JP6030045B2 - Ceramic heater and manufacturing method thereof - Google Patents
Ceramic heater and manufacturing method thereof Download PDFInfo
- Publication number
- JP6030045B2 JP6030045B2 JP2013250009A JP2013250009A JP6030045B2 JP 6030045 B2 JP6030045 B2 JP 6030045B2 JP 2013250009 A JP2013250009 A JP 2013250009A JP 2013250009 A JP2013250009 A JP 2013250009A JP 6030045 B2 JP6030045 B2 JP 6030045B2
- Authority
- JP
- Japan
- Prior art keywords
- heater
- sintered body
- ceramic
- ceramic sintered
- bonding material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、セラミックヒータ及びその製法に関する。 The present invention relates to a ceramic heater and a manufacturing method thereof.
半導体製造装置においては、ウエハを加熱するためのセラミックヒータが採用されている。こうしたセラミックヒータとしては、セラミック焼結体の一方の表面に金属ペーストを印刷して焼成することによりヒータ電極としたものが知られている(例えば特許文献1参照)。 In a semiconductor manufacturing apparatus, a ceramic heater for heating a wafer is employed. As such a ceramic heater, a heater electrode is known by printing a metal paste on one surface of a ceramic sintered body and firing it (see, for example, Patent Document 1).
しかしながら、セラミック焼結体の一方の表面に金属ペーストを印刷して焼成する場合、焼成時にセラミック焼結体の中心部と外周部との間で温度差が生じること、すなわちセラミック焼結体に温度ムラが生じることがあった。金属ペーストは焼成後にヒータ電極となるが、このような温度ムラが生じると、セラミック焼結体の中心部と外周部とでヒータ電極の焼結状態が異なるものになってしまう。その結果、ヒータ電極は、セラミック焼結体の中心部と外周部とで抵抗値が異なるものとなり、セラミックヒータの均熱性が悪化するという問題があった。 However, when a metal paste is printed on one surface of the ceramic sintered body and fired, a temperature difference occurs between the central portion and the outer periphery of the ceramic sintered body during firing, that is, the ceramic sintered body has a temperature difference. Unevenness sometimes occurred. The metal paste becomes a heater electrode after firing, but when such temperature unevenness occurs, the sintered state of the heater electrode differs between the central portion and the outer peripheral portion of the ceramic sintered body. As a result, the heater electrode has different resistance values at the central portion and the outer peripheral portion of the ceramic sintered body, and there is a problem that the thermal uniformity of the ceramic heater deteriorates.
本発明はこのような課題を解決するためになされたものであり、セラミック焼結体の一方の表面にヒータ電極を備えたセラミックヒータにおいて、均熱性を高くすることを主目的とする。 The present invention has been made in order to solve such problems, and a main object of the present invention is to increase heat uniformity in a ceramic heater having a heater electrode on one surface of a ceramic sintered body.
本発明のセラミックヒータの製法は、
セラミック焼結体の片方の面にAlとMgを含む金属接合材を張り巡らし、該金属接合材を該金属接合材の液相線温度以下の温度に加熱した状態で前記セラミック焼結体に加圧接合することによりヒータ電極を形成する電極形成工程
を含むものである。
The method for producing the ceramic heater of the present invention is as follows:
A metal bonding material containing Al and Mg is stretched around one surface of the ceramic sintered body, and the metal bonding material is heated to a temperature below the liquidus temperature of the metal bonding material and applied to the ceramic sintered body. It includes an electrode forming step of forming a heater electrode by pressure bonding.
