JP6034228B2 - Manufacturing method of organic EL thin film forming substrate - Google Patents

Manufacturing method of organic EL thin film forming substrate Download PDF

Info

Publication number
JP6034228B2
JP6034228B2 JP2013071214A JP2013071214A JP6034228B2 JP 6034228 B2 JP6034228 B2 JP 6034228B2 JP 2013071214 A JP2013071214 A JP 2013071214A JP 2013071214 A JP2013071214 A JP 2013071214A JP 6034228 B2 JP6034228 B2 JP 6034228B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
organic
holding plate
patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013071214A
Other languages
Japanese (ja)
Other versions
JP2014194896A (en
Inventor
万里 深尾
万里 深尾
充 上野
充 上野
美穂 清水
美穂 清水
敬臣 倉田
敬臣 倉田
村本 孝紀
孝紀 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2013071214A priority Critical patent/JP6034228B2/en
Publication of JP2014194896A publication Critical patent/JP2014194896A/en
Application granted granted Critical
Publication of JP6034228B2 publication Critical patent/JP6034228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機EL薄膜形成基板の製造方法に関するものである。   The present invention relates to a method for producing an organic EL thin film forming substrate.

低分子タイプの有機EL素子の製造には、有機EL薄膜を形成するために、一般的に真空蒸着法が用いられている。真空蒸着法では、有機EL薄膜を形成するガラス基板の成膜面を下に向けた状態で成膜する方法(デポアップ)と、成膜面を横に向けた状態で横方向から成膜する方法(サイドデポ)とがある。   In order to form an organic EL thin film, a vacuum vapor deposition method is generally used to manufacture a low molecular type organic EL element. In the vacuum deposition method, a method of forming a film with the film formation surface of the glass substrate on which the organic EL thin film is formed facing downward (depot up), and a method of forming a film from the lateral direction with the film formation surface facing sideways (Side depot).

近年、有機EL薄膜形成基板を製造する有機EL薄膜形成基板の製造装置で処理するガラス基板の基板サイズは大型化してきている。ガラス基板に有機EL薄膜を形成する際には、ガラス基板を蒸着マスクと高精度で位置決めした後、真空蒸着法により、ガラス基板上に有機EL薄膜を形成する。   In recent years, the substrate size of a glass substrate processed by an organic EL thin film forming substrate manufacturing apparatus for manufacturing an organic EL thin film forming substrate has been increased. When forming an organic EL thin film on a glass substrate, after positioning the glass substrate with a vapor deposition mask with high accuracy, the organic EL thin film is formed on the glass substrate by a vacuum vapor deposition method.

このとき、大型のガラス基板(G5以上)では、その自重によって撓みが発生する。ガラス基板の撓みは、ガラス基板と蒸着マスクとの位置合わせ(アライメント)や真空蒸着により形成する膜の厚さの均一性を得ることに対して悪影響を及ぼす。   At this time, in a large glass substrate (G5 or more), bending occurs due to its own weight. The bending of the glass substrate has an adverse effect on the alignment of the glass substrate and the vapor deposition mask and the uniformity of the thickness of the film formed by vacuum vapor deposition.

ガラス基板の撓みを小さくするために、ガラス基板を粘着性シートや静電チャックを使って、平坦な保持板に貼り付ける方法がある。
基板撓みに関連した先行技術は、下記文献に記載されている。
In order to reduce the deflection of the glass substrate, there is a method in which the glass substrate is attached to a flat holding plate using an adhesive sheet or an electrostatic chuck.
Prior art related to substrate bending is described in the following document.

特開2006−176809号公報JP 2006-176809 A 特開2005−248249号公報JP 2005-248249 A

粘着シートで基板を保持板に貼り付けて有機EL薄膜の形成を行った後、基板を装置から取り出す必要がある。このとき、真空中で粘着性シートから基板を剥離すると、基板は帯電し、基板の帯電量が大きくなると、基板は放電する。有機EL薄膜が形成された後に放電し、有機EL薄膜に放電電流が流れると、有機EL薄膜の発光特性が劣化し、この有機EL薄膜を用いて製造された有機EL素子は不良品となる。
本発明は、基板の帯電による不良品の発生を減少させることを目的とする。
After forming the organic EL thin film by attaching the substrate to the holding plate with an adhesive sheet, it is necessary to remove the substrate from the apparatus. At this time, when the substrate is peeled from the adhesive sheet in vacuum, the substrate is charged, and when the charge amount of the substrate is increased, the substrate is discharged. When a discharge current flows through the organic EL thin film after the organic EL thin film is formed, the light emission characteristics of the organic EL thin film deteriorate, and an organic EL element manufactured using the organic EL thin film becomes a defective product.
An object of the present invention is to reduce the occurrence of defective products due to charging of a substrate.

上記課題を解決するために本発明は、基板保持板の表面に基板貼付剤で基板の裏面を貼付し、露出する前記基板の表面に、第一の真空雰囲気中で有機EL薄膜を形成した後、前記基板貼付剤を30℃以下の低温範囲又は45℃以上の高温範囲のうちいずれか一方の温度範囲にし、第二の真空雰囲気中で前記基板と前記基板保持板との間に剥離力を加えて、前記基板に前記有機EL薄膜が形成された有機EL薄膜形成基板を前記基板貼付剤から剥離させる有機EL薄膜形成基板の製造方法である。
本発明は、前記第二の真空雰囲気は、前記第一の真空雰囲気と同じ圧力にする有機EL薄膜形成基板の製造方法である。
本発明は、前記第一の真空雰囲気と、前記第二の真空雰囲気とを、1.0×10-4Pa未満の圧力にする有機EL薄膜形成基板の製造方法である。
本発明は、前記基板には、除電装置によって前記基板を除電しながら、前記剥離力を加えて前記基板貼付剤から剥離させる有機EL薄膜形成基板の製造方法である。
本発明は、前記基板保持板の裏面側から前記基板保持板に対してピンを移動させ、前記基板保持板に形成された貫通孔に前記ピンを挿通して前記ピンの先端を前記基板の裏面に当接させた後、更に前記ピンを前記基板保持板に対して1mm/秒以下の相対速度で移動させ、前記基板を押圧して前記基板に剥離力を加える有機EL薄膜形成基板の製造方法である。
In order to solve the above-mentioned problems, the present invention is a method in which a back surface of a substrate is pasted to a surface of a substrate holding plate with a substrate adhesive, and an organic EL thin film is formed on the exposed surface of the substrate in a first vacuum atmosphere. The substrate patch is set to one of a low temperature range of 30 ° C. or lower or a high temperature range of 45 ° C. or higher, and a peeling force is provided between the substrate and the substrate holding plate in a second vacuum atmosphere. In addition, the organic EL thin film forming substrate having the organic EL thin film formed on the substrate is peeled from the substrate patch.
This invention is a manufacturing method of the organic electroluminescent thin film formation board | substrate which makes said 2nd vacuum atmosphere the same pressure as said 1st vacuum atmosphere.
This invention is a manufacturing method of the organic electroluminescent thin film formation board | substrate which makes said 1st vacuum atmosphere and said 2nd vacuum atmosphere the pressure below 1.0 * 10 <-4> Pa.
This invention is a manufacturing method of the organic electroluminescent thin film formation board | substrate which applies the said peeling force and peels from the said board | substrate patch, removing the said board | substrate with the static elimination apparatus.
According to the present invention, a pin is moved with respect to the substrate holding plate from the back side of the substrate holding plate, the pin is inserted into a through-hole formed in the substrate holding plate, and the tip of the pin is connected to the back surface of the substrate. And then the pin is further moved at a relative speed of 1 mm / second or less with respect to the substrate holding plate, and the substrate is pressed to apply a peeling force to the substrate. It is.

