JP6037807B2 - Plant growth promoter - Google Patents

Plant growth promoter Download PDF

Info

Publication number
JP6037807B2
JP6037807B2 JP2012266025A JP2012266025A JP6037807B2 JP 6037807 B2 JP6037807 B2 JP 6037807B2 JP 2012266025 A JP2012266025 A JP 2012266025A JP 2012266025 A JP2012266025 A JP 2012266025A JP 6037807 B2 JP6037807 B2 JP 6037807B2
Authority
JP
Japan
Prior art keywords
silica
mass
silica sol
acid
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012266025A
Other languages
Japanese (ja)
Other versions
JP2014111512A (en
Inventor
西田 広泰
広泰 西田
小松 通郎
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2012266025A priority Critical patent/JP6037807B2/en
Publication of JP2014111512A publication Critical patent/JP2014111512A/en
Application granted granted Critical
Publication of JP6037807B2 publication Critical patent/JP6037807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、安価で環境負荷が少なく、植物の成長に効果的な可溶性シリカを多く含む植物成長促進剤とその製造方法を提供するものである。ここで、以下、「可溶性シリカ」は、モノケイ酸及び重合度2〜8のポリケイ酸を表すものとする。   The present invention provides a plant growth promoter containing a large amount of soluble silica that is inexpensive, has a low environmental impact, and is effective for plant growth, and a method for producing the same. Here, hereinafter, “soluble silica” represents monosilicic acid and polysilicic acid having a polymerization degree of 2 to 8.

近年、人口増加と水資源問題により地球が食糧と環境の危機に向かっているとの報告が国連から発表され、これらの問題を解決するために農業技術の向上が必要不可欠であるとの見解が示された。水資源の豊富な日本においてもその例外ではなく、より効率的かつ環境負荷の少ない農作物及び植物の育成方法が望まれている。   In recent years, the United Nations has reported that the Earth is heading for food and environmental crises due to population growth and water resources issues, and the view that improving agricultural technology is indispensable to solve these problems. Indicated. Even in Japan, where water resources are abundant, this is not an exception, and more efficient and less environmental impact crop and plant growing methods are desired.

植物の育成で、肥料は育成効率を高める重要な因子であり、植物の必須元素であるN、P、K、Ca、Mg、S、Fe、Mn、B、Zn、Mo、Cu、Clを含む化学肥料が数多く提案されている。これらの化学肥料は植物の育成に大きな効果がある一方で、使用過多による土壌の酸性化や河川への流出によるアオコや赤潮の発生といった環境への負荷が問題となっている。   Fertilizer is an important factor that increases the growth efficiency in plant growth, and contains N, P, K, Ca, Mg, S, Fe, Mn, B, Zn, Mo, Cu, Cl, which are essential elements of plants Many chemical fertilizers have been proposed. While these chemical fertilizers have a great effect on plant growth, there are problems with environmental load such as acidification of soil due to overuse and the occurrence of red sea urchins and red tides due to runoff into rivers.

そこで、環境への負荷が少なく植物の成長促進効果のある元素としてSiに注目が集まっている。Siは植物の成長を助ける有用成分として知られており、植物の細胞壁の強化、光合成の促進、根の活性化、耐倒伏性の向上、病害や虫害への抵抗力増加といった効果が認められている。またSiはケイ酸として自然の水の中に普遍的に存在しており、環境負荷が少なく、食物、飲料水に含まれていても無害である。さらにSiの地殻埋蔵量は酸素に次いで2番目に多く、コストパフォーマンスも非常に高い。これらの特徴から、特許文献1又は特許文献2といったSiを含む種々の植物成長促進剤が提案されている。   Therefore, Si has been attracting attention as an element that has little environmental impact and has an effect of promoting plant growth. Si is known as a useful component that helps plant growth, and has been recognized as effective in strengthening plant cell walls, promoting photosynthesis, activating roots, improving lodging resistance, and increasing resistance to disease and insect damage. Yes. Si is universally present in natural water as silicic acid, has a low environmental load, and is harmless even if contained in food and drinking water. Furthermore, the amount of Si crustal reserves is the second largest after oxygen, and the cost performance is very high. From these characteristics, various plant growth promoters containing Si, such as Patent Document 1 or Patent Document 2, have been proposed.

非特許文献1によると、植物が最もSiを吸収しやすいケイ素化合物の形態はモノケイ酸Si(OH)4であることが報告されており、モノケイ酸はポリケイ酸から下記式[1]に示す平衡反応により生成する。 According to Non-Patent Document 1, it has been reported that the form of a silicon compound in which plants are most likely to absorb Si is monosilicate Si (OH) 4 , and the monosilicate is an equilibrium represented by the following formula [1] from polysilicate. Produced by reaction.

Figure 0006037807
Figure 0006037807

非特許文献2及び非特許文献3によると、ポリケイ酸の溶解度はpH、粒子の大きさによって変化し、pHは9以上の時に溶解度が大きくなり、pHが同じ場合は粒子サイズが小さいほど溶解度が高くなると報告されている。また、非特許文献4によると共存塩類の種類や濃度によっても増減する。特許文献3では、共存塩の種類及びモル比を調整することにより、モノケイ酸をSiO2換算で100ppm以上含むケイ酸水溶液の製造方法を提案している。しかし、この方法ではケイ酸濃度を高くするとケイ酸が溶解せず沈降するため100〜300ppmの範囲で使用することが推奨されており、高濃度での使用ができないという問題があった。これに対して、特許文献4では植物成長促進剤中に含まれるシリカコロイド粒子のサイズを調整することで、粒子の沈降を抑制しかつケイ酸の溶解度を高めた植物の成長促進剤が提案されており、固形分濃度として10000ppm以下で使用することが可能とされている。しかし、植物の成長促進効果において必ずしも満足できるものではなく、成長促進効果を高めるために粒子サイズを小さくして溶解度を高めても、平均粒子径が3nm以下になるとコロイド溶液として不安定でゲル化を起こし、植物への吸収が悪くなるという問題があった。 According to Non-Patent Document 2 and Non-Patent Document 3, the solubility of polysilicic acid varies depending on the pH and particle size, and the solubility increases when the pH is 9 or more. When the pH is the same, the smaller the particle size, the higher the solubility. Reported to be higher. Further, according to Non-Patent Document 4, the amount is increased or decreased depending on the type and concentration of the coexisting salts. Patent Document 3 proposes a method for producing an aqueous silicic acid solution containing 100 ppm or more of monosilicic acid in terms of SiO 2 by adjusting the type and molar ratio of the coexisting salt. However, in this method, when the silicic acid concentration is increased, the silicic acid does not dissolve and settles, so it is recommended to use it in the range of 100 to 300 ppm, and there is a problem that it cannot be used at a high concentration. On the other hand, Patent Document 4 proposes a plant growth promoter that regulates the size of the silica colloid particles contained in the plant growth promoter, thereby suppressing sedimentation of the particles and increasing the solubility of silicic acid. It can be used at a solid content concentration of 10,000 ppm or less. However, the plant growth promotion effect is not always satisfactory, and even if the particle size is reduced to increase the growth promotion effect and the solubility is increased, the colloidal solution is unstable and gelled when the average particle size is 3 nm or less. There was a problem that the absorption into the plant worsened.