このセラミックヒータの製法では、金属接合材を該金属接合材の液相温度以下の温度に加熱した状態でセラミック焼結体に加圧接合することによりヒータ電極を形成する。従来のように金属ペーストを焼結してヒータ電極を形成する場合には、焼結時にセラミック焼結体の中心部と外周部とで温度ムラが生じることがある。そうすると、ヒータ電極の焼結状態ひいてはヒータ電極の抵抗値がセラミック焼結体の中心部と外周部とで差が生じてしまい、均熱性が悪くなる。しかし、本発明のセラミックヒータの製法では、ヒータ電極となる金属接合材は接合前も接合後も大部分が固相のままであるため、ヒータ電極の抵抗値はセラミック焼結体の中心部と外周部とで差が生じない。また、金属接合材を固相のまま接合したヒータ電極は、金属ペーストを焼結したヒータ電極に比べて、ヒータ電極とセラミック焼結体との接合強度が高いため、低温制御と高温制御とを繰り返すサイクル試験を行った後であってもセラミック焼結体から剥離しにくい。こうしたことから、本発明の製法によって製造されたセラミックヒータは、均熱性が高くなる。また、金属接合材中に含まれる活性の高いMgによって、セラミック焼結体の表面に存在する酸化物層が除去されるため、セラミック焼結体と金属接合材との接合強度が高くなる。 In this method of manufacturing a ceramic heater, a heater electrode is formed by pressure-bonding a metal bonding material to a ceramic sintered body in a state where the metal bonding material is heated to a temperature below the liquidus temperature of the metal bonding material. When a heater electrode is formed by sintering a metal paste as in the prior art, temperature unevenness may occur between the central portion and the outer peripheral portion of the ceramic sintered body during sintering. If it does so, a difference will arise in the sintered part of a heater electrode, and resistance value of a heater electrode by the center part and outer peripheral part of a ceramic sintered compact, and soaking property will worsen. However, in the method of manufacturing a ceramic heater according to the present invention, the metal bonding material to be a heater electrode remains in a solid phase before and after bonding, so the resistance value of the heater electrode is the same as that of the ceramic sintered body. There is no difference between the outer periphery. In addition, the heater electrode in which the metal bonding material is bonded in the solid phase has a higher bonding strength between the heater electrode and the ceramic sintered body than the heater electrode in which the metal paste is sintered. Even after a repeated cycle test, it is difficult to peel from the ceramic sintered body. For these reasons, the ceramic heater manufactured by the manufacturing method of the present invention has high thermal uniformity. Further, since the oxide layer present on the surface of the ceramic sintered body is removed by the highly active Mg contained in the metal bonding material, the bonding strength between the ceramic sintered body and the metal bonding material is increased.
なお、金属接合材を加熱した状態でセラミック焼結体に加圧接合するときの温度は、例えば、金属接合材の液相線温度以下固相線温度以上の温度としてもよいし、固相線温度以下の温度としてもよいが、固相線温度の近傍(例えば固相線温度±10℃)であることが好ましい。この場合、金属接合材の接合前後でほとんど固相のままになるからである。 The temperature at which the metal bonding material is pressure bonded to the ceramic sintered body in a heated state may be, for example, a temperature equal to or lower than the liquidus temperature of the metal bonding material and equal to or higher than the solidus temperature. Although it is good also as temperature below temperature, it is preferable that it is the vicinity of solidus temperature (for example, solidus temperature +/- 10 degreeC). This is because the solid phase remains almost before and after the metal bonding material is bonded.
また、金属接合材としては、例えば、Al−Si−Mg系接合材やAl−Mg系接合材などが好ましい。 Moreover, as a metal bonding material, for example, an Al—Si—Mg bonding material or an Al—Mg bonding material is preferable.
本発明のセラミックヒータの製法は、前記電極形成工程のあと、前記ヒータ電極を厚みが10〜50μmとなるまで研削する研削工程を含んでいてもよい。こうすれば、金属接合材の導電性が高い場合であっても、金属接合材の断面積が小さいため電気抵抗が大きくなり発熱しやすくなる。この場合、前記研削工程のあと、前記セラミック焼結体のうち前記ヒータ電極が形成された面に樹脂製の接着層を介して金属冷却板を接合する冷却板接合工程を含んでいてもよい。ヒータ電極の厚みが10〜50μmと薄いため、セラミック焼結体と接着層との間に隙間が生じにくく、ホットスポットが発生しにくい。 The manufacturing method of the ceramic heater of the present invention may include a grinding step of grinding the heater electrode until the thickness becomes 10 to 50 μm after the electrode forming step. In this way, even when the conductivity of the metal bonding material is high, the cross-sectional area of the metal bonding material is small, so that the electrical resistance increases and heat is easily generated. In this case, after the grinding step, a cooling plate joining step of joining a metal cooling plate to a surface of the ceramic sintered body on which the heater electrode is formed via a resin adhesive layer may be included. Since the thickness of the heater electrode is as thin as 10 to 50 μm, a gap is hardly generated between the ceramic sintered body and the adhesive layer, and hot spots are not easily generated.