基板の帯電量を小さくすることができる。また、基板を保持板から剥離する工程を真空雰囲気中で行うため、基板及び有機EL薄膜の汚染を防止することができる。   The amount of charge on the substrate can be reduced. Further, since the step of peeling the substrate from the holding plate is performed in a vacuum atmosphere, contamination of the substrate and the organic EL thin film can be prevented.

本発明に用いる有機EL薄膜基板の製造装置を説明するための図The figure for demonstrating the manufacturing apparatus of the organic electroluminescent thin film substrate used for this invention (a):基板保持板と基板とを説明するための図 (b):成膜対象物を説明するための図(A): a diagram for explaining a substrate holding plate and a substrate (b): a diagram for explaining a film formation target 搬送対象物を説明するための図Diagram for explaining the object to be transported 有機EL薄膜の付着された搬送対象物を説明するための図The figure for demonstrating the conveyance target object to which the organic EL thin film was adhered (a):温度調節機構の温度調節板とピン昇降装置とを説明するための図 (b):成膜対象物の載置された温度調節板とピン昇降装置とを説明するための図 (c):基板を基板保持板から剥離した状態を説明するための図(A): The figure for demonstrating the temperature control board and pin raising / lowering device of a temperature control mechanism (b): The figure for demonstrating the temperature adjustment board and pin raising / lowering device in which the film-forming target was mounted. c): A diagram for explaining a state where the substrate is peeled off from the substrate holding plate. 基板貼付剤の温度と基板貼付剤の粘着力との関係を示すグラフGraph showing the relationship between the temperature of the substrate patch and the adhesive strength of the substrate patch 基板貼付剤の温度と基板の帯電量との関係を示すグラフGraph showing the relationship between substrate patch temperature and substrate charge

図1は、本発明の有機EL薄膜形成基板の製造方法に用いる有機EL薄膜形成基板の製造装置2を示している。図1に示すように、この製造装置2は、前室16と、基板貼付室11と、第一反転室17と、マスク貼合室18と、成膜室13と、マスク分離室19と、第二反転室25と、基板剥離室14と、受渡室26と、後室15とを有している。各室11,13〜19,25,26の間は、ゲートバルブ21を介して接続されている。各室11,13〜19,25,26から各室に続く室11,13〜19,25,26へ基板を搬入するときは、各室11,13〜19,25,26の間に設けられたゲートバルブ21を開けて各室に続く室11,13〜19,25,26に基板を搬入し、ゲートバルブ21を閉じるが、以下、基板を移動する際のゲートバルブ21の開閉の説明は省略する。   FIG. 1 shows an organic EL thin film forming substrate manufacturing apparatus 2 used in the method for manufacturing an organic EL thin film forming substrate of the present invention. As shown in FIG. 1, the manufacturing apparatus 2 includes a front chamber 16, a substrate pasting chamber 11, a first inversion chamber 17, a mask pasting chamber 18, a film forming chamber 13, a mask separation chamber 19, The second inversion chamber 25, the substrate peeling chamber 14, the delivery chamber 26, and the rear chamber 15 are provided. Each chamber 11, 13 to 19, 25, 26 is connected via a gate valve 21. When the substrate is loaded from the chambers 11, 13 to 19, 25, 26 into the chambers 11, 13-19, 25, 26 following the chambers, the substrate is provided between the chambers 11, 13-19, 25, 26. The gate valve 21 is opened and the substrate is loaded into the chambers 11, 13 to 19, 25, and 26 that follow each chamber, and the gate valve 21 is closed. Hereinafter, the opening and closing of the gate valve 21 when moving the substrate will be described. Omitted.

各室11,13〜19,25,26は、それぞれ真空排気装置22に接続され、各ゲートバルブ21が閉じられた状態では、各室11,13〜19,25,26を、真空排気装置22によって、それぞれ個別に真空排気できるようになっている。   Each chamber 11, 13 to 19, 25, 26 is connected to the evacuation device 22. When each gate valve 21 is closed, each chamber 11, 13 to 19, 25, 26 is connected to the evacuation device 22. Can be individually evacuated.

予め、各ゲートバルブ21を閉じて、各室11,13〜19,25,26をそれぞれ真空排気しておく。
有機EL薄膜を形成する際には、前室16から基板貼付室11に有機EL薄膜を形成する基板を搬入する。
基板貼付室11には、基板保持板32が配置されている。
In advance, each of the gate valves 21 is closed, and each of the chambers 11, 13 to 19, 25, and 26 is evacuated.
When forming the organic EL thin film, the substrate on which the organic EL thin film is to be formed is carried from the front chamber 16 to the substrate pasting chamber 11.
A substrate holding plate 32 is disposed in the substrate pasting chamber 11.

基板保持板32は、金属(例えばアルミニウム)等の硬い材質から成る板状の部材であり、基板保持板32には、図2(a)に示すように、保持板貫通孔36が複数設けられている。   The substrate holding plate 32 is a plate-like member made of a hard material such as metal (for example, aluminum), and the substrate holding plate 32 is provided with a plurality of holding plate through holes 36 as shown in FIG. ing.

基板保持板32の片面を基板貼付面34とし、その反対側の面を裏面54とすると、保持板貫通孔36の、基板貼付面34表面に位置する開口部と開口部との間の部分には、基板貼付剤33が貼付されている。基板貼付剤33は、ここでは、粘着性を有するシート状又は平板状の物質である。基板保持板32は、基板貼付面34が上方を向けられて配置されており、搬入された基板31が、有機EL薄膜を形成する成膜面37を上方に向け、その反対側の非成膜面38が基板貼付剤33に貼付され、基板保持板32と、基板貼付剤33と、基板31とで、図2(b)に示す成膜対象物40が構成され、基板貼付室11から第一反転室17に移動され、第一反転室17内で上下が反転され、成膜面37を鉛直下方に向けた状態で、マスク貼合室18に移動される。   Assuming that one side of the substrate holding plate 32 is the substrate pasting surface 34 and the opposite side is the back side 54, the holding plate through hole 36 is formed at a portion between the opening located on the surface of the substrate pasting surface 34 and the opening. The substrate patch 33 is affixed. Here, the substrate patch 33 is a sheet-like or flat plate-like substance having adhesiveness. The substrate holding plate 32 is arranged with the substrate sticking surface 34 facing upward, and the loaded substrate 31 faces the film forming surface 37 on which the organic EL thin film is formed facing upward, and the non-film forming on the opposite side thereof. The surface 38 is affixed to the substrate patch 33, and the substrate holding plate 32, the substrate patch 33, and the substrate 31 constitute the film formation target 40 shown in FIG. It is moved to the one reversing chamber 17, and is turned upside down in the first reversing chamber 17, and is moved to the mask bonding chamber 18 with the film formation surface 37 directed vertically downward.

マスク貼合室18には、マスク80が配置されており、マスク貼合室18内で、基板31とマスク80との位置合わせがされ、図3に示すように、成膜対象物40の成膜面37上にマスク80が配置され、マスク80は成膜対象物40に固定される。
マスク80には、貫通孔である窓部81が形成されており、窓部81の底面には、成膜面37が露出されている。
A mask 80 is disposed in the mask bonding chamber 18, and the substrate 31 and the mask 80 are aligned in the mask bonding chamber 18. As shown in FIG. A mask 80 is disposed on the film surface 37, and the mask 80 is fixed to the film formation target 40.
A window portion 81 that is a through hole is formed in the mask 80, and the film formation surface 37 is exposed on the bottom surface of the window portion 81.

マスク80と成膜対象物40とを、搬送対象物44と呼ぶと、搬送対象物44は、マスク貼合室18から成膜室13に移動され、成膜室13内に設けられた基板搬送装置41に配置され、成膜面37を下方に向けさせた状態で成膜室13の内部を移動される。   When the mask 80 and the film formation target 40 are referred to as a transfer target 44, the transfer target 44 is moved from the mask bonding chamber 18 to the film formation chamber 13, and the substrate transport provided in the film formation chamber 13 is performed. Arranged in the apparatus 41 and moved inside the film forming chamber 13 with the film forming surface 37 facing downward.

成膜室13の内部の底面側には、蒸気放出装置43が複数台(ここでは10〜15台)設けられている。各蒸気放出装置43は、蒸気を放出する蒸気放出口(図示せず)を有しており、蒸気放出口から成膜室13の内部に、有機EL薄膜材料の有機化合物蒸気を放出できるようにされている。   A plurality of vapor release devices 43 (here, 10 to 15 units) are provided on the bottom side inside the film forming chamber 13. Each of the vapor discharge devices 43 has a vapor discharge port (not shown) that discharges vapor, so that the organic compound vapor of the organic EL thin film material can be discharged from the vapor discharge port into the film forming chamber 13. Has been.

少なくとも搬送対象物44が成膜室13の内部を移動する間は、成膜室13内部は継続して真空排気されており、成膜室13の内部の雰囲気は、所定圧力範囲の第一の真空雰囲気にされており、各蒸気放出装置43の蒸気放出口から、上方に向けて有機化合物蒸気が放出された状態で、成膜面37が各蒸気放出装置43の蒸気放出口と順番に対面し、窓部81底面に露出する成膜面37に、有機化合物蒸気が順番に到達すると、図4に示すように、窓部81の底面に露出する成膜面37上には、有機EL薄膜39が形成される。(このとき、マスク80の表面上にも、有機EL薄膜が形成される。)
有機EL薄膜39を形成する際には搬送対象物44に熱が流入し、基板31の温度と基板貼付剤33の温度とは、有機EL薄膜39を形成する直前に比べ、有機EL薄膜39を形成した直後が30℃を超えて高くなる。
The inside of the film forming chamber 13 is continuously evacuated at least while the transfer object 44 moves inside the film forming chamber 13, and the atmosphere inside the film forming chamber 13 is a first pressure within a predetermined pressure range. In a vacuum atmosphere, the organic compound vapor is released upward from the vapor discharge ports of the respective vapor discharge devices 43, and the film formation surface 37 faces the vapor discharge ports of the respective vapor discharge devices 43 in order. Then, when the organic compound vapor sequentially reaches the film formation surface 37 exposed on the bottom surface of the window portion 81, an organic EL thin film is formed on the film formation surface 37 exposed on the bottom surface of the window portion 81 as shown in FIG. 39 is formed. (At this time, an organic EL thin film is also formed on the surface of the mask 80.)
When the organic EL thin film 39 is formed, heat flows into the object to be transported 44, and the temperature of the substrate 31 and the temperature of the substrate patch 33 are less than those immediately before the organic EL thin film 39 is formed. Immediately after the formation, the temperature is higher than 30 ° C.

基板貼付剤33の接着力は温度が高くなると弱くなるため、基板31と基板貼付剤33との間の粘着力が、基板31が落下しない強さを維持させる為に、45℃より低い温度範囲になるように、成膜室13内に設けた冷却機構35(図1)によって、基板31と基板貼付剤33とを冷却しながら、有機EL薄膜39を形成している。   Since the adhesive force of the substrate patch 33 becomes weaker as the temperature increases, the adhesive force between the substrate 31 and the substrate patch 33 is maintained in a temperature range lower than 45 ° C. in order to maintain the strength at which the substrate 31 does not fall. The organic EL thin film 39 is formed while cooling the substrate 31 and the substrate patch 33 by the cooling mechanism 35 (FIG. 1) provided in the film forming chamber 13.

この製造装置2では、冷却機構35は、成膜室13の天井や、蒸気放出装置43の間に配置されている。
有機EL薄膜39が形成された基板31を有する搬送対象物44は、成膜室13からマスク分離室19に移動される。
In the manufacturing apparatus 2, the cooling mechanism 35 is disposed between the ceiling of the film forming chamber 13 and the vapor discharge device 43.
The conveyance object 44 having the substrate 31 on which the organic EL thin film 39 is formed is moved from the film formation chamber 13 to the mask separation chamber 19.

マスク分離室19内では、搬送対象物44からマスク80と成膜対象物40とが分離され、分離されたマスク80は、真空雰囲気中を移動して、マスク貼合室18に戻され、成膜対象物40は、マスク分離室19から第二反転室25に移動される。   In the mask separation chamber 19, the mask 80 and the film formation target 40 are separated from the conveyance target 44, and the separated mask 80 moves in a vacuum atmosphere and is returned to the mask bonding chamber 18 to be formed. The film object 40 is moved from the mask separation chamber 19 to the second inversion chamber 25.

第二反転室25内では、移動された成膜対象物40の上下は反転され、有機EL薄膜39の形成された基板31の成膜面37は、上方に向けられ、基板保持板32は下方に向けられた状態で、第二反転室25から基板剥離室14内に移動される。   In the second inversion chamber 25, the moved film formation target 40 is turned upside down, the film formation surface 37 of the substrate 31 on which the organic EL thin film 39 is formed is directed upward, and the substrate holding plate 32 is moved downward. The second inversion chamber 25 is moved into the substrate peeling chamber 14 while being directed to the substrate peeling chamber 14.

基板剥離室14の内部は継続して真空排気されており、基板剥離室14の内部の雰囲気である第二の真空雰囲気は、第一の真空雰囲気と同じ圧力にされている。ここでは、第一の真空雰囲気と第二の真空雰囲気とは、1×10-4Pa未満の圧力である。 The inside of the substrate peeling chamber 14 is continuously evacuated, and the second vacuum atmosphere that is the atmosphere inside the substrate peeling chamber 14 is set to the same pressure as the first vacuum atmosphere. Here, the first vacuum atmosphere and the second vacuum atmosphere are pressures less than 1 × 10 −4 Pa.

基板剥離室14の内部には、図1に示すように、底面上にはステージ55が配置され、天井側には、温度調節機構60が有する板状の温度調節板63が配置されている。
温度調節板63の内部には、熱媒体62が流れる媒体流路65が設けられている。
As shown in FIG. 1, a stage 55 is disposed on the bottom surface of the substrate peeling chamber 14, and a plate-shaped temperature adjustment plate 63 included in the temperature adjustment mechanism 60 is disposed on the ceiling side.
Inside the temperature adjusting plate 63, a medium flow path 65 through which the heat medium 62 flows is provided.

基板剥離室14の外部には、温度制御装置67が配置されており、媒体流路65は、温度制御装置67から熱媒体62が供給され、媒体流路65を流れた熱媒体62は、温度制御装置67に戻るように構成されている。   A temperature control device 67 is disposed outside the substrate peeling chamber 14. The medium flow path 65 is supplied with the heat medium 62 from the temperature control apparatus 67, and the heat medium 62 flowing through the medium flow path 65 has a temperature. It is configured to return to the control device 67.

温度制御装置67は、熱媒体62を加熱又は冷却して熱媒体62の温度を制御する加熱冷却装置を有しており、温度制御装置67に戻った熱媒体62は、加熱冷却装置によって、温度が制御され、媒体流路65に供給されるようになっている。   The temperature control device 67 includes a heating / cooling device that controls the temperature of the heat medium 62 by heating or cooling the heat medium 62, and the heat medium 62 that has returned to the temperature control device 67 is heated by the heating / cooling device. Are controlled and supplied to the medium flow path 65.

ステージ55の一面は、平坦な載置面56にされており、ステージ55にはピン52の昇降用の移動孔が形成されており、図5(a)は、移動孔に挿通された複数のピン52の上端が、載置面56上に突き出された状態である。   One surface of the stage 55 is a flat mounting surface 56, and a moving hole for raising and lowering the pin 52 is formed in the stage 55. FIG. 5A shows a plurality of holes inserted through the moving holes. The upper end of the pin 52 is in a state of protruding on the placement surface 56.

各ピン52は、ピン昇降装置53(図1)に取り付けられており、ピン昇降装置53によってピン52は載置面56の下方に降下された後、基板剥離室14の内部に搬入された成膜対象物40は、ステージ55と温度調節板63の間に挿入され、ピン52の上方に保持板貫通孔36が位置するように位置合わせがされた後、降下されて、図5(b)に示すように、成膜面37が上方を向けられた状態で、載置面56上に乗せられる。   Each pin 52 is attached to a pin lifting / lowering device 53 (FIG. 1), and the pin 52 is lowered below the placement surface 56 by the pin lifting / lowering device 53 and then carried into the substrate peeling chamber 14. The film object 40 is inserted between the stage 55 and the temperature adjustment plate 63, aligned so that the holding plate through-hole 36 is positioned above the pin 52, and then lowered, as shown in FIG. As shown in FIG. 3, the film formation surface 37 is placed on the placement surface 56 with the upper surface thereof directed upward.

その状態では、保持板貫通孔36は移動孔と連通している。成膜面37は、温度調節板63と平行に、近接して対面するようにされており、温度調節板63は、基板31に放射熱を入射させ、又は、基板31の放射熱を吸収して、基板31を昇温又は冷却するようになっており、熱媒体62の温度を制御することによって基板31と基板貼付剤33との温度を制御することができる。
基板剥離室14内に搬入されたときの、基板31及び基板貼付剤33の温度は30℃より高く45℃より低い温度範囲になっている。
In this state, the holding plate through hole 36 communicates with the moving hole. The film formation surface 37 faces the temperature adjusting plate 63 in close proximity to each other, and the temperature adjusting plate 63 makes the radiant heat incident on the substrate 31 or absorbs the radiant heat of the substrate 31. Thus, the temperature of the substrate 31 is raised or cooled, and the temperature of the substrate 31 and the substrate patch 33 can be controlled by controlling the temperature of the heat medium 62.
The temperature of the board | substrate 31 and the board | substrate patch 33 when it carries in in the board | substrate peeling chamber 14 is a temperature range higher than 30 degreeC and lower than 45 degreeC.

ステージ55に載置されたその温度範囲の基板貼付剤33を温度調節板63によって温度制御する場合は、基板貼付剤33の温度30℃以下の低温範囲又は45℃以上の高温範囲のいずれかの温度範囲内にする熱媒体62の温度と、対面させる時間とが、予め求められており、ステージ55に載置された成膜対象物40は、温度制御装置67が供給する熱媒体62によって温度制御されて、基板貼付剤33の温度が、低温範囲又は高温範囲にされる。   When the temperature of the substrate patch 33 placed on the stage 55 in the temperature range is controlled by the temperature adjustment plate 63, either the low temperature range of the substrate patch 33 is 30 ° C. or lower or the high temperature range of 45 ° C. or higher. The temperature of the heat medium 62 within the temperature range and the time for facing are determined in advance, and the film formation target 40 placed on the stage 55 is heated by the heat medium 62 supplied by the temperature controller 67. The temperature of the substrate patch 33 is controlled to be a low temperature range or a high temperature range.

低温範囲の場合は、室温(20℃)以上の温度範囲であることが普通であり、高温範囲の場合は、基板31に形成されている薄膜にダメージを与えないことから、80℃以下にすることが普通である。
低温範囲又は高温範囲になったところで、ピン52が上昇される。
In the case of the low temperature range, it is usually a temperature range of room temperature (20 ° C.) or more. In the case of the high temperature range, the thin film formed on the substrate 31 is not damaged. It is normal.
When the temperature is in the low temperature range or the high temperature range, the pin 52 is raised.

ピン52の上方には、基板31の非成膜面38が露出されている。基板保持板32はステージ55に固定されており、上昇するピン52の先端は、非成膜面38に当接し、更に上昇しようとすると、基板31には下方から押圧力が加わり、その押圧力が剥離力となる。剥離力が接触力よりも大きいと、基板31は基板貼付剤33から剥離する。   Above the pins 52, the non-deposition surface 38 of the substrate 31 is exposed. The substrate holding plate 32 is fixed to the stage 55, and the tip of the rising pin 52 comes into contact with the non-film-formation surface 38. When further rising is attempted, a pressing force is applied to the substrate 31 from below, and the pressing force is applied. Becomes the peeling force. When the peeling force is larger than the contact force, the substrate 31 peels from the substrate patch 33.

基板剥離室14の内部のステージ55の側方位置には、除電装置(ここでは紫外線ランプ72)が配置されており、基板剥離室14の外部には、ランプ用電源73が配置されている。
ランプ用電源73が起動すると紫外線ランプ72に通電され、紫外線ランプ72は点灯し、紫外線ランプ72から載置面56上の空間に向けて紫外線が放射されるようになっている。
紫外線ランプ72は、基板31が基板貼付剤33から剥離される際には、点灯させておき、非成膜面38に紫外線が照射されるようにする。
A neutralization device (in this case, an ultraviolet lamp 72) is disposed at a side position of the stage 55 inside the substrate peeling chamber 14, and a lamp power source 73 is disposed outside the substrate peeling chamber 14.
When the lamp power source 73 is activated, the ultraviolet lamp 72 is energized, the ultraviolet lamp 72 is turned on, and ultraviolet rays are emitted from the ultraviolet lamp 72 toward the space on the mounting surface 56.
The ultraviolet lamp 72 is turned on when the substrate 31 is peeled from the substrate patch 33 so that the non-film-forming surface 38 is irradiated with ultraviolet rays.

基板31が剥離される際には、基板貼付剤33の温度は、低温範囲又は高温範囲にされており、帯電量が小さくなるようにされている。また、非成膜面38に紫外線が照射されることで、基板31の帯電が小さくなるようにされている。   When the substrate 31 is peeled off, the temperature of the substrate patch 33 is set to a low temperature range or a high temperature range so that the charge amount is reduced. Further, the substrate 31 is less charged by irradiating the non-deposition surface 38 with ultraviolet rays.

ピン昇降装置は、ピン52を所望の速度で上昇させることができるように構成されており、ここでは、ピン52が非成膜面38に当接した後、ピン52は、0.1mm/秒以上1mm/秒以下の速度で上昇されており、その速度は、従来のピン移動速度よりも遅くされ、帯電が少なくなるようにされている。   The pin lifting device is configured to be able to raise the pin 52 at a desired speed. Here, after the pin 52 comes into contact with the non-film-forming surface 38, the pin 52 is 0.1 mm / second. The speed is increased at a speed of 1 mm / second or less, and the speed is made slower than the conventional pin moving speed so as to reduce charging.

図5(c)は、基板保持板32から剥離された基板31を示している。
なお、上述した基板31の剥離方法では、基板31にピン52を押し付け、押圧力によって基板31を基板保持板32から剥離したが、基板31を牽引する引張力によって、基板31を基板貼付剤33から剥離しても良い。
FIG. 5C shows the substrate 31 peeled from the substrate holding plate 32.
In the above-described peeling method of the substrate 31, the pins 52 are pressed against the substrate 31 and the substrate 31 is peeled off from the substrate holding plate 32 by the pressing force, but the substrate 31 is peeled off by the tensile force that pulls the substrate 31. It may be peeled off.

また、剥離の際に、基板剥離室14に不活性ガスを導入して第二の真空雰囲気を、1×10-4Pa以上の圧力にしてもよいし、除電装置は、紫外線ランプ72でなくても良い。また、基板剥離室14の内部に除電装置を設けなくてもよい。 Further, at the time of peeling, an inert gas may be introduced into the substrate peeling chamber 14 so that the second vacuum atmosphere has a pressure of 1 × 10 −4 Pa or higher, and the static eliminator is not the ultraviolet lamp 72. May be. Further, it is not necessary to provide a static eliminator inside the substrate peeling chamber 14.

また、複数のピン52は、それぞれ同速度で上昇してもよいし、ピン52とピン52との間で、異なる速度で上昇するようにしてもよい。   Further, the plurality of pins 52 may rise at the same speed, or may rise at different speeds between the pins 52 and 52.

また、温度調節機構60の温度調節板63は、成膜対象物40の基板31と対面する位置に、成膜対象物40と離間して設けられていたが、ステージ55の内部に媒体流路65を設け、熱媒体62を媒体流路65に供給して循環させることによって、ステージ55を温度調節板63とし、温度調節板63を成膜対象物40と接触するようにして配置しても良い。   In addition, the temperature adjustment plate 63 of the temperature adjustment mechanism 60 is provided at a position facing the substrate 31 of the film formation target 40 so as to be separated from the film formation target 40. 65, and the heat medium 62 is supplied to the medium flow path 65 and circulated so that the stage 55 serves as the temperature adjustment plate 63 and the temperature adjustment plate 63 is arranged so as to be in contact with the film formation target 40. good.

ピン52を上昇させ、有機EL薄膜が形成された基板31を基板貼付剤33から剥離して、基板保持板32と基板貼付剤33とから分離させた後、基板保持板32は、真空雰囲気中を移動して、基板貼付室11に戻され、分離された基板31は、後室15の内部に移動され、基板31には、次の処理が行われる。
なお、上記基板31はガラス基板であったが、本発明には、ガラス基板以外の誘電体の基板を用いることができる。
After the pins 52 are raised and the substrate 31 on which the organic EL thin film is formed is peeled off from the substrate patch 33 and separated from the substrate holding plate 32 and the substrate patch 33, the substrate holding plate 32 is placed in a vacuum atmosphere. Is moved back to the substrate pasting chamber 11, and the separated substrate 31 is moved into the rear chamber 15, and the substrate 31 is subjected to the following processing.
Although the substrate 31 is a glass substrate, a dielectric substrate other than the glass substrate can be used in the present invention.

[基板貼付剤の温度と基板貼付剤の粘着力及び基板の帯電量との関係]
本実施例では、基板貼付剤33にはブタジエンゴムを使用し、基板保持板32にはアルミニウムを使用した。また、試料基板には、約50mm角の正方形の未成膜のガラス基板を使用した。基板貼付剤33を基板保持板32に貼付し、試料基板を基板貼付剤33上に載置し、上方から20Nの力で押圧して試料基板を基板貼付剤33に貼付して固定し、成膜対象物のサンプルを得た。ここでは、成膜対象物のサンプルを複数枚作成し、各成膜対象物からそれぞれ試料基板を剥離させたときの、基板貼付剤33の温度と基板貼付剤33の粘着力との関係と、基板貼付剤33の温度と基板31の帯電量との関係をそれぞれ測定した。
[Relationship between temperature of substrate patch, adhesive strength of substrate patch and amount of charge of substrate]
In this example, butadiene rubber was used for the substrate patch 33 and aluminum was used for the substrate holding plate 32. In addition, an approximately 50 mm square square non-film-formed glass substrate was used as the sample substrate. The substrate patch 33 is affixed to the substrate holding plate 32, the sample substrate is placed on the substrate adhesive 33, pressed with a force of 20N from above, and the sample substrate is affixed to the substrate adhesive 33 and fixed. A sample of the membrane object was obtained. Here, the relationship between the temperature of the substrate patch 33 and the adhesive force of the substrate patch 33 when a plurality of samples of the film formation target are prepared and the sample substrate is peeled off from each film formation target, The relationship between the temperature of the substrate patch 33 and the charge amount of the substrate 31 was measured.

温度と、粘着力の測定結果の平均値との関係を表1に示し、温度と、帯電量の測定結果の平均値の規格値との関係を表2に示す。表2に示した規格値は、基板貼付剤33が30℃のときに剥離した際の帯電量(760.9V)を1としたときの規格値である。   Table 1 shows the relationship between the temperature and the average value of the adhesive force measurement results, and Table 2 shows the relationship between the temperature and the standard value of the average value of the charge amount measurement results. The standard values shown in Table 2 are standard values when the charge amount (760.9 V) when the substrate patch 33 is peeled off at 30 ° C. is 1.

Figure 0006034228
Figure 0006034228

Figure 0006034228
Figure 0006034228

表1に示した温度と粘着力との関係を図6に示し、表2に示した温度と帯電量との関係を図7に示す。図6、図7に示すグラフの横軸は、基板貼付剤33の温度を、図6の縦軸は粘着力の測定結果の平均値を、図7の縦軸は帯電量の測定結果の平均値の規格値を示している。   The relationship between the temperature shown in Table 1 and the adhesive strength is shown in FIG. 6, and the relationship between the temperature shown in Table 2 and the charge amount is shown in FIG. The horizontal axis of the graphs shown in FIGS. 6 and 7 is the temperature of the substrate patch 33, the vertical axis of FIG. 6 is the average value of the measurement results of the adhesive strength, and the vertical axis of FIG. The standard value of the value is shown.

粘着力と帯電量とを測定した際には、基板貼付剤33の温度に加え、その基板貼付剤33に貼付された基板31の温度も測定しており、表1、表2には、基板31と基板貼付剤33との測定温度を記載した。   When the adhesive force and the charge amount were measured, in addition to the temperature of the substrate patch 33, the temperature of the substrate 31 affixed to the substrate patch 33 was also measured. The measurement temperature of 31 and the board | substrate patch 33 was described.

表1と図6とから、ブタジエンゴムを用いた基板貼付剤33は、23℃以上60℃以下の温度範囲内では、高温の基板貼付剤33の粘着力の方が、低温の基板貼付剤33の粘着力よりも小さくなっている。
従って、低温範囲よりも高温範囲の方が、剥離力は小さくて済む。
From Table 1 and FIG. 6, in the substrate patch 33 using butadiene rubber, the adhesive strength of the high-temperature substrate patch 33 is lower in the temperature range of 23 ° C. or more and 60 ° C. or less. It is smaller than the adhesive strength.
Accordingly, the peeling force is smaller in the high temperature range than in the low temperature range.

他方、表2と図7とから、基板貼付剤33の温度が、23℃以上35℃以下の温度範囲内では、基板貼付剤33の温度が高い方が低い方よりも帯電量が大きくなっており、35℃以上60℃以下の温度範囲内では、基板貼付剤33の温度が高い方が低い方よりも帯電量は小さくなっており、その結果、基板貼付剤33の温度が35℃のときに試料基板の帯電量は最も大きくなっている。   On the other hand, from Table 2 and FIG. 7, when the temperature of the substrate patch 33 is within a temperature range of 23 ° C. or more and 35 ° C. or less, the higher the temperature of the substrate patch 33 is, the higher the charge amount is. In the temperature range of 35 ° C. or more and 60 ° C. or less, the charge amount is smaller when the temperature of the substrate patch 33 is higher than when it is lower. As a result, when the temperature of the substrate patch 33 is 35 ° C. In addition, the charge amount of the sample substrate is the largest.

以上の結果より、基板貼付剤の温度を、35℃よりも低い温度にするほど、又は35℃よりも高い温度にするほど、帯電の放電による有機EL薄膜39の破壊は起こり難くなることがわかる。基板貼付剤33の温度を35℃よりも低い20℃〜30℃の低温領域又は、35℃よりも高い45℃〜80℃の高温領域にして、基板貼付剤33から基板31を剥離すると、有機EL薄膜39の劣化によるデバイス不良の問題が起こらないことが確認されている。   From the above results, it can be seen that the lower the temperature of the substrate patch is lower than 35 ° C. or the higher the temperature is higher than 35 ° C., the less the organic EL thin film 39 is destroyed due to charging discharge. . When the temperature of the substrate patch 33 is set to a low temperature region of 20 ° C. to 30 ° C. lower than 35 ° C. or a high temperature region of 45 ° C. to 80 ° C. higher than 35 ° C. It has been confirmed that the problem of device failure due to deterioration of the EL thin film 39 does not occur.

[ピンの移動速度と基板の帯電量との関係]
本実施例では、基板貼付剤33にはブタジエンゴムを使用し、基板保持板32にはアルミニウムを使用した。また、試料基板は、300mm×400mmの長方形の未成膜のガラス基板を用いた。基板貼付剤33を基板保持板32に貼付し、試料基板を基板貼付剤33上に載置し、上方から押圧して試料基板を基板貼付剤33に貼付して固定し、成膜対象物のサンプルを得た。基板貼付剤33の温度を24℃としたときに、成膜対象物のサンプルから試料基板を剥離させたときの、ピン52の移動速度と試料基板の帯電量との関係を測定した。測定結果を下記表3に示す。下記表3に示した値は、ピンの移動速度が2mm/秒であるときの試料基板の帯電量(9200V)を1としたときの規格値である。
[Relationship between pin movement speed and substrate charge]
In this example, butadiene rubber was used for the substrate patch 33 and aluminum was used for the substrate holding plate 32. The sample substrate was a 300 mm × 400 mm rectangular non-film-formed glass substrate. The substrate patch 33 is affixed to the substrate holding plate 32, the sample substrate is placed on the substrate adhesive 33, pressed from above, and the sample substrate is affixed to the substrate adhesive 33 and fixed. A sample was obtained. When the temperature of the substrate patch 33 was 24 ° C., the relationship between the moving speed of the pins 52 and the charge amount of the sample substrate when the sample substrate was peeled from the sample of the film formation target was measured. The measurement results are shown in Table 3 below. The values shown in Table 3 below are standard values when the charge amount (9200 V) of the sample substrate when the pin moving speed is 2 mm / second is 1.

Figure 0006034228
Figure 0006034228

表3の数値から、ピン52の移動速度が、2mm/秒、1mm/秒、0.1mm/秒であるときの基板31の帯電量の規格値は、それぞれ1.00、0.39、0.34であり、移動速度が0.1mm/秒以上2mm/秒以下の範囲では、ピン52の移動速度が遅い方が速い方よりも試料基板の帯電量は小さくなることが分かる。
表3から、移動速度は1mm/秒以下が望ましいことが分かる。
From the numerical values in Table 3, the standard values of the charge amount of the substrate 31 when the moving speed of the pin 52 is 2 mm / second, 1 mm / second, and 0.1 mm / second are 1.00, 0.39, and 0, respectively. In the range where the moving speed is 0.1 mm / second or more and 2 mm / second or less, the charge amount of the sample substrate is smaller when the moving speed of the pin 52 is slower than when the moving speed is faster.
From Table 3, it can be seen that the moving speed is preferably 1 mm / second or less.

2……有機EL薄膜形成基板の製造装置
11……基板貼付室
13……成膜室
14……基板剥離室
22……真空排気装置
31……基板
39……有機EL薄膜
32……基板保持板
33……基板貼付剤
34……基板貼付面
36……保持板貫通孔
40……成膜対象物
44……搬送対象物
41……基板搬送装置
43……蒸気放出装置
53……ピン昇降装置
55……ステージ
56……載置面
60……温度調節機構
65……媒体流路
63……温度調節板
67……温度制御装置
71……紫外線照射装置
72……紫外線ランプ
2 ... Organic EL thin film forming substrate manufacturing apparatus 11 ... Substrate pasting chamber 13 ... Deposition chamber 14 ... Substrate peeling chamber 22 ... Vacuum exhaust device 31 ... Substrate 39 ... Organic EL thin film 32 ... Substrate holding Plate 33 ... Substrate adhesive 34 ... Substrate attachment surface 36 ... Holding plate through hole 40 ... Film formation target 44 ... Transport target 41 ... Substrate transport device 43 ... Vapor release device 53 ... Pin lifting Device 55 ... Stage 56 ... Mounting surface 60 ... Temperature control mechanism 65 ... Medium flow path 63 ... Temperature control plate 67 ... Temperature control device 71 ... Ultraviolet irradiation device 72 ... Ultraviolet lamp

Claims (5)

基板保持板の表面に基板貼付剤で基板の裏面を貼付し、
露出する前記基板の表面に、第一の真空雰囲気中で有機EL薄膜を形成した後、
前記基板貼付剤を30℃以下の低温範囲又は45℃以上の高温範囲のうちいずれか一方の温度範囲にし、第二の真空雰囲気中で前記基板と前記基板保持板との間に剥離力を加えて、前記基板に前記有機EL薄膜が形成された有機EL薄膜形成基板を前記基板貼付剤から剥離させる有機EL薄膜形成基板の製造方法。
Affix the back side of the substrate with the substrate adhesive on the surface of the substrate holding plate,
After forming the organic EL thin film in the first vacuum atmosphere on the exposed surface of the substrate,
The substrate patch is set to one of a low temperature range of 30 ° C. or lower or a high temperature range of 45 ° C. or higher, and a peeling force is applied between the substrate and the substrate holding plate in a second vacuum atmosphere. And the manufacturing method of the organic EL thin film formation board | substrate which peels the organic EL thin film formation board | substrate with which the said organic EL thin film was formed in the said board | substrate from the said board | substrate patch.
前記第二の真空雰囲気は、前記第一の真空雰囲気と同じ圧力にする請求項1記載の有機EL薄膜形成基板の製造方法。   The method of manufacturing an organic EL thin film forming substrate according to claim 1, wherein the second vacuum atmosphere is set to the same pressure as the first vacuum atmosphere. 前記第一の真空雰囲気と、前記第二の真空雰囲気とを、1.0×10-4Pa未満の圧力にする請求項2記載の有機EL薄膜形成基板の製造方法。 The manufacturing method of the organic electroluminescent thin film formation board | substrate of Claim 2 which makes said 1st vacuum atmosphere and said 2nd vacuum atmosphere into the pressure of less than 1.0 * 10 <-4> Pa. 前記基板には、除電装置によって前記基板を除電しながら、前記剥離力を加えて前記基板貼付剤から剥離させる請求項1乃至請求項3のいずれか1項記載の有機EL薄膜形成基板の製造方法。   4. The method of manufacturing an organic EL thin film forming substrate according to claim 1, wherein the substrate is peeled from the substrate patch by applying the peeling force while discharging the substrate with a static eliminator. 5. . 前記基板保持板の裏面側から前記基板保持板に対してピンを移動させ、前記基板保持板に形成された貫通孔に前記ピンを挿通して前記ピンの先端を前記基板の裏面に当接させた後、更に前記ピンを前記基板保持板に対して1mm/秒以下の相対速度で移動させ、前記基板を押圧して前記基板に剥離力を加える請求項1乃至請求項4のいずれか1項記載の有機EL薄膜形成基板の製造方法。   A pin is moved relative to the substrate holding plate from the back side of the substrate holding plate, the pin is inserted into a through hole formed in the substrate holding plate, and the tip of the pin is brought into contact with the back surface of the substrate. After that, the pin is further moved at a relative speed of 1 mm / second or less with respect to the substrate holding plate, and the substrate is pressed to apply a peeling force to the substrate. The manufacturing method of the organic electroluminescent thin film formation board | substrate of description.
JP2013071214A 2013-03-29 2013-03-29 Manufacturing method of organic EL thin film forming substrate Active JP6034228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071214A JP6034228B2 (en) 2013-03-29 2013-03-29 Manufacturing method of organic EL thin film forming substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071214A JP6034228B2 (en) 2013-03-29 2013-03-29 Manufacturing method of organic EL thin film forming substrate

Publications (2)

Publication Number Publication Date
JP2014194896A JP2014194896A (en) 2014-10-09
JP6034228B2 true JP6034228B2 (en) 2016-11-30

Family

ID=51839994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071214A Active JP6034228B2 (en) 2013-03-29 2013-03-29 Manufacturing method of organic EL thin film forming substrate

Country Status (1)

Country Link
JP (1) JP6034228B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549731B2 (en) * 2015-05-08 2019-07-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and support for holding a substrate
US10804407B2 (en) * 2016-05-12 2020-10-13 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and stack processing apparatus
JP7450366B2 (en) * 2019-11-11 2024-03-15 キヤノントッキ株式会社 Substrate holding device, substrate processing device, substrate holding method, reversing method, film forming method, electronic device manufacturing method
JP7159238B2 (en) * 2020-03-13 2022-10-24 キヤノントッキ株式会社 Substrate carrier, deposition apparatus, and deposition method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274301A (en) * 2005-03-28 2006-10-12 Optrex Corp Vapor deposition method
JP2007087807A (en) * 2005-09-22 2007-04-05 Mitsubishi Electric Corp Manufacturing method of organic el display device
JP2009140903A (en) * 2007-11-14 2009-06-25 Sony Corp Method of manufacturing display
JP4620766B2 (en) * 2008-07-31 2011-01-26 東京エレクトロン株式会社 Peeling device and peeling method
JP2012001762A (en) * 2010-06-16 2012-01-05 Nippon Electric Glass Co Ltd Vapor deposition method and vapor deposition device

Also Published As

Publication number Publication date
JP2014194896A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP6034228B2 (en) Manufacturing method of organic EL thin film forming substrate
US7624772B2 (en) Load lock apparatus, processing system and substrate processing method
EP1973145B1 (en) Apparatus and method for depositing protective layer
JP2021008668A (en) Film deposition apparatus, control method and method for manufacturing electronic device
US9661718B2 (en) Method for producing organic EL panel and device for sealing organic EL panel
US20110253037A1 (en) Vacuum heating and cooling apparatus
US9331305B2 (en) Electronic element sealing method and bonded substrate
TWI607100B (en) Deposition apparatus and method of manufacturing organic light emitting diode display
WO2011086868A1 (en) System of thin film forming apparatus, and thin film forming method
JP2002270680A (en) Method and device for supporting substrate
JP5694384B2 (en) Arrays, systems, and methods for processing multilayer bodies
JP2015156485A (en) Device for forming reduction chamber space, and method of positioning multilayer body
JP2000156160A (en) Vacuum device, and manufacture of plasma display unit
JP2014154315A (en) Organic el device manufacturing apparatus and organic el device manufacturing method
JPWO2007144982A1 (en) Adsorption holding device and adsorption holding method
JP2003013215A (en) Sputtering apparatus
KR101204284B1 (en) Manufacturing method of film formed substrate, film formed substrate, and film forming apparatus
JPWO2019082868A1 (en) Substrate processing equipment, support pins
JP2017166802A (en) Decompression drying method and decompression drying device
KR102107446B1 (en) Coating Apparatus, Coating Method And Coating Layer manufactured using the same method
JP4493638B2 (en) Vacuum processing method
FI128385B (en) An apparatus and a method for forming conductive patterns on a surface of a substrate plate by a sputtering process
TWI714836B (en) Deposition apparatus and deposition method
CN108428615B (en) Substrate processing method and apparatus
JP6174210B2 (en) Mounting table and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6034228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250