JP6038467B2 - Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery - Google Patents

Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery Download PDF

Info

Publication number
JP6038467B2
JP6038467B2 JP2012056159A JP2012056159A JP6038467B2 JP 6038467 B2 JP6038467 B2 JP 6038467B2 JP 2012056159 A JP2012056159 A JP 2012056159A JP 2012056159 A JP2012056159 A JP 2012056159A JP 6038467 B2 JP6038467 B2 JP 6038467B2
Authority
JP
Japan
Prior art keywords
lithium secondary
voltage
voltage drop
discharge
secondary batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012056159A
Other languages
Japanese (ja)
Other versions
JP2013190292A (en
Inventor
嘉夫 松山
嘉夫 松山
極 小林
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012056159A priority Critical patent/JP6038467B2/en
Publication of JP2013190292A publication Critical patent/JP2013190292A/en
Application granted granted Critical
Publication of JP6038467B2 publication Critical patent/JP6038467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電池が短絡している不良品であるかどうかを判定するリチウム二次電池の検査装置及びリチウム二次電池の検査方法の技術に関する。 The present invention relates to a technology for a lithium secondary battery inspection device and a lithium secondary battery inspection method for determining whether or not a battery is a defective product that is short-circuited.

リチウムイオン二次電池等の二次電池では、金属等の異物混入により内部短絡が発生することがある。二次電池が短絡(内部短絡及び外部短絡を含む)している不良品であると判定する方法として、電池を自己放電させて、基準時間の電圧降下量を測定する検査方法が知られている(例えば、特許文献1)。   In a secondary battery such as a lithium ion secondary battery, an internal short circuit may occur due to contamination of foreign substances such as metal. As a method for determining that a secondary battery is a defective product short-circuited (including an internal short-circuit and an external short-circuit), an inspection method is known in which a battery is self-discharged and a voltage drop amount at a reference time is measured. (For example, patent document 1).

図4を用いて、電圧降下量ΔEについて説明する。
なお、図4では、電圧降下量ΔEをグラフ図(横軸は時系列Tであって右側に向かうに従って時間が経過し、縦軸は電圧降下量ΔEであって下側に向かうほど電圧降下量ΔEが多くなる)によって表している。
The voltage drop amount ΔE will be described with reference to FIG.
In FIG. 4, the voltage drop amount ΔE is a graph (the horizontal axis is time series T and time elapses toward the right side, and the vertical axis is the voltage drop amount ΔE, and the voltage drop amount decreases toward the lower side. ΔE increases).

特許文献1に開示される従来の代表的な電池の検査方法では、自己放電前電圧E0と自己放電後電圧E1との差である電圧降下量ΔEによって近似線(図4における実線)を作成し、作成した近似線によって基準時間Tsにおける電圧降下量ΔEを算出し、算出した電圧降下量ΔEに基づいて、電池が短絡している不良品であるかどうかを判定している。   In the conventional typical battery inspection method disclosed in Patent Document 1, an approximate line (solid line in FIG. 4) is created by a voltage drop amount ΔE which is the difference between the pre-self-discharge voltage E0 and the post-self-discharge voltage E1. The voltage drop amount ΔE at the reference time Ts is calculated from the created approximate line, and it is determined whether the battery is a defective product that is short-circuited based on the calculated voltage drop amount ΔE.

しかし、実際の電圧挙動(図4における破線)と近似線とには乖離があるため、検査を行う二次電池の自己放電前の測定タイミングT0から自己放電後の測定タイミングT1までの経過時間(放電時間Tr)と、良否判定基準の電圧降下量の経過時間(基準時間Ts)とが異なる場合には、正確な良否判定ができない。放電時間Trと基準時間Tsとが異なる場合としては、例えば、工場の休業時間(土日祝等)に電圧測定装置を作動できない場合、或いは、電圧測定装置のサイクルタイムによって基準時間Ts経過後に電圧測定できない場合等が考えられる。   However, since there is a difference between the actual voltage behavior (broken line in FIG. 4) and the approximate line, the elapsed time from the measurement timing T0 before self-discharge of the secondary battery to be inspected to the measurement timing T1 after self-discharge ( When the discharge time Tr) is different from the elapsed time (reference time Ts) of the voltage drop amount based on the pass / fail criterion, an accurate pass / fail judgment cannot be made. Examples of the case where the discharge time Tr and the reference time Ts are different include, for example, the case where the voltage measuring device cannot be operated during the factory closing time (Saturdays, Sundays, holidays, etc.) The case where it cannot be considered.