本発明のセラミックヒータは、
ウエハ載置面を備えたセラミック焼結体と、
前記セラミック焼結体の前記ウエハ載置面とは反対側の面に張り巡らされたヒータ電極と、
を備え、
前記ヒータ電極は、Alを含有し、接合界面にはMgOが存在するものである。
The ceramic heater of the present invention is
A ceramic sintered body having a wafer mounting surface;
A heater electrode stretched around a surface of the ceramic sintered body opposite to the wafer mounting surface;
With
The heater electrode contains Al and MgO is present at the bonding interface.
このセラミックヒータは、例えば上述したセラミックヒータの製法によって得ることができる。 This ceramic heater can be obtained, for example, by the above-described ceramic heater manufacturing method.
本発明のセラミックヒータにおいて、前記ヒータ電極は、厚みが10〜50μmであることが好ましい。こうすれば、金属接合材の導電性が高い場合であっても、金属接合材の断面積が小さいため電気抵抗が大きくなり発熱しやすくなる。 In the ceramic heater of the present invention, the heater electrode preferably has a thickness of 10 to 50 μm. In this way, even when the conductivity of the metal bonding material is high, the cross-sectional area of the metal bonding material is small, so that the electrical resistance increases and heat is easily generated.
こうしたセラミックヒータは、セラミック焼結体のうちヒータ電極が形成された面に樹脂製の接着層を介して接合された金属冷却板を有していてもよい。ヒータ電極の厚みが10〜50μmと薄いため、セラミック焼結体と接合層との間に隙間が生じにくい。セラミック焼結体と接着層との間に隙間が生じると、その隙間が生じた箇所は、セラミック焼結体からの熱が金属冷却板へ熱が逃げにくくなるためホットスポットになりやすい。しかし、ここでは、セラミック焼結体と接着層との間に隙間が生じにくいため、そのようなホットスポットが発生しにくい。 Such a ceramic heater may have a metal cooling plate bonded to a surface of the ceramic sintered body on which the heater electrode is formed via a resin adhesive layer. Since the thickness of the heater electrode is as thin as 10 to 50 μm, a gap is hardly generated between the ceramic sintered body and the bonding layer. When a gap is generated between the ceramic sintered body and the adhesive layer, the portion where the gap is generated is likely to become a hot spot because heat from the ceramic sintered body is difficult to escape to the metal cooling plate. However, here, since a gap is hardly generated between the ceramic sintered body and the adhesive layer, such a hot spot is hardly generated.
次に、本発明のセラミックヒータの好適な一実施形態である静電チャックヒータ20について以下に説明する。図1は静電チャックヒータ20の断面図である。 Next, an electrostatic chuck heater 20 which is a preferred embodiment of the ceramic heater of the present invention will be described below. FIG. 1 is a cross-sectional view of the electrostatic chuck heater 20.
静電チャックヒータ20は、プラズマ処理を施すウエハWをウエハ載置面22aに吸着可能なセラミック焼結体22と、セラミック焼結体22の裏面に配置された冷却板30と、セラミック焼結体22と冷却板30とを接着する接着層40とを備えている。 The electrostatic chuck heater 20 includes a ceramic sintered body 22 capable of adsorbing a wafer W to be plasma-treated to the wafer mounting surface 22a, a cooling plate 30 disposed on the back surface of the ceramic sintered body 22, and a ceramic sintered body. 22 and an adhesive layer 40 that bonds the cooling plate 30 to each other.
