JP6033361B2 - Molding - Google Patents

Molding Download PDF

Info

Publication number
JP6033361B2
JP6033361B2 JP2015094561A JP2015094561A JP6033361B2 JP 6033361 B2 JP6033361 B2 JP 6033361B2 JP 2015094561 A JP2015094561 A JP 2015094561A JP 2015094561 A JP2015094561 A JP 2015094561A JP 6033361 B2 JP6033361 B2 JP 6033361B2
Authority
JP
Japan
Prior art keywords
reflectance
melt
crystalline
molding
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015094561A
Other languages
Japanese (ja)
Other versions
JP2015134939A (en
Inventor
ホアイ ナム フアム
ホアイ ナム フアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP2015094561A priority Critical patent/JP6033361B2/en
Publication of JP2015134939A publication Critical patent/JP2015134939A/en
Application granted granted Critical
Publication of JP6033361B2 publication Critical patent/JP6033361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、紫外線領域から可視線領域における反射率の低下が少なく、且つ耐熱性・耐光性・耐候性にも優れる成形品に関する。
本発明はまた、紫外線から可視線領域において高反射率(反射率70%以上)を有する成形品に関する。
The present invention relates to a molded article that has a small decrease in reflectance from the ultraviolet region to the visible ray region and is excellent in heat resistance, light resistance, and weather resistance.
The present invention also relates to a molded article having high reflectivity (reflectance of 70% or more) in the visible ray region from ultraviolet rays.

特許文献1には多気孔アルミナセラミックスからなるLEDハウジングが記載されている。多気孔アルミナセラミックスは、耐熱性・耐光性・耐候性に優れ、気孔直径と気孔率を制御することによって高反射率を得ることが出来るが、セラミックスの成形はバッチの工程で1,000℃以上の温度に加熱・時間をかけながら焼成するため、製造コストが高く、生産性が悪いという問題があった。   Patent Document 1 describes an LED housing made of multi-porous alumina ceramics. Multi-porous alumina ceramics are excellent in heat resistance, light resistance, and weather resistance, and it is possible to obtain high reflectivity by controlling the pore diameter and porosity. Since the baking is carried out while heating / heating the temperature, there are problems that the manufacturing cost is high and the productivity is poor.

近年では、成形品の製造コストを低減するため、連続成形可能な熱可塑性樹脂が用いられている。例えば、ポリアミド系の樹脂では300℃でも融解しないものもあるが、比較例5に示したように、500時間150℃で加熱した場合、樹脂が酸化され黒色に変色するため、反射率が大幅に低下するという欠点がある。その為、初期に反射率が高くても、高出力動作が継続した場合には樹脂が高温になる為、変色し発光効率が落ちるという問題があった。また、ポリアミド系の樹脂は高温で劣化しやすいので、溶融成形する際に、溶融成形機内での残留時間が長くなると熱分解・変色が起こり、製品ロスが増え、生産性が悪いという問題もあった。   In recent years, thermoplastic resins that can be continuously molded have been used in order to reduce the manufacturing cost of molded products. For example, some polyamide-based resins do not melt even at 300 ° C. However, as shown in Comparative Example 5, when heated at 150 ° C. for 500 hours, the resin is oxidized and discolored to black, so the reflectivity is greatly increased. There is a drawback of lowering. For this reason, even if the reflectivity is high in the initial stage, if the high output operation is continued, the resin becomes high temperature, causing a problem of discoloration and lowering the luminous efficiency. In addition, polyamide-based resins are likely to deteriorate at high temperatures, so when melt-molding, if the remaining time in the melt-molding machine becomes long, thermal decomposition and discoloration occur, resulting in increased product loss and poor productivity. It was.

更に、図1の比較例3に示したように、このポリアミド系樹脂では充填材である二酸化チタンの屈折率が2.7であるため、可視光領域においては反射率が高いが、波長420nm未満では反射率が大幅低下する。これは、二酸化チタンが3.2eVのバンドギャップ構造をもつためと考えられる(参照:非特許文献1)。吸収したエネルギーが熱に変換されると共に、二酸化チタンが光触媒作用を示すため、樹脂の劣化が進むと考えられる。   Furthermore, as shown in Comparative Example 3 in FIG. 1, since the refractive index of titanium dioxide as a filler is 2.7 in this polyamide resin, the reflectance is high in the visible light region, but the wavelength is less than 420 nm. Then, the reflectivity is greatly reduced. This is considered because titanium dioxide has a band gap structure of 3.2 eV (see Non-Patent Document 1). The absorbed energy is converted into heat, and titanium dioxide exhibits a photocatalytic action, which is considered to cause deterioration of the resin.

その為、耐熱性、耐光性、耐侯性、耐薬品性、高周波電気特性、難燃性などの優れた特徴を有し、酸、アルカリなどの薬液、溶剤、塗料などの移送用の配管、薬液貯蔵容器やタンクなどの化学工業製造用品、またはチューブ、ローラ、電線などの電気工業用品等にも広く利用されているフッ素樹脂、例えばポリテトラフルオロエチレン(PTFE)または、熱溶融性フッ素樹脂のテトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン・パーフルオロ(アルキルビニルエーテル)共重合体(EPE)などが成形品用樹脂として検討されている。   Therefore, it has excellent characteristics such as heat resistance, light resistance, weather resistance, chemical resistance, high-frequency electrical characteristics, flame retardancy, etc., chemicals such as acids and alkalis, piping for transporting solvents, paints, etc., chemicals Fluororesin, such as polytetrafluoroethylene (PTFE) or heat-melting fluororesin tetra, which is widely used in chemical industrial manufacturing articles such as storage containers and tanks, and electrical industrial articles such as tubes, rollers, and electric wires. Fluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / hexafluoropropylene / perfluoro (alkyl vinyl ether) copolymer (EPE) Etc. are being studied as resins for molded products.

特許文献2には、二酸化チタンを充填材として含有するフッ素樹脂からなるLED用リフレクターが開示されているが、上記のポリアミド系樹脂(比較例3)の様に、紫外線を吸収する二酸化チタンを充填材として用いているため、紫外領域での反射率が大幅に低下するという問題がある(比較例2参照)。
そのため、紫外領域から可視領域での吸収が無く、すなわち、紫外領域での反射率が大幅に低下することなく、耐熱性・耐光性・耐候性に優れ、且つ高い反射率を有する成形品が求められている。
Patent Document 2 discloses a reflector for an LED made of a fluororesin containing titanium dioxide as a filler. Like the polyamide-based resin (Comparative Example 3), it is filled with titanium dioxide that absorbs ultraviolet rays. Since it is used as a material, there is a problem that the reflectance in the ultraviolet region is significantly reduced (see Comparative Example 2).
Therefore, there is a need for a molded article having no heat absorption from the ultraviolet region to the visible region, that is, having excellent heat resistance, light resistance, weather resistance, and high reflectance without significantly reducing the reflectance in the ultraviolet region. It has been.

特許第4576276号Japanese Patent No. 4576276 US2010/0032702A1US2010 / 0032702A1

日本化学会:表面励起プロセスの化学、季刊 化学総説 No.12、p.132〜145(1991)Chemical Society of Japan: Chemistry of Surface Excitation Process, Quarterly Chemical Review No. 12, p.132-145 (1991)

本発明は、紫外領域から可視領域において反射率が低下することなく、且つ耐熱性・耐光性・耐候性に優れる成形品を鋭意検討した結果、上記の問題点を解決し得る方法を見出し本発明に到達したものである。
本発明は、紫外領域から可視領域において反射率が低下することなく、且つ耐熱性・耐光性・耐候性に優れる成形品を提供する。
本発明はまた、紫外線から可視線領域において高反射率(反射率70%以上)を有する成形品に関する。
The present invention has found a method capable of solving the above-mentioned problems as a result of intensive studies on a molded product having excellent heat resistance, light resistance, and weather resistance without reducing the reflectance from the ultraviolet region to the visible region. Has reached
The present invention provides a molded article that is excellent in heat resistance, light resistance, and weather resistance without lowering the reflectance from the ultraviolet region to the visible region.
The present invention also relates to a molded article having high reflectivity (reflectance of 70% or more) in the visible ray region from ultraviolet rays.

平均粒径1μm未満の結晶系のαアルミナ微粒子を、フッ素樹脂組成物全体に対して0.1〜50質量%含むフッ素樹脂組成物を成形して得られる成形品であって、波長240nm〜700nmにおける反射率の最大値と最小値の差が25%以内である成形品を提供する。
上記成形品において、平均粒径1μm未満の結晶系のαアルミナ微粒子の含有量が、フッ素樹脂組成物全体に対して5〜30質量%である成形品は、本発明の好ましい態様である。
A molded product obtained by molding a fluororesin composition containing 0.1 to 50% by mass of crystalline α-alumina fine particles having an average particle size of less than 1 μm with respect to the entire fluororesin composition, and having a wavelength of 240 nm to 700 nm A molded product in which the difference between the maximum value and the minimum value of the reflectance is 25% or less is provided.
In the above molded product, a molded product in which the content of the crystalline α-alumina fine particles having an average particle size of less than 1 μm is 5 to 30% by mass with respect to the entire fluororesin composition is a preferred embodiment of the present invention.

上記成形品おいて、フッ素樹脂が、テトラフルオロエチレンの単独重合体、及び/またはテトラフルオロエチレンと、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライド、ビニルフルオライド、エチレン、プロピレンから選ばれる少なくとも1種のモノマーとの共重合体から選ばれる少なくとも1種である成形品は、本発明の好ましい態様である。   In the molded article, the fluororesin is a tetrafluoroethylene homopolymer and / or tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride, vinyl fluoride, A molded article which is at least one selected from a copolymer with at least one monomer selected from ethylene and propylene is a preferred embodiment of the present invention.

上記成形品において、平均粒径1μm未満の結晶系のαアルミナ微粒子の屈折率が1.5以上である成形品は、本発明の好ましい態様である。   In the above molded article, a molded article in which the refractive index of the crystalline α-alumina fine particles having an average particle size of less than 1 μm is 1.5 or more is a preferred embodiment of the present invention.

上記成形品において、波長240nm〜380nmにおける反射率が70%以上である成形品は、本発明の好ましい態様である。   In the above molded article, a molded article having a reflectance of 70% or more at a wavelength of 240 nm to 380 nm is a preferred embodiment of the present invention.

上記成形品において、平均粒径0.1〜1.0μm未満の結晶系のαアルミナ微粒子を含有するフッ素樹脂組成物を成形して得られる成形品は、本発明の好ましい態様である。   In the above molded article, a molded article obtained by molding a fluororesin composition containing crystalline α-alumina fine particles having an average particle size of less than 0.1 to 1.0 μm is a preferred embodiment of the present invention.

本発明により、紫外領域から可視領域において反射率が低下することなく、且つ耐熱性・耐光性・耐候性に優れる成形品が提供され、該成形品は、例えば、発光ダイオード(LED)用リフレクター、該リフレクターを有するLED用ハウジングに利用することができる。
反射率が低下しないことにより、使用する光の波長によらず一定の反射率が得られる。
また、平均粒径1μm未満の結晶系のαアルミナ微粒子が成形品中に均一に分散されていることにより、従来のものより少ない量の結晶系のαアルミナ微粒子で高い反射率を実現し得る。
According to the present invention, there is provided a molded article that is excellent in heat resistance, light resistance, and weather resistance without lowering the reflectance from the ultraviolet region to the visible region. For example, the molded product includes a reflector for a light emitting diode (LED), It can utilize for the housing for LED which has this reflector.
Since the reflectance does not decrease, a constant reflectance can be obtained regardless of the wavelength of light used.
Further, since the crystalline α-alumina fine particles having an average particle size of less than 1 μm are uniformly dispersed in the molded product, a high reflectance can be realized with a smaller amount of crystalline α-alumina fine particles than the conventional one.

成形品の反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance of a molded article. 電子顕微鏡で得た実施例3の複合体組成物破断面の写真である。It is a photograph of the composite composition fracture surface of Example 3 obtained with an electron microscope. 電子顕微鏡で得た比較例1の複合体組成物破断面の写真である。It is a photograph of the composite composition fracture surface of Comparative Example 1 obtained with an electron microscope.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に用いられるフッ素樹脂は、溶融成形可能なフッ素樹脂である。溶融成形とは従来公知の溶融成形装置を用いる成形方法で、重合体が溶融状態で流動することにより、溶融物から例えば、フィルム、繊維、チューブなど、それぞれの所定の目的に応じた十分な強度及び耐久性を示す成形品を成形することができることを意味する。   The fluororesin used in the present invention is a fluororesin that can be melt-molded. Melt molding is a molding method using a conventionally known melt molding apparatus. When the polymer flows in a molten state, sufficient strength according to each predetermined purpose such as film, fiber, tube, etc. from the melt is obtained. It means that a molded product exhibiting durability can be molded.

溶融成形可能なフッ素樹脂としては、テトラフルオロエチレン(TFE)と、少なくとも一種の共重合可能なフッ素化モノマー(コモノマー)との共重合体(TFE共重合体)であって、少なくとも一種の共重合可能なフッ素化モノマー(コモノマー)は、TFEの単独重合体(ポリテトラフルオロエチレン(PTFE))の融点(315℃)よりも実質的に低い融点となるのに十分な量で重合体中に存在する。   The melt-moldable fluororesin is a copolymer (TFE copolymer) of tetrafluoroethylene (TFE) and at least one copolymerizable fluorinated monomer (comonomer), and at least one copolymer. Possible fluorinated monomer (comonomer) is present in the polymer in an amount sufficient to have a melting point substantially lower than the melting point of TFE homopolymer (polytetrafluoroethylene (PTFE)) (315 ° C). To do.

本発明に好適に使用される溶融成形可能なフッ素樹脂は、少なくとも約40〜98モル%のTFE単位と、約2〜60モル%のTFEと共重合可能な少なくとも1種の他のモノマーとの共重合体である。TFEと共重合可能なモノマーとしては、例えば、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)(アルキル基は炭素数1〜5の直鎖もしくは分岐アルキル基である)などを挙げることができる。PAVEモノマーとしては、炭素数1,2,3または4のアルキル基を含むPAVEモノマーが好ましい。TFE共重合体は複数種のPAVEモノマーとTFEとの共重合体であってもよい。TFE共重合体中のPAVEは、1〜20質量%であることが好ましい。   The melt moldable fluororesin suitably used in the present invention comprises at least about 40-98 mol% TFE units and at least one other monomer copolymerizable with about 2-60 mol% TFE. It is a copolymer. Examples of monomers copolymerizable with TFE include hexafluoropropylene (HFP) and perfluoro (alkyl vinyl ether) (PAVE) (the alkyl group is a linear or branched alkyl group having 1 to 5 carbon atoms). be able to. As the PAVE monomer, a PAVE monomer containing an alkyl group having 1, 2, 3 or 4 carbon atoms is preferable. The TFE copolymer may be a copolymer of a plurality of types of PAVE monomers and TFE. The PAVE in the TFE copolymer is preferably 1 to 20% by mass.

好ましいTFE共重合体としては、FEP(TFE/HFP共重合体)、PFA(TFE/PAVE共重合体)、TFE/HFP/PAVE共重合体であって、PAVEがパーフルオロ(エチルビニルエーテル)(PEVE)および/またはパーフルオロ(プロピルビニルエーテル)(PPVE)である共重合体、MFA(TFE/パーフルオロ(メチルビニルエーテル)(PMVE)/PAVE共重合体であって、PAVEのアルキル基が炭素数2以上である共重合体)、THV(TFE/HFP/ビニリデンフルオライド(VF2)共重合体)などが挙げられる。より好ましくは、PFA(TFE/PAVE共重合体)である。   Preferred TFE copolymers include FEP (TFE / HFP copolymer), PFA (TFE / PAVE copolymer), TFE / HFP / PAVE copolymer, and PAVE is perfluoro (ethyl vinyl ether) (PEVE). ) And / or perfluoro (propyl vinyl ether) (PPVE), MFA (TFE / perfluoro (methyl vinyl ether) (PMVE) / PAVE copolymer, wherein the alkyl group of PAVE has 2 or more carbon atoms Copolymer), THV (TFE / HFP / vinylidene fluoride (VF2) copolymer), and the like. More preferably, it is PFA (TFE / PAVE copolymer).

本発明に用いられるフッ素樹脂は、複数種のTFE共重合体を混合して用いてもよい。   The fluororesin used in the present invention may be used by mixing a plurality of types of TFE copolymers.

TFE共重合体は、ASTM D−1238に準じて、その特定のTFE共重合体の標準温度で測定したメルトフローレート(MFR)が約0.5〜100g/10分、好ましくは0.5〜50g/10分である。   The TFE copolymer has a melt flow rate (MFR) measured at a standard temperature of the specific TFE copolymer according to ASTM D-1238, about 0.5 to 100 g / 10 min, preferably 0.5 to 50 g / 10 min.

また、TFE共重合体の溶融粘度は、米国特許第4,380,618号に記載される修正されたASTM D−1238の方法によって372℃で測定し、少なくとも約102Pa・s、好ましくは102Pa・s〜約106Pa・s、より好ましくは約103〜約105Pa・sであることが望ましい。 Also, the melt viscosity of the TFE copolymer is measured at 372 ° C. by the modified ASTM D-1238 method described in US Pat. No. 4,380,618 and is preferably at least about 10 2 Pa · s, preferably It is desirable that the pressure is 10 2 Pa · s to about 10 6 Pa · s, more preferably about 10 3 to about 10 5 Pa · s.

フッ素樹脂組成物中のTFE共重合体の含有量は、50〜99.9質量%、好ましくは60〜99質量%、より好ましくは70〜95質量%である。
溶融成形可能なフッ素樹脂の形態としては、溶融成形に適した形態であれば特に限定されず、粉末状物、粉末状物の造粒品、粒状物、フレーク、ペレット、ビーズなどあらゆる形態を挙げることが出来る。
Content of the TFE copolymer in a fluororesin composition is 50-99.9 mass%, Preferably it is 60-99 mass%, More preferably, it is 70-95 mass%.
The form of the fluororesin that can be melt-molded is not particularly limited as long as it is a form suitable for melt-molding, and includes all forms such as powders, granulated products of powders, granules, flakes, pellets, and beads. I can do it.

本発明で用いられる平均粒径1μm未満の結晶系のαアルミナ微粒子は、紫外領域から可視領域において屈折率が高く、高反射率を有する光反射化合物であることが好ましい。この光反射化合物の平均粒径は、0.01μm〜1.0μm未満、好ましくは0.1μm〜1.0μm未満、より好ましくは0.2μm〜1.0μm未満である。光反射化合物の平均粒径が1.0μm以上になると、光散乱効果が低くなり、反射率が低下するため好ましくない。平均粒径は、例えば、粒子サイズアナライザー(例えばCILAS社製、CILAS990、CILAS1090、CILAS1190:ISO13320)などにより測定できる。このような結晶系のαアルミナ微粒子としては、市販品(例えば、Almatis、Inc.製, A16GS)も使用できる。
成形品中の結晶系のαアルミナ微粒子の混合状態は、電界放射型走査電子顕微鏡(例えば、SEM、日立製作所製、S−4500)を用いて観察することができる。
The crystalline α-alumina fine particles having an average particle size of less than 1 μm used in the present invention are preferably light-reflective compounds having a high refractive index and a high reflectance in the ultraviolet region to the visible region. The average particle diameter of the light reflecting compound is 0.01 μm to less than 1.0 μm, preferably 0.1 μm to less than 1.0 μm, more preferably 0.2 μm to less than 1.0 μm. When the average particle size of the light reflecting compound is 1.0 μm or more, the light scattering effect is lowered and the reflectance is lowered, which is not preferable. The average particle diameter can be measured by, for example, a particle size analyzer (for example, CILAS 990, CILAS 1090, CILAS 1190: ISO 13320 manufactured by CILAS). As such crystalline α-alumina fine particles, commercially available products (eg, Almatis, Inc., A16GS) can also be used.
The mixed state of the crystalline α-alumina fine particles in the molded product can be observed using a field emission scanning electron microscope (for example, SEM, manufactured by Hitachi, Ltd., S-4500).

結晶系のαアルミナ微粒子の屈折率は1.5以上であることが好ましい。屈折率が1.5未満の場合には、高い反射率を得ることが出来なくなるため好ましくない。   The refractive index of the crystalline α-alumina fine particles is preferably 1.5 or more. A refractive index of less than 1.5 is not preferable because a high reflectance cannot be obtained.

また、屈折率が1.5以上である結晶系のαアルミナ微粒子のバンドギャップは、バンドギャップが4.0eV以上であることが好ましい。バンドギャップが4.0eV以下となる結晶系のαアルミナ微粒子は、光触媒と同様に320nm〜700nmの波長範囲において光を吸収するため、240nmの短波長において十分な反射率を得ることが出来ず好ましくない。(非特許文献1)
本発明における結晶系のαアルミナ(Al23)微粒子の屈折率は1.7、バンドギャップ:8.8eVである。
The band gap of the crystalline α-alumina fine particles having a refractive index of 1.5 or more is preferably 4.0 eV or more. Crystalline α-alumina fine particles having a band gap of 4.0 eV or less absorb light in the wavelength range of 320 nm to 700 nm as in the case of the photocatalyst, so that sufficient reflectivity cannot be obtained at a short wavelength of 240 nm. Absent. (Non-Patent Document 1)
The refractive index of the crystalline α-alumina (Al 2 O 3 ) fine particles in the present invention is 1.7 and the band gap is 8.8 eV.

フッ素樹脂組成物中の結晶系のαアルミナ微粒子は、0.1〜50質量%、好ましくは1〜40質量%、より好ましくは5〜30質量%である。結晶系のαアルミナ微粒子が0.1質量%未満の場合には、高反射率が得られなくなるため好ましくなく、結晶系のαアルミナ微粒子の割合が50質量%を超える場合には、フッ素樹脂組成物の溶融粘度が高くなり射出成形し難く、得られる成形品の強度および耐久性が低下するため好ましくない。   The crystalline α-alumina fine particles in the fluororesin composition are 0.1 to 50% by mass, preferably 1 to 40% by mass, and more preferably 5 to 30% by mass. When the amount of the crystalline α-alumina fine particles is less than 0.1% by mass, the high reflectance cannot be obtained, which is not preferable. When the proportion of the crystalline α-alumina fine particles exceeds 50% by mass, the fluororesin composition is used. This is not preferred because the melt viscosity of the product becomes high and injection molding is difficult, and the strength and durability of the resulting molded product are lowered.

TFE共重合体と結晶系のαアルミナ微粒子との混合は、溶融成形前であっても、溶融成形と同時であっても良い。また、混合方法としては、一般的に用いられている混合方法を用いることができ、例えば、共凝集法(特開2007−119769)、プラネタリーミキサー、高速インペラー分散機、ロータリードラム型ミキサー、スクリュー型ミキサー、ベルトコンベヤ混合方式、ボールミル、ペブルミル、サンドミル、ロールミル、アトライター、ビードミルなどの公知慣用の分散・混合機を用いて行うことが出来る。TFE共重合体と結晶系のαアルミナ微粒子を均一に分散出来る装置がより好ましい。   Mixing of the TFE copolymer and the crystalline α-alumina fine particles may be before melt molding or simultaneously with melt molding. Moreover, as a mixing method, a commonly used mixing method can be used, for example, a co-aggregation method (Japanese Patent Laid-Open No. 2007-119769), a planetary mixer, a high-speed impeller disperser, a rotary drum mixer, a screw, and the like. It can be carried out using a known and common dispersing / mixing machine such as a mold mixer, a belt conveyor mixing system, a ball mill, a pebble mill, a sand mill, a roll mill, an attritor and a bead mill. An apparatus capable of uniformly dispersing the TFE copolymer and the crystalline α-alumina fine particles is more preferable.

溶融成形前に、TFE共重合体と結晶系のαアルミナ微粒子との混合を行って得られるフッ素樹脂組成物の形態は、粉末状物、粉末状物の造粒品、粒状物、フレーク、ペレット、ビーズなどあらゆる形態を挙げることが出来る。   Before the melt molding, the form of the fluororesin composition obtained by mixing the TFE copolymer and the crystalline α-alumina fine particles is as follows: powder, granulated product of powder, granule, flake, pellet , And any form such as beads.

前記の混合方法以外に次のようなウェット混合方法もある。例えば、結晶系のαアルミナ微粒子を、担体として働く水溶液或いは有機溶液に溶解し、TFE共重合体にスプレーすることにより、結晶系のαアルミナ微粒子で被覆されたTFE共重合体を得ることが出
来る。尚、前記の水溶液或いは有機溶液を飛ばすため、軽く乾燥することが好ましい。有機溶液としては、特に限定されないが、例えば、メタノール、エタノール、クロロホルム、アセトン、トルエンなどを挙げることが出来る。また、結晶系のαアルミナ微粒子に対する溶解性が高いものがより好ましい。
In addition to the mixing method described above, there are also the following wet mixing methods. For example, a TFE copolymer coated with crystalline α-alumina fine particles can be obtained by dissolving crystalline α-alumina fine particles in an aqueous solution or an organic solution serving as a carrier and spraying it on the TFE copolymer. . In addition, in order to fly the said aqueous solution or organic solution, it is preferable to dry lightly. Although it does not specifically limit as an organic solution, For example, methanol, ethanol, chloroform, acetone, toluene etc. can be mentioned. Further, those having high solubility in crystalline α-alumina fine particles are more preferable.

フッ素樹脂組成物の溶融成形方法としては、従来公知の成形方法を用いることができ、例えば、圧縮成形、押出成形、トランスファー成形、ブロー成形、射出成形、回転成形、ライニング成形、発泡体押出成形、フィルム成形などを挙げることができるが、好ましくは押出成形或いは射出成形である。   As the melt molding method of the fluororesin composition, conventionally known molding methods can be used, for example, compression molding, extrusion molding, transfer molding, blow molding, injection molding, rotational molding, lining molding, foam extrusion molding, Examples of the method include film forming, and extrusion molding or injection molding is preferable.

上記溶融成形方法により得られる成形品は、紫外領域から可視領域において反射率が低下することなく、耐熱性、耐光性、耐候性に優れ、且つ紫外線領域から可視線領域において高い反射率を有する成形品である。後記する測定方法で測定する240nm〜700nmの波長範囲における成形品の反射率の最大値と最小値の差が25%以内となり、安定した反射率を得ることが可能となる。また、240nm〜700nmの波長範囲における成形品の反射率は70%以上となる。   Molded products obtained by the above melt molding method have excellent heat resistance, light resistance, and weather resistance without decreasing the reflectance from the ultraviolet region to the visible region, and have a high reflectance from the ultraviolet region to the visible ray region. It is a product. The difference between the maximum value and the minimum value of the reflectance of the molded product in the wavelength range of 240 nm to 700 nm measured by the measurement method described later is within 25%, and a stable reflectance can be obtained. Further, the reflectance of the molded product in the wavelength range of 240 nm to 700 nm is 70% or more.

波長240nm〜700nmにおける成形品の反射率は、溶融圧縮成形によって作製した厚み約1.5mmの試料の反射率を以下の条件で測定して得ることができる。試料表面の反射層に波長240nm〜700nmの光を入射角10°で照射し、試料背面に反射板を置かず透過光を逃がす方法で、検出器に積分球を搭載した分光光度計(日立製作所製U−400)を用いて、正反射成分と拡散反射成分を含む分光反射率(日立ハイテクフィールディング製:酸化アルミニウム標準白板を対照とした相対反射率)を波長毎に測定した。 The reflectance of the molded product at a wavelength of 240 nm to 700 nm can be obtained by measuring the reflectance of a sample having a thickness of about 1.5 mm produced by melt compression molding under the following conditions. A spectrophotometer equipped with an integrating sphere on the detector (Hitachi, Ltd.) by irradiating the reflection layer on the sample surface with light having a wavelength of 240 nm to 700 nm at an incident angle of 10 ° and releasing the transmitted light without placing a reflector on the back of the sample. Using U-4 100 ), spectral reflectance including a specular reflection component and a diffuse reflection component ( manufactured by Hitachi High-Tech Fielding: relative reflectance with reference to an aluminum oxide standard white plate) was measured for each wavelength.

該成形品は、紫外領域から可視領域において反射率が低下することなく、耐熱性、耐光性、耐候性に優れ、且つ紫外線領域から可視線領域において高い反射率を有する成形品である。   The molded article is a molded article having excellent heat resistance, light resistance, and weather resistance without decreasing the reflectance from the ultraviolet region to the visible region, and having a high reflectance from the ultraviolet region to the visible ray region.

以下に本発明を、実施例および比較例を挙げてさらに具体的に説明するが、この説明は本発明を限定するものではない。
本発明において各物性の測定は、下記の方法によって行った。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but this description does not limit the present invention.
In the present invention, each physical property was measured by the following method.

A.物性の測定
(1)融点(融解ピーク温度)
示差走査熱量計(Pyris1型DSC、パーキンエルマー社製)を用いた。試料約10mgを秤量して専用のアルミパンに入れ、専用のクリンパーによってクリンプした後、DSC本体に収納し、150℃から360℃まで10℃/分で昇温をする。この時得られる融解曲線から融解ピーク温度(Tm)を求めた。
A. Measurement of physical properties (1) Melting point (melting peak temperature)
A differential scanning calorimeter (Pyris 1 type DSC, manufactured by Perkin Elmer) was used. About 10 mg of a sample is weighed and placed in a dedicated aluminum pan, crimped by a dedicated crimper, stored in the DSC body, and heated from 150 ° C. to 360 ° C. at a rate of 10 ° C./min. The melting peak temperature (Tm) was determined from the melting curve obtained at this time.

(2)メルトフローレート(MFR)
ASTM D−1238−95に準拠した耐食性のシリンダー、ダイ、ピストンを備えたメルトインデクサー(東洋精機製)を用いて、5gの試料粉末を372±1℃に保持されたシリンダーに充填して5分間保持した後、5kgの荷重(ピストン及び重り)下でダイオリフィスを通して押出し、この時の押出速度(g/10分)をMFRとして求めた。
(2) Melt flow rate (MFR)
Using a melt indexer (manufactured by Toyo Seiki Co., Ltd.) equipped with a corrosion-resistant cylinder, die, and piston according to ASTM D-1238-95, 5 g of sample powder is filled into a cylinder held at 372 ± 1 ° C. After holding for 5 minutes, extrusion was performed through a die orifice under a load of 5 kg (piston and weight), and the extrusion speed (g / 10 minutes) at this time was determined as MFR.

(3)反射率測定
溶融圧縮成形によって作製した厚み約1.5mmの試料の反射率を以下の条件で測定した。
試料表面の反射層に波長240nm〜700nmの光を入射角10°で照射し、試料背面に反射板を置かず透過光を逃がす方法で、検出器に積分球を搭載した分光光度計(日立製作所製U−400)を用いて、正反射成分と拡散反射成分を含む分光反射率(日立ハイテクフィールディング製:酸化アルミニウム標準白板を対照とした相対反射率)を波長毎に測定した。
(3) Reflectance measurement The reflectance of a sample having a thickness of about 1.5 mm produced by melt compression molding was measured under the following conditions.
A spectrophotometer equipped with an integrating sphere on the detector (Hitachi, Ltd.) by irradiating the reflection layer on the sample surface with light having a wavelength of 240 nm to 700 nm at an incident angle of 10 ° and releasing the transmitted light without placing a reflector on the back of the sample. Using U-4 100 ), spectral reflectance including a specular reflection component and a diffuse reflection component ( manufactured by Hitachi High-Tech Fielding: relative reflectance with reference to an aluminum oxide standard white plate) was measured for each wavelength.

(4)熱処理試験
溶融圧縮成形することによって作成された厚み約1.5mm試料をすでに150℃に昇温された熱風循環式のオーブン(ESPEC SUPER−TEM.OVEN STPH−101)に入れて熱処理を行った。
(4) Heat treatment test A sample having a thickness of about 1.5 mm prepared by melt compression molding is put in a hot air circulation oven (ESPEC SUPER-TEM.OVEN STPH-101) that has already been heated to 150 ° C. and subjected to heat treatment. went.

(5)溶融混練試験
フッ素樹脂と充填材とを表1に示した組成で、溶融混練装置(東洋精機製作所製、KF−70V小型セグメントミキサー)を5枚のKneading discsの位相を2 pitchずらしたせん断の組み合わせで用いて、フッ素樹脂融点(約308℃)より約40℃高く、350℃、100rpmで5分間溶融混練し、混合組成物を得た。
(5) Melt-kneading test With the composition shown in Table 1, the melt-kneading apparatus (manufactured by Toyo Seiki Seisakusho, KF-70V small segment mixer) was shifted in phase by 5 pitches for 5 kneading discs. Used in combination with shearing, it was about 40 ° C. higher than the melting point of the fluororesin (about 308 ° C.) and melt kneaded at 350 ° C. and 100 rpm for 5 minutes to obtain a mixed composition.

(6)充填材の分散状態観察
上記のフッ素樹脂複合体組成物を350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料の破断面の走査電子顕微鏡(SEM、日立製作所製、S−4500)観察から充填材の均一分散状態を評価し、また充填材の一次粒子のサイズを表1にまとめた。
(6) Dispersion state observation of filler material Scanning electron microscope (SEM, manufactured by Hitachi, Ltd.) of a fracture surface of about 1.5 mm thick sample prepared by melt compression molding the above fluororesin composite composition at 350 ° C. S-4500) From the observation, the uniformly dispersed state of the filler was evaluated, and the sizes of the primary particles of the filler were summarized in Table 1.

B.原料
本発明の実施例、及び比較例で用いた原料は下記の通りである。
(1)パーフルオロフッ素樹脂(TFE/PAVE共重合体、PFA)
これらの実施例で用いられたTFE/PAVE共重合体は、フッ素樹脂PFA(三井・デュポンフロロケミカル社製PFA440HPJ)、融点308℃、メルトフローレート15g/10分を使用した。
B. Raw materials The raw materials used in Examples and Comparative Examples of the present invention are as follows.
(1) Perfluoro fluororesin (TFE / PAVE copolymer, PFA)
As the TFE / PAVE copolymer used in these examples, a fluororesin PFA (PFA440HPJ manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), a melting point of 308 ° C., and a melt flow rate of 15 g / 10 minutes were used.

(2)比較例3、4、5に用いられたポリフタルアミド(PPA)複合体は、アモデルポリフタルアミド、融点324℃(ソルベイアドバンストポリマーズ製、A−4122NLWH905)である。 (2) The polyphthalamide (PPA) composite used in Comparative Examples 3, 4, and 5 is amodel polyphthalamide, melting point 324 ° C. (manufactured by Solvay Advanced Polymers, A-4122NLWH905).

(3)充填材
a)α−アルミナ:日本軽金属株式会社製、A31、平均粒径5.2μm。
b)α−アルミナ:Almatis、Inc.製, A16GS、平均粒径0.5μm。
c)二酸化チタン:富士チタン株式会社製、TA−300、平均粒径0.3μm。
(3) Filler
a) α-alumina: Nippon Light Metal Co., Ltd. A31, average particle size 5.2 μm.
b) α-alumina: Almatis, Inc., A16GS, average particle size 0.5 μm.
c) Titanium dioxide: manufactured by Fuji Titanium Co., Ltd., TA-300, average particle size 0.3 μm.

(実施例1〜3)
アルミナ(A16GS)とフッ素樹脂PFAとを表1に示した組成で溶融混練装置(東洋精機製作所製、KF−70V小型セグメントミキサー)を5枚のKneading discsの位相を2 pitchずらしたせん断の組み合わせで用いて、350℃、100 rpmで5分間溶融混練し、混合組成物を得た。電子顕微鏡で得た複合体組成物破断面(図2)からアルミナ分散状態を評価し、アルミナはPFAに均一に分散していることが分かった。また、複合体組成物を350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。常温で試料の反射率を測定した。得た結果を表1にまとめた。
(Examples 1-3)
A melt kneader (Kyoto Seiki Seisakusho KF-70V small segment mixer) with the composition shown in Table 1 consisting of alumina (A16GS) and fluororesin PFA is combined with shear by shifting the phase of 5 kneading discs by 2 pitches. The mixture composition was melt kneaded at 350 ° C. and 100 rpm for 5 minutes to obtain a mixed composition. The state of alumina dispersion was evaluated from the fracture surface (FIG. 2) of the composite composition obtained with an electron microscope, and it was found that alumina was uniformly dispersed in PFA. In addition, a sample having a thickness of about 1.5 mm prepared by melt-compression molding the composite composition at 350 ° C. was prepared. The reflectance of the sample was measured at room temperature. The results obtained are summarized in Table 1.

(実施例4)
実施例3で作った複合体組成物を350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。得たサンプルを150℃に昇温された熱風循環式のオー
ブンに入れて100時間熱処理を行った後、常温で反射率を測定した。得た結果を表2にまとめた。
Example 4
A sample having a thickness of about 1.5 mm was prepared by melt-compression molding the composite composition prepared in Example 3 at 350 ° C. The obtained sample was put in a hot air circulation oven heated to 150 ° C. and heat-treated for 100 hours, and then the reflectance was measured at room temperature. The results obtained are summarized in Table 2.

(実施例5)
実施例3で作った複合体組成物を350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。得たサンプルを150℃に昇温された熱風循環式のオーブンに入れて500時間熱処理を行った後、常温で反射率を測定した。得た結果を表2にまとめた。
(Example 5)
A sample having a thickness of about 1.5 mm was prepared by melt-compression molding the composite composition prepared in Example 3 at 350 ° C. The obtained sample was put in a hot air circulation oven heated to 150 ° C. and subjected to heat treatment for 500 hours, and then the reflectance was measured at room temperature. The results obtained are summarized in Table 2.

(比較例1)
アルミナ(A31)とフッ素樹脂PFAとを表1に示した組成で溶融混練装置(東洋精機製作所製、KF−70V小型セグメントミキサー)を5枚のKneading discsの位相を2 pitchずらしたせん断の組み合わせで用いて、350℃、100 rpmで5分間溶融混練し、混合組成物を得た。電子顕微鏡で得た複合体組成物破断面(図3)からアルミナ分散状態を評価し、アルミナはPFAに均一に分散していることが分かった。また、複合体組成物を350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。試料の反射率を測定した。得た結果を表1にまとめた。
(Comparative Example 1)
Alumina (A31) and fluororesin PFA with the composition shown in Table 1 and a melt kneading device (manufactured by Toyo Seiki Seisakusho, KF-70V small segment mixer) with a combination of shears in which the phases of five Kneading discs are shifted by 2 pitches The mixture composition was melt kneaded at 350 ° C. and 100 rpm for 5 minutes to obtain a mixed composition. The state of alumina dispersion was evaluated from the fracture surface of the composite composition obtained with an electron microscope (FIG. 3), and it was found that alumina was uniformly dispersed in PFA. In addition, a sample having a thickness of about 1.5 mm prepared by melt-compression molding the composite composition at 350 ° C. was prepared. The reflectance of the sample was measured. The results obtained are summarized in Table 1.

(比較例2)
二酸化チタン(TA−300)とフッ素樹脂とを表1に示した組成で、溶融混練装置(東洋精機製作所製、KF−70V小型セグメントミキサー)を5枚のKneading discsの位相を2 pitchずらしたせん断の組み合わせで用いて、350℃、100 rpmで5分間溶融混練し、混合組成物を得た。得た複合体組成物破断面から二酸化チタン分散状態を電子顕微鏡で評価し、二酸化チタンはPFAに均一に分散していることが分かった。また複合体組成物を350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。試料の反射率を測定した。得た結果を表1にまとめた。
(Comparative Example 2)
Titanium dioxide (TA-300) and fluororesin with the composition shown in Table 1, a melt kneading device (manufactured by Toyo Seiki Seisakusho Co., Ltd., KF-70V small segment mixer) is sheared by shifting the phase of 5 kneading disks by 2 pitch The mixture composition was melt kneaded at 350 ° C. and 100 rpm for 5 minutes to obtain a mixed composition. From the fracture surface of the obtained composite composition, the dispersion state of titanium dioxide was evaluated with an electron microscope, and it was found that titanium dioxide was uniformly dispersed in PFA. A sample having a thickness of about 1.5 mm was prepared by melt-compression molding the composite composition at 350 ° C. The reflectance of the sample was measured. The results obtained are summarized in Table 1.

(比較例3)
PPA複合体を340℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。得た試料の反射率を測定し、結果を表2にまとめた。
(Comparative Example 3)
A sample having a thickness of about 1.5 mm was made by melt compression molding the PPA composite at 340 ° C. The reflectance of the obtained sample was measured, and the results are summarized in Table 2.

(比較例4)
比較例3と同条件で作った試料を150℃に昇温された熱風循環式のオーブンに入れて100時間熱処理を行った後、常温で反射率を測定した。得た結果を表2にまとめた。
(Comparative Example 4)
A sample made under the same conditions as in Comparative Example 3 was placed in a hot air circulation oven heated to 150 ° C. and heat-treated for 100 hours, and then the reflectance was measured at room temperature. The results obtained are summarized in Table 2.

(比較例5)
比較例3と同条件で作った試料を150℃に昇温された熱風循環式のオーブンに入れて空気中で、500時間熱処理を行ってから反射率を測定した。得た結果を表2にまとめた。
(Comparative Example 5)
A sample made under the same conditions as in Comparative Example 3 was placed in a hot-air circulating oven heated to 150 ° C., heat-treated in air for 500 hours, and then the reflectance was measured. The results obtained are summarized in Table 2.

(参考例1)
フッ素樹脂PFA440HPJを350℃で溶融圧縮成形することによって作成された厚み約1.5mm試料を作った。得た試料の反射率を常温で測定して表1にまとめた。
(Reference Example 1)
A sample having a thickness of about 1.5 mm was prepared by melt-compression molding of fluororesin PFA440HPJ at 350 ° C. The reflectance of the obtained sample was measured at room temperature and summarized in Table 1.

(反射率のアルミナ添加量依存性)
実施例1では、5質量%の粒径の0.5μmアルミナ粒子をPFAに均一に分散すると、波長測定(240nm〜700nm)範囲で光を吸収せずに、70%の反射率を示すことがわかった。また、実施例1〜3に示したように、アルミナ添加量を20質量%まで増やすと、各波長での反射率が90%以上のレベルに達した。図1や表1に示したように、フッ素樹脂(参考例1)は光の透過率が高く、特に可視線領域には低い反射率を示したの
で、光反射材のアルミナを添加すると、反射率が増加した。
(Dependence of reflectance on alumina addition)
In Example 1, when 0.5 μm alumina particles having a particle size of 5 mass% are uniformly dispersed in PFA, light is not absorbed in the wavelength measurement (240 nm to 700 nm) range, and 70% reflectance is exhibited. all right. Further, as shown in Examples 1 to 3, when the amount of alumina added was increased to 20% by mass, the reflectance at each wavelength reached a level of 90% or more. As shown in FIG. 1 and Table 1, the fluororesin (Reference Example 1) has a high light transmittance, particularly a low reflectance in the visible region. The rate has increased.

(反射率のアルミナ粒径依存性)
実施例3では20質量%のアルミナ粒子をPFAに均一に分散することで、240nm〜700nm波長領域で90%以上の反射率を示した。一方、実施例3に使われたアルミナと同じ結晶(α−系アルミナ)、同じ添加量(20質量%)で粒径の5μmのアルミナを添加すると、70%の反射率しか示さなかった。よって、アルミナの粒径を5μmから0.5μmに下げると、反射率は20%ほど上がることが分かった。
(Dependence of reflectance on alumina particle size)
In Example 3, 20% by mass of alumina particles were uniformly dispersed in PFA, thereby showing a reflectance of 90% or more in the wavelength range of 240 nm to 700 nm. On the other hand, when 5 μm of alumina having the same crystal (α-based alumina) and the same amount (20% by mass) as that used in Example 3 was added, only 70% reflectance was shown. Therefore, it was found that when the particle size of alumina was lowered from 5 μm to 0.5 μm, the reflectance increased by about 20%.

(アルミナの光反射挙動)
実施例3では20質量%のアルミナ粒子をPFAに均一に分散すると、240nm〜700nm波長領域で光を吸収せずに90%以上の反射率を示した。一方、比較例2と図1に示したように、20質量%の二酸化チタンをPFAに均一に分散すると、可視線領域(400nm〜700nm)で90%以上の反射率を示したが、二酸化チタンが紫外線領域で光を吸収するので、400nm以下の領域で数%の反射率しか示さなかった。
(Light reflection behavior of alumina)
In Example 3, when 20% by mass of alumina particles were uniformly dispersed in PFA, a reflectance of 90% or more was exhibited without absorbing light in the wavelength range of 240 nm to 700 nm. On the other hand, as shown in Comparative Example 2 and FIG. 1, when 20% by mass of titanium dioxide was uniformly dispersed in PFA, the reflectance was 90% or more in the visible region (400 nm to 700 nm). Absorbs light in the ultraviolet region, and therefore showed only a few percent reflectivity in the region of 400 nm or less.