特開2009−73771号公報JP 2009-73771 A 特開2005−67996号公報JP 2005-67996 A 特開平7−69764号公報Japanese Patent Laid-Open No. 7-69964 特開平8−81317号公報JP-A-8-81317

高橋英一著「日本土壌肥料科学雑誌」49巻5号、p.357、1978年発行Published by Eiichi Takahashi, “Soil Fertilizer Science Magazine”, Volume 49, No. 5, p.357, 1978 M.E.Nordberg著 「Journal of the AmericanCeramic Society」Vol.41、p.517、1958年発行Published by M.E.Nordberg "Journal of the American Ceramic Society" Vol.41, p.517, 1958 G.B.Alexamder著「The Journal of PhysicalChemistry」Vol.61、p.1563、1957年発行"The Journal of Physical Chemistry" by G.B.Alexamder, Vol.61, p.1563, published in 1957

本発明は、環境負荷が少なく、安価で植物の成長促進効果の高い植物の成長促進剤を提供することを目的とする。   An object of the present invention is to provide a plant growth promoter that has a low environmental load, is inexpensive, and has a high plant growth promoting effect.

本発明者は上記課題を解決するため鋭意努力を重ねた結果、粒子径が小さく溶解度の高い可溶性シリカが全シリカ量に対して10〜80質量%存在し、更に可溶性シリカに対してモノケイ酸が30〜80質量%安定に存在するシリカゾルを植物に作用させることで、顕著な植物の成長促進効果が得られることを見出し、本発明を完成するに至った。   As a result of intensive efforts to solve the above problems, the present inventors have found that soluble silica having a small particle size and high solubility is present in an amount of 10 to 80% by mass based on the total amount of silica, and further monosilicic acid is present relative to the soluble silica. It has been found that a significant plant growth promoting effect can be obtained by allowing a silica sol that is stably present at 30 to 80% by mass to act on plants, and the present invention has been completed.

本発明によれば、植物の細胞壁の強化、光合成の促進、根の活性化、耐倒伏性の向上、病害や虫害への抵抗力増加といった植物成長効果の高い植物の成長促進剤が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the plant growth promoter with a high plant growth effect, such as reinforcement | strengthening of the cell wall of a plant, acceleration | stimulation of photosynthesis, activation of a root, improvement of lodging resistance, and resistance to a disease and insect damage, is provided. .

本発明における植物の成長促進剤は、シリカ微粒子が分散媒に分散してなるシリカゾル(シリカ微粒子濃度10〜40質量%)であって、該シリカ微粒子の全シリカ量(SiO2換算)に対して可溶性シリカをSiO2換算で10〜80質量%含有し、かつ、該可溶性シリカは、モノケイ酸及び重合度2〜8のポリケイ酸からなり、該可溶性シリカの全量(SiO2換算)に対して該モノケイ酸をSiO2換算で30〜80質量%含有すること特徴とするものである。 The plant growth promoter in the present invention is a silica sol (silica fine particle concentration of 10 to 40% by mass) in which silica fine particles are dispersed in a dispersion medium, and is based on the total silica amount (SiO 2 equivalent) of the silica fine particles. The soluble silica contains 10 to 80% by mass in terms of SiO 2 , and the soluble silica is composed of monosilicic acid and polysilicic acid having a polymerization degree of 2 to 8, and the total amount of the soluble silica (in terms of SiO 2 ) the monosilicic acid is intended, characterized by containing 30 to 80 wt% in terms of SiO 2.

前記植物は、イネ科植物、特に、芝属植物であることが好ましい。   The plant is preferably a gramineous plant, and in particular, a turfaceous plant.

前記分散媒は、例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。前記分散媒中に、有機溶媒やキレート剤などの有機物を含む場合は、例えば水田などで使用する際、BODの増加を招く可能性がある。   For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion medium. When the dispersion medium contains an organic substance such as an organic solvent or a chelating agent, for example, when used in a paddy field, the BOD may increase.

前記シリカゾルに含まれるシリカ微粒子の濃度は、SiO2換算で10〜40質量%、好ましくは20〜40質量%の範囲内にあることが望ましい。固形分濃度が10質量%未満の場合は、保存容器が大型化し運搬費用が高額となるため、実用的でない。また、固形分濃度40質量%超の場合は、シリカ微粒子が重合して保存時に沈殿物やゲルが生成しやすく、乾燥時にスケールがつきやすいといった問題があるので好ましくない。 The concentration of the silica fine particles contained in the silica sol is 10 to 40% by mass, preferably 20 to 40% by mass in terms of SiO 2 . When the solid content concentration is less than 10% by mass, the storage container becomes large and the transportation cost becomes high, which is not practical. In addition, when the solid content concentration exceeds 40% by mass, the silica fine particles are polymerized, and precipitates and gels are easily generated during storage, and there is a problem that scales are easily formed during drying.

前記シリカゾルに含まれるモノケイ酸はSi(OH)4であり、植物が最もSiを吸収しやすいケイ素化合物の形態であることが非特許文献1に示されている。本発明において可溶性シリカ成分の全量に対して30〜80質量%、好ましくは40〜80質量%の範囲にあることが好ましい。モノケイ酸の含有率が低すぎると、Siの植物への吸収が悪くなるため、期待する植物の成長促進効果は得られない。また、モノケイ酸の含有率が高すぎると、シリカ微粒子が重合して沈殿物やゲルが生成しやすいといった問題があるので好ましくない。 Non-Patent Document 1 shows that monosilicic acid contained in the silica sol is Si (OH) 4 , which is a form of a silicon compound that is most easily absorbed by plants. In this invention, it is 30-80 mass% with respect to the whole quantity of a soluble silica component, Preferably it is in the range of 40-80 mass%. If the monosilicic acid content is too low, the absorption of Si into the plant becomes poor, so that the expected growth promoting effect of the plant cannot be obtained. On the other hand, if the content of monosilicic acid is too high, silica fine particles are polymerized and precipitates and gels are easily generated, which is not preferable.

前記シリカゾルに含まれる可溶性シリカは、モノケイ酸及び重合度2〜8のポリケイ酸からなる。本発明において、植物が最もSiを吸収しやすいケイ素化合物はモノケイ酸であり、式[1]に示す平衡反応により生成される。この平衡反応は水を必要とする反応であり、シリカ微粒子と水が接触する部分から反応が起こるため、シリカ微粒子は粒子径が小さく表面積が大きいことが好ましい。つまり、粒子径の小さいシリカ微粒子を多く含むシリカゾルは、モノケイ酸を生成しやすく、植物の成長促進剤として有効である。シリカ微粒子の粒子径は、ポリケイ酸の重合度が小さくなるにつれて小さくなり、ポリケイ酸の重合度の小さい粒子を多く含むことでモノケイ酸を効率的に生成させることができる。また、ポリケイ酸の重合度が大きすぎると、重合度が大きくなるにつれて粒子径が大きくなるため、モノケイ酸を効率的に生成させることができず好ましくない。しかし重合度の小さい粒子は、動的光散乱法やレーザー回折法といった一般的な粒度分布測定方法で検出することは困難であり、トリメチルシリル化法(日本金属学会誌、第44巻、p352)といった方法で検出される。
前記シリカゾルに含まれる可溶性シリカは、シリカ微粒子の全シリカ量に対して10〜80質量%、好ましくは50〜80質量%の範囲にあることが好ましい。可溶性シリカ成分が低すぎると、モノケイ酸の生成量が少なくなる。モノケイ酸量が少なくなると、Siの植物への吸収が悪くなるため、期待する植物の成長促進効果は得られない。また、可溶性シリカ成分が高すぎると、シリカ微粒子が重合して沈殿物やゲルが生成しやすいといった問題があるので好ましくない。
Soluble silica contained in the silica sol is composed of monosilicic acid and polysilicic acid having a polymerization degree of 2 to 8. In the present invention, the silicon compound that the plant is most likely to absorb Si is monosilicic acid, which is produced by an equilibrium reaction represented by the formula [1]. This equilibrium reaction is a reaction that requires water, and the reaction takes place from the portion where the silica fine particles and water are in contact with each other. Therefore, the silica fine particles preferably have a small particle size and a large surface area. That is, a silica sol containing a large amount of silica fine particles having a small particle diameter easily produces monosilicic acid and is effective as a plant growth promoter. The particle diameter of the silica fine particles becomes smaller as the degree of polymerization of polysilicic acid becomes smaller, and monosilicic acid can be efficiently generated by containing many particles having a small degree of polymerization of polysilicic acid. On the other hand, if the degree of polymerization of the polysilicic acid is too large, the particle diameter increases as the degree of polymerization increases, which is not preferable because monosilicic acid cannot be efficiently generated. However, it is difficult to detect particles having a small degree of polymerization by a general particle size distribution measurement method such as a dynamic light scattering method or a laser diffraction method. Detected by the method.
The soluble silica contained in the silica sol is preferably in the range of 10 to 80% by mass, and preferably in the range of 50 to 80% by mass, based on the total amount of silica in the silica fine particles. If the soluble silica component is too low, the amount of monosilicic acid produced is reduced. When the amount of monosilicic acid decreases, the absorption of Si into the plant is deteriorated, so that the expected growth promoting effect of the plant cannot be obtained. On the other hand, if the soluble silica component is too high, there is a problem that silica fine particles are polymerized and precipitates and gels are easily generated, which is not preferable.

前記シリカゾルは、シリカ粉末とケイ酸塩を水系溶媒中で混合し得られたスラリーを水熱処理し、必要によってイオン交換、濃縮の操作を行うことにより調製することが可能である。水熱処理は130〜150℃にて行うことが好ましい。   The silica sol can be prepared by hydrothermally treating a slurry obtained by mixing silica powder and silicate in an aqueous solvent, and performing ion exchange and concentration as necessary. The hydrothermal treatment is preferably performed at 130 to 150 ° C.

前記シリカ粉末は、ヒュームドシリカであることが好ましい。特に疎水性のヒュームドシリカであることが好ましく、AEROSIL(登録商標):RX300などが好適である。   The silica powder is preferably fumed silica. Hydrophobic fumed silica is particularly preferable, and AEROSIL (registered trademark): RX300 is preferable.

前記ケイ酸塩は、溶解度の高い物質が好ましく、ケイ酸リチウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、ケイ酸カリウムなどが好適である。   The silicate is preferably a highly soluble substance, and lithium silicate, sodium silicate, sodium metasilicate, potassium silicate, and the like are preferable.

前記シリカゾルは、前記製造方法の他にも種々の方法により調製することが可能であるが、前記所定の要件を満たすシリカゾルの製造が可能であれば、本発明に使用することができる。代表的には次の製法を挙げることができる。
1)アルカリ金属ケイ酸塩、第3級アンモニウムケイ酸塩、第4級アンモニウムケイ酸塩またはグアニジンケイ酸塩から選ばれる水溶性ケイ酸塩を、脱アルカリすることにより得られるケイ酸液をアルカリ存在下で加熱することによりケイ酸を重合する工程を含むシリカゾルの製造方法。
2)ケイ酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、加熱することによりシリカヒドロゲルを解膠する工程を含むシリカゾルの製造方法。
3)ヒュームドシリカとケイ酸塩を水溶媒中で混合し得られたスラリーを水熱処理する工程を含むシリカゾルの製造方法。
なお、市販のシリカゾルであって、前記所定の要件を満たすシリカゾルであれば、本発明に使用することができる。
The silica sol can be prepared by various methods in addition to the production method, but can be used in the present invention as long as it can produce a silica sol that satisfies the predetermined requirements. Typically, the following production methods can be mentioned.
1) A silicate solution obtained by dealkalizing a water-soluble silicate selected from alkali metal silicate, tertiary ammonium silicate, quaternary ammonium silicate or guanidine silicate is alkalinized. A method for producing a silica sol comprising a step of polymerizing silicic acid by heating in the presence.
2) A method for producing a silica sol, comprising washing a silica hydrogel obtained by neutralizing a silicate with an acid to remove salts, adding an alkali, and then heating the silica hydrogel by heating.
3) A method for producing a silica sol, comprising a step of hydrothermally treating a slurry obtained by mixing fumed silica and silicate in an aqueous solvent.
In addition, if it is a commercially available silica sol and the silica sol satisfy | fills the said predetermined requirement, it can be used for this invention.

本発明では、植物の成長促進剤と共に、肥料成分を混合又は併用することができる。   In this invention, a fertilizer component can be mixed or used together with a plant growth promoter.

肥料成分は、植物の必須元素であるN、P、K、Ca、O、H、C、Mg、S、Fe、Mn、B、Zn、Mo、Cu、Clの供給源となる無機物又は有機物を使用することができる。そのような無機物としては、例えば硫酸アンモニウム、塩化アンモニウム、尿素、硝酸アンモニウム、リン酸アンモニウム、硝酸ナトリウム、石灰窒素、過リン酸石灰、重過リン酸石灰、熔成リン肥、焼成リン肥、塩化カリウム、硫酸カリウム、リン酸カリウム、ケイ酸カリウム、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウムなどが挙げられるが、特に物質を限定するものではない。また、有機物としては、例えば、鶏糞、牛糞、バーク堆肥、ペプトン、ミエキ、発酵エキス、有機酸のカルシウム塩などが挙げられるが、特に物質を限定するものではない。これらの肥料成分と混合又は併用することで、より顕著な植物の成長効果を得ることができる。   The fertilizer component is an inorganic or organic substance that is a source of N, P, K, Ca, O, H, C, Mg, S, Fe, Mn, B, Zn, Mo, Cu, and Cl, which are essential elements of plants. Can be used. Examples of such inorganic substances include ammonium sulfate, ammonium chloride, urea, ammonium nitrate, ammonium phosphate, sodium nitrate, lime nitrogen, superphosphate lime, heavy superphosphate, molten phosphorus fertilizer, calcined phosphorus fertilizer, potassium chloride, Examples include potassium sulfate, potassium phosphate, potassium silicate, magnesium sulfate, magnesium nitrate, and magnesium chloride, but the substance is not particularly limited. Examples of the organic substance include chicken dung, cow dung, bark compost, peptone, Mieki, fermented extract, calcium salt of organic acid, and the like, but the substance is not particularly limited. By mixing or using in combination with these fertilizer components, a more prominent plant growth effect can be obtained.

前述の植物の成長促進剤は、使用する際に土壌に適量を投入し十分混和した後、植物を植え付けてもよいし、あるいは、植物の根に直接使用することもできる。また、その際前述の肥料成分と併用することもできる。散布量は培地に対して、0.5g/m2程度であることが望ましい。 The above-mentioned plant growth promoter may be used after planting a plant after adding an appropriate amount to the soil and mixing well, or may be used directly on the root of the plant. Moreover, it can also use together with the above-mentioned fertilizer component in that case. The amount of application is desirably about 0.5 g / m 2 with respect to the medium.

前述の植物の成長促進剤は、適当な固形分濃度に水で希釈して使用することができる。市販されているシリカゾルの固形分濃度は、通常、10〜60質量%であるが、本発明の植物の成長促進剤の場合は、固形分濃度を1質量%以下、好ましくは0.01〜0.5質量%の範囲に水で希釈して使用することが好ましい。   The aforementioned plant growth promoter can be used after diluting with water to an appropriate solid content concentration. The solid content concentration of the commercially available silica sol is usually 10 to 60% by mass, but in the case of the plant growth promoter of the present invention, the solid content concentration is 1% by mass or less, preferably 0.01 to 0%. It is preferable to use it diluted with water in the range of 0.5 mass%.

以下、実施例及び比較例を示して本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

実施例及び比較例における分析又は定量の方法を以下に示す。   Methods for analysis or quantification in Examples and Comparative Examples are shown below.

[シリカ微粒子濃度測定方法]
シリカゾル10gに50体積%硫酸水溶液2mlを加え、白金皿上にて蒸発乾固し、得られた固形分を1000℃にて1時間焼成後、冷却して秤量する。次に、秤量した固形物を微量の50体積%硫酸水溶液にとかし、更にフッ化水素酸20mlを加えてから、白金皿上にて蒸発乾固し、1000℃にて15分焼成後、冷却して秤量する。これらの重量差によりシリカゾル中のシリカ微粒子の濃度を求めた。
[Silica fine particle concentration measurement method]
2 ml of a 50% by volume sulfuric acid aqueous solution is added to 10 g of silica sol, evaporated to dryness on a platinum dish, and the obtained solid content is baked at 1000 ° C. for 1 hour, then cooled and weighed. Next, the weighed solid is dissolved in a small amount of 50% by volume sulfuric acid solution, and further 20 ml of hydrofluoric acid is added, and then evaporated to dryness on a platinum dish, baked at 1000 ° C. for 15 minutes, and then cooled. Weigh. The concentration of the silica fine particles in the silica sol was determined from these weight differences.

[可溶性シリカ含有量及びモノケイ酸含有量測定方法]
トリメチルシリル3mlに、CaOにて脱水したメタノール6mlを加えて撹拌した後、ヘキサメチルジシロキサン9mlを添加して、5分撹拌した。撹拌を維持しつつ、シリカゾルを100ml添加し、20分以上撹拌した。作成したサンプルを全量回収し、上澄み液を分離した後、イオン交換樹脂(Amberlite15(登録商標))を2g添加して1.5時間撹拌した。得られたサンプルから前記イオン交換樹脂を分離した後、水洗を行い、再度、同様のイオン交換樹脂を2g添加して1.5時間撹拌した。得られたサンプルから前記イオン交換樹脂を分離し、ガスクロマトグラフィー用の試料とした。
次に、検出器として水素炎イオン化検出器を用いたガスクロマトグラフ質量分析計を用いて、試料の分析を行った。カラムは直径2mm、長さ1mのステンレス管に充填剤としてDexsil400(登録商標)及びクロモソルブWを充填したものを使用し、キャリヤーガスはアルゴンを使用し、試料導入部及び検出器の温度は400℃に設定した。カラムの温度は70℃から350℃まで0.125℃/sの速度で昇温しながら分析を行った。
分析の結果について、表1の検出温度及び質量電荷比m/eからモノケイ酸及び可溶性シリカのピーク帰属を行い、得られた全ピークの総面積からそれぞれのピーク面積の比率を求めることで、試料中のモノケイ酸量及び可溶性シリカ量を算出した。
[Method for measuring soluble silica content and monosilicic acid content]
After adding 6 ml of methanol dehydrated with CaO to 3 ml of trimethylsilyl and stirring, 9 ml of hexamethyldisiloxane was added and stirred for 5 minutes. While maintaining stirring, 100 ml of silica sol was added and stirred for 20 minutes or more. The entire amount of the prepared sample was collected and the supernatant was separated. Then, 2 g of ion exchange resin (Amberlite 15 (registered trademark)) was added and stirred for 1.5 hours. The ion exchange resin was separated from the obtained sample, washed with water, added again with 2 g of the same ion exchange resin, and stirred for 1.5 hours. The ion exchange resin was separated from the obtained sample and used as a sample for gas chromatography.
Next, the sample was analyzed using a gas chromatograph mass spectrometer using a flame ionization detector as a detector. The column used was a 2 mm diameter, 1 m long stainless steel tube filled with Dexsil 400 (registered trademark) and Chromosolv W as fillers, the carrier gas used argon, and the temperature of the sample inlet and detector was 400 ° C. Set to. The column temperature was analyzed while increasing the temperature from 70 ° C. to 350 ° C. at a rate of 0.125 ° C./s.
As a result of the analysis, the peaks of monosilicic acid and soluble silica are assigned from the detection temperature and mass-to-charge ratio m / e in Table 1, and the ratio of each peak area is obtained from the total area of all obtained peaks. The amount of monosilicic acid and the amount of soluble silica were calculated.

[シリカ微粒子濃度測定方法]及び[可溶性シリカ量及びモノケイ酸量測定方法]から得られた値を用いて、可溶性シリカ量/全シリカ量、及びモノケイ酸量/可溶性シリカ量の値を算出した。   Using the values obtained from [Method for measuring concentration of silica fine particles] and [Method for measuring amount of soluble silica and amount of monosilicic acid], the values of soluble silica amount / total silica amount and monosilicic acid amount / soluble silica amount were calculated.

以下に実施例を示し、本発明をさらに具体的に説明する。   The following examples illustrate the present invention more specifically.

[実施例1]
[散布液の調製]
水995gに市販のシリカ粉末(AEROSIL(登録商標):RX300)70gと、メタケイ酸ナトリウム100g及び水酸化ナトリウム5gを混合して、SiO2換算濃度8.3質量%の溶液を調製した。この溶液を150℃で5時間加熱し、減圧蒸発装置にてSiO2換算濃度が40質量%となるまで濃縮を行い、植物の成長促進剤を得た。該植物の成長促進剤100gについて、可溶性シリカ成分含有量及びモノケイ酸含有量を測定した結果、全シリカ量は40gで、可溶性シリカ量は31.7gで、可溶性シリカ量中のモノケイ酸量は15.5gであった。また、シリカゾルを室温で60日保管したが、沈殿物の生成及びゲル化は見られなかった。該シリカゾル50gと肥料(商標:微粉ハイポネックス)12gを水5938gと混合し、散布液とした。
[Example 1]
[Preparation of spray liquid]
995 g of water was mixed with 70 g of commercially available silica powder (AEROSIL (registered trademark): RX300), 100 g of sodium metasilicate and 5 g of sodium hydroxide to prepare a solution having a SiO 2 equivalent concentration of 8.3 mass%. This solution was heated at 150 ° C. for 5 hours, and concentrated with a vacuum evaporator until the SiO 2 equivalent concentration became 40% by mass, to obtain a plant growth promoter. As a result of measuring the soluble silica component content and the monosilicic acid content for 100 g of the plant growth promoter, the total silica content was 40 g, the soluble silica content was 31.7 g, and the monosilicic acid content in the soluble silica content was 15 0.5 g. Moreover, although the silica sol was stored at room temperature for 60 days, no precipitate was formed or gelled. 50 g of the silica sol and 12 g of fertilizer (trademark: fine powder Hyponex) were mixed with 5938 g of water to obtain a spray solution.

[植物育成試験]
ベント芝の株を値切りして、畑地土壌からなる培地に植えつけた。芝を植えつけた日に、該散布液を、SiO2の散布量が各培地の芝に対して0.5g/m2となるように散布した。植付け日から30日後に、再度、該散布液肥を散布した他は、水だけを毎日1回散布した。
[Plant growth test]
Bent turf stocks were cut and planted in a medium consisting of upland soil. On the day when the turf was planted, the spray solution was sprayed so that the amount of SiO 2 sprayed was 0.5 g / m 2 on the grass of each medium. 30 days after the planting date, only water was sprayed once a day except that the sprayed liquid fertilizer was sprayed again.

[育成効果の確認]
上記のようにして育成したベント芝の成長量を、芝の植付け日から60日後に測定した。測定に当たり、先ず10cm×10cmの芝を10個切り取り、付着物を水洗除去して、地上部の草丈と根長を測定した。次いで、室温で1日中乾燥後、葉部と根部を切り離し、それぞれの重量を測定した。さらに、切り離した葉部と根部を酸に溶解した後、誘導結合プラズマ発光分析法にてSiの含有量を測定した。それぞれの測定結果を表1に示す。なお、各測定値は平均値である。
[Confirmation of training effect]
The amount of bent turf grown as described above was measured 60 days after the date of turf planting. In the measurement, first, 10 pieces of 10 cm × 10 cm turf were cut out, and the attached matter was washed and removed, and the plant height and root length of the above-ground part were measured. Subsequently, after drying at room temperature all day, the leaf part and the root part were separated, and the respective weights were measured. Further, after the separated leaf and root were dissolved in acid, the Si content was measured by inductively coupled plasma emission spectrometry. Each measurement result is shown in Table 1. Each measured value is an average value.

[実施例2]
水995gに市販のシリカ粉末(AEROSIL(登録商標):RX300)70gと、メタケイ酸ナトリウム100g及び水酸化ナトリウム5gを混合して、SiO2換算濃度8.3質量%の溶液を調製した。この溶液を150℃で5時間加熱し、減圧蒸発装置にてSiO2換算濃度が20質量%となるまで濃縮を行い、シリカゾルを得た。該シリカゾル100gについて、可溶性シリカ成分含有量及びモノケイ酸含有量を測定した結果、全シリカ量は20gで、可溶性シリカ量は15.7gで、可溶性シリカ量中のモノケイ酸量は7.5gであった。また、シリカゾルを室温で60日保管したが、沈殿物の生成及びゲル化は見られなかった。該シリカゾル150gと肥料(商標:微粉ハイポネックス)12gを水5838gと混合し、散布液とした。[植物育成試験]及び[育成効果の確認]については、実施例1と同様の条件で実施した。
[Example 2]
995 g of water was mixed with 70 g of commercially available silica powder (AEROSIL (registered trademark): RX300), 100 g of sodium metasilicate and 5 g of sodium hydroxide to prepare a solution having a SiO 2 equivalent concentration of 8.3 mass%. This solution was heated at 150 ° C. for 5 hours, and concentrated with a vacuum evaporator until the SiO 2 equivalent concentration became 20% by mass to obtain silica sol. As a result of measuring the soluble silica component content and the monosilicic acid content for 100 g of the silica sol, the total silica amount was 20 g, the soluble silica amount was 15.7 g, and the monosilicic acid amount in the soluble silica amount was 7.5 g. It was. Moreover, although the silica sol was stored at room temperature for 60 days, no precipitate was formed or gelled. 150 g of the silica sol and 12 g of fertilizer (trademark: fine powder Hyponex) were mixed with 5838 g of water to obtain a spray solution. [Plant growth test] and [Confirmation of growth effect] were carried out under the same conditions as in Example 1.

[実施例3]
水1000gに市販のシリカ粉末(AEROSIL(登録商標):RX300)70gと、メタケイ酸ナトリウム100gを混合して、SiO2換算濃度8.3質量%の溶液を調製した。この溶液を150℃で5時間加熱し、減圧蒸発装置にてSiO2換算濃度が20質量%となるまで濃縮を行い、シリカゾルを得た。該シリカゾル100gについて、可溶性シリカ成分含有量及びモノケイ酸含有量を測定した結果、全シリカ量は20gで、可溶性シリカ量は11.0gで、可溶性シリカ量中のモノケイ酸量は、5.1gであった。また、シリカゾルを室温で60日保管したが、沈殿物の生成及びゲル化は見られなかった。該シリカゾル150gと肥料(商標:微粉ハイポネックス)12gを水5838gと混合し、散布液とした。[植物育成試験]及び[育成効果の確認]については、実施例1と同様の条件で実施した。
[Example 3]
70 g of commercially available silica powder (AEROSIL (registered trademark): RX300) and 100 g of sodium metasilicate were mixed with 1000 g of water to prepare a solution having a SiO 2 equivalent concentration of 8.3 mass%. This solution was heated at 150 ° C. for 5 hours, and concentrated with a vacuum evaporator until the SiO 2 equivalent concentration became 20% by mass to obtain silica sol. As a result of measuring the soluble silica component content and the monosilicic acid content for 100 g of the silica sol, the total silica amount was 20 g, the soluble silica amount was 11.0 g, and the monosilicic acid amount in the soluble silica amount was 5.1 g. there were. Moreover, although the silica sol was stored at room temperature for 60 days, no precipitate was formed or gelled. 150 g of the silica sol and 12 g of fertilizer (trademark: fine powder Hyponex) were mixed with 5838 g of water to obtain a spray solution. [Plant growth test] and [Confirmation of growth effect] were carried out under the same conditions as in Example 1.

[実施例4]
水1000gに市販のシリカ粉末(AEROSIL(登録商標):RX300)40gと、メタケイ酸ナトリウム160gを混合して、SiO2換算濃度8.3質量%の溶液を調製した。この溶液を150℃で5時間加熱し、減圧蒸発装置にてSiO2換算濃度が20質量%となるまで濃縮を行い、シリカゾルを得た。該シリカゾル100gについて、可溶性シリカ成分含有量及びモノケイ酸含有量を測定した結果、全シリカ量は20gで、可溶性シリカ量は12.2gで、可溶性シリカ量中のモノケイ酸量は9.5gであった。また、シリカゾルを室温で60日保管したが、沈殿物の生成及びゲル化は見られなかった。該シリカゾル150gと肥料(商標:微粉ハイポネックス)12gを水5838gと混合し、散布液とした。[植物育成試験]及び[育成効果の確認]については、実施例1と同様の条件で実施した。
[Example 4]
40 g of commercially available silica powder (AEROSIL (registered trademark): RX300) and 160 g of sodium metasilicate were mixed with 1000 g of water to prepare a solution having a SiO 2 equivalent concentration of 8.3 mass%. This solution was heated at 150 ° C. for 5 hours, and concentrated with a vacuum evaporator until the SiO 2 equivalent concentration became 20% by mass to obtain silica sol. As a result of measuring the soluble silica component content and the monosilicic acid content for 100 g of the silica sol, the total silica amount was 20 g, the soluble silica amount was 12.2 g, and the monosilicic acid amount in the soluble silica amount was 9.5 g. It was. Moreover, although the silica sol was stored at room temperature for 60 days, no precipitate was formed or gelled. 150 g of the silica sol and 12 g of fertilizer (trademark: fine powder Hyponex) were mixed with 5838 g of water to obtain a spray solution. [Plant growth test] and [Confirmation of growth effect] were carried out under the same conditions as in Example 1.

[実施例5]
水1000gに市販のシリカ粉末(AEROSIL(登録商標):RX300)100gと、メタケイ酸ナトリウム40gを混合して、SiO2換算濃度8.3質量%の溶液を調製した。この溶液を150℃で5時間加熱し、減圧蒸発装置にてSiO2換算濃度が20質量%となるまで濃縮を行い、シリカゾルを得た。該シリカゾル100gについて、可溶性シリカ成分含有量及びモノケイ酸含有量を測定した結果、全シリカ量は20gで、可溶性シリカ量は3.8gで、可溶性シリカ量中のモノケイ酸量は1.4gであった。また、シリカゾルを室温で60日保管したが、沈殿物の生成及びゲル化は見られなかった。該シリカゾル150gと肥料(商標:微粉ハイポネックス)12gを水5838gと混合し、散布液とした。[植物育成試験]及び[育成効果の確認]については、実施例1と同様の条件で実施した。
[Example 5]
1000 g of water was mixed with 100 g of commercially available silica powder (AEROSIL (registered trademark): RX300) and 40 g of sodium metasilicate to prepare a solution having a SiO 2 equivalent concentration of 8.3 mass%. This solution was heated at 150 ° C. for 5 hours, and concentrated with a vacuum evaporator until the SiO 2 equivalent concentration became 20% by mass to obtain silica sol. As a result of measuring the soluble silica component content and the monosilicic acid content for 100 g of the silica sol, the total silica amount was 20 g, the soluble silica amount was 3.8 g, and the monosilicic acid amount in the soluble silica amount was 1.4 g. It was. Moreover, although the silica sol was stored at room temperature for 60 days, no precipitate was formed or gelled. 150 g of the silica sol and 12 g of fertilizer (trademark: fine powder Hyponex) were mixed with 5838 g of water to obtain a spray solution. [Plant growth test] and [Confirmation of growth effect] were carried out under the same conditions as in Example 1.

[比較例1]
水1000gにメタケイ酸ナトリウム260gを混合して、SiO2換算濃度10質量%の溶液を調製した。この溶液を150℃で5時間加熱したところ、ゲル化した。
[Comparative Example 1]
260 g of sodium metasilicate was mixed with 1000 g of water to prepare a solution having a SiO 2 equivalent concentration of 10% by mass. When this solution was heated at 150 ° C. for 5 hours, it gelled.

比較例2
肥料(商標:微粉ハイポネックス)12gを水5988gと混合し、散布液とした。[植物育成試験]及び[育成効果の確認]については、実施例1と同様の条件で実施した。
[ Comparative Example 2 ]
12 g of fertilizer (trademark: fine powder Hyponex) was mixed with 5988 g of water to obtain a spray solution. [Plant growth test] and [Confirmation of growth effect] were carried out under the same conditions as in Example 1.

植物の成長促進剤を施用した実施例1の芝は、植物の成長促進剤を施用しなかった比較例の芝と比較して根の発育が顕著であり、葉の育成密度も高いことが明らかである。これらの効果は、表1に示す芝丈、根長、葉部重量、根部重量、葉部Si含有量、根部Si含有量からも確認されている。
The turf of Example 1 to which the plant growth promoter was applied had remarkable root growth and high leaf growth density compared to the turf of Comparative Example 2 to which the plant growth promoter was not applied. it is obvious. These effects are also confirmed from the turf height, root length, leaf weight, root weight, leaf Si content, and root Si content shown in Table 1.

Figure 0006037807
Figure 0006037807

Claims (6)

シリカ微粒子が分散媒に分散してなるシリカゾルであって、次の1)、2)、3)及び4)の条件を満たすシリカゾルを含有してなる植物の成長促進剤。
1)該シリカゾルにシリカ微粒子がSiO2換算濃度で10〜40質量%含まれる。
2)該シリカ微粒子の10〜80質量%が、モノケイ酸及び重合度2〜8のポリケイ酸からなる可溶性シリカである。
3)該可溶性シリカの30〜80質量%が、モノケイ酸である。
4)N、P、K、Ca、O、H、C、Mg、S、Fe、Mn、B、Zn、Mo、Cu及びClからなる群から選ばれる少なくとも1つの元素を含む肥料成分を含む。
A plant growth promoter comprising a silica sol in which silica fine particles are dispersed in a dispersion medium, the silica sol satisfying the following conditions 1), 2) , 3) and 4) .
1) Silica fine particles are contained in the silica sol in an amount of 10 to 40% by mass in terms of SiO 2 .
2) 10-80 mass% of the silica fine particles is soluble silica composed of monosilicic acid and polysilicic acid having a polymerization degree of 2-8.
3) 30-80 mass% of the soluble silica is monosilicic acid.
4) A fertilizer component containing at least one element selected from the group consisting of N, P, K, Ca, O, H, C, Mg, S, Fe, Mn, B, Zn, Mo, Cu, and Cl is included.
該シリカ微粒子の50〜80質量%が、モノケイ酸及び重合度2〜8のポリケイ酸からなる可溶性シリカである、請求項1に記載の植物の成長促進剤。The plant growth promoter according to claim 1, wherein 50 to 80% by mass of the silica fine particles is soluble silica composed of monosilicic acid and polysilicic acid having a polymerization degree of 2 to 8. 該可溶性シリカの40〜80質量%が、モノケイ酸である、請求項1または2に記載の植物の成長促進剤。The plant growth promoter according to claim 1 or 2, wherein 40-80% by mass of the soluble silica is monosilicic acid. シリカ微粒子が分散媒に分散してなるシリカゾルであって、次の1)、2)及び3)の条件を満たすシリカゾルの製造方法であって、ヒュームドシリカと、メタケイ酸ナトリウムとを水系溶媒中で混合した原料スラリーを調製し、該原料スラリーを水熱処理する工程を含むシリカゾルの製造方法。
1)該シリカゾルにシリカ微粒子がSiO2換算濃度で10〜40質量%含まれる。
2)該シリカ微粒子の10〜80質量%が、モノケイ酸及び重合度2〜8のポリケイ酸からなる可溶性シリカである。
3)該可溶性シリカの30〜80質量%が、モノケイ酸である。
A silica sol in which silica fine particles are dispersed in a dispersion medium, which is a method for producing a silica sol that satisfies the following conditions 1), 2) and 3), wherein fumed silica and sodium metasilicate are mixed in an aqueous solvent. A method for producing a silica sol, comprising the steps of: preparing a raw material slurry mixed in step 1 and hydrothermally treating the raw material slurry.
1) Silica fine particles are contained in the silica sol in a SiO 2 equivalent concentration of 10 to 40% by mass.
2) 10-80% by mass of the silica fine particles is soluble silica composed of monosilicic acid and polysilicic acid having a polymerization degree of 2-8.
3) 30-80% by mass of the soluble silica is monosilicic acid.
前記原料スラリーに水酸化ナトリウムを含むことを特徴とする請求項4に記載のシリカゾルの製造方法。 The method for producing a silica sol according to claim 4, wherein the raw material slurry contains sodium hydroxide. 前記原料スラリーを130〜150℃にて水熱処理することを特徴とする請求項4又は5に記載のシリカゾルの製造方法。 The method for producing a silica sol according to claim 4 or 5, wherein the raw slurry is hydrothermally treated at 130 to 150 ° C.
JP2012266025A 2012-12-05 2012-12-05 Plant growth promoter Active JP6037807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012266025A JP6037807B2 (en) 2012-12-05 2012-12-05 Plant growth promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266025A JP6037807B2 (en) 2012-12-05 2012-12-05 Plant growth promoter

Publications (2)

Publication Number Publication Date
JP2014111512A JP2014111512A (en) 2014-06-19
JP6037807B2 true JP6037807B2 (en) 2016-12-07

Family

ID=51168976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266025A Active JP6037807B2 (en) 2012-12-05 2012-12-05 Plant growth promoter

Country Status (1)

Country Link
JP (1) JP6037807B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN201731033800A (en) * 2017-09-23 2019-03-29

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525531B2 (en) * 1989-04-03 1996-08-21 ダイヤケミカル株式会社 Liquid potassium silicate fertilizer
JPH0881317A (en) * 1994-09-08 1996-03-26 Catalysts & Chem Ind Co Ltd Growth promoter for plant
TW498054B (en) * 1998-09-10 2002-08-11 Nissan Chemical Ind Ltd Moniliform silica sol and process for producing the same, and coating composition for ink receiving layer and ink jet recording medium having ink receiving layer
JP5061581B2 (en) * 2005-11-04 2012-10-31 三菱化学株式会社 Adsorption element and humidity control air conditioner using the same
JP5103749B2 (en) * 2006-02-15 2012-12-19 三菱化学株式会社 Adsorption element and humidity control air conditioner
JP5631530B2 (en) * 2007-12-07 2014-11-26 日揮触媒化成株式会社 Porous silica-based particles having surface smoothness, a method for producing the same, and a cosmetic comprising the porous silica-based particles
JP5443551B2 (en) * 2012-06-29 2014-03-19 一隆 今井 Liquid silicate fertilizer

Also Published As

Publication number Publication date
JP2014111512A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
Milani et al. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles
JP6442047B2 (en) Preparation method and use of foliar blocking agent for controlling the expression of genes related to cadmium absorption and transport in rice
Nunes et al. Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil)
AU2011234694B2 (en) Stabilized bio-available soluble silicate solution
Guardini et al. Phosphorus accumulation and pollution potential in a hapludult fertilized with pig manure
Zhang et al. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization
US20200339485A1 (en) Npk-si-humate fertilizer, method for production and use thereof
CN110573477A (en) Fertilizer containing bioavailable silicon and method of producing same
CN101973791A (en) Nanometer apatite phosphate fertilizer and preparation method thereof
CN109892185A (en) Suppress the implantation methods of rice grain Cd accumulation in a kind of blade face
CN106748538A (en) A kind of fertile water-maintaining multifunctional new slow release fertilizer of three-dimensional control and preparation method thereof
Ahn et al. Changes in chemical properties of paddy field soils as influenced by regional topography in Jeonbuk Province
JP6037807B2 (en) Plant growth promoter
Xiao et al. Interaction and adaptation of phosphorus fertilizer and calcium ion in drip irrigation systems: the perspective of emitter clogging
EP3440035A1 (en) Eco-friendly surface-treatment composition for the treatment of solid fertilizers to prevent agglutination and pulverization, to retard water uptake and at the same time to enhance the availability of nutrients
CN104892395B (en) Preparation method of ammonia manganese citrate
Gao et al. Effect of the mineralogical phases in steelmaking slag fertilizer on the dissolution behavior of nutritious elements and rice growth
JP2017214368A (en) Silicic acid absorption promoter for gramineous plant and application method thereof
TWI787397B (en) Npk-si fertilizer, method for production and use thereof
CN105294349A (en) Attapulgite-based fertilizer synergist having soil improvement effect
CN101745526B (en) Application of Na-type nano-montmorillonite in removing copper in pollutant
CN109943339B (en) Silicon-rich soil conditioner and preparation method and application thereof
CN108002879A (en) A kind of watermelon nutrient solution
KR20020021966A (en) The fabricating mathod of water-soluble silicon liquid manure
JP5726882B2 (en) Reinforced fertilizer products containing polymer adjuvants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6037807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250