一方、電圧の測定ポイントを増やすことによって、実際の電圧挙動に近い近似線を作成することができるものの、実際の検査工程では電圧測定装置のサイクルタイム又はコスト等の都合によって2点のみしか測定できない。そのため、電池の検査方法では、短絡している不良品の判定精度を向上することが求められている。   On the other hand, although an approximate line close to the actual voltage behavior can be created by increasing the voltage measurement points, only two points can be measured in the actual inspection process due to the cycle time or cost of the voltage measurement device. . Therefore, in the battery inspection method, it is required to improve the determination accuracy of defective products that are short-circuited.

特開2011−018482号公報JP 2011-018482 A

本発明の解決しようとする課題は、短絡している不良品の判定精度を向上できる電池の検査装置及び電池の検査方法を提供することである。   The problem to be solved by the present invention is to provide a battery inspection apparatus and a battery inspection method capable of improving the determination accuracy of a defective product that is short-circuited.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、リチウム二次電池が短絡している不良品であるかどうかを判定するリチウム二次電池の検査装置であって、複数のリチウム二次電池を充電する充電装置と、充電が完了した前記複数のリチウム二次電池の電圧を測定する電圧測定装置と、電圧を測定した前記複数のリチウム二次電池が良品であるかどうかを判定する制御装置と、を具備し、前記制御装置は、前記充電装置によって前記複数のリチウム二次電池を充電し、前記電圧測定装置によって前記複数のリチウム二次電池の電圧を自己放電前電圧として測定し、前記複数のリチウム二次電池を自己放電させ、前記電圧測定装置によって前記複数のリチウム二次電池の自己放電開始から任意時間経過後の電圧を自己放電後電圧として測定し、前記各リチウム二次電池について前記自己放電前電圧から自己放電後電圧を差し引いて算出した電圧降下量と、前記複数のリチウム二次電池の前記電圧降下量の中央値との差である電圧降下量偏差を算出し、前記電圧降下量偏差に前記任意時間に対する基準時間の割合を乗じて、前記基準時間における電圧降下量偏差を算出し、前記基準時間における電圧降下量偏差に基づいて、前記各リチウム二次電池が短絡している不良品であるかどうかを判定するものである。 That is, in claim 1, a lithium secondary battery inspection device that determines whether or not a lithium secondary battery is a defective product that is short-circuited, and a charging device that charges a plurality of lithium secondary batteries ; comprising a voltage measuring device for measuring a voltage of the plurality of lithium secondary battery charging is completed, and a control unit determining whether the plurality of lithium secondary battery is good of measurement of the voltage, the controller charges the plurality of lithium secondary batteries by the charging device, a voltage of the plurality of lithium secondary batteries was measured as a self-discharge before the voltage by the voltage measuring device, a plurality of lithium secondary batteries and self-discharge, the voltage of an arbitrary delay from its discharge start of the plurality of lithium secondary batteries by the voltage measuring device measures the self-discharge after the voltage, each lithium secondary The calculated voltage drop amount calculated by subtracting the voltage after self-discharge from the self-discharge before the voltage, the voltage drop amount difference which is a difference between the median value of the voltage drop amount of the plurality of lithium secondary batteries for ponds, The voltage drop deviation is multiplied by the ratio of the reference time to the arbitrary time to calculate the voltage drop deviation at the reference time, and the lithium secondary batteries are short-circuited based on the voltage drop deviation at the reference time. It is determined whether the product is defective.

請求項2においては、リチウム二次電池が短絡している不良品であるかどうかを判定するリチウム二次電池の検査方法であって、前記複数のリチウム二次電池を充電し、前記複数のリチウム二次電池の電圧を自己放電前電圧として測定し、前記複数のリチウム二次電池を自己放電させ、前記複数のリチウム二次電池の自己放電開始から任意時間経過後の電圧を自己放電後電圧として測定し、前記各リチウム二次電池について前記自己放電前電圧から自己放電後電圧を差し引いて算出した電圧降下量と、前記複数のリチウム二次電池の前記電圧降下量の中央値との差である電圧降下量偏差を算出し、前記電圧降下量偏差に前記任意時間に対する基準時間の割合を乗じて、前記基準時間における電圧降下量偏差を算出し、前記基準時間における電圧降下量偏差に基づいて、前記各リチウム二次電池が短絡している不良品であるかどうかを判定するものである。 In claim 2, a test method of a lithium secondary battery is determined whether the defective lithium secondary battery is short-circuited, to charge the plurality of lithium secondary batteries, the plurality of lithium The voltage of the secondary battery is measured as a voltage before self-discharge, the plurality of lithium secondary batteries are self-discharged, and the voltage after an arbitrary time has elapsed from the start of self-discharge of the plurality of lithium secondary batteries is defined as the voltage after self-discharge. The difference between the measured voltage drop amount calculated by subtracting the self-discharge voltage from the pre-self-discharge voltage for each lithium secondary battery and the median value of the voltage drop amounts of the plurality of lithium secondary batteries. A voltage drop amount deviation is calculated, and the voltage drop amount deviation is multiplied by a ratio of the reference time to the arbitrary time to calculate a voltage drop amount deviation at the reference time. Based on the drop amount deviation, the each lithium secondary battery is to determine whether defective shorted.

本発明の電池の検査装置及び電池の検査方法によれば、短絡している不良品の判定精度を向上できる。   According to the battery inspection apparatus and the battery inspection method of the present invention, it is possible to improve the determination accuracy of a short-circuited defective product.

本発明の実施形態に係る検査装置の構成を示す構成図。The block diagram which shows the structure of the test | inspection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る検査工程の流れを示すフロー図。The flowchart which shows the flow of the test process which concerns on embodiment of this invention. 電圧降下量偏差の時系列を示すグラフ図。The graph which shows the time series of voltage drop amount deviation. 従来技術である電圧降下量の時系列を示すグラフ図。The graph which shows the time series of the voltage drop amount which is a prior art.

図1を用いて、検査装置100の構成について説明する。
なお、図1の破線は電気信号線を表している。
The configuration of the inspection apparatus 100 will be described with reference to FIG.
In addition, the broken line of FIG. 1 represents the electric signal line.

検査装置100は、本発明の電池の検査装置の実施形態である。検査装置100は、リチウムイオン二次電池10・10・・・が短絡している不良品であるかどうかの検査を行う装置である。検査装置100は、リチウムイオン二次電池10・10・・・に接続されている。検査装置100は、電圧測定装置20と、充電装置30と、制御装置としてのコントローラ50と、を具備している。   The inspection apparatus 100 is an embodiment of a battery inspection apparatus of the present invention. The inspection apparatus 100 is an apparatus that inspects whether or not the lithium ion secondary batteries 10,... Are short-circuited defective products. The inspection device 100 is connected to the lithium ion secondary batteries 10. The inspection device 100 includes a voltage measuring device 20, a charging device 30, and a controller 50 as a control device.

電圧測定装置20は、リチウムイオン二次電池10・10・・・のそれぞれの電圧を測定するものである。電圧測定装置20は、リチウムイオン二次電池10・10・・・の正極端子11・11・・・と負極端子12・12・・・とにそれぞれ接続されている。また、電圧測定装置20は、コントローラ50に接続されている。   The voltage measuring device 20 measures each voltage of the lithium ion secondary batteries 10, 10... The voltage measurement device 20 is connected to the positive terminals 11, 11,... And the negative terminals 12, 12,. In addition, the voltage measuring device 20 is connected to the controller 50.

充電装置30は、リチウムイオン二次電池10・10・・・のそれぞれを充電するものである。充電装置30は、リチウムイオン二次電池10・10・・・の正極端子11・11・・・と負極端子12・12・・・とにそれぞれ接続されている。また、充電装置30は、コントローラ50に接続されている。   The charging device 30 charges each of the lithium ion secondary batteries 10. The charging device 30 is connected to the positive terminals 11, 11,... And the negative terminals 12, 12,. The charging device 30 is connected to the controller 50.

コントローラ50は、リチウムイオン二次電池10を自己放電させたとき、自己放電前後の電圧降下量ΔEに基づいて、リチウムイオン二次電池10の短絡の有無を検知して、リチウムイオン二次電池10が不良品であるかどうかの判定を行うものである。コントローラ50は、電圧測定装置20と、充電装置30と、に接続されている。   When the controller 50 self-discharges the lithium ion secondary battery 10, the controller 50 detects whether or not the lithium ion secondary battery 10 is short-circuited based on the voltage drop ΔE before and after the self-discharge. It is determined whether or not is a defective product. The controller 50 is connected to the voltage measuring device 20 and the charging device 30.

図2を用いて、検査工程S100について説明する。
なお、図2では、検査工程S100の流れをフローチャートにて表している。
The inspection process S100 will be described with reference to FIG.
In addition, in FIG. 2, the flow of inspection process S100 is represented with the flowchart.

検査工程S100は、本発明の電池の検査装置及び電池の検査方法の実施形態である。
検査工程S100は、リチウムイオン二次電池10・10・・・を自己放電させたとき、自己放電前後の電圧降下量ΔEに基づいて、リチウムイオン二次電池10・10・・・短絡の有無を検知して、リチウムイオン二次電池10・10・・・が不良品であるかどうかの判定を行う工程である。
The inspection step S100 is an embodiment of the battery inspection device and the battery inspection method of the present invention.
In the inspection step S100, when the lithium ion secondary batteries 10, 10... Are self-discharged, based on the voltage drop amount ΔE before and after the self-discharge, the presence or absence of the lithium ion secondary batteries 10.10. This is a step of detecting and determining whether or not the lithium ion secondary batteries 10, 10... Are defective.

ステップS110において、充電装置30(図1参照)によってリチウムイオン二次電池10・10・・・を充電する。このとき、充電装置30によって検査ロットの全てのリチウムイオン二次電池10・10・・・が同時に充電されるものとする。   In step S110, the lithium ion secondary batteries 10, 10... Are charged by the charging device 30 (see FIG. 1). At this time, it is assumed that all the lithium ion secondary batteries 10, 10... In the inspection lot are charged simultaneously by the charging device 30.

なお、検査ロットとは、同一の正極用電極シートから切り出した正極部材と、同一の負極用電極シートから切り出した負極部材と、を組み合わせて生成された捲回体を備えるリチウムイオン二次電池10・10・・・としている。   The inspection lot is a lithium ion secondary battery 10 including a wound body produced by combining a positive electrode member cut out from the same positive electrode sheet and a negative electrode member cut out from the same negative electrode sheet.・ 10 ...

ステップS120において、コントローラ50は、電圧測定装置20によって、充電が完了したリチウムイオン二次電池10・10・・・の自己放電前における自己放電前電圧E0をそれぞれ測定する。このとき、電圧測定装置20によって検査ロットの全てのリチウムイオン二次電池10・10・・・の自己放電前電圧E0が同時に測定されるものとす
る。
In step S120, the controller 50 measures the pre-self-discharge voltage E0 before the self-discharge of the lithium ion secondary batteries 10, 10,... At this time, it is assumed that the voltage measuring device 20 simultaneously measures the pre-self-discharge voltage E0 of all the lithium ion secondary batteries 10, 10.

ステップS130において、コントローラ50は、リチウムイオン二次電池10・10・・・を自己放電させる。このとき、検査ロットの全てのリチウムイオン二次電池10・10・・・が同時に自己放電されるものとする。   In step S130, the controller 50 self-discharges the lithium ion secondary batteries 10, 10. At this time, all the lithium ion secondary batteries 10, 10... In the inspection lot are simultaneously self-discharged.

ステップS140において、コントローラ50は、電圧測定装置20によって、自己放電開始から放電時間Tr経過後のリチウムイオン二次電池10・10・・・の自己放電後電圧E1を測定する。このとき、電圧測定装置20によって検査ロットの全てのリチウムイオン二次電池10・10・・・の自己放電後電圧E1が同時に測定されるものとする。   In step S140, the controller 50 uses the voltage measuring device 20 to measure the self-discharge voltage E1 of the lithium ion secondary batteries 10, 10. At this time, it is assumed that the self-discharge voltage E1 of all the lithium ion secondary batteries 10, 10.

なお、電圧測定装置20によってリチウムイオン二次電池10・10・・・の自己放電後における自己放電後電圧E1を測定するタイミングについては特に限定しない。言い換えれば、後述する基準電圧降下量偏差ΔEsの基準時間Tsと、実測の放電時間Trとは異なっていても良い。   In addition, the timing which measures the voltage E1 after the self-discharge after the self-discharge of the lithium ion secondary batteries 10, 10. In other words, a reference time Ts of a reference voltage drop amount deviation ΔEs described later may be different from an actually measured discharge time Tr.

ステップS150において、コントローラ50は、検査ロットの全てのリチウムイオン二次電池10・10・・・について、自己放電前電圧E0から自己放電後電圧E1を差し引いた電圧降下量ΔEを算出する。このとき、コントローラ50によって検査ロットの全てのリチウムイオン二次電池10・10・・・の電圧降下量ΔEが同時に算出されるものとする。   In step S150, the controller 50 calculates the voltage drop amount ΔE obtained by subtracting the post-self-discharge voltage E1 from the pre-self-discharge voltage E0 for all the lithium ion secondary batteries 10, 10. At this time, it is assumed that the voltage drop amount ΔE of all the lithium ion secondary batteries 10.

ステップS160において、コントローラ50は、検査ロットの全てのリチウムイオン二次電池10・10・・・の電圧降下量ΔEのうちから、中央値(メジアン)ΔEmを算出する。なお、中央値ΔEmは、検査工程S100において、良品であるリチウムイオン二次電池の電圧降下量の位置づけとなる。   In step S160, the controller 50 calculates a median (median) ΔEm from among the voltage drop amounts ΔE of all the lithium ion secondary batteries 10, 10... In the inspection lot. The median value ΔEm is the position of the voltage drop amount of a non-defective lithium ion secondary battery in the inspection step S100.

ステップS170において、コントローラ50は、検査ロットの全てのリチウムイオン二次電池10・10・・・について、それぞれの電圧降下量ΔEと中央値ΔEmとの差である電圧降下量偏差ΔE―ΔEmを算出する。   In step S170, the controller 50 calculates a voltage drop deviation ΔE−ΔEm that is the difference between the voltage drop ΔE and the median value ΔEm for all of the lithium ion secondary batteries 10, 10... In the inspection lot. To do.

ステップS180において、コントローラ50は、検査ロットの全てのリチウムイオン二次電池10・10・・・について、それぞれの電圧降下量偏差ΔE―ΔEmに放電時間Trに対する基準時間Tsの割合(Ts/Tr)を乗じて、基準時間Tsにおける電圧降下量偏差(基準時間)(ΔE―ΔEm)sを算出する。   In step S180, the controller 50 determines the ratio of the reference time Ts to the discharge time Tr (Ts / Tr) to the voltage drop amount deviation ΔE−ΔEm for all the lithium ion secondary batteries 10. To calculate a voltage drop amount deviation (reference time) (ΔE−ΔEm) s at the reference time Ts.

ステップS190において、コントローラ50は、検査ロットの全てのリチウムイオン二次電池10・10・・・について、それぞれの電圧降下量偏差(基準時間)(ΔE―ΔEm)sが基準電圧降下量偏差ΔEsより小さいかどうかを確認する。なお、基準電圧降下量偏差ΔEsとは、基準時間Tsにおける良品として許容される電圧降下量偏差ΔE―ΔEmであって、予めコントローラ50に設定されている値である。   In step S190, the controller 50 determines that each voltage drop amount deviation (reference time) (ΔE−ΔEm) s is greater than the reference voltage drop amount deviation ΔEs for all the lithium ion secondary batteries 10. Check if it is small. The reference voltage drop amount deviation ΔEs is a voltage drop amount deviation ΔE−ΔEm allowed as a non-defective product at the reference time Ts, and is a value set in the controller 50 in advance.

電圧降下量偏差(基準時間)(ΔE―ΔEm)sが基準電圧降下量偏差ΔEsより小さい場合には、ステップS210に移行する。電圧降下量偏差(基準時間)(ΔE―ΔEm)sが基準電圧降下量偏差ΔEs以上の場合には、ステップS220に移行する。   When the voltage drop amount deviation (reference time) (ΔE−ΔEm) s is smaller than the reference voltage drop amount deviation ΔEs, the process proceeds to step S210. When the voltage drop amount deviation (reference time) (ΔE−ΔEm) s is equal to or larger than the reference voltage drop amount deviation ΔEs, the process proceeds to step S220.

ステップS210において、コントローラ50は、判定対象のリチウムイオン二次電池10について、短絡していない良品であると判定する。   In step S210, the controller 50 determines that the lithium ion secondary battery 10 to be determined is a non-defective product that is not short-circuited.

ステップS220において、コントローラ50は、判定対象のリチウムイオン二次電池10について、短絡している不良品であると判定する。   In step S220, the controller 50 determines that the lithium ion secondary battery 10 to be determined is a defective product that is short-circuited.

図3を用いて、電圧降下量偏差ΔE―ΔEmについて説明する。
なお、図3では、電圧降下量偏差ΔE―ΔEmをグラフ図(横軸は時系列Tであって右側に向かうに従って時間が経過し、縦軸は電圧降下量偏差ΔE―ΔEmであって下側に向かうに従って電圧降下量偏差ΔE―ΔEmが大きくなる)によって表している。
The voltage drop amount deviation ΔE−ΔEm will be described with reference to FIG.
In FIG. 3, the voltage drop deviation ΔE−ΔEm is a graph (the horizontal axis is time series T and time elapses toward the right side, and the vertical axis is the voltage drop deviation ΔE−ΔEm. The voltage drop amount deviation ΔE−ΔEm increases as it goes to ().

検査工程S100では、電圧降下量ΔEと中央値ΔEmとの差である電圧降下量偏差ΔE―ΔEmによって近似線(図3における実線)を作成し、作成した近似線によって基準時間Tsにおける電圧降下量偏差(基準時間)(ΔE―ΔEm)sを算出し、算出した電圧降下量偏差(基準時間)(ΔE―ΔEm)sに基づいて電池が良品であるかどうかを判
定している。
In the inspection step S100, an approximate line (solid line in FIG. 3) is created by the voltage drop amount deviation ΔE−ΔEm which is the difference between the voltage drop amount ΔE and the median value ΔEm, and the voltage drop amount at the reference time Ts is created by the created approximate line. Deviation (reference time) (ΔE−ΔEm) s is calculated, and whether or not the battery is a good product is determined based on the calculated voltage drop amount deviation (reference time) (ΔE−ΔEm) s.

ここで、電圧降下量偏差ΔE―ΔEmによる近似線は直線性が高く、実際の電圧挙動(図3における破線)との乖離がほとんどない。この理由としては、電圧降下量偏差ΔE―ΔEmは、不良品のリチウムイオン2次電池10の自己放電量である電圧降下量ΔEと、良品のリチウムイオン2次電池10の自己放電量である中央値ΔEmとの差であり、言い換えれば、金属の短絡による電圧降下量である。つまり、金属の短絡による電圧降下量は、オームの法則に従って、時系列に対して直線的に電圧が低下するからである。   Here, the approximate line by the voltage drop amount deviation ΔE−ΔEm has high linearity, and there is almost no deviation from the actual voltage behavior (broken line in FIG. 3). This is because the voltage drop amount deviation ΔE−ΔEm is a voltage drop amount ΔE that is a self-discharge amount of a defective lithium ion secondary battery 10 and a center that is a self-discharge amount of a non-defective lithium ion secondary battery 10. This is the difference from the value ΔEm, in other words, the amount of voltage drop due to a short circuit of the metal. That is, the voltage drop due to the short circuit of the metal is linearly reduced with respect to time series according to Ohm's law.

検査装置100及び検査工程S100の効果について説明する。
従来、リチウムイオン二次電池10・10・・・が短絡している不良品であるかどうかの判定では、電圧降下量ΔEによって近似線を作成し、作成した近似線によって基準時間Tsにおける電圧降下量ΔEを算出し、算出した電圧降下量ΔEに基づいて電池が短絡している不良品であるかどうかを判定していた。しかし、実際の電圧挙動(図4における破線)と近似線とには乖離があるため、放電時間Trと基準時間Tsとが異なる場合には、正確な良否判定ができなかった。
The effects of the inspection apparatus 100 and the inspection process S100 will be described.
Conventionally, in determining whether or not the lithium ion secondary batteries 10, 10... Are defective short-circuited, an approximate line is created based on the voltage drop amount ΔE, and the voltage drop at the reference time Ts is created using the created approximate line. The amount ΔE is calculated, and whether or not the battery is a defective product is determined based on the calculated voltage drop amount ΔE. However, since there is a difference between the actual voltage behavior (broken line in FIG. 4) and the approximate line, when the discharge time Tr and the reference time Ts are different, an accurate pass / fail judgment cannot be made.

検査装置100及び検査工程S100によれば、短絡している不良品の判定精度を向上できる。すなわち、電圧降下量偏差ΔE―ΔEmによる近似線は直線性が高く、実際の電圧挙動と乖離がほとんどないため、放電時間Trと基準時間Tsとが異なる場合であっても、正確な良否判定ができる。   According to the inspection apparatus 100 and the inspection step S100, it is possible to improve the determination accuracy of a defective product that is short-circuited. That is, the approximate line based on the voltage drop amount deviation ΔE−ΔEm has high linearity, and there is almost no deviation from the actual voltage behavior. Therefore, even when the discharge time Tr and the reference time Ts are different, accurate pass / fail judgment is possible. it can.

また、電圧降下量偏差ΔE―ΔEmによる近似線は直線性が高く、実際の電圧挙動と乖離がほとんどないため、基準電圧降下量偏差ΔEsの基準時間Tsと実測の放電時間Trとが異なっていても短絡している不良品の判定精度を向上できる。すなわち、工場の休業時間(土日祝)に電圧測定装置20を作動できない場合、或いは、電圧測定装置20のサイクルタイムによって基準時間Ts経過後に電圧測定できない場合であっても短絡している不良品の判定がきる。   In addition, the approximate line based on the voltage drop deviation ΔE−ΔEm has high linearity and almost no deviation from the actual voltage behavior. Therefore, the reference time Ts of the reference voltage drop deviation ΔEs is different from the actually measured discharge time Tr. In addition, it is possible to improve the determination accuracy of defective products that are short-circuited. That is, even if the voltage measuring device 20 cannot be operated during the factory closed time (Saturdays, Sundays, and holidays) or even if the voltage cannot be measured after the lapse of the reference time Ts due to the cycle time of the voltage measuring device 20, Judgment is complete.

10 リチウムイオン二次電池
20 電圧測定装置
30 充電装置
100 検査装置
S100 検査工程
ΔE 電圧降下量
ΔE―ΔEm 電圧降下量偏差
(ΔE―ΔEm)s 電圧降下量偏差(基準時間)
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 20 Voltage measuring apparatus 30 Charging apparatus 100 Inspection apparatus S100 Inspection process ΔE Voltage drop amount ΔE-ΔEm Voltage drop amount deviation (ΔE-ΔEm) s Voltage drop amount deviation (reference time)

Claims (2)

リチウム二次電池が短絡している不良品であるかどうかを判定するリチウム二次電池の検査装置であって、
複数のリチウム二次電池を充電する充電装置と、
充電が完了した前記複数のリチウム二次電池の電圧を測定する電圧測定装置と、
電圧を測定した前記複数のリチウム二次電池が良品であるかどうかを判定する制御装置と、
を具備し、
前記制御装置は、
前記充電装置によって前記複数のリチウム二次電池を充電し、
前記電圧測定装置によって前記複数のリチウム二次電池の電圧を自己放電前電圧として測定し、
前記複数のリチウム二次電池を自己放電させ、
前記電圧測定装置によって前記複数のリチウム二次電池の自己放電開始から任意時間経過後の電圧を自己放電後電圧として測定し、
前記各リチウム二次電池について前記自己放電前電圧から自己放電後電圧を差し引いて算出した電圧降下量と、前記複数のリチウム二次電池の前記電圧降下量の中央値との差である電圧降下量偏差を算出し、
前記電圧降下量偏差に前記任意時間に対する基準時間の割合を乗じて、前記基準時間における電圧降下量偏差を算出し、
前記基準時間における電圧降下量偏差に基づいて、前記各リチウム二次電池が短絡している不良品であるかどうかを判定する、
リチウム二次電池の検査装置。
An inspection apparatus of a lithium secondary battery is determined whether the defective lithium secondary battery is short-circuited,
A charging device for charging a plurality of lithium secondary batteries ;
A voltage measuring device that measures voltages of the plurality of lithium secondary batteries that have been charged; and
A control device for determining whether or not the plurality of lithium secondary batteries whose voltages have been measured are non-defective products;
Comprising
The control device includes:
Charging the plurality of lithium secondary batteries by the charging device;
The voltage of the plurality of lithium secondary batteries is measured as a voltage before self-discharge by the voltage measuring device,
Self-discharge the plurality of lithium secondary batteries ,
By measuring the voltage after the elapse of an arbitrary time from the start of self-discharge of the plurality of lithium secondary batteries by the voltage measuring device,
Voltage drop amount that is the difference between the voltage drop amount calculated by subtracting the voltage after self-discharge from the voltage before self-discharge for each lithium secondary battery and the median value of the voltage drop amounts of the plurality of lithium secondary batteries Calculate the deviation,
Multiplying the voltage drop amount deviation by the ratio of the reference time to the arbitrary time to calculate the voltage drop amount deviation at the reference time,
Based on the voltage drop amount deviation in the reference time, it is determined whether each lithium secondary battery is a defective product short-circuited,
Inspection device for lithium secondary battery .
リチウム二次電池が短絡している不良品であるかどうかを判定するリチウム二次電池の検査方法であって、
前記複数のリチウム二次電池を充電し、
前記複数のリチウム二次電池の電圧を自己放電前電圧として測定し、
前記複数のリチウム二次電池を自己放電させ、
前記複数のリチウム二次電池の自己放電開始から任意時間経過後の電圧を自己放電後電圧として測定し、
前記各リチウム二次電池について前記自己放電前電圧から自己放電後電圧を差し引いて算出した電圧降下量と、前記複数のリチウム二次電池の前記電圧降下量の中央値との差である電圧降下量偏差を算出し、
前記電圧降下量偏差に前記任意時間に対する基準時間の割合を乗じて、前記基準時間における電圧降下量偏差を算出し、
前記基準時間における電圧降下量偏差に基づいて、前記各リチウム二次電池が短絡している不良品であるかどうかを判定する、
リチウム二次電池の検査方法。
A method for inspecting a lithium secondary battery to determine whether or not the lithium secondary battery is a short-circuited defective product,
Charging the plurality of lithium secondary batteries ;
The voltage of the plurality of lithium secondary batteries is measured as a voltage before self-discharge,
Self-discharge the plurality of lithium secondary batteries ,
Measuring the voltage after the elapse of an arbitrary time from the start of self-discharge of the plurality of lithium secondary batteries as the voltage after self-discharge
Voltage drop amount that is the difference between the voltage drop amount calculated by subtracting the voltage after self-discharge from the voltage before self-discharge for each lithium secondary battery and the median value of the voltage drop amounts of the plurality of lithium secondary batteries Calculate the deviation,
Multiplying the voltage drop amount deviation by the ratio of the reference time to the arbitrary time to calculate the voltage drop amount deviation at the reference time,
Based on the voltage drop amount deviation in the reference time, it is determined whether each lithium secondary battery is a defective product short-circuited,
Inspection method for lithium secondary battery .
JP2012056159A 2012-03-13 2012-03-13 Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery Active JP6038467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056159A JP6038467B2 (en) 2012-03-13 2012-03-13 Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056159A JP6038467B2 (en) 2012-03-13 2012-03-13 Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013190292A JP2013190292A (en) 2013-09-26
JP6038467B2 true JP6038467B2 (en) 2016-12-07

Family

ID=49390712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056159A Active JP6038467B2 (en) 2012-03-13 2012-03-13 Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6038467B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918785A (en) * 2015-12-27 2017-07-04 深圳市沃特玛电池有限公司 One kind detection self discharge of lithium iron phosphate battery method
KR102368711B1 (en) * 2017-12-14 2022-02-25 주식회사 엘지에너지솔루션 Apparatus for diagnosings battery cell
CN108663627B (en) * 2018-03-28 2020-03-24 维沃移动通信有限公司 Battery self-discharge detection method and battery self-discharge detection device
CN111413629B (en) * 2020-02-24 2024-02-02 上海蔚来汽车有限公司 Short circuit monitoring method, system and device for single battery in power battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649652B2 (en) * 2000-05-22 2005-05-18 日本電信電話株式会社 Lithium ion battery capacity estimation method, deterioration determination device, and lithium ion battery pack
JP4048905B2 (en) * 2002-10-09 2008-02-20 松下電器産業株式会社 Battery inspection method
JP4529364B2 (en) * 2003-03-24 2010-08-25 パナソニック株式会社 Cylindrical battery inspection method
JP4305020B2 (en) * 2003-03-25 2009-07-29 パナソニック株式会社 Lead storage battery state determination device and lead storage battery
JP5481974B2 (en) * 2009-07-07 2014-04-23 トヨタ自動車株式会社 Battery inspection method

Also Published As

Publication number Publication date
JP2013190292A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5744957B2 (en) Battery status judgment device
US9880225B2 (en) Battery state determination device
US11686699B2 (en) System and method for anomaly detection and total capacity estimation of a battery
JP6038467B2 (en) Inspection apparatus for lithium secondary battery and inspection method for lithium secondary battery
CN102393508A (en) Nondestructive diagnosis of battery performance
JP2012141166A (en) Self discharge defect detection device and self discharge defect detection method
CN105866551B (en) A kind of sodium-sulphur battery internal resistance detection method
KR101733073B1 (en) Inspection method of secondary battery
JP6090093B2 (en) Secondary battery inspection method and inspection device
KR20160080802A (en) Apparatus and Method for estimating resistance of battery pack
CN108027405B (en) Method for detecting internal short circuit
JP6167917B2 (en) Secondary battery inspection method and inspection device
US10768238B2 (en) Inspection method of electrical storage device and manufacturing method thereof
US20150234028A1 (en) State of Charge Gauge Device and State of Charge Gauge Method Thereof
JP6038716B2 (en) Non-aqueous electrolyte secondary battery inspection method
KR101462108B1 (en) A method for testing a measurement arrangement for voltage determination, and a method for charging a chargeable voltage source
JP5625282B2 (en) Battery deterioration determination device and battery deterioration determination method
JP5904367B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN112964994A (en) Method and device for measuring maximum current of battery
JP2011141259A5 (en)
JP2011141259A (en) Device for sorting lithium ion secondary battery
JP5640925B2 (en) Secondary battery inspection device and secondary battery inspection method
JP2019035734A (en) Inspection method and manufacturing method of power storage device
JP2011214938A (en) Battery tester for lead storage battery
JP2017116455A (en) Measuring method, and measuring apparatus, for resistances of power storage elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151211

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R151 Written notification of patent or utility model registration

Ref document number: 6038467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151