JP6032410B2 - Method for producing ferric phosphate hydrate particles powder - Google Patents

Method for producing ferric phosphate hydrate particles powder Download PDF

Info

Publication number
JP6032410B2
JP6032410B2 JP2012239189A JP2012239189A JP6032410B2 JP 6032410 B2 JP6032410 B2 JP 6032410B2 JP 2012239189 A JP2012239189 A JP 2012239189A JP 2012239189 A JP2012239189 A JP 2012239189A JP 6032410 B2 JP6032410 B2 JP 6032410B2
Authority
JP
Japan
Prior art keywords
ferric phosphate
particles
particle size
producing
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012239189A
Other languages
Japanese (ja)
Other versions
JP2014088282A (en
Inventor
真由美 阿部
真由美 阿部
学 高長
学 高長
千枝 作道
千枝 作道
直征 金子
直征 金子
伸二 時高
伸二 時高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIN KAGAKU KOGYO CO.,LTD.
Original Assignee
RIN KAGAKU KOGYO CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIN KAGAKU KOGYO CO.,LTD. filed Critical RIN KAGAKU KOGYO CO.,LTD.
Priority to JP2012239189A priority Critical patent/JP6032410B2/en
Publication of JP2014088282A publication Critical patent/JP2014088282A/en
Application granted granted Critical
Publication of JP6032410B2 publication Critical patent/JP6032410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、オリビン型リン酸鉄リチウム粒子の前駆体として良好な結晶性リン酸第二鉄含水和物粒子粉末およびその製造方法に関するものである。   The present invention relates to a crystalline ferric phosphate hydrate particle powder that is favorable as a precursor of olivine-type lithium iron phosphate particles and a method for producing the same.

近年、地球環境への配慮から二酸化炭素削減に向けて多くの取り組みが行われており、一つの取り組みとして電気エネルギーを化学エネルギーとして蓄積可能な蓄電池が注目されている。その中でも高エネルギー密度を有するリチウムイオン二次電池が注目されている。しかし主に正極材料に使用されているコバルト酸リチウムは希少金属のため高価であり供給安定性へ課題がある他、熱暴走・発火事故報告など安全性への問題、毒性が高いことが指摘されている。
一方、正極材料として知られているオリビン型リン酸鉄リチウムはコバルト酸リチウムに匹敵する実用可能放電容量を有し、毒性も低く、地球上に豊富な元素のみからなるため安価・安定に供給できる可能性があり、有望な材料とされている。
リチウムイオン二次電池は薄膜電極構造をしているため、電極材料には材料特性以外に電極密度を向上させるような均一な粒径が求められる。粒径が大きく比表面積が低い材料を使用すると、電解液との反応面積が十分に確保できず反応抵抗上昇により高出力にならず、またセパレーターにダメージを与え電池性能が悪化する懸念がある。また微粒ダストが含まれているとハンドリング上の問題を生じると共に異常反応を引き起こす可能性がある。これらの理由、更には塗布性の観点から電極材は出来るだけ均一な粒度分布が求められている。
In recent years, many efforts have been made to reduce carbon dioxide from the consideration of the global environment, and storage batteries that can store electrical energy as chemical energy are attracting attention as one approach. Among them, a lithium ion secondary battery having a high energy density has attracted attention. However, it is pointed out that lithium cobaltate, which is mainly used for the positive electrode material, is a rare metal and is expensive and has problems with supply stability, as well as safety issues such as reports of thermal runaway and ignition accidents, and high toxicity. ing.
On the other hand, olivine-type lithium iron phosphate, known as a positive electrode material, has a practical discharge capacity comparable to lithium cobaltate, has low toxicity, and consists of only abundant elements on the earth, so it can be supplied inexpensively and stably. There is a possibility and a promising material.
Since the lithium ion secondary battery has a thin film electrode structure, the electrode material is required to have a uniform particle size that improves the electrode density in addition to the material characteristics. When a material having a large particle size and a low specific surface area is used, there is a concern that a sufficient reaction area with the electrolytic solution cannot be secured, the output does not increase due to an increase in reaction resistance, and the separator performance is damaged and the battery performance deteriorates. In addition, if fine dust is contained, it may cause a handling problem and cause an abnormal reaction. For these reasons and further from the viewpoint of applicability, the electrode material is required to have as uniform a particle size distribution as possible.