セラミック焼結体22は、外径がウエハWの外径よりも小さいセラミック製(例えばアルミナ製とか窒化アルミニウム製)の円盤状プレートである。 The ceramic sintered body 22 is a disk-shaped plate made of ceramic (for example, made of alumina or aluminum nitride) whose outer diameter is smaller than the outer diameter of the wafer W.
セラミック焼結体22には、静電電極24が埋設されている。静電電極24は、図示しない電源装置により直流電圧を印加可能な平面状の電極である。この静電電極24に直流電圧が印加されるとウエハWはクーロン力又はジョンソン・ラーベック力によりウエハ載置面22aに吸着固定され、直流電圧の印加を解除するとウエハWのウエハ載置面22aへの吸着固定が解除される。 An electrostatic electrode 24 is embedded in the ceramic sintered body 22. The electrostatic electrode 24 is a planar electrode to which a DC voltage can be applied by a power supply device (not shown). When a DC voltage is applied to the electrostatic electrode 24, the wafer W is attracted and fixed to the wafer mounting surface 22a by a Coulomb force or a Johnson-Rahbek force. The suction fixation of is released.
セラミック焼結体22のうちウエハ載置面22aとは反対側の表面22bには、ヒータ電極26が張り巡らされている。このヒータ電極26は、表面22bの全体にわたって一筆書きの要領でパターン形成された抵抗線であり、中心に配置された一方の端部26aから外周付近に配置された端部26bまで渦巻き状に形成されている。両方の端部26a,26bには、それぞれ給電端子28a,28bがはんだ又はAl−Cuにより接合されている。ヒータ電極26は、AlとMgを含む金属接合材を該金属接合材の固相線温度以下の温度に加熱した状態でセラミック焼結体22に加圧接合したものである。こうした接合方法を、TCB接合(Thermal compression bonding)と称する。金属接合材中に含まれる活性の高いMgによって、セラミック焼結体22の表面22bに存在する酸化物層が除去され、セラミック焼結体22と金属接合材との接合強度が高くなる。また、ヒータ電極26の接合界面には、MgOが存在する。AlとMgを含有する金属接合材としては、Al−Si−Mg系接合材やAl−Mg系接合材などが好ましい。例えば、Al−Si−Mg系接合材として、88.5重量%のAl、10重量%のSi、1.5重量%のMgを含有し、固相温度が約560℃、液相温度が約590℃の接合材を用いる場合、TCB接合は、液相線温度以下である約520〜580℃に加熱した状態で、20〜140kg/mm2、好ましくは30〜60kg/mm2 の圧力で3〜6時間加圧して行われる。TCB接合は、真空雰囲気か不活性ガス雰囲気で行うのが好ましい。ヒータ電極26は、厚みが数100μmの金属接合材をTCB接合したあと、厚みが10〜50μm(好ましくは10〜20μm)に研削する。こうすれば、金属接合材の導電性が高い場合であっても、金属接合材の断面積が小さくなるため電気抵抗が大きくなり発熱しやすくなる。 A heater electrode 26 is stretched around a surface 22b of the ceramic sintered body 22 opposite to the wafer mounting surface 22a. The heater electrode 26 is a resistance wire patterned in the manner of one stroke over the entire surface 22b, and is formed in a spiral shape from one end portion 26a disposed at the center to an end portion 26b disposed near the outer periphery. Has been. Power supply terminals 28a and 28b are joined to both ends 26a and 26b by solder or Al-Cu, respectively. The heater electrode 26 is obtained by pressure-bonding a metal bonding material containing Al and Mg to the ceramic sintered body 22 in a state where the metal bonding material is heated to a temperature equal to or lower than the solidus temperature of the metal bonding material. Such a bonding method is referred to as TCB bonding (Thermal compression bonding). The highly active Mg contained in the metal bonding material removes the oxide layer present on the surface 22b of the ceramic sintered body 22 and increases the bonding strength between the ceramic sintered body 22 and the metal bonding material. Further, MgO is present at the bonding interface of the heater electrode 26. As a metal bonding material containing Al and Mg, an Al—Si—Mg bonding material, an Al—Mg bonding material, or the like is preferable. For example, the Al—Si—Mg based bonding material contains 88.5 wt% Al, 10 wt% Si, 1.5 wt% Mg, the solid phase temperature is about 560 ° C., and the liquid phase temperature is about When a 590 ° C. bonding material is used, the TCB bonding is performed at a pressure of 20 to 140 kg / mm 2 , preferably 30 to 60 kg / mm 2 in a state heated to about 520 to 580 ° C. which is lower than the liquidus temperature. Pressurized for ~ 6 hours. The TCB bonding is preferably performed in a vacuum atmosphere or an inert gas atmosphere. The heater electrode 26 is ground to a thickness of 10 to 50 μm (preferably 10 to 20 μm) after TCB bonding of a metal bonding material having a thickness of several hundreds of μm. By doing so, even if the conductivity of the metal bonding material is high, the cross-sectional area of the metal bonding material is reduced, so that the electrical resistance is increased and heat is easily generated.
冷却板30は、金属製(例えばアルミニウム製とかアルミニウム合金製)の円盤である。この冷却板30は、セラミック焼結体22のウエハ載置面22aとは反対側の表面22bに絶縁樹脂製の接着層40を介して接着されている。また、冷却板30は、図示しない外部冷却装置で冷却された冷媒が循環する冷媒通路32を有している。冷却板30は、ヒータ電極26に取り付けられた一対の給電端子28a,28bを挿通するための貫通孔34a,34bを備えている。貫通孔34a,34bの内面はセラミック絶縁層で覆われている。そのほかに、冷却板30は、静電電極24に電力を供給する図示しない給電端子を挿通するための図示しない貫通孔も有している。 The cooling plate 30 is a disk made of metal (for example, aluminum or aluminum alloy). The cooling plate 30 is bonded to a surface 22b of the ceramic sintered body 22 opposite to the wafer mounting surface 22a via an adhesive layer 40 made of an insulating resin. The cooling plate 30 has a refrigerant passage 32 through which the refrigerant cooled by an external cooling device (not shown) circulates. The cooling plate 30 includes through holes 34 a and 34 b for inserting a pair of power supply terminals 28 a and 28 b attached to the heater electrode 26. The inner surfaces of the through holes 34a and 34b are covered with a ceramic insulating layer. In addition, the cooling plate 30 also has a through hole (not shown) for inserting a power supply terminal (not shown) that supplies power to the electrostatic electrode 24.
接着層40は、エポキシ系、シリコン系又はアクリル系の接着シートが固化したものである。接着層40の厚みは、100〜300μmである。接着層40には、一対の給電端子28a,28bが貫通している。ヒータ電極26の厚みが10〜50μmの場合、セラミック焼結体22の表面22bとヒータ電極26との段差が非常に小さいため、表面22bと接着層40との間に隙間が生じにくい。表面22bと接着層40との間に隙間が生じると、その隙間が生じた箇所は、セラミック焼結体22の熱が冷却板30へ逃げにくくなるため、ホットスポットになりやすい。しかし、本実施形態では、セラミック焼結体22と接着層40との間に隙間が生じにくいため、そのようなホットスポットが発生しにくい。なお、こうした効果を確実に得るためには、ヒータ電極26の厚みを10〜20μmとするのがより好ましい。 The adhesive layer 40 is a solidified epoxy, silicon or acrylic adhesive sheet. The thickness of the adhesive layer 40 is 100 to 300 μm. A pair of power supply terminals 28 a and 28 b penetrates the adhesive layer 40. When the thickness of the heater electrode 26 is 10 to 50 μm, the step between the surface 22 b of the ceramic sintered body 22 and the heater electrode 26 is very small, so that a gap is hardly generated between the surface 22 b and the adhesive layer 40. When a gap is generated between the surface 22b and the adhesive layer 40, the portion where the gap is generated is likely to be a hot spot because the heat of the ceramic sintered body 22 is difficult to escape to the cooling plate 30. However, in the present embodiment, since a gap is hardly generated between the ceramic sintered body 22 and the adhesive layer 40, such a hot spot is hardly generated. In addition, in order to acquire such an effect reliably, it is more preferable that the thickness of the heater electrode 26 shall be 10-20 micrometers.
次に、静電チャックヒータ20の使用例について説明する。まず、図示しない真空チャンバ内に静電チャックヒータ20を設置した状態で、ウエハWをセラミック焼結体22のウエハ載置面22aに載置する。そして、真空チャンバ内を真空ポンプにより減圧して所定の真空度になるように調整し、セラミック焼結体22の静電電極24に直流電圧をかけてクーロン力又はジョンソン・ラーベック力を発生させ、ウエハWをセラミック焼結体22のウエハ載置面22aに吸着固定する。次に、真空チャンバ内を所定圧力(例えば数10〜数100Pa)の反応ガス雰囲気とし、この状態で、プラズマを発生させる。そして、発生したプラズマによってウエハWの表面がエッチングされる。図示しないコントローラは、ウエハWの温度が予め設定された目標温度となるように、ヒータ電極26へ供給する電力を制御する。 Next, a usage example of the electrostatic chuck heater 20 will be described. First, the wafer W is placed on the wafer placement surface 22 a of the ceramic sintered body 22 with the electrostatic chuck heater 20 installed in a vacuum chamber (not shown). Then, the inside of the vacuum chamber is reduced by a vacuum pump so as to have a predetermined degree of vacuum, and a DC voltage is applied to the electrostatic electrode 24 of the ceramic sintered body 22 to generate a Coulomb force or a Johnson Rabeck force, The wafer W is sucked and fixed to the wafer mounting surface 22a of the ceramic sintered body 22. Next, the inside of the vacuum chamber is set to a reactive gas atmosphere at a predetermined pressure (for example, several tens to several hundreds Pa), and plasma is generated in this state. Then, the surface of the wafer W is etched by the generated plasma. A controller (not shown) controls the power supplied to the heater electrode 26 so that the temperature of the wafer W becomes a preset target temperature.
次に、静電チャックヒータ20の製造例について説明する。図2は静電チャックヒータ20の製造工程図、図3は金属接合材126の平面図である。まず、静電電極24が埋設されたセラミック焼結体22を用意する(図2(a)参照)。こうしたセラミック焼結体22は、例えば特開2005−343733号公報の記載にしたがって用意することができる。続いて、図3に示すように、予め所定のパターン(ここでは渦巻き状)に形成された厚み数100μmの金属接合材126を用意し、その金属接合材126をウエハ載置面22aとは反対側の表面22bに載置する(図2(b)参照)。金属接合材126が形成する渦巻きの最外周の渦の直径は、セラミック焼結体22の表面22bの直径より僅かに小さい。続いて、金属接合材126が載置されたセラミック焼結体22をカーボン製の金型50に入れる。このとき、金属接合材126と金型50との間に、黒鉛シート52(例えばグラフテック(Graftech)社製の商品名グラフォイルなど)を介在させる(図2(c)参照)。そして、金属接合材126を金属接合材126の液相線温度以下の温度に加熱した状態で、金属接合材126が載置されたセラミック焼結体22を金型50の上型及び下型により上下から加圧する。これにより、金属接合材126がセラミック焼結体22に接合される。接合後、セラミック焼結体22を金型50から取り出す。金属接合材126は、セラミック焼結体22とは接合するが、黒鉛シート52とは接合しない。そのため、セラミック焼結体22を金型50から容易に取り出すことができる。その後、金属接合材126の厚みが10〜50μmとなるまで切削し、ヒータ電極26とする(図2(d)参照)。そして、ヒータ電極26の両方の端部26a,26bにそれぞれ給電端子28a,28bをはんだ又はAl−Cuロウ材により接合する(図2(e)参照)。 Next, a manufacturing example of the electrostatic chuck heater 20 will be described. FIG. 2 is a manufacturing process diagram of the electrostatic chuck heater 20, and FIG. 3 is a plan view of the metal bonding material 126. First, a ceramic sintered body 22 in which the electrostatic electrode 24 is embedded is prepared (see FIG. 2A). Such a ceramic sintered body 22 can be prepared, for example, according to the description in JP-A-2005-343733. Subsequently, as shown in FIG. 3, a metal bonding material 126 having a thickness of several hundreds μm previously formed in a predetermined pattern (here, spiral) is prepared, and the metal bonding material 126 is opposite to the wafer mounting surface 22a. It is mounted on the side surface 22b (see FIG. 2B). The diameter of the vortex at the outermost periphery of the spiral formed by the metal bonding material 126 is slightly smaller than the diameter of the surface 22 b of the ceramic sintered body 22. Subsequently, the ceramic sintered body 22 on which the metal bonding material 126 is placed is put into a carbon mold 50. At this time, a graphite sheet 52 (for example, a product name Grafoil manufactured by Graftech) is interposed between the metal bonding material 126 and the mold 50 (see FIG. 2C). Then, in a state where the metal bonding material 126 is heated to a temperature equal to or lower than the liquidus temperature