JP6040064B2 - Manufacturing method of mineral phosphophosphate fertilizer - Google Patents

Manufacturing method of mineral phosphophosphate fertilizer Download PDF

Info

Publication number
JP6040064B2
JP6040064B2 JP2013052629A JP2013052629A JP6040064B2 JP 6040064 B2 JP6040064 B2 JP 6040064B2 JP 2013052629 A JP2013052629 A JP 2013052629A JP 2013052629 A JP2013052629 A JP 2013052629A JP 6040064 B2 JP6040064 B2 JP 6040064B2
Authority
JP
Japan
Prior art keywords
fertilizer
mass
slag
mineral
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052629A
Other languages
Japanese (ja)
Other versions
JP2014177381A (en
Inventor
公一 遠藤
公一 遠藤
修一 伊藤
修一 伊藤
英雄 菊地
英雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangyo Shinko Co Ltd
Original Assignee
Sangyo Shinko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangyo Shinko Co Ltd filed Critical Sangyo Shinko Co Ltd
Priority to JP2013052629A priority Critical patent/JP6040064B2/en
Publication of JP2014177381A publication Critical patent/JP2014177381A/en
Application granted granted Critical
Publication of JP6040064B2 publication Critical patent/JP6040064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fertilizers (AREA)

Description

本発明は鉱さいりん酸肥料の製造方法およびこの製造方法により製造される鉱さいりん酸肥料に関する。   The present invention relates to a method for producing a mineral phosphophosphate fertilizer and a mineral phosphophosphate fertilizer produced by the production method.

りんは農作物の生育になくてはならない養分であり、多くの場合りん酸肥料として施用される。りん酸肥料はりん鉱石から製造されるものが大半を占めるが、近年りん鉱石の枯渇により、世界的なりん酸肥料の高騰を招いている。このため、鉄鋼の副産物である製鋼スラグに含有するりん酸を肥料として利用しようとする試みがなされている(特許文献1、特許文献2)。
また、肥料取締法に基づく普通肥料の1つとして「鉱さいりん酸肥料」が定められ、その規格も定められている。
Phosphorus is a nutrient that is essential for the growth of crops and is often applied as a phosphate fertilizer. Most of phosphate fertilizers are produced from phosphate ore, but in recent years, phosphate ore depletion has led to a worldwide rise in phosphate fertilizers. For this reason, attempts have been made to use phosphoric acid contained in steelmaking slag, which is a byproduct of steel, as a fertilizer (Patent Documents 1 and 2).
In addition, “mineral phosphoric acid fertilizer” is defined as one of ordinary fertilizers based on the Fertilizer Control Law, and its standard is also established.

一方、日本の農地では、石灰資材の連用による土壌のアルカリ化によって鉄やマンガンの肥効が効かなくなったり、堆肥や収穫残渣等の有機物資源の未利用によってミネラル不足となったりして、これらアルカリ以外のミネラル養分欠乏が発生している。
ミネラル養分欠乏に対処するために、鉄鋼スラグを原料とするけい酸質肥料が提案され、製造販売されている(特許文献3)。
On the other hand, in Japanese farmland, fertilization of iron and manganese becomes ineffective due to soil alkalinization by continuous use of lime materials, or mineral shortage occurs due to unused organic resources such as compost and harvest residues. Mineral nutrient deficiencies have occurred.
In order to cope with mineral nutrient deficiency, siliceous fertilizers using steel slag as a raw material have been proposed, manufactured and sold (Patent Document 3).

特許第5105322号公報Japanese Patent No. 5105322 特開平2−277709号公報JP-A-2-277709 特許第4091745号公報Japanese Patent No. 4091745

上記鉱さいりん酸肥料は、く溶性りん酸が3.0質量%以上、同アルカリ分が20.0質量%以上、および同可溶性けい酸が10.0質量%以上の肥料成分を含有することが規定されている。
しかしながら、製鋼鉱さいを原料として用いながら、く溶性りん酸が3.0質量%以上の品質を安定して達成することは困難であり、肥料取締法の規定する「鉱さいりん酸肥料」として利用できるまでには至っていないのが現状である。
The mineral phosphoric acid fertilizer may contain a fertilizer component having a soluble phosphoric acid content of 3.0 mass% or more, an alkali content of 20.0 mass% or more, and a soluble silicic acid content of 10.0 mass% or more. It is prescribed.
However, it is difficult to stably achieve a quality in which soluble phosphoric acid is 3.0% by mass or more while using steelmaking slag as a raw material, and it can be used as a “mineral phosphophosphate fertilizer” regulated by the Fertilizer Control Law. The current situation has not yet been reached.

例えば、特許文献1においては、塩基度が1.4以下と低いこと、可溶性石灰が30質量%以下と低いこと、実施例で示されるようにアルミナ濃度が4.5質量%以上と高いことから、原料として用いる脱りんスラグのりん酸吸収能が十分でなかったため、原料スラグ中のりん酸量が低位となっていた。さらに、特許文献1に示されているように、脱りん反応中の酸化雰囲気の指標となるスラグ中の鉄分(トータル鉄分)濃度が高々13質量%のスラグを原料としているため、スラグが本来有する脱りん能を充分活用するに至っていなかった。このように、特許文献1の技術では、肥料取締法の「鉱さいりん酸肥料」で規定されるく溶性りん酸3.0質量%以上を安定して確保することができなかった。
また、特許文献2においては、スラグの融点降下剤としてホタル石(CaF2)を混合した造滓剤を不活性ガスを共に吹き込むことを必須としており、肥料中にフッ素が残存するという問題がある。
特許文献3に開示されている「けい酸質肥料」においては、当該肥料が可溶性けい酸の確保に主眼を置かれたものであるため、く溶性りん酸濃度は1〜4質量%である。したがってりん酸を保証するためには、高価なく溶性りん酸を混合材として混合する必要があった。
For example, in Patent Document 1, the basicity is as low as 1.4 or less, the soluble lime is as low as 30% by mass or less, and the alumina concentration is as high as 4.5% by mass or more as shown in Examples. The phosphoric acid absorption capacity of the dephosphorized slag used as a raw material was not sufficient, so that the amount of phosphoric acid in the raw material slag was low. Furthermore, as shown in Patent Document 1, since slag having an iron content (total iron content) concentration of 13% by mass at most as an index of an oxidizing atmosphere during dephosphorization reaction is used as a raw material, slag originally has. The dephosphorization ability was not fully utilized. Thus, with the technique of Patent Document 1, it was not possible to stably secure 3.0% by mass or more of the soluble phosphoric acid defined by “Mineral Phosphate Fertilizer” of the Fertilizer Control Law.
Moreover, in patent document 2, it is essential to blow an inert gas together with the faux stone mixed with fluorite (CaF 2 ) as a melting point depressant of slag, and there is a problem that fluorine remains in the fertilizer. .
In the “silicic acid fertilizer” disclosed in Patent Document 3, since the fertilizer is focused on securing soluble silicic acid, the soluble phosphoric acid concentration is 1 to 4 mass%. Therefore, in order to guarantee phosphoric acid, it was necessary to mix soluble phosphoric acid as a mixture without expensiveness.