リン酸鉄リチウムの製造方法は固相法(特許文献1、特許文献2)、水熱法(特許文献3)、超臨界法(特許文献4)、常圧湿式法(特許文献5)などが報告されており、リン酸第二鉄含水和物はリン酸鉄リチウムの中間体として知られている。
特許文献6には、鉄(II)又は鉄(III)あるいは鉄(II)及び鉄(III)の混合物を5〜50%のリン酸と反応させ、酸化剤を添加することで鉄(II)を鉄(III)に変換する方法が記載されているが、反応は激しい撹拌を必要とし、得られるリン酸鉄(III)は非常に微細な一次粒子径を持つ。
特許文献7には、塩化鉄あるいは硫酸鉄の水溶液を用い、リン酸との反応時に界面活性剤を添加する方法が記載されており、ナノ粒子が得られている。
特許文献8では、緩衝液を使うことによりpH変動が小さく微粒で粒径の揃ったリン酸鉄粉末が得られることが記載されている。
これらの方法は硫酸鉄や塩化鉄を出発原料とするため、電池特性に悪影響を及ぼす硫酸塩あるいは塩化物を不純物として包含し、また、きわめて微細な粉末として得られる。微細性は正極材の導電性向上に作用するが、製造工程においては濾過漏れを起こしやすく作業性や効率が悪く、また、リン酸鉄リチウムとする際に、粉塵の発生や取り扱いにくいといった困難が生じる。
As a method for producing lithium iron phosphate, there are a solid phase method (Patent Document 1, Patent Document 2), a hydrothermal method (Patent Document 3), a supercritical method (Patent Document 4), an atmospheric pressure wet method (Patent Document 5), and the like. It has been reported that ferric phosphate hydrate is known as an intermediate of lithium iron phosphate.
In Patent Document 6, iron (II) is obtained by reacting iron (II) or iron (III) or a mixture of iron (II) and iron (III) with 5 to 50% phosphoric acid and adding an oxidizing agent. Has been described, but the reaction requires vigorous stirring and the resulting iron (III) phosphate has a very fine primary particle size.
Patent Document 7 describes a method in which an aqueous solution of iron chloride or iron sulfate is used and a surfactant is added at the time of reaction with phosphoric acid, and nanoparticles are obtained.
Patent Document 8 describes that by using a buffer solution, iron phosphate powder having a small pH variation and a uniform particle size can be obtained.
Since these methods use iron sulfate or iron chloride as starting materials, they contain sulfates or chlorides that have an adverse effect on battery characteristics as impurities, and can be obtained as extremely fine powders. The fineness affects the conductivity of the positive electrode material, but in the manufacturing process, it is easy to cause filtration leakage, and the workability and efficiency are poor. Also, when lithium iron phosphate is used, it is difficult to generate dust and difficult to handle. Arise.

一方、特許文献2には、酸化鉄又は含水酸化鉄とリン化合物を比較的薄い水溶液中で反応させ、反応濃度が0.1〜3.0mol/L(Fe濃度換算)、P/Feモル比が1〜10、pH3以下で反応させることにより、微細な一次粒子が凝集した、比表面積が高く、不純物も極めて少ないリン酸第二鉄含水和物が生成することが記載されている。この製造方法で得られるリン酸第二鉄含水和物は、一次粒子が微細であるため、正極材としたときの電池性能は良好であり、凝集した二次粒子のため取扱い性の良いサイズとなる利点がある。   On the other hand, in Patent Document 2, iron oxide or hydrous iron oxide and a phosphorus compound are reacted in a relatively thin aqueous solution, the reaction concentration is 0.1 to 3.0 mol / L (in terms of Fe concentration), and the P / Fe molar ratio. 1 to 10 and a pH of 3 or less, it is described that fine primary particles aggregate, ferric phosphate hydrates having a high specific surface area and very few impurities. Since the ferric phosphate hydrate obtained by this production method has fine primary particles, the battery performance when used as a positive electrode material is good, and because of the agglomerated secondary particles, the size is easy to handle. There are advantages.

正極材には品質均一性、均一な電極膜の製造のため均一な粒度分布が求められ、その要求は前駆体としてのリン酸第二鉄においても同様に求められる。しかしながら、特許文献2の方法では、均一な粒度分布で安定して工業的に製造できないといった欠点を有する。
特許文献2では、原料リン酸第二鉄含水和物粒径とリン酸鉄リチウムの粒径がほぼ同等なことからリン酸第二鉄含水和物粒径が良好なリン酸鉄リチウムの製造に重要な事が示されている。しかし、鉄原料の粒子径と生成するリン酸第二鉄含水和物の粒子径の関係については記載されておらず、本発明の製造方法は具体的に示されていない。
本発明の良好な結晶性リン酸第二鉄含水和物粒子粉末の製造方法は新規であり、適度な粒径かつ均一な粒度分布のリン酸第二鉄含水和物粒子が得られることを特徴とする。
The positive electrode material is required to have uniform quality and a uniform particle size distribution in order to produce a uniform electrode film, and the requirement is similarly required for ferric phosphate as a precursor. However, the method of Patent Document 2 has a drawback that it cannot be stably industrially produced with a uniform particle size distribution.
In Patent Document 2, since the raw material ferric phosphate hydrate particle size and the lithium iron phosphate particle size are substantially equal, the ferric phosphate hydrate hydrate particle size is good for producing lithium iron phosphate. Important things are shown. However, the relationship between the particle size of the iron raw material and the particle size of the ferric phosphate hydrate produced is not described, and the production method of the present invention is not specifically shown.
The method for producing good crystalline ferric phosphate hydrate particles according to the present invention is novel, characterized in that ferric phosphate hydrate particles having an appropriate particle size and uniform particle size distribution can be obtained. And

WO2005/041327WO2005 / 041327 WO2011/030786WO2011 / 030786 特表2007―511458号公報Special table 2007-511458 gazette 特開2004―095386号公報JP 2004-095386 A WO2007/000251WO2007 / 000251 特表2011―500492Special table 2011-500492 特表2011―505332Special table 2011-505332 WO2012/023439WO2012 / 023439

リチウムイオン二次電池は様々な機器に搭載され、より高い放電容量を有し、毒性も低く、安価・安定に供給でき、また安全性の高い材料が求められている。特に正極材料については、安全性が求められ、新たな製造方法が望まれている。
本発明は、リチウムイオン二次電池等に用いることのできる安全性の高い正極材料のための中間体として有用な適度な粒径で均一な粒度分布を有するリン酸第二鉄含水和物の提供およびその製造方法を確立することを課題とする。
Lithium ion secondary batteries are mounted on various devices, have higher discharge capacities, have low toxicity, can be supplied inexpensively and stably, and have high safety. Particularly for the positive electrode material, safety is required, and a new production method is desired.
The present invention provides a ferric phosphate hydrate having an appropriate particle size and a uniform particle size distribution that is useful as an intermediate for a highly safe positive electrode material that can be used in lithium ion secondary batteries and the like. It is another object of the present invention to establish a manufacturing method thereof.