of the metal bonding material 126, the ceramic sintered body 22 on which the metal bonding material 126 is placed is moved by the upper mold and the lower mold of the mold 50. Pressurize from above and below. Thereby, the metal bonding material 126 is bonded to the ceramic sintered body 22. After joining, the ceramic sintered body 22 is taken out from the mold 50. The metal bonding material 126 is bonded to the ceramic sintered body 22 but is not bonded to the graphite sheet 52. Therefore, the ceramic sintered body 22 can be easily taken out from the mold 50. Then, it cuts until the thickness of the metal joining material 126 becomes 10-50 micrometers, and is set as the heater electrode 26 (refer FIG.2 (d)). Then, power supply terminals 28a and 28b are joined to both ends 26a and 26b of the heater electrode 26 by solder or Al—Cu brazing material (see FIG. 2E).
その一方で、内部に冷媒通路32が形成された冷却板30を用意する。そして、冷却板30の表面30aとセラミック焼結体22の表面22bとを向かい合わせ、両面30a,22bの間に接着シートを挟んだ状態で、冷却板30の貫通孔34a,34bに給電端子28a,28bを挿通させながら冷却板30に対してセラミック焼結体22を押圧する。これにより、セラミック焼結体22の表面22bと冷却板30の表面30aとが接着層40を介して接合され、静電チャックヒータ20が得られる(図2(f)参照)。 On the other hand, a cooling plate 30 having a refrigerant passage 32 formed therein is prepared. Then, the surface 30a of the cooling plate 30 and the surface 22b of the ceramic sintered body 22 face each other, and the power supply terminal 28a is inserted into the through holes 34a and 34b of the cooling plate 30 with the adhesive sheet sandwiched between both surfaces 30a and 22b. , 28b is inserted, and the ceramic sintered body 22 is pressed against the cooling plate 30. Thereby, the surface 22b of the ceramic sintered body 22 and the surface 30a of the cooling plate 30 are joined via the adhesive layer 40, and the electrostatic chuck heater 20 is obtained (refer FIG.2 (f)).
以上詳述した本実施形態の静電チャックヒータ20によれば、均熱性が高くなる。従来のように金属ペーストを焼結してヒータ電極を形成する場合には、焼結時にセラミック焼結体の中心部と外周部とで温度ムラが生じることがある。そうすると、ヒータ電極の焼結状態ひいてはヒータ電極の抵抗値がセラミック焼結体の中心部と外周部とで差が生じてしまい、均熱性が悪くなる。しかし、本実施形態の静電チャックヒータ20では、ヒータ電極26となる金属接合材は接合前も接合後も大部分が固相のままであるため、ヒータ電極26の抵抗値はセラミック焼結体22の中心部と外周部とで差が生じない。また、金属接合材を固相のまま接合したヒータ電極26は、金属ペーストを焼結したヒータ電極に比べて、ヒータ電極26とセラミック焼結体22との接合強度が高いため、熱サイクル試験後にセラミック焼結体22から剥離しにくい。こうしたことから、本実施形態の静電チャックヒータ20は、均熱性が高くなる。 According to the electrostatic chuck heater 20 of the present embodiment described in detail above, the thermal uniformity becomes high. When a heater electrode is formed by sintering a metal paste as in the prior art, temperature unevenness may occur between the central portion and the outer peripheral portion of the ceramic sintered body during sintering. If it does so, a difference will arise in the sintered part of a heater electrode, and resistance value of a heater electrode by the center part and outer peripheral part of a ceramic sintered compact, and soaking property will worsen. However, in the electrostatic chuck heater 20 of the present embodiment, most of the metal bonding material to be the heater electrode 26 remains in a solid phase before and after bonding, so the resistance value of the heater electrode 26 is a ceramic sintered body. There is no difference between the central portion of 22 and the outer peripheral portion. In addition, the heater electrode 26 in which the metal bonding material is bonded in the solid phase has a higher bonding strength between the heater electrode 26 and the ceramic sintered body 22 than the heater electrode in which the metal paste is sintered. It is difficult to peel from the ceramic sintered body 22. For these reasons, the electrostatic chuck heater 20 of the present embodiment has high thermal uniformity.