本発明は、上記問題に対処するためになされたものであり、肥料取締法の規定する「鉱さいりん酸肥料」の品質をバラツキなく安定して製造できる製造方法およびこの製造方法により得られる「鉱さいりん酸肥料」の提供を目的とする。   The present invention has been made in order to cope with the above-mentioned problems. A production method capable of stably producing the quality of “mineral phosphate fertilizer” defined by the Fertilizer Control Law without variation and a “mineralization” obtained by this production method. The purpose is to provide "phosphate fertilizer".

本発明の鉱さいりん酸肥料の製造方法は、鉱さいりん酸肥料全体に含まれるく溶性りん酸が3.0質量%以上、同アルカリ分が20.0質量%以上、および同可溶性けい酸が10.0質量%以上の肥料成分を含有する鉱さいりん酸肥料を、原料となるスラグより製造する鉱さいりん酸肥料の製造方法であって、
上記スラグは、塩基度が1.5〜3.0、可溶性けい酸濃度が15〜35質量%、可溶性石灰が30〜45質量%、酸化アルミニウムが4.5質量%以下含有する、製鉄所の溶銑予備処理工程で副生されるスラグであり、上記スラグを粉砕する粉砕工程と、上記スラグを磁力選鉱して、鉱さいりん酸肥料全体に含まれる鉄分濃度を17質量%以下にする磁力選鉱工程とを備えることを特徴とする。
また、上記粉砕工程および磁力選鉱工程の少なくとも1つの工程後に、上記スラグを造粒する造粒工程とを備えることを特徴とする。
また、上記造粒工程中、または上記造粒工程前に高炉スラグを混合することを特徴とする。
In the method for producing the mineral phosphophosphate fertilizer of the present invention, the soluble phosphoric acid contained in the entire mineral silicate fertilizer is 3.0% by mass or more, the alkali content is 20.0% by mass or more, and the soluble silicic acid is 10%. A method for producing a mineral phosphoric acid fertilizer, in which a mineral phosphoric acid fertilizer containing a fertilizer component of 0.0 mass% or more is produced from slag as a raw material,
The above slag has a basicity of 1.5 to 3.0, a soluble silicic acid concentration of 15 to 35 mass%, a soluble lime content of 30 to 45 mass%, and an aluminum oxide content of 4.5 mass% or less. A slag produced as a by-product in the hot metal pretreatment process, a pulverizing process for pulverizing the slag, and a magnetic beneficiation process for reducing the iron concentration in the entire mineral phosphate fertilizer to 17% by mass or less by magnetically selecting the slag. It is characterized by providing.
In addition, a granulation step of granulating the slag is provided after at least one of the pulverization step and the magnetic beneficiation step.
Moreover, blast furnace slag is mixed during the granulation step or before the granulation step.

ここで、可溶性けい酸とは、けい酸を含む物質を0.5N塩酸液に30℃で1時間振り混ぜた時に浸出するけい酸のことをいい、同様の試験をして浸出する石灰(CaO)を可溶性石灰という。またく溶性りん酸とは、りん酸を含む物質を2質量%クエン酸溶液(pH2)に可溶するりん酸である。可溶性けい酸、可溶性石灰およびく溶性りん酸の分析法は肥料分析法(農林水産省農業環境技術研究所法)による。また、上記アルカリ分は、可溶性石灰の量に、上記可溶性石灰と同一方法により測定された可溶性苦土の量×1.3914を合算した量をいう。   Here, the soluble silicic acid refers to silicic acid that is leached when a substance containing silicic acid is shaken in a 0.5N hydrochloric acid solution at 30 ° C. for 1 hour. ) Is called soluble lime. The soluble phosphoric acid is a phosphoric acid that dissolves a substance containing phosphoric acid in a 2% by mass citric acid solution (pH 2). Soluble silicic acid, soluble lime and soluble phosphoric acid are analyzed by the fertilizer analysis method (Agricultural Environment Technology Research Institute, Ministry of Agriculture, Forestry and Fisheries). Moreover, the said alkali content says the quantity which added the quantity of the soluble lime measured by the same method as the said soluble lime x1.3914 to the quantity of soluble lime.

本発明の鉱さいりん酸肥料は、上記製造方法により製造されることを特徴とする。   The mineral phosphoric acid fertilizer of this invention is manufactured by the said manufacturing method.

本発明の鉱さいりん酸肥料の製造方法は、塩基度および可溶性石灰を充分確保し、アルミナ濃度を所定濃度以下に低減した製鋼スラグを原料として、当該スラグを破砕かつ磁力選鉱することにより、鉄分濃度を17質量%以下、く溶性りん酸が3.0質量%以上にすることができ、肥料取締法の規定する「鉱さいりん酸肥料」の品質をバラツキなく安定して製造できる。   The method for producing the mineral phosphophosphate fertilizer according to the present invention has a sufficient iron content concentration by using steelmaking slag having sufficient basicity and soluble lime and reducing the alumina concentration to a predetermined concentration or less, and crushing and magnetically orienting the slag. 17 mass% or less and soluble phosphoric acid can be 3.0 mass% or more, and the quality of “mineral phosphoric acid fertilizer” defined by the Fertilizer Control Law can be manufactured stably and without variation.

砂状鉱さいりん酸肥料の製造工程図である。It is a manufacturing-process figure of a sandy mineral phosphophosphate fertilizer. 粒状鉱さいりん酸肥料の製造工程図である。It is a manufacturing-process figure of a granular mineral phosphophosphate fertilizer.

本発明の鉱さいりん酸肥料の製造方法では、製鉄所から副生される塩基度(CaO/SiO2)が1.5〜3.0、可溶性けい酸濃度が15〜35質量%、可溶性石灰が30〜45質量%、酸化アルミニウムが4.5質量%以下の製鋼スラグを原料とする。この製鋼スラグは製鉄所の溶銑予備処理工程で副生される。 In the method of manufacturing the slag phosphate fertilizer of the present invention, the basicity of by-product from steel plants (CaO / SiO 2) is 1.5 to 3.0, the soluble silicate concentration of 15 to 35 wt%, the soluble lime A steelmaking slag containing 30 to 45% by mass and aluminum oxide of 4.5% by mass or less is used as a raw material. This steelmaking slag is by-produced in the hot metal pretreatment process at the steelworks.

上記塩基度は、製鉄所の溶銑予備処理脱りん工程での製鋼スラグ中のりん酸吸収能を高める上で、1.5以上を確保することが必須である。また脱りん工程を経た製鋼スラグ、すなわち本発明が目的とするりん酸を充分に吸収しているスラグには、通常鉄分が10〜50質量%含まれている。この鉄分は、製鉄所溶銑予備処理脱りん工程において、気体状の酸素、および/または酸化鉄等の固体状の酸素を酸化剤として加えることによって、スラグ中に生成もしくは残留する鉄分であり、金属鉄やFeO、Fe23、磁鉄鉱などの酸化鉄状態で存在する。 In order to increase the phosphate absorption capacity in the steelmaking slag in the hot metal pretreatment dephosphorization process at the ironworks, it is essential that the basicity is 1.5 or more. Steelmaking slag that has undergone the dephosphorization process, that is, slag that sufficiently absorbs the phosphoric acid intended by the present invention usually contains 10 to 50% by mass of iron. This iron content is the iron content generated or remaining in the slag by adding gaseous oxygen and / or solid oxygen such as iron oxide as an oxidant in the ironworks hot metal pretreatment dephosphorization process. It exists in the iron oxide state such as iron, FeO, Fe 2 O 3 and magnetite.

酸化アルミニウムは、スラグの脱りん能力を低下し、スラグ中へのりん酸吸収を低下させると共に、肥料となった後に可溶性けい酸や、く溶性りん酸の溶出を阻害するため、4.5質量%以下、好ましくは3.0質量%以下とすることが好ましい。   Aluminum oxide reduces the dephosphorization ability of slag, reduces phosphate absorption into slag, and inhibits elution of soluble silicic acid and soluble phosphoric acid after becoming fertilizer, so 4.5 mass % Or less, preferably 3.0% by mass or less.

上述したように、脱りん反応を促進するためには、塩基度は1.5以上保持することが必要である。また酸化度を高く保つ必要性から、鉄分は最低で10質量%以上必要であるが、製鉄工程の鉄分歩留を高く確保する観点から、経済的には50質量%以下に保つのが適当である。但し実際の溶銑予備処理脱りん工程では、酸化鉄に加え、反応を促進する目的で溶銑中に吹き込まれる窒素ガスや酸素ガス、あるいは反応で生成するCOガス等で物理的に巻き上げられた粒鉄分がスラグ中に存在するため、鉄分濃度を厳密に制御するのが難しい。このため上記したように原料スラグ中の鉄分濃度のバラツキが生じる。   As described above, in order to promote the dephosphorylation reaction, it is necessary to maintain the basicity at 1.5 or more. Further, the iron content is required to be at least 10% by mass in order to keep the degree of oxidation high, but from the viewpoint of securing a high iron yield in the iron making process, it is economically appropriate to keep it at 50% by mass or less. is there. However, in the actual hot metal preliminary treatment dephosphorization step, in addition to iron oxide, the content of the granular iron physically wound up by nitrogen gas or oxygen gas blown into the hot metal for the purpose of promoting the reaction, or CO gas generated by the reaction, etc. Is present in the slag, it is difficult to strictly control the iron concentration. For this reason, as described above, the iron concentration in the raw material slag varies.

可溶性けい酸については、15質量%以下ではけい酸肥料としての効果が十分でなく、35質量%を超えてもけい酸肥料としての効果が飽和する。
可溶性石灰が30質量%未満では、野菜等で求められる土壌中和能力が少なくなり、45質量%を超えると可溶性けい酸濃度の低下を招くことになる。
About soluble silicic acid, if it is 15 mass% or less, the effect as a silicic acid fertilizer is not enough, and even if it exceeds 35 mass%, the effect as a silicic acid fertilizer will be saturated.
If the soluble lime is less than 30% by mass, the soil neutralization ability required for vegetables and the like is reduced, and if it exceeds 45% by mass, the concentration of soluble silicic acid is reduced.

上述したように、スラグ中の鉄分は、脱りん反応の観点では高く保つことでスラグの酸化度が確保でき、脱りん反応が促進され、スラグ中のりん酸濃度を高めることができる。しかし、実際に作物へ吸収されるく溶性りん酸の観点でみると、スラグ中の鉄分は極力低減することが望ましい。これは、肥料散布後、りん酸がCaOもしくはCaO−SiO2複合酸化物と結合し農作物に吸収されやすいく溶性りん酸ではなく、鉄および鉄酸化物を含むCaO複合酸化物と安定結合してしまうため、作物が吸収できるように遊離し難くなるからである。
したがって、本発明においては、上記した鉄分を充分に含んだ塩基度が1.5〜3.0で、可溶性けい酸濃度が15〜35質量%、可溶性石灰が30〜45質量%、酸化アルミニウムが4.5質量%以下の製鋼スラグを原料として使用し、この原料を粉砕し、磁力選鉱(磁選)によって鉄分濃度が17質量%以下、好ましくは15質量%以下になるように調製する。鉄分濃度の好ましい下限は5質量%である。これによって、スラグ中のく溶性りん酸の濃度の割合を3質量%以上に高めることが可能となる。特に鉄分濃度の中でも金属鉄や磁鉄鉱などの成分を除去することにより、く溶性りん酸の濃度を上げることができる。
As described above, the iron content in the slag is kept high from the viewpoint of the dephosphorization reaction, so that the degree of oxidation of the slag can be secured, the dephosphorization reaction is promoted, and the phosphoric acid concentration in the slag can be increased. However, from the viewpoint of soluble phosphoric acid that is actually absorbed into crops, it is desirable to reduce the iron content in the slag as much as possible. This is because, after fertilizer application, phosphoric acid binds with CaO or CaO-SiO 2 composite oxide and is not easily soluble in phosphoric acid, but is stably bound with CaO composite oxide containing iron and iron oxide. Therefore, it becomes difficult to release the crop so that it can be absorbed.
Therefore, in the present invention, the basicity sufficiently containing iron described above is 1.5 to 3.0, the concentration of soluble silicic acid is 15 to 35% by mass, the soluble lime is 30 to 45% by mass, and the aluminum oxide is Steelmaking slag of 4.5% by mass or less is used as a raw material, and this raw material is pulverized and prepared so that the iron concentration is 17% by mass or less, preferably 15% by mass or less by magnetic separation (magnetic separation). A preferable lower limit of the iron concentration is 5% by mass. This makes it possible to increase the concentration ratio of soluble phosphoric acid in the slag to 3% by mass or more. In particular, the concentration of soluble phosphoric acid can be increased by removing components such as metallic iron and magnetite in the iron concentration.

本発明の鉱さいりん酸肥料の製造方法について図1および図2により説明する。
図1は砂状鉱さいりん酸肥料の製造工程図である。
製鉄所から搬入される製鋼スラグ1は、粉砕工程2にて粉砕される。粉砕工程において、鉱さいりん酸肥料の最大粒子径は小さいほど肥料効果が期待できるが、散布時の粉塵や飛散に配慮した粒子径を選ぶことが必要である。鉱さいりん酸肥料規格にもあるように、網目4mmの篩を全通する粒子径とする。また油分や有機物等による防散処理を施してもよい。
The manufacturing method of the mineral silicic acid fertilizer of this invention is demonstrated with FIG. 1 and FIG.
FIG. 1 is a production process diagram of sandy slag phosphate fertilizer.
The steelmaking slag 1 carried in from the steelworks is pulverized in the pulverization step 2. In the pulverization step, the fertilizer effect can be expected as the maximum particle size of the mineral phosphate fertilizer is smaller, but it is necessary to select a particle size that takes into account dust and scattering during spraying. As in the mineral phosphophosphate fertilizer standard, the particle diameter is set to pass through a sieve having a mesh size of 4 mm. Moreover, you may perform the dispersion | distribution process by an oil component, organic substance, etc.

磁力選鉱工程3は、鉱さいりん酸肥料に含まれる鉄分を17質量%以下となるように磁選機により金属鉄を除去する工程である。
粉砕工程2および磁力選鉱工程3は、原料スラグの粒径、鉄分濃度、粒鉄の大きさ等の条件によって、粉砕−磁選を複数回繰返し処理を実施してもよい。また粉砕後の粒径については、製品粒径が保てる範囲で、効率よく磁選が可能なサイズを選ぶことができる。
The magnetic separation process 3 is a process of removing metallic iron by a magnetic separator so that the iron content in the mineral phosphoric acid fertilizer is 17% by mass or less.
In the pulverization process 2 and the magnetic separation process 3, the pulverization-magnetic separation may be repeated a plurality of times depending on conditions such as the particle size of the raw material slag, the iron concentration, and the size of the granular iron. As for the particle size after pulverization, it is possible to select a size that allows efficient magnetic separation as long as the product particle size can be maintained.

磁力選鉱工程3を経た鉱さいりん酸肥料は整粒工程4により整粒される。整粒工程4においては、全水分量を5質量%以下に調整することが好ましい。粒子同士の固着が少なくなり微粉砕化が容易になると共に、遊離酸化カルシウム等の安定化に寄与できる。
整粒工程4は、網目4mmの製品振動篩を全通する粒子径となるように篩分けされる。
The slag phosphate fertilizer that has undergone the magnetic separation process 3 is sized by the sizing process 4. In the sizing step 4, the total water content is preferably adjusted to 5% by mass or less. Adhesion between particles is reduced, pulverization is facilitated, and free calcium oxide and the like can be stabilized.
In the sizing step 4, the product is sieved so as to have a particle diameter passing through a product vibration sieve having a mesh size of 4 mm.

篩分けされた鉱さいりん酸肥料は、乾燥工程5において所定の水分値まで乾燥する。全水分量を5質量%以下にすることが好ましい。乾燥工程5は、特にキルン乾燥機等を用いることにより、水分量を調整する乾燥と同時に遊離酸化カルシウム等の安定化を連続して行なうことが好ましい。   The sieved slag phosphate fertilizer is dried to a predetermined moisture value in the drying step 5. The total water content is preferably 5% by mass or less. In the drying step 5, it is preferable to continuously stabilize free calcium oxide or the like simultaneously with the drying for adjusting the water content, particularly by using a kiln dryer or the like.

篩分けされた鉱さいりん酸肥料は、製品調整工程6において、副原料の混合、他肥料成分との混合などの最終調整が行なわれて砂状鉱さいりん酸肥料7が製造される。   In the product adjustment step 6, the screened mineral phosphophosphate fertilizer is subjected to final adjustment such as mixing of auxiliary materials and mixing with other fertilizer components to produce sandy silicate phosphate fertilizer 7.

図2は、粒状鉱さいりん酸肥料の製造工程図である。
図2において、磁力選鉱工程3までの工程および製品調整工程6は、上記図1で説明した工程を採用できる。磁力選鉱工程3後に造粒するための乾燥・微粉砕工程8、混合工程9、造粒工程10、および造粒品乾燥工程11が設けられている。
乾燥・微粉砕工程8は、乾燥および水分調整した後微粉砕する工程である。乾燥および水分調整工程は全水分量を5質量%以下に調整する。全水分量をこの範囲に調整することで粒子同士の固着が少なくなり微粉砕化が容易になると共に、遊離酸化カルシウム等の安定化に寄与する。特にキルン乾燥機等を用いることにより、水分量を調整する乾燥と同時に遊離酸化カルシウム等の安定化を連続して行なうことが好ましい。
微粉砕はボールミル等を用いてなされる。製鋼スラグ1は、スラグバンカーに一時貯蔵され、さらにボールミルにより微粉砕される。ボールミルは主に乾式で使用され、乾式自生粉砕ミルよりさらに微粉砕できる。
FIG. 2 is a production process diagram of granular mineral phosphoric acid fertilizer.
In FIG. 2, the steps described in FIG. 1 can be adopted as the steps up to magnetic separation process 3 and the product adjustment process 6. A drying / pulverization process 8, a mixing process 9, a granulation process 10, and a granulated product drying process 11 for granulation after the magnetic separation process 3 are provided.
The drying / pulverization step 8 is a step of finely pulverizing after drying and moisture adjustment. In the drying and moisture adjustment step, the total moisture content is adjusted to 5% by mass or less. By adjusting the total amount of water within this range, the particles can be less adhered to each other and pulverized easily, and contributes to the stabilization of free calcium oxide and the like. In particular, by using a kiln dryer or the like, it is preferable to continuously stabilize free calcium oxide or the like simultaneously with drying for adjusting the water content.
The fine pulverization is performed using a ball mill or the like. The steelmaking slag 1 is temporarily stored in a slag bunker and further pulverized by a ball mill. The ball mill is mainly used in a dry type and can be further finely pulverized than a dry self-pulverizing mill.

混合工程9は、混合物9aとして、バインダー、高炉スラグ、またはバインダーと高炉スラグとの混合物を上記微粉砕された製鋼スラグに混合する工程である。
バインダーとしては、例えば、りん酸、粘土、ベントナイト、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸、糖蜜、リグニン、リグニンスルホン酸金属塩、硫酸マグネシウム、デンプン等の中から選ばれる1種以上を単独でまたは混合して用いることができる。造粒工程で好ましく使用される皿型造粒機での造粒性を考慮すると糖蜜、リグニンまたはリグニンスルホン酸金属塩が好ましい。
高炉スラグとしては、高炉での銑鉄製錬のときに排出される水砕スラグおよび/または徐冷スラグを使用できる。高炉スラグを混合することで、造粒性および肥料散布後の土中崩壊性を高めることができる。しかし本来の目的であるく溶性りん酸濃度を確保する意味では、く溶性りん酸濃度レベルが可溶性けい酸等の他成分に比べて低いことに鑑み、混合する高炉スラグの濃度は10質量%以下とすることが好ましい。また、バインダー(固形分換算)は7質量%以下とすることが好ましい。
バインダーと高炉スラグとの混合物を用いることで、バインダー量を必要最小限に抑えることができる。
The mixing step 9 is a step of mixing, as the mixture 9a, a binder, a blast furnace slag, or a mixture of a binder and a blast furnace slag with the finely pulverized steelmaking slag.
As the binder, for example, one or more selected from phosphoric acid, clay, bentonite, polyvinyl alcohol, carboxymethyl cellulose, polyacrylic acid, molasses, lignin, lignin sulfonic acid metal salt, magnesium sulfate, starch and the like alone or It can be used by mixing. In consideration of granulation properties in a dish type granulator preferably used in the granulation step, molasses, lignin or lignin sulfonic acid metal salt is preferred.
As the blast furnace slag, granulated slag and / or slowly cooled slag discharged during pig iron smelting in the blast furnace can be used. By mixing blast furnace slag, granulation and soil disintegration after fertilizer application can be enhanced. However, in view of securing the soluble phosphoric acid concentration which is the original purpose, the concentration of the blast furnace slag to be mixed is 10% by mass or less in view of the fact that the soluble phosphoric acid concentration level is lower than other components such as soluble silicic acid. It is preferable that Moreover, it is preferable that a binder (solid content conversion) shall be 7 mass% or less.
By using a mixture of binder and blast furnace slag, the amount of binder can be minimized.

造粒工程10は、混合工程9の製鋼スラグを造粒する工程である。肥料用造粒機としては、ドラム型、撹拌型、および皿型が用いられるが、本発明においては、製品粒の形状品質を確保しやすい皿型造粒機が好ましい。   The granulation step 10 is a step of granulating the steelmaking slag of the mixing step 9. As the fertilizer granulator, a drum type, a stirring type, and a dish type are used. In the present invention, a dish type granulator that easily ensures the shape quality of product grains is preferable.

造粒品乾燥工程11は、造粒された製品を所定の水分値まで乾燥する工程である。好ましい水分量は、鉱さいりん酸肥料全体に対して、5質量%以下である。   The granulated product drying step 11 is a step of drying the granulated product to a predetermined moisture value. A preferable moisture content is 5 mass% or less with respect to the whole mineral silicate fertilizer.

篩分けされた鉱さいりん酸肥料は、製品調整工程6において、最終調整が行なわれて粒状鉱さいりん酸肥料7’が製造される。製品調整工程6において、カリウム、腐植酸の混合など、副原料の混合、他肥料成分との混合などを行なうことができる。
粒状鉱さいりん酸肥料7’の粒子径は、1.5〜6mm、好ましくは1.7〜5.5mmである。
In the product adjustment step 6, the screened mineral silicate phosphate fertilizer is subjected to final adjustment to produce granular silicate phosphate fertilizer 7 '. In the product adjustment step 6, mixing of auxiliary raw materials such as mixing of potassium and humic acid, mixing with other fertilizer components, and the like can be performed.
The particle diameter of the granular mineral phosphophosphate fertilizer 7 ′ is 1.5 to 6 mm, preferably 1.7 to 5.5 mm.

上述した図1または図2で製造された鉱さいりん酸肥料7、7’は、脱りん工程中の塩基度を1.5〜3.0の範囲として、脱りんスラグのりん酸吸収能を高めて脱りんして得られた可溶性けい酸濃度が15〜35質量%、可溶性石灰が30〜45質量%、酸化アルミニウムが4.5質量%以下の製鋼スラグを原料とし、当該製鋼スラグを粉砕、次いで磁力選鉱を実施して鉄分濃度を17質量%以下に低減せしめることで、安定してく溶性りん酸3.0質量%以上が得られる。また同時に、アルカリ分である可溶性石灰が30質量%以上、および可溶性けい酸濃度が15質量%以上が得られているため、肥料取締法で規定される「鉱さいりん酸肥料」として安定的な肥料効果を享受することが可能となる。   The mineral phosphoric acid fertilizer 7 and 7 'manufactured in FIG. 1 or FIG. 2 described above increases the phosphate absorption capacity of the dephosphorized slag by setting the basicity during the dephosphorization process to a range of 1.5 to 3.0. The steelmaking slag having a soluble silicic acid concentration of 15 to 35% by mass, soluble lime of 30 to 45% by mass and aluminum oxide of 4.5% by mass or less obtained by dephosphorization is pulverized. Subsequently, magnetic separation is carried out to reduce the iron concentration to 17% by mass or less, so that 3.0% by mass or more of soluble phosphoric acid is stably obtained. At the same time, soluble lime, which is an alkali component, is obtained in an amount of 30% by mass or more, and the concentration of soluble silicic acid is 15% by mass or more. It is possible to enjoy the effect.

実施例1〜30および比較例1〜10
製鉄所の製鋼工程において、溶銑を転炉型精錬炉に装入し、脱りん処理して得られた塩基度が1.74、2.02、および2.36の3種類の製鋼スラグを原料スラグとして用いた。原料スラグの組成を表1に示す。表1において、T.CaOは全CaO濃度、T.SiO2は全けい酸濃度、塩基度はT.CaO/T.SiO2である。また、T.Feは全鉄分濃度を表す。各成分はそれぞれ肥料分析法(農林水産省農業環境技術研究所法)により分析した。
Examples 1-30 and Comparative Examples 1-10
Three types of steelmaking slags with basicities of 1.74, 2.02 and 2.36 obtained by charging hot metal into a converter-type refining furnace and dephosphorizing it in the steelmaking process at the steelworks Used as slag. The composition of the raw material slag is shown in Table 1. In Table 1, T.W. CaO is the total CaO concentration, T.I. SiO 2 is the total silicic acid concentration and the basicity is T.P. CaO / T. SiO 2 . T. Fe represents the total iron content concentration. Each component was analyzed by the fertilizer analysis method (Ministry of Agriculture, Forestry and Fisheries, Agricultural Environment Technology Laboratory Method).

Figure 0006040064
Figure 0006040064

上記原料スラグを用いて、図1の製造工程にて砂状鉱さいりん酸肥料、および図2の製造工程にて粒状鉱さいりん酸肥料を製造した。得られた鉱さいりん酸肥料の組成、配合剤の有無、製品形状を表2に示す。また、実施例1〜30の鉱さいりん酸肥料において、鉄分濃度を17質量%以下の範囲で10水準とり、各々の場合のく溶性りん酸を分析し、3質量%以上のく溶性りん酸が得られる割合を安定性として評価した。結果を達成状況として表2に示す。表2において、達成率とは原料となる同一の製鋼スラグに対して、複数の製造回数(水準)により、鉱さいりん酸肥料の規格を満足する製品が製造される割合をいう。
また、磁力選鉱を施しても鉄分濃度が17質量%を超える例を比較例1〜10として表2に示す。なお表2において、簡略化した各組成の意味は表1と同様である。
Using the raw material slag, a sand-like slag phosphate fertilizer was manufactured in the manufacturing process of FIG. 1, and a granular slag phosphate fertilizer was manufactured in the manufacturing process of FIG. Table 2 shows the composition of the obtained mineral phosphophosphate fertilizer, the presence or absence of the compounding agent, and the product shape. In addition, in the mineral phosphoric acid fertilizers of Examples 1 to 30, the iron concentration was 10 levels in the range of 17% by mass or less, and the soluble phosphoric acid in each case was analyzed, and 3% by mass or more of the soluble phosphoric acid was found. The resulting ratio was evaluated as stability. The results are shown in Table 2 as the achievement status. In Table 2, the achievement rate refers to the rate at which products satisfying the specifications of mineral phosphophosphate fertilizer are produced by a plurality of production times (levels) for the same steelmaking slag as a raw material.
In addition, Table 2 shows examples in which the iron concentration exceeds 17% by mass as Comparative Examples 1 to 10 even when magnetic separation is performed. In Table 2, the meaning of each simplified composition is the same as in Table 1.

Figure 0006040064
Figure 0006040064

表2から明らかなように、塩基度が1.74(実施例1〜10)、2.02(実施例11〜20)、および2.36(実施例21〜30)の全ての水準において、各実施例のく溶性りん酸濃度は、安定的に3質量%以上となることが確認された。
また同時にアルカリ分が20質量%以上、可溶性けい酸が20質量%以上となり、肥料取締法の「鉱さいりん酸肥料」の条件を満足することが分かった。この結果、3質量%以上のく溶性りん酸を保証できることとなり、一般的に高価な化成肥料等で全量補給されるりん酸量を低減でき、大幅なコスト削減が可能となった。
As is apparent from Table 2, at all levels of basicity 1.74 (Examples 1-10), 2.02 (Examples 11-20), and 2.36 (Examples 21-30), It was confirmed that the soluble phosphoric acid concentration in each Example was stably 3% by mass or more.
At the same time, it was found that the alkali content was 20% by mass or more and the soluble silicic acid was 20% by mass or more, satisfying the conditions of “mineral silicate fertilizer” of the fertilizer control method. As a result, 3 mass% or more of soluble phosphoric acid can be assured, and the amount of phosphoric acid that is generally replenished with expensive chemical fertilizers can be reduced, resulting in a significant cost reduction.

比較例1〜10において、磁力選鉱を施しても鉄分濃度が17質量%を超える場合には、3質量%以上のく溶性りん酸が得られる割合が達成率70%となり、実施例1〜30に比較して、安定性に劣ることが分かった。すなわち、肥料取締法に規定される「鉱さいりん酸肥料」の条件であるく溶性りん酸が3質量%以上を保証できないため、「鉱さいりん酸肥料」の規格製品とすることができない。   In Comparative Examples 1 to 10, when the iron concentration exceeds 17% by mass even after magnetic separation, the rate at which 3% by mass or more of soluble phosphoric acid is obtained is 70%, and Examples 1 to 30 are achieved. It was found that the stability was inferior compared to. That is, since 3% by mass or more of soluble phosphoric acid, which is a condition of “mineral phosphoric acid fertilizer” stipulated in the Fertilizer Control Law, cannot be guaranteed, it cannot be a standard product of “mineral phosphoric acid fertilizer”.

比較例11〜20
比較例11〜15として、塩基度が1.0〜1.4の5種類の製鋼スラグを粉砕または造粒して鉱さいりん酸肥料を製造した。
また、比較例16〜20として、塩基度が1.6〜3.0の5種類の製鋼スラグを粉砕または造粒して鉱さいりん酸肥料を製造した。結果を表3に示す。なお表3において、簡略化した各組成の意味は表1と同様である。
Comparative Examples 11-20
As Comparative Examples 11 to 15, five types of steelmaking slag having a basicity of 1.0 to 1.4 were pulverized or granulated to produce a mineral phosphoric acid fertilizer.
Moreover, as Comparative Examples 16-20, five types of steelmaking slag having a basicity of 1.6-3.0 were pulverized or granulated to produce a mineral phosphoric acid fertilizer. The results are shown in Table 3. In Table 3, the meaning of each simplified composition is the same as in Table 1.

Figure 0006040064
Figure 0006040064

比較例11〜20のスラグは、塩基度が1.5〜3.0、可溶性石灰が30〜45質量%、酸化アルミニウムが4.5質量%以下および鉄分濃度を17質量%以下とできていないため、安定して肥料製品のく溶性りん酸濃度を3質量%以上とすることができなかった。   The slags of Comparative Examples 11 to 20 have a basicity of 1.5 to 3.0, soluble lime of 30 to 45 mass%, aluminum oxide of 4.5 mass% or less, and iron concentration of 17 mass% or less. Therefore, the soluble phosphoric acid concentration of the fertilizer product could not be stably increased to 3% by mass or more.

本発明の鉱さいりん酸肥料の製造方法は、肥料取締法で規定されるく溶性りん酸濃度3.0質量%以上を品質のバラツキを少なく安定して製造できるので、鉱さいりん酸肥料は製造時の経済性と肥料効果に優れ日本の農業生産性の向上に利用できる。   The production method of the mineral phosphophosphate fertilizer of the present invention can stably produce a soluble phosphoric acid concentration of 3.0% by mass or more stipulated by the Fertilizer Control Law with little variation in quality. It can be used to improve agricultural productivity in Japan.

1 製鋼スラグ
2 粉砕工程
3 磁力選鉱工程
4 整粒工程
5 乾燥工程
6 製品調整工程
7、7’ 鉱さいりん酸肥料
8 乾燥・微粉砕工程
9 混合工程
10 造粒工程
11 造粒品乾燥工程
DESCRIPTION OF SYMBOLS 1 Steelmaking slag 2 Grinding process 3 Magnetic separation process 4 Granulation process 5 Drying process 6 Product adjustment process 7, 7 'Mineral phosphoric acid fertilizer 8 Drying and fine grinding process 9 Mixing process 10 Granulation process 11 Granulated product drying process

Claims (3)

鉱さいりん酸肥料全体に含まれるく溶性りん酸が3.0質量%以上、同アルカリ分が20.0質量%以上、および同可溶性けい酸が10.0質量%以上の肥料成分を含有する鉱さいりん酸肥料を、原料となるスラグより製造する鉱さいりん酸肥料の製造方法であって、
前記スラグは、塩基度が1.5〜3.0、可溶性けい酸が15〜35質量%、可溶性石灰が30〜45質量%、酸化アルミニウムが4.5質量%以下含有する、製鉄所の溶銑予備処理工程で副生されるスラグであり、
前記スラグを粉砕する粉砕工程と、
前記スラグを磁力選鉱して、鉱さいりん酸肥料全体に含まれる鉄分濃度を17質量%以下にする磁力選鉱工程とを備えることを特徴とする鉱さいりん酸肥料の製造方法。
Mineral slag containing fertilizer components containing 3.0 mass% or more of soluble phosphoric acid, 20.0 mass% or more of the alkali content, and 10.0 mass% or more of the soluble silicic acid contained in the entire mineral silicate fertilizer. A method for producing a mineral phosphate fertilizer in which phosphate fertilizer is produced from slag as a raw material,
The slag contains 1.5 to 3.0 basicity, 15 to 35 mass% soluble silicic acid, 30 to 45 mass% soluble lime, and 4.5 mass% or less aluminum oxide. Slag by-produced in the pretreatment process,
Crushing step of crushing the slag;
A method for producing a mineral phosphophosphate fertilizer, comprising: a magnetic beneficiation step in which the slag is subjected to magnetic beneficiation so that the concentration of iron contained in the entire slag phosphate fertilizer is 17% by mass or less.
前記粉砕工程および磁力選鉱工程の少なくとも1つの工程後に、前記スラグを造粒する造粒工程を備えることを特徴とする請求項1記載の鉱さいりん酸肥料の製造方法。   The method for producing a mineral phosphophosphate fertilizer according to claim 1, further comprising a granulation step of granulating the slag after at least one of the pulverization step and the magnetic separation process. 前記造粒工程中、または前記造粒工程前に高炉スラグを混合することを特徴とする請求項2記載の鉱さいりん酸肥料の製造方法。   3. A method for producing a mineral phosphoric acid fertilizer according to claim 2, wherein blast furnace slag is mixed during the granulation step or before the granulation step.
JP2013052629A 2013-03-15 2013-03-15 Manufacturing method of mineral phosphophosphate fertilizer Active JP6040064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052629A JP6040064B2 (en) 2013-03-15 2013-03-15 Manufacturing method of mineral phosphophosphate fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052629A JP6040064B2 (en) 2013-03-15 2013-03-15 Manufacturing method of mineral phosphophosphate fertilizer

Publications (2)

Publication Number Publication Date
JP2014177381A JP2014177381A (en) 2014-09-25
JP6040064B2 true JP6040064B2 (en) 2016-12-07

Family

ID=51697737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052629A Active JP6040064B2 (en) 2013-03-15 2013-03-15 Manufacturing method of mineral phosphophosphate fertilizer

Country Status (1)

Country Link
JP (1) JP6040064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707811C1 (en) * 2017-06-28 2019-11-29 Ниппон Стил Корпорейшн Steel-smelting slag as raw material for fertilizer, method for production of steel-smelting slag as raw material for fertilizer, method of fertilizer production and method of fertilizer application
RU2710404C1 (en) * 2017-06-28 2019-12-26 Ниппон Стил Корпорейшн Steel-smelting slag as raw material for fertilizer, method for production of steel-smelting slag as raw material for fertilizer, method of fertilizer production and method of fertilizer application

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170017303A (en) * 2015-08-06 2017-02-15 (주)두영티앤에스 Manufacturing method of Magnesia Phosphate Composite using Ferronickel Slag Powder and Magnesia Phosphate Composite using Ferronickel Slag Powder manufactured by the same
JP6752586B2 (en) * 2016-02-22 2020-09-09 日本製鉄株式会社 Slag pile construction method Slag and slag pile construction method
JP6702293B2 (en) * 2016-11-29 2020-06-03 Jfeスチール株式会社 Steel slag treatment method
JP6969476B2 (en) * 2018-03-29 2021-11-24 Jfeスチール株式会社 Manufacturing method of high phosphorus content slag and slag fertilizer and phosphoric acid fertilizer
JP6891844B2 (en) * 2018-03-29 2021-06-18 Jfeスチール株式会社 Phosphorus supply materials for water bodies and their manufacturing methods
JP7440192B2 (en) * 2021-02-27 2024-02-28 伏木 静子 How to store fertilizer raw materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632884A (en) * 1986-06-23 1988-01-07 昭和肥料株式会社 Manufacture of treated phosphate base fertilizer
JP4091745B2 (en) * 2000-01-14 2008-05-28 新日本製鐵株式会社 Manufacturing method of siliceous fertilizer
JP2004137136A (en) * 2001-10-31 2004-05-13 Jfe Steel Kk Raw material for silicate phosphate fertilizer, and its manufacturing method
JP5105322B2 (en) * 2003-04-28 2012-12-26 Jfeスチール株式会社 Silica phosphate fertilizer raw material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707811C1 (en) * 2017-06-28 2019-11-29 Ниппон Стил Корпорейшн Steel-smelting slag as raw material for fertilizer, method for production of steel-smelting slag as raw material for fertilizer, method of fertilizer production and method of fertilizer application
RU2710404C1 (en) * 2017-06-28 2019-12-26 Ниппон Стил Корпорейшн Steel-smelting slag as raw material for fertilizer, method for production of steel-smelting slag as raw material for fertilizer, method of fertilizer production and method of fertilizer application

Also Published As

Publication number Publication date
JP2014177381A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6040064B2 (en) Manufacturing method of mineral phosphophosphate fertilizer
US10377678B2 (en) Sulphur-based fertilizer composition with humic acid content
TWI675815B (en) Steelmaking slag for fertilizer source material, method for producing steelmaking slag for fertilizer source material, method for producing fertilizer, and fertilizer application method
CN1936041A (en) Steelsmelting dust-mud pelletizing slag-melting agent compounding method
WO2012016394A1 (en) Silicon-calcium-magnesium-sulfur fertilizer and its preparation method
CN106244148B (en) A kind of technique using steel mill's waste production soil conditioner
CN104136633A (en) Process for manufacturing reduced iron agglomerates
TWI675814B (en) Steelmaking slag for fertilizer source material, method for producing steelmaking slag for fertilizer source material, method for producing fertilizer, and fertilizer application method
CN104451132B (en) The method for reducing phosphorus-containing iron ore
JP2013155273A (en) Soil improvement material and soil improvement method
JP6006654B2 (en) Method for producing siliceous fertilizer
JP2019172547A (en) Manufacturing method of phosphoric acid fertilizer, and phosphoric acid fertilizer
JP2004345940A (en) Raw material for silicate phosphate fertilizer and method for manufacturing the same
Das et al. Chapter-2 agricultural and environmental value of steel industry by-products
CN106967864A (en) A kind of production method of novel liquid steel dephosphorization slag former
JP6119704B2 (en) Raw material for phosphosilicate fertilizer and method for producing the same
KR20070074737A (en) Granular fertilizer, granular residual gymsum fertilizer for preventing generation of malodor and manufacturing method thereof
JPH06157085A (en) Production of bulky lime-based flux in metal refining
JP2006063350A (en) Method for manufacturing sintered ore
JP7079100B2 (en) Silicic acid fertilizer and its manufacturing method
JP7386600B2 (en) Method for producing silicic acid fertilizer
JPS5841788A (en) Manufacture of dust-free lime and phosphatic fertilizer
JP2020019701A (en) Amorphous composition, water granulated molten matter, water granulated molten matter-containing composition, and fertilizer
JP2004290036A (en) Method for cultivating paddy rice by which paddy rice is inhibited from absorbing cadmium
KR20070075280A (en) Ggranular residual gymsum fertilizer for preventing generation of malodor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6040064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250