(反射率の熱処理時間依存性)
実施例4〜5では、フッ素樹脂の複合体を150℃、100時間または500時間で継続的に熱処理しても反射率が殆ど変わらないことが分かった。一方、比較例4、5からPPA複合体は実施例4,5と同じ条件で熱処理すると、試料に変色が起こり、図1に示したように可視線領域での反射率が大幅に落ちた。
(Reflectance dependence of heat treatment time)
In Examples 4 to 5, it was found that the reflectance hardly changed even when the fluororesin composite was continuously heat-treated at 150 ° C. for 100 hours or 500 hours. On the other hand, when the PPA composites from Comparative Examples 4 and 5 were heat-treated under the same conditions as in Examples 4 and 5, the sample was discolored, and the reflectance in the visible region was greatly reduced as shown in FIG.

Figure 0006033361
Figure 0006033361

Figure 0006033361
Figure 0006033361

本発明により、紫外領域から可視領域において反射率が低下することなく、且つ耐熱性・耐光性・耐候性に優れる成形品が提供される。
240nm〜700nmの波長範囲におけるフッ素樹脂組成物を成形して得られる成形
品の反射率の最大値と最小値の差が25%以内となり、安定した反射率を得ることが可能となる。また、240nm〜700nmの波長範囲における該成形品の反射率は70%以上の高反射率を得ることが可能となる。
According to the present invention, there is provided a molded article that is excellent in heat resistance, light resistance, and weather resistance without lowering the reflectance from the ultraviolet region to the visible region.
The difference between the maximum value and the minimum value of the reflectance of the molded product obtained by molding the fluororesin composition in the wavelength range of 240 nm to 700 nm is within 25%, and a stable reflectance can be obtained. In addition, the reflectance of the molded product in the wavelength range of 240 nm to 700 nm can obtain a high reflectance of 70% or more.

Claims (5)

平均粒径1μm未満の結晶系のαアルミナ微粒子を、フッ素樹脂組成物全体に対して0.1〜50質量%含む、不安定末端基をフッ素化処理した、テトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重合体であるフッ素樹脂組成物を成形して得られる成形品であって、波長240nm〜700nmにおける反射率の最大値と最小値の差が25%以内である成形品。 Tetrafluoroethylene and perfluoro (alkyl vinyl ether) containing fluorinated unstable terminal groups containing 0.1 to 50% by mass of crystalline α-alumina fine particles having an average particle size of less than 1 μm with respect to the entire fluororesin composition ) And a molded product obtained by molding a fluororesin composition that is a copolymer with a difference between the maximum value and the minimum value of reflectance at a wavelength of 240 nm to 700 nm within 25%. 平均粒径1μm未満の結晶系のαアルミナ微粒子を、フッ素樹脂組成物全体に対して5〜30質量%含む請求項1記載の成形品。   The molded article according to claim 1, comprising 5 to 30% by mass of crystalline α-alumina fine particles having an average particle size of less than 1 µm with respect to the entire fluororesin composition. 平均粒径1μm未満の結晶系のαアルミナ微粒子の屈折率が1.5以上である請求項1または2に記載の成形品。 The molded article according to claim 1 or 2 , wherein the crystalline α-alumina fine particles having an average particle size of less than 1 µm have a refractive index of 1.5 or more. 波長240nm〜380nmにおける反射率が70%以上である、請求項1〜のいずれかに記載の成形品。 The molded article according to any one of claims 1 to 3 , wherein the reflectance at a wavelength of 240 nm to 380 nm is 70% or more. 平均粒径0.1〜1.0μm未満の結晶系のαアルミナ微粒子を含有するフッ素樹脂組成物を成形して得られる、請求項1〜のいずれかに記載の成形品。 The molded article according to any one of claims 1 to 4 , which is obtained by molding a fluororesin composition containing crystalline α-alumina fine particles having an average particle size of less than 0.1 to 1.0 µm.
JP2015094561A 2015-05-07 2015-05-07 Molding Active JP6033361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094561A JP6033361B2 (en) 2015-05-07 2015-05-07 Molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094561A JP6033361B2 (en) 2015-05-07 2015-05-07 Molding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011114924A Division JP2012244058A (en) 2011-05-23 2011-05-23 Reflector for light emitting diode and housing

Publications (2)

Publication Number Publication Date
JP2015134939A JP2015134939A (en) 2015-07-27
JP6033361B2 true JP6033361B2 (en) 2016-11-30

Family

ID=53766967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094561A Active JP6033361B2 (en) 2015-05-07 2015-05-07 Molding

Country Status (1)

Country Link
JP (1) JP6033361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469673B2 (en) * 2021-07-08 2024-04-17 ダイキン工業株式会社 Resin composition for extrusion molding, sheet, and method for producing sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373561A (en) * 2001-06-15 2002-12-26 Toshiba Corp Nozzle for gas breaker and its manufacturing method
US20090152581A1 (en) * 2005-11-21 2009-06-18 Nippon Carbide Industries Co., Inc. Light reflecting material, package for light emitting element accommodation, light emitting device and process for producing package for light emitting element accomodation
JP5221122B2 (en) * 2007-12-28 2013-06-26 株式会社朝日ラバー Silicone resin base material
US20100032702A1 (en) * 2008-08-11 2010-02-11 E. I. Du Pont De Nemours And Company Light-Emitting Diode Housing Comprising Fluoropolymer
JP5385685B2 (en) * 2009-05-28 2014-01-08 三菱樹脂株式会社 Cover-lay film, light-emitting element mounting substrate, and light source device

Also Published As

Publication number Publication date
JP2015134939A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
JP6147667B2 (en) Fluoropolymer composition
JP5909534B2 (en) Polyester resin composition and camera module including the same
TWI503346B (en) A near infrared light shielding film, and a method of producing the near infrared light shielding
JP2012244058A (en) Reflector for light emitting diode and housing
BRPI0705679B1 (en) light absorbing resin molding and method for manufacturing a light absorbing resin molding
WO2015164296A1 (en) Fluororesin and silica composition
US7683130B2 (en) Filled perfluoropolymer composition comprising a low melting fluoropolymer additive
JP6033361B2 (en) Molding
JP6618507B2 (en) Perfluoroelastomer composition and sealing material
JP6991964B2 (en) Hydrophobically modified cerium oxide particles and their use
WO2014172297A1 (en) Fluororesin and mesoporous silica composition and molded product thereof
JP2013058744A (en) Reflector for light-emitting diode, and housing
US20170210879A1 (en) Polyester resin composition for reflective materials and reflection plate containing same
JP2011213894A (en) Composition, pellet, resin molded product and electric cable, and method for manufacturing the composition
JP2021518447A (en) Fluoropolymer composition for light emitting device components
JP6638261B2 (en) Fluororesin composition for electric wire covering material and electric wire
JP6994028B2 (en) Additive-coated particles for low-cost, high-performance materials
JP7476802B2 (en) Method for producing particles and method for producing compact
JPS58109549A (en) Composition for slide material
JP2019112563A (en) Material for melt-molding and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6033361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250