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
例えば、上述した実施形態では、静電チャックヒータ20の全面にわたって渦巻き状にヒータ電極26を形成したが、特に渦巻き状に限定されるものではなく、どのような形状であっても構わない。また、静電チャックヒータ20を複数のゾーンに分け、各ゾーンごとに一筆書きの要領でヒータ電極を形成してもよい。複数のゾーンとは、例えば、内周側ゾーン(円形)と外周側ゾーン(ドーナツ形)の2つのゾーンとしてもよいし、左側ゾーン(半円形)と右側ゾーン(半円形)の2つのゾーンとしてもよい。 For example, in the above-described embodiment, the heater electrode 26 is formed in a spiral shape over the entire surface of the electrostatic chuck heater 20, but is not particularly limited to a spiral shape, and may have any shape. Further, the electrostatic chuck heater 20 may be divided into a plurality of zones, and heater electrodes may be formed in a manner of one stroke writing for each zone. The plurality of zones may be, for example, two zones, an inner zone (circular) and an outer zone (doughnut shape), or two zones, a left zone (semicircle) and a right zone (semicircle). Also good.
上述した実施形態では、本発明のセラミックヒータとして静電チャックヒータ20を例示したが、静電チャックヒータ20の静電電極24を省略してセラミックヒータとしてもよいし、あるいは、静電チャックヒータ20のセラミック焼結体22に更にプラズマ発生用の高周波電極を埋設してもよい。 In the above-described embodiment, the electrostatic chuck heater 20 is exemplified as the ceramic heater of the present invention. However, the electrostatic electrode 24 of the electrostatic chuck heater 20 may be omitted, or the ceramic heater may be used. A high frequency electrode for generating plasma may be further embedded in the ceramic sintered body 22.
[実施例1]
上述した製造例(図2参照)にしたがって、静電チャックヒータ20を製造した。なお、静電電極24が埋設されたセラミック焼結体22は、直径297mm、厚み4mmのものを用いた。金属接合材126は、88.5重量%のAl、10重量%のSi、1.5重量%のMgを含有し、固相温度が約560℃、液相温度が約590℃のAl−Si−Mg系接合材を用いた。TCB接合は、真空雰囲気下、560℃に加熱した状態で30kg/mm2の圧力で5時間かけて加圧した。TCB接合後の金属接合材126の厚みが20μmになるまで金属接合材126の研削を行い、ヒータ電極26とした。ヒータ電極26の断面をSEM/EPMAで観察したところ、接合界面にMgOが存在していることが確認された。接合シートは、厚み300μmのエポキシ樹脂系シートを使用した。冷却板30は、アルミニウム製で直径300mm、厚み25mmのものを使用した。
[Example 1]
The electrostatic chuck heater 20 was manufactured according to the above-described manufacturing example (see FIG. 2). Note that the ceramic sintered body 22 in which the electrostatic electrode 24 was embedded was a ceramic sintered body having a diameter of 297 mm and a thickness of 4 mm. The metal bonding material 126 contains 88.5 wt% Al, 10 wt% Si, 1.5 wