the film to form a slurry layer. Here, a slurry layer having an average thickness of about 250 μm was formed. After drying the laminate including the slurry layer, the laminate was removed from the film, and the laminate was subjected to heat treatment at 600 ° C. × 1 Hr in the atmosphere to remove the resin and the like. Thereafter, heat treatment (sintering) of 1400 ° C. × 2 Hr was performed in an atmosphere of 1 atm to obtain a sintered body.

得られた焼結体は、YSZから構成された緻密体の一面にYSZから構成された三次元の網目状の多孔体が連続的に形成された複合構造体である。多孔体の気孔率は約97%、多孔体の平均気孔径は約1.6mm、緻密体の平均厚さは約200μm、焼結体の全体厚さは約8mmであった。気孔率、平均気孔径、平均厚さは、試料No.1と同様にして測定した。   The obtained sintered body is a composite structure in which a three-dimensional network porous body composed of YSZ is continuously formed on one surface of a dense body composed of YSZ. The porosity of the porous body was about 97%, the average pore diameter of the porous body was about 1.6 mm, the average thickness of the dense body was about 200 μm, and the total thickness of the sintered body was about 8 mm. The porosity, average pore diameter, and average thickness were measured in the same manner as Sample No. 1.

得られた焼結体(電解質複合部材)の一面側(緻密体の一面側)に存在する多孔体の表面と、この緻密体の多孔体側の表面とに、アノード電極用触媒:Niの硝酸塩溶液を塗布し、焼結体の他面(緻密体の他面)に、カソード電極用触媒:LSM(La-Sr-Mn-O)からなる粉末のスラリーを塗布した。その後、乾燥してから、水素雰囲気中、800℃×30分加熱した。この工程により、緻密体:固体電解質層の両面に電極層を具える電解質/電極複合部材が得られる。ここでは、固体電解質層の一面に、多孔体と、この多孔体の網目に沿って三次元的に形成されたNi層及び緻密体の表面の一部に形成されたNi層とを具える電極層が設けられ、他面にLSMからなる電極層(粉末層)が設けられている。Ni層を具える電極層は、固体電解質層に一体に形成されている。Ni層の厚さは約2μm、電極層(粉末層)の厚さは約10μmであった。   On the surface of the porous body present on one side (one side of the dense body) of the obtained sintered body (electrolyte composite member) and on the surface of the dense body on the porous body side, a catalyst for anode electrode: Ni nitrate solution Was applied to the other surface of the sintered body (the other surface of the dense body), and a slurry of a powder composed of a cathode electrode catalyst: LSM (La-Sr-Mn-O) was applied. Then, after drying, it was heated in a hydrogen atmosphere at 800 ° C. for 30 minutes. By this step, an electrolyte / electrode composite member having electrode layers on both sides of the dense body: solid electrolyte layer is obtained. Here, an electrode comprising a porous body, a Ni layer formed three-dimensionally along the mesh of the porous body, and a Ni layer formed on a part of the surface of the dense body on one surface of the solid electrolyte layer The electrode layer (powder layer) made of LSM is provided on the other surface. The electrode layer including the Ni layer is formed integrally with the solid electrolyte layer. The thickness of the Ni layer was about 2 μm, and the thickness of the electrode layer (powder layer) was about 10 μm.

得られた電解質/電極複合部材を、YSZを固体電解層とし、多孔体の表面にNi層を具える電極層をアノード電極、LSMからなる層をカソード電極とするセルとし、水素を燃料として動作温度:900℃で最大発電電力密度を測定したところ、130mW/cm2であった。 The resulting electrolyte / electrode composite member is a cell in which YSZ is a solid electrolyte layer, an electrode layer having a Ni layer on the surface of a porous body is an anode electrode, and a layer made of LSM is a cathode electrode, and operates using hydrogen as fuel. When the maximum power generation density was measured at 900 ° C., it was 130 mW / cm 2 .

(比較例No.100)
試料No.1と同様にして、BZY粉末を作製し、このBZY粉末に成形助剤(市販品)を4質量%添加して、乾式で混合して混合粉末を得た。この混合粉末を乾式プレスによって成形し、粉末成形体(厚さ:2mm)を得た。成形圧力は1000kg/cm2とし、一軸加圧とした。得られた粉末成形体を試料No.1と同じ条件で、多段に熱処理を施して(成形助剤(樹脂)の除去及び焼結)、厚さが約1.6mmの焼結体を得た。この焼結体を燃料電池の固体電解質層に用いるにあたり、イオン伝導の抵抗を低下させるため、機械的研磨を施して、100μmまで薄くしようと試みた。しかし、厚さが250μm以下となると、焼結体に割れが生じることが多く、研磨によって250μm以下の厚さにすることが困難であった。
(Comparative Example No. 100)
A BZY powder was prepared in the same manner as Sample No. 1, 4% by mass of a molding aid (commercial product) was added to the BZY powder, and mixed in a dry manner to obtain a mixed powder. This mixed powder was molded by a dry press to obtain a powder molded body (thickness: 2 mm). The molding pressure was 1000 kg / cm 2 and uniaxial pressurization. The obtained powder compact was heat-treated in multiple stages under the same conditions as Sample No. 1 (removal and sintering of the molding aid (resin)) to obtain a sintered compact having a thickness of about 1.6 mm. When this sintered body was used for a solid electrolyte layer of a fuel cell, an attempt was made to thin it to 100 μm by mechanical polishing in order to reduce the resistance of ion conduction. However, when the thickness is 250 μm or less, the sintered body is often cracked, and it has been difficult to reduce the thickness to 250 μm or less by polishing.

一方、300μmの厚さにまで研磨したBZYの焼結体を固体電解質層とし、試料No.1と同様にして、アノード電極:Pd層のみ、カソード電極:LSCF層を形成してセルを作製した。このセルについて試料No.1と同様にして最大発電電力密度を測定したところ、100mW/cm2であった。 On the other hand, a sintered body of BZY polished to a thickness of 300 μm was used as a solid electrolyte layer, and in the same manner as sample No. 1, only an anode electrode: Pd layer and a cathode electrode: LSCF layer were formed to produce a cell. . When the maximum power generation density of this cell was measured in the same manner as Sample No. 1, it was 100 mW / cm 2 .

上記試験結果から、試料No.1,No.2の電解質複合部材や電解質/電極複合部材は、ガスと固体電解質層との間の物質(ここでは分子、原子)の搬送抵抗を低減でき、過電圧が低い燃料電池を構築できると期待される。   From the above test results, the electrolyte composite members and electrolyte / electrode composite members of Sample No. 1 and No. 2 can reduce the transport resistance of substances (here, molecules and atoms) between the gas and the solid electrolyte layer, and overvoltage It is expected that a low fuel cell can be constructed.

本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、固体電解質層の材質・厚さ、多孔体の気孔径・気孔率、多孔体の材質、電極用触媒の材質などを適宜変更できる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the material and thickness of the solid electrolyte layer, the pore diameter and porosity of the porous body, the material of the porous body, the material of the electrode catalyst, and the like can be appropriately changed.

本発明の電解質複合部材及び本発明の電解質/電極複合部材は、燃料電池(特にSOFC)の構成部材に好適に利用できる。本発明の電解質複合部材の製造方法は、上記本発明の電解質複合部材の製造に好適に利用できる。   The electrolyte composite member of the present invention and the electrolyte / electrode composite member of the present invention can be suitably used as a constituent member of a fuel cell (especially SOFC). The method for manufacturing an electrolyte composite member of the present invention can be suitably used for manufacturing the electrolyte composite member of the present invention.

1 電解質複合部材 2,3 電解質/電極複合部材
10 固体電解質層 11 多孔体層 21,31 電極層
100 スラリー 110 スラリー層 200 樹脂発泡体 210 フィルム
300 含浸物
1 Electrolyte composite member 2,3 Electrolyte / electrode composite member
10 Solid electrolyte layer 11 Porous layer 21,31 Electrode layer
100 Slurry 110 Slurry layer 200 Resin foam 210 Film
300 impregnation

Claims (4)

金属酸化物から構成される固体電解質層と、
前記固体電解質層の少なくとも一面に、金属酸化物から構成された三次元の網目状の多孔体からなる多孔体層とを具え、
前記固体電解質層と前記多孔体とが一体に形成されており、
前記多孔体の平均気孔径が1mm以上2mm以下であり、
前記多孔体の気孔率が90%以上97%以下であり、
前記固体電解質層の平均厚さが300μm以下であり、
燃料電池に利用される電解質複合部材。
A solid electrolyte layer composed of a metal oxide;
On at least one surface of the solid electrolyte layer, comprising a porous body layer made of a three-dimensional network porous body made of a metal oxide,
The solid electrolyte layer and the porous body are integrally formed,
The average pore diameter of the porous body is 1 mm or more and 2 mm or less,
The porosity of the porous body is 90% or more and 97% or less,
The average thickness of the solid electrolyte layer is 300 μm or less,
An electrolyte composite member used in a fuel cell.
前記固体電解質層の平均厚さが200μm以下である請求項1に記載の電解質複合部材。   2. The electrolyte composite member according to claim 1, wherein an average thickness of the solid electrolyte layer is 200 μm or less. 前記固体電解質層を構成する前記金属酸化物、及び前記多孔体を構成する前記金属酸化物は、安定化ジルコニア、又は希土類元素を含有するペロブスカイト型酸化物である請求項1又は請求項2に記載の電解質複合部材。   3. The metal oxide constituting the solid electrolyte layer and the metal oxide constituting the porous body are stabilized zirconia or a perovskite oxide containing a rare earth element. Electrolyte composite member. 請求項1〜請求項3のいずれか1項に記載の電解質複合部材を具え、
前記多孔体層を構成する前記多孔体の表面、及び前記固体電解質層の前記多孔体側の表面に電極用触媒が付着されてなる電極層を具える電解質/電極複合部材。
Comprising the electrolyte composite member according to any one of claims 1 to 3,
An electrolyte / electrode composite member comprising an electrode layer in which an electrode catalyst is attached to a surface of the porous body constituting the porous body layer and a surface of the solid electrolyte layer on the porous body side.
JP2016011771A 2016-01-25 2016-01-25 Electrolyte composite member, electrolyte / electrode composite member Active JP6041173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011771A JP6041173B2 (en) 2016-01-25 2016-01-25 Electrolyte composite member, electrolyte / electrode composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011771A JP6041173B2 (en) 2016-01-25 2016-01-25 Electrolyte composite member, electrolyte / electrode composite member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012150618A Division JP5935551B2 (en) 2012-07-04 2012-07-04 Manufacturing method of electrolyte composite member

Publications (2)

Publication Number Publication Date
JP2016103488A JP2016103488A (en) 2016-06-02
JP6041173B2 true JP6041173B2 (en) 2016-12-07

Family

ID=56089608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011771A Active JP6041173B2 (en) 2016-01-25 2016-01-25 Electrolyte composite member, electrolyte / electrode composite member

Country Status (1)

Country Link
JP (1) JP6041173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764447A4 (en) * 2018-03-06 2021-12-08 Sumitomo Electric Industries, Ltd. Cell structure
WO2023002718A1 (en) * 2021-07-21 2023-01-26 住友電気工業株式会社 Electroconductive member, fuel cell, and electrolysis device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0788175T3 (en) * 1996-02-02 2000-07-10 Sulzer Hexis Ag High temperature fuel cell with a thin film electrolyte
JP3230156B2 (en) * 1999-01-06 2001-11-19 三菱マテリアル株式会社 Electrode of solid oxide fuel cell and method of manufacturing the same
JP2003317740A (en) * 2002-04-26 2003-11-07 Nissan Motor Co Ltd Thin film functioning structural body, single cell for solid electrolyte fuel cell using it, and method for manufacturing it

Also Published As

Publication number Publication date
JP2016103488A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5546596B2 (en) Improved method of manufacturing a reversible solid oxide battery
US8658328B2 (en) Stack structure for laminated solid oxide fuel cell, laminated solid oxide fuel cell and manufacturing method
US9065104B2 (en) Process for manufacturing elementary electrochemical cells for energy- or hydrogen-producing electrochemical systems, in particular of SOFC and HTE type
KR101749961B1 (en) Solid electrolyte membrane, fuel battery cell, and fuel battery
US9070946B2 (en) Electrolyte-electrode joined assembly and method for producing the same
Tomov et al. Performance optimization of LSCF/Gd: CeO 2 composite cathodes via single-step inkjet printing infiltration
US10347929B2 (en) Electrochemical element, solid oxide fuel cell, and methods for producing the same
JP2000200614A (en) Electrode for solid-oxide fuel cell and its manufacture
JP5935551B2 (en) Manufacturing method of electrolyte composite member
KR20220133220A (en) Interlayer for solid oxide cells
KR20160030625A (en) Method for manufacturing proton conducting solid oxide fuel cell and proton conducting solid oxide fuel cell using the method
CN110731025A (en) Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for manufacturing solid electrolyte member
US10326157B2 (en) Modified solid oxide fuel cell
JP6041173B2 (en) Electrolyte composite member, electrolyte / electrode composite member
KR101277885B1 (en) Tube type fuel celland method for manufacturing the same
Rojek et al. Development of high performance anodes for metal-supported fuel cells
KR101657242B1 (en) high temperature solid oxide cell comprising barrier layer, manufacturing method thereof
CN110431698B (en) Method for manufacturing electrochemical element and electrochemical element
CN113875053B (en) Single battery, single battery stack device, module and module accommodating device
Agarkova et al. Tape Casting of Bilayered Anode Supports and Electrochemical Performance of SOFCs Based on Them
KR20240024311A (en) Substrate with electrode layer for metal support type electrochemical element, electrochemical element, electrochemical module, solid oxide fuel cell, and manufacturing method
JP5550223B2 (en) Ceramic electrolyte processing method and related products
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP5470281B2 (en) Solid oxide fuel cell and method for producing the same
KR102719579B1 (en) Method for manufacturing electrochemical element and electrochemical element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6041173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250