本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、鉄原料粒径が生成するリン酸第二鉄含水和物粒径に関連し、均一な粒径のリン酸第二鉄含水和物を製造する方法を見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the ferric phosphate hydrate hydrate particle size produced by the iron raw material particle size has a uniform particle size. A method for producing iron hydrates has been found.

すなわち本発明は、下記に関するものである。
1)酸化鉄粒子粉末または含水酸化鉄粒子粉末とリン化合物とを溶液中で反応してリン酸第二鉄含水和物を製造する方法において、粒子径分布測定における最大粒子径が30μm以下の酸化鉄粒子粉末または含水酸化鉄粒子粉末を鉄原料として用いることを特徴とするリン酸第二鉄含水和物の製造方法に関するものである。
2)前記製造方法において、粒子径分布測定におけるD90(篩下積算90分率)が10μm以下の酸化鉄粒子粉末または含水酸化鉄粒子粉末を鉄原料として用いることを特徴とする前記1)に記載のリン酸第二鉄含水和物の製造方法に関するものである。
3)前記リン酸第二鉄含水和物が30μm以上の粒子含有率が2%以下であることを特徴とする前記1)または2)に記載のリン酸第二鉄含水和物の製造方法に関するものである。
4)前記リン酸第二鉄含水和物が走査性電子顕微鏡観察で40μm以上の凝集粒子のないことを特徴とする前記1)〜3)のいずれかに記載のリン酸第二鉄含水和物の製造方法に関するものである。
5)乾式粉砕により粒度調整した鉄原料を使用することを特徴とする前記1)〜4)のいずれかに記載のリン酸第二鉄含水和物の製造方法に関するものである。
6)前記リン酸第二鉄含水和物が5μm以下の粒子が篩下積算10%以下であり、かつ、30μm以下の粒子が篩下積算90%以上であることを特徴とする前記5)に記載のリン酸第二鉄含水和物の製造方法に関するものである。
7)前記1)〜6)のいずれかによって製造されるリン酸第二鉄含水和物に関するものである。
That is, the present invention relates to the following.
1) In a method of producing ferric phosphate hydrate by reacting iron oxide particle powder or hydrous iron oxide particle powder with a phosphorus compound in solution, oxidation with a maximum particle size of 30 μm or less in particle size distribution measurement The present invention relates to a method for producing ferric phosphate hydrate comprising using iron particle powder or hydrous iron oxide particle powder as an iron raw material.
2) In the production method described above, the iron oxide particle powder or the hydrous iron oxide particle powder having a D90 (90 minute fraction under sieving) in the particle size distribution measurement of 10 μm or less is used as the iron raw material. This relates to a method for producing ferric phosphate hydrate.
3) The method for producing ferric phosphate hydrate according to 1) or 2) above, wherein the ferric phosphate hydrate has a particle content of 30% or more and 2% or less. Is.
4) The ferric phosphate hydrate according to any one of 1) to 3) above, wherein the ferric phosphate hydrate is free of aggregated particles of 40 μm or more as observed with a scanning electron microscope. It is related with the manufacturing method.
5) The method for producing a ferric phosphate hydrate according to any one of 1) to 4) above, wherein an iron raw material whose particle size is adjusted by dry pulverization is used.
6) The above-mentioned 5), wherein the particles of ferric phosphate hydrate having a particle size of 5 μm or less are 10% or less under sieving and the particles of 30 μm or less are 90% or more under sieving. It relates to a method for producing the described ferric phosphate hydrate.
7) It relates to a ferric phosphate hydrate produced by any one of 1) to 6).

以下、本発明を詳細に説明する。
本発明で製造されるリン酸第二鉄含水和物の組成は、FePO4・nH2O(0<n≦2、nは水和水の量)であり、二水和物が最も安定である。ただし水和水の量は乾燥条件により変化する。またリン酸第二鉄含水和物の結晶構造はストレング石構造およびメタストレング石構造のいずれかあるいは双方を含むものである。
Hereinafter, the present invention will be described in detail.
The composition of the ferric phosphate hydrate produced in the present invention is FePO4 · nH2O (0 <n ≦ 2, n is the amount of hydrated water), and the dihydrate is the most stable. However, the amount of hydration water varies depending on the drying conditions. Further, the crystal structure of the ferric phosphate hydrate includes one or both of a strengite structure and a metastrength structure.

本発明の酸化鉄粒子粉末または含水酸化鉄粒子粉末としては、特にBET比表面積の大きい微細なゲーサイト粉末(α−FeOOH)を用いることが望ましく、リン化合物としてオルトリン酸、メタリン酸、五酸化リン等を用いることができ、特にオルトリン酸を用いることが望ましい。   As the iron oxide particle powder or the hydrous iron oxide particle powder of the present invention, it is particularly desirable to use a fine goethite powder (α-FeOOH) having a large BET specific surface area, and orthophosphoric acid, metaphosphoric acid, phosphorus pentoxide as the phosphorus compound. Etc., and orthophosphoric acid is particularly desirable.

本発明のリン酸第二鉄含水和物の製造は、BET比表面積が50m2/g以上および二次粒子径の微細な酸化鉄粒子粉末または含水酸化鉄粒子粉末とリン化合物とを溶液中で60〜100℃の温度領域で撹拌しながら、モル換算でP/Fe比が1〜10の範囲、pH3以下、反応濃度0.1〜3.0mol/L(Fe濃度換算)で反応することが望ましい。
反応に用いる鉄原料の粒子サイズはリン酸第二鉄含水和物の生成粒子サイズと密接に関連し、酸化鉄粒子粉末または含水酸化鉄粒子粉末のメジアン径D90は10μm以下が望ましく、Dmaxは30μm以下が望ましい。これらより大きな粒子を原料として用いた場合は、粗大なリン酸第二鉄含水和物が生成し、均質なリン酸第二鉄含水和物が得られない。
酸化鉄粒子粉末または含水酸化鉄粒子粉末を乾式もしくは湿式で均一に粉砕・混合する際、ボールミル、バイブレーションミル、遊星型ボールミル、ペイントシェーカー、高速回転羽型ミル、ジェットミルなど、均一に粉砕・混合できるものであれば装置に制限はない。特に乾式粉砕した原料を用いると、粉砕条件にもよるが、例えば5μm以下の粒子が篩下積算10%以下であり、かつ、30μm以下の粒子が篩下積算90%以上のリン酸第二鉄含水和物が生成し微細物や粗大物の割合が抑制され、より均質なものとなるので、より好ましい。
The ferric phosphate hydrate of the present invention can be produced by mixing a fine iron oxide particle powder or hydrated iron oxide particle powder having a BET specific surface area of 50 m 2 / g or more and a secondary particle size and a phosphorus compound in a solution. While stirring in a temperature range of ˜100 ° C., it is desirable to react at a P / Fe ratio in the range of 1 to 10 in terms of mole, pH 3 or less, and a reaction concentration of 0.1 to 3.0 mol / L (Fe concentration) .
The particle size of the iron raw material used for the reaction is closely related to the particle size of the ferric phosphate hydrate, and the median diameter D90 of the iron oxide particle powder or the hydrated iron oxide particle powder is preferably 10 μm or less, and Dmax is 30 μm. The following is desirable. When particles larger than these are used as raw materials, coarse ferric phosphate hydrates are produced, and homogeneous ferric phosphate hydrates cannot be obtained.
Uniformly pulverize and mix ball mills, vibration mills, planetary ball mills, paint shakers, high-speed rotary blade mills, jet mills, etc. There is no limit to the device if it can be used. In particular, when a dry pulverized raw material is used, depending on the pulverization conditions, for example, particles of 5 μm or less are 10% or less of the total sieve sieve, and ferrous phosphate whose particles of 30 μm or less are 90% or more of the sieve sieve accumulated. It is more preferable because a hydrate is generated and the proportion of fine and coarse substances is suppressed and becomes more homogeneous.

反応終了後、通風乾燥機、凍結真空乾燥機、スプレー乾燥機、フィルタープレス、バキュームフィルター、フィルターシックナー等を用いて余分な水分を除去してもよい。
本発明で製造されるリン酸第二鉄含水和物は製造条件にもよるが平均二次粒子径は8〜20μmの範囲となり、リン酸鉄リチウムの前駆体として望ましい粒度となる。製造されるリン酸第二鉄含水和物は板状の一次粒子が凝集して二次粒子を構成したものであり、走査性電子顕微鏡で観察すると、40μm以上の凝集粒子が見られない粒径の整った粉末となる。
After completion of the reaction, excess moisture may be removed using a ventilating dryer, a freeze vacuum dryer, a spray dryer, a filter press, a vacuum filter, a filter thickener, or the like.
The ferric phosphate hydrate produced according to the present invention has an average secondary particle size in the range of 8 to 20 μm depending on the production conditions, and a desirable particle size as a precursor of lithium iron phosphate. The ferric phosphate hydrate produced is composed of secondary particles formed by agglomeration of plate-like primary particles, and when observed with a scanning electron microscope, a particle size at which aggregated particles of 40 μm or more cannot be seen. It becomes a well-organized powder.

本発明のリン酸第二鉄含水和物の製造方法は、鉄原料粒径を制御しない場合と比較して、均一な粒子が得られることを確認した。
本発明のリン酸第二鉄含水和物の製造方法は、均質で適度な粒径を有するリン酸第二鉄含水和物を製造でき、リン酸鉄リチウムの中間体として有用なリン酸第二鉄含水和物を提供できる。
The manufacturing method of the ferric phosphate hydrate of the present invention confirmed that uniform particles were obtained compared to the case where the iron raw material particle size was not controlled.
The method for producing a ferric phosphate hydrate according to the present invention can produce a ferric phosphate hydrate having a uniform and appropriate particle size, and is useful as an intermediate of lithium iron phosphate. An iron hydrate can be provided.

実施例1、比較例1、および比較例2で得られたリン酸第二鉄含水和物粒子の粉末の粉末X線回折図である。2 is a powder X-ray diffraction pattern of the powder of ferric phosphate hydrate particles obtained in Example 1, Comparative Example 1, and Comparative Example 2. FIG. 実施例1で得られたリン酸第二鉄含水和物粒子粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the ferric phosphate hydrate particles obtained in Example 1. FIG. 実施例2および実施例3で得られたリン酸第二鉄含水和物粒子粉末の粉末X線回折図である。4 is a powder X-ray diffraction pattern of the ferric phosphate hydrate particles obtained in Example 2 and Example 3. FIG. 実施例2で得られたリン酸第二鉄含水和物粒子粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the ferric phosphate hydrate particles obtained in Example 2. FIG. 実施例3で得られたリン酸第二鉄含水和物粒子粉末の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the ferric phosphate hydrate particles obtained in Example 3. FIG. 比較例1で得られたリン酸第二鉄含水和物粒子粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the ferric phosphate hydrate particles obtained in Comparative Example 1. 比較例2で得られたリン酸第二鉄含水和物粒子粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of ferric phosphate hydrate particles obtained in Comparative Example 2.

以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
平均二次粒子径は、レーザー回折・散乱型粒度分布計Microtrac MT330EXII(日機装製)を用い、メジアン径D50、D90、Dmaxを測定した。
粒子の結晶構造はX線回折装置RINT2200(理学電機製)を用い、Cu−Kα,40kV,20mAにより測定した。
粒子の形状観察は走査型電子顕微鏡JSM-5310(日本電子製)を用い、観察した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to these.
The average secondary particle diameter was measured using a laser diffraction / scattering particle size distribution analyzer Microtrac MT330EXII (Nikkiso Co., Ltd.), and the median diameters D50, D90, and Dmax were measured.
The crystal structure of the particles was measured with an X-ray diffractometer RINT2200 (manufactured by Rigaku Corporation) using Cu-Kα, 40 kV, 20 mA.
The shape of the particles was observed using a scanning electron microscope JSM-5310 (manufactured by JEOL).

<実施例1>
含水酸化鉄粒子は、ダイナミックミル(日本コークス製)を用い、乾式粉砕した。
加熱式混合攪拌機にD90が10μm、Dmaxが26μmの含水酸化鉄粒子71gを純水1280gに懸濁した。85%オルトリン酸溶液を344g加え、85℃まで昇温し、6時間加熱反応した。反応混合物を放冷後、溶媒を除去、水洗浄した後、110℃で24時間乾燥し、乳白色粉末133gを得た。
粉末X線回折を行い、メタストレング石(phosphosiderite)構造であることを確認し、ストレング石(strengite)構造や不純物相は確認されなかった。得られた粉末X線回折結果を図1に示す。
また走査型電子顕微鏡撮影による二次粒子形状は薄板状粒子が密に凝集した丸みをおびた正方柱状の二次粒子であり巨大凝集物はなく、レーザー回折法による粒子径測定の結果は、D50が16μmであった。得られた粉末の走査型電子顕微鏡写真を図2に示す。
<Example 1>
The hydrous iron oxide particles were dry-ground using a dynamic mill (manufactured by Nippon Coke).
In a heating type mixing stirrer, 71 g of hydrous iron oxide particles having a D90 of 10 μm and a Dmax of 26 μm were suspended in 1280 g of pure water. 344 g of 85% orthophosphoric acid solution was added, the temperature was raised to 85 ° C., and the reaction was carried out for 6 hours. The reaction mixture was allowed to cool, then the solvent was removed, washed with water, and dried at 110 ° C. for 24 hours to obtain 133 g of milky white powder.
Powder X-ray diffraction was performed to confirm that it was a metastrophite structure, and no strengite structure or impurity phase was confirmed. The obtained powder X-ray diffraction results are shown in FIG.
The secondary particle shape obtained by scanning electron microscope photography is a rounded square columnar secondary particle in which thin plate-like particles are densely aggregated. There is no giant aggregate. The result of particle size measurement by laser diffraction method is D50. Was 16 μm. A scanning electron micrograph of the obtained powder is shown in FIG.

<実施例2>
含水酸化鉄粒子は、サイクロンミル150W(月島機械製)を用い、乾式粉砕した。
加熱式混合攪拌機にD90が6μm、Dmaxが19μmの乾式粉砕を行った含水酸化鉄粒子29kgを純水511kgに懸濁した。85%オルトリン酸溶液138kgを加え、85℃まで昇温し、6時間加熱反応した。反応混合物を放冷後、溶媒を除去、水洗浄した後、110℃で乾燥し、乳白色粉末51kgを得た。
粉末X線回折を行い、メタストレング石(phosphosiderite)構造であることを確認し、ストレング石(strengite)構造や不純物相は確認されなかった。得られたX線回折を図3に示す。
また走査型電子顕微鏡撮影による二次粒子形状は薄板状粒子が密に凝集した丸みをおびた正方柱状の二次粒子であり巨大凝集物はなく、レーザー回折法による粒子径測定の結果は、D50が12μmであった。得られた粉末の走査型電子顕微鏡写真を図4に示す。
<Example 2>
The hydrous iron oxide particles were dry-ground using a cyclone mill 150W (manufactured by Tsukishima Kikai).
In a heating type mixing stirrer, 29 kg of hydrous iron oxide particles subjected to dry pulverization with D90 of 6 μm and Dmax of 19 μm were suspended in 511 kg of pure water. 138 kg of 85% orthophosphoric acid solution was added, the temperature was raised to 85 ° C., and the reaction was carried out for 6 hours. The reaction mixture was allowed to cool, then the solvent was removed, washed with water, and dried at 110 ° C. to obtain 51 kg of milky white powder.
Powder X-ray diffraction was performed to confirm that it was a metastrophite structure, and no strengite structure or impurity phase was confirmed. The obtained X-ray diffraction is shown in FIG.
The secondary particle shape obtained by scanning electron microscope photography is a rounded square columnar secondary particle in which thin plate-like particles are densely agglomerated, and there is no giant aggregate. Was 12 μm. A scanning electron micrograph of the obtained powder is shown in FIG.

<実施例3>
含水酸化鉄粒子は、3mmφジルコニアボールを用い、水溶液中で湿式粉砕した。
加熱式混合攪拌機にD90が7μm、Dmaxが22μmの湿式粉砕を行った含水酸化鉄粒子29kgを純水511kgに懸濁した。85%オルトリン酸溶液138kgを加え、85℃まで昇温し、6時間加熱反応した。反応混合物を放冷後、溶媒を除去、水洗浄した後、110℃で乾燥し、乳白色粉末54kgを得た。
粉末X線回折を行い、メタストレング石(phosphosiderite)構造であることを確認し、ストレング石(strengite)構造や不純物相は確認されなかった。得られたX線回折を図3に示す。
また走査型電子顕微鏡撮影による二次粒子形状は薄板状粒子が密に凝集した丸みをおびた正方柱状の二次粒子であり巨大凝集物はなく、レーザー回折法による粒子径測定の結果は、D50が16μmであった。得られた粉末の走査型電子顕微鏡写真を図5に示す。
<Example 3>
The hydrous iron oxide particles were wet pulverized in an aqueous solution using 3 mmφ zirconia balls.
In a heating type mixing stirrer, 29 kg of hydrous iron oxide particles subjected to wet pulverization with D90 of 7 μm and Dmax of 22 μm were suspended in 511 kg of pure water. 138 kg of 85% orthophosphoric acid solution was added, the temperature was raised to 85 ° C., and the reaction was carried out for 6 hours. The reaction mixture was allowed to cool, then the solvent was removed, washed with water, and dried at 110 ° C. to obtain 54 kg of milky white powder.
Powder X-ray diffraction was performed to confirm that it was a metastrophite structure, and no strengite structure or impurity phase was confirmed. The obtained X-ray diffraction is shown in FIG.
The secondary particle shape obtained by scanning electron microscope photography is a rounded square columnar secondary particle in which thin plate-like particles are densely aggregated. There is no giant aggregate. The result of particle size measurement by laser diffraction method is D50. Was 16 μm. A scanning electron micrograph of the obtained powder is shown in FIG.

<比較例1>
加熱式混合攪拌機にD90が51μm、Dmaxが104μmの含水酸化鉄粒子71gを純水1280gに懸濁した。85%オルトリン酸溶液を344g加え、85℃まで昇温し、6時間加熱反応した。反応混合物を放冷後、溶媒を除去、水洗浄した後、110℃で24時間乾燥し、乳白色粉末128gを得た。
粉末X線回折を行い、メタストレング石(phosphosiderite)構造であることを確認し、ストレング石(strengite)構造や不純物相は確認されなかった。得られた粉末X線回折結果を図1に示す。
また走査型電子顕微鏡撮影による二次粒子形状は、一続きの巨大で積層に乏しい粒子や積層が未発達な微細粒子であり、均一性が悪かった。レーザー回折法による粒子径測定の結果は、D50が17μmであった。得られた粉末の走査型電子顕微鏡写真を図6に示す。
<Comparative Example 1>
In a heating type mixing stirrer, 71 g of hydrous iron oxide particles having a D90 of 51 μm and a Dmax of 104 μm were suspended in 1280 g of pure water. 344 g of 85% orthophosphoric acid solution was added, the temperature was raised to 85 ° C., and the reaction was carried out for 6 hours. The reaction mixture was allowed to cool, then the solvent was removed, washed with water, and dried at 110 ° C. for 24 hours to obtain 128 g of milky white powder.
Powder X-ray diffraction was performed to confirm that it was a metastrophite structure, and no strengite structure or impurity phase was confirmed. The obtained powder X-ray diffraction results are shown in FIG.
The secondary particle shape obtained by scanning electron microscope photography was a series of large particles with poor lamination and fine particles with poor development, and the uniformity was poor. As a result of measuring the particle diameter by the laser diffraction method, D50 was 17 μm. A scanning electron micrograph of the obtained powder is shown in FIG.

<比較例2>
含水酸化鉄粒子は、ダイナミックミル(日本コークス製)を用い、乾式粉砕した。
加熱式混合攪拌機にD90が28μm、Dmaxが56μmの含水酸化鉄粒子71gを純水1280gに懸濁した。85%オルトリン酸溶液を344g加え、85℃まで昇温し、6時間加熱反応した。反応混合物を放冷後、溶媒を除去、水洗浄した後、110℃で24時間乾燥し、乳白色粉末128gを得た。
粉末X線回折を行い、メタストレング石(phosphosiderite)構造であることを確認し、ストレング石(strengite)構造や不純物相は確認されなかった。得られた粉末X線回折結果を図1に示す。
また走査型電子顕微鏡撮影によれば、比較例1で見られるような一続きの巨大な凝集物は見られないものの、二次粒子が更に凝集、結合した大粒子が生成し、中には40μm程度の大粒子もあった。レーザー回折法による粒子径測定の結果は、D50が16μmであった。得られた粉末の走査型電子顕微鏡写真を図7に示す。
<Comparative example 2>
The hydrous iron oxide particles were dry-ground using a dynamic mill (manufactured by Nippon Coke).
In a heating type mixing stirrer, 71 g of hydrous iron oxide particles having a D90 of 28 μm and a Dmax of 56 μm were suspended in 1280 g of pure water. 344 g of 85% orthophosphoric acid solution was added, the temperature was raised to 85 ° C., and the reaction was carried out for 6 hours. The reaction mixture was allowed to cool, then the solvent was removed, washed with water, and dried at 110 ° C. for 24 hours to obtain 128 g of milky white powder.
Powder X-ray diffraction was performed to confirm that it was a metastrophite structure, and no strengite structure or impurity phase was confirmed. The obtained powder X-ray diffraction results are shown in FIG.
Further, according to scanning electron micrographs, although a series of large aggregates as seen in Comparative Example 1 are not observed, large particles in which secondary particles are further agglomerated and bonded are formed, and 40 μm is contained therein. There were also some large particles. As a result of measuring the particle diameter by the laser diffraction method, D50 was 16 μm. A scanning electron micrograph of the obtained powder is shown in FIG.

本発明に係るリン酸第二鉄含水和物粒子粉末の製造方法は、簡便であり、ろ過性も優れており、工業生産に適した方法である。
本発明に係るリン酸第二鉄含水和物粒子粉末は、高い比表面積を有し、かつ均一で適度な粒径を持つため取扱いが容易であり、オリビン型リン酸鉄リチウム粒子粉末の前駆体や遷移金属種に鉄を含むリン酸遷移金属リチウムの原料に適している。本発明で得られるリン酸第二鉄含水和物粒子粉末を原料とすることにより、これによりを簡易、均一に工業生産でき、塗布性が良好で均一性の高い薄膜正極電極の製造に寄与する。
The manufacturing method of the ferric phosphate hydrate particles according to the present invention is simple, excellent in filterability, and suitable for industrial production.
The ferric phosphate hydrate particle powder according to the present invention has a high specific surface area and is easy to handle because it has a uniform and appropriate particle size, and is a precursor of an olivine type lithium iron phosphate particle powder. It is suitable as a raw material for lithium transition metal phosphate containing iron as a transition metal species. By using the ferric phosphate hydrate particles powder obtained in the present invention as a raw material, this can be easily and uniformly industrially produced, contributing to the production of a thin film positive electrode having good coating properties and high uniformity. .

Claims (6)

酸化鉄粒子粉末または含水酸化鉄粒子粉末とリン化合物とを溶液中で反応してリン酸第二鉄含水和物を製造する方法において、粒子径分布測定における最大粒子径を粉砕により30μm以下に粒度調整した酸化鉄粒子粉末または含水酸化鉄粒子粉末を鉄原料として用いることを特徴とする製造方法であって、板状の一次粒子が凝集した二次粒子からなり、平均二次粒子径が8〜20μmのリン酸第二鉄含水和物製造する方法。 A method for producing a ferric hydrous phosphate dihydrate reacts with iron oxide particles or iron oxide hydroxide particles and phosphorus compound in solution, the particle size to 30μm below the maximum particle size in particle size distribution measurement by milling A manufacturing method characterized by using adjusted iron oxide particle powder or hydrous iron oxide particle powder as an iron raw material, comprising secondary particles obtained by aggregating plate-like primary particles, and having an average secondary particle size of 8 to A method for producing 20 μm ferric phosphate hydrate. 前記製造方法において、粒子径分布測定におけるD90(篩下積算90分率)が10μm以下の酸化鉄粒子粉末または含水酸化鉄粒子粉末を鉄原料として用いることを特徴とする請求項1に記載のリン酸第二鉄含水和物の製造方法。 2. The phosphorus according to claim 1, wherein in the manufacturing method, an iron oxide particle powder or a hydrous iron oxide particle powder having a D90 (90 minute fraction under sieving) in a particle size distribution measurement of 10 μm or less is used as an iron raw material. A method for producing ferric acid hydrate. 前記リン酸第二鉄含水物が30μm以上の粒子含有率が2%以下であることを特徴とする請求項1または2に記載のリン酸第二鉄含水和物の製造方法。 Method for producing a ferric phosphate hydrous hydrate according to claim 1 or 2, characterized in that the ferric phosphate hydrous sum thereof is 30μm or more particle content of not more than 2%. リン酸第二鉄含水和物が走査性電子顕微鏡観察で40μm以上の凝集粒子のないことを特徴とする請求項1〜3のいずれかに記載のリン酸第二鉄含水和物の製造方法。 The method for producing ferric phosphate hydrate according to any one of claims 1 to 3, wherein the ferric phosphate hydrate is free of aggregated particles of 40 µm or more as observed with a scanning electron microscope. 乾式粉砕により粒度調整した鉄原料を使用することを特徴とする請求項1〜4のいずれかに記載のリン酸第二鉄含水和物の製造方法。 The method for producing ferric phosphate hydrate according to any one of claims 1 to 4, wherein an iron raw material whose particle size is adjusted by dry grinding is used. 前記リン酸第二鉄含水物が5μm以下の粒子が篩下積算10%以下であり、かつ、30μm以下の粒子が篩下積算90%以上であることを特徴とする請求項5に記載のリン酸第二鉄含水和物の製造方法。

The ferric hydrous sum product phosphoric acid is not more than the particles less than 10% cumulative undersize fraction 5 [mu] m, and, 30 [mu] m or less of the particles according to claim 5, characterized in that a cumulative under sieve 90% A method for producing ferric phosphate hydrate.

JP2012239189A 2012-10-30 2012-10-30 Method for producing ferric phosphate hydrate particles powder Expired - Fee Related JP6032410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239189A JP6032410B2 (en) 2012-10-30 2012-10-30 Method for producing ferric phosphate hydrate particles powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239189A JP6032410B2 (en) 2012-10-30 2012-10-30 Method for producing ferric phosphate hydrate particles powder

Publications (2)

Publication Number Publication Date
JP2014088282A JP2014088282A (en) 2014-05-15
JP6032410B2 true JP6032410B2 (en) 2016-11-30

Family

ID=50790552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239189A Expired - Fee Related JP6032410B2 (en) 2012-10-30 2012-10-30 Method for producing ferric phosphate hydrate particles powder

Country Status (1)

Country Link
JP (1) JP6032410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596652A (en) * 2018-12-24 2019-04-09 湖北融通高科先进材料有限公司 The sem test method of phosphoric acid iron sample

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713305B (en) * 2018-12-30 2022-06-17 常州大学 Crystal water battery and preparation method thereof
CN113307243B (en) * 2021-07-08 2023-01-24 河南佰利新能源材料有限公司 Method for preparing iron phosphate by recycling mother liquor
CN116924365A (en) * 2022-04-08 2023-10-24 黄冈林立新能源科技有限公司 Method for preparing ferric phosphate dihydrate by decomplexing ferric phosphate complex
CN115340075A (en) * 2022-05-18 2022-11-15 四川大学 Method for preparing battery-grade iron phosphate by adopting iron oxide and dilute phosphoric acid
CN116902946B (en) * 2023-09-14 2023-11-14 北京林立新能源有限公司 Method for preparing ferric phosphate from iron black

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231535B2 (en) * 2007-05-28 2013-07-10 ビーワイディー カンパニー リミテッド Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery
US20110091772A1 (en) * 2008-03-31 2011-04-21 Yuji Mishima Process for producing lithium iron phosphate particles, lithium iron phosphate particles having olivine type structure, and positive electrode sheet and non-aqueous solvent-based secondary battery using the lithium iron phosphate particles
CN102612487A (en) * 2009-09-09 2012-07-25 户田工业株式会社 Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
CN101913590B (en) * 2010-08-09 2012-08-22 中钢集团安徽天源科技股份有限公司 Method for preparing iron-lithium phosphate by using high-purity magnet fine mineral powder as iron source
JP5784292B2 (en) * 2010-09-13 2015-09-24 三井金属鉱業株式会社 Magnetite particles
CN102205953B (en) * 2011-05-05 2012-11-07 湖北浩元材料科技有限公司 Method for preparing spherical iron phosphate for lithium iron phosphate cell material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596652A (en) * 2018-12-24 2019-04-09 湖北融通高科先进材料有限公司 The sem test method of phosphoric acid iron sample

Also Published As

Publication number Publication date
JP2014088282A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6032411B2 (en) Method for producing ferric phosphate hydrate particles powder
JP6032410B2 (en) Method for producing ferric phosphate hydrate particles powder
JP5450159B2 (en) Titanium oxide compound for electrode and lithium secondary battery using the same
KR101592051B1 (en) Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
JP5517032B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide particle powder, method for producing the same, and secondary battery
JP5835540B2 (en) A method for producing ferric phosphate hydrate particles, a method for producing olivine-type lithium iron phosphate particles, and a method for producing a nonaqueous electrolyte secondary battery.
JP5464322B2 (en) Method for producing lithium iron phosphate particle powder, lithium iron phosphate particle powder having olivine structure, positive electrode material sheet using the lithium iron phosphate particle powder, and nonaqueous solvent secondary battery
JP4829557B2 (en) Method for producing lithium iron composite oxide
TWI383533B (en) Electrode-active anion-deficient non-stoichiometric lithium iron phosphate, method for preparing the same, and electrochemical device using the same
TWI636007B (en) Method for producing carbon composite manganese iron iron phosphate particle powder, carbon composite manganese iron iron particle particle powder, and nonaqueous electrolyte secondary battery using the same
US9437868B2 (en) Iron (III) orthophosphate-carbon composite
US9350020B2 (en) Metal phosphate containing manganese and method for its production
JP2016020305A (en) Lithium titanate
JP2012028026A (en) Negative electrode active material for lithium secondary battery, and method of manufacturing the same
WO2015111694A1 (en) Titanate compound, alkali metal titanate compound and method for producing same, and power storage device using titanate compound and alkali metal titanate compound as active material
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP2013032257A (en) Olivine type lithium transition metal oxide and method for producing the same
JP5636772B2 (en) Olivine-type lithium transition metal composite oxide and method for producing the same
JP2018056034A (en) Electrode material for lithium ion secondary battery, method for manufacturing the same, lithium ion secondary battery electrode, and lithium ion secondary battery
CN105870420B (en) A kind of lithium-ion-power cell manganese-lithium phosphate anode material and preparation method thereof
JP2012229147A (en) Olivine-type lithium transition metal oxide, and method of producing the same
JP5690521B2 (en) Method for producing iron-containing lithium titanate
Zhang et al. Research progress in carbon coating on LiFePO 4 cathode materials for lithium ion batteries
WO2013067027A1 (en) Methods for the production of cathode and anode powder precursors
KR20140100284A (en) Synthesis Method of Nano-Chemical Manganese Dioxide(CMD) by Epitaxial Growth for Cathode Material used in Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6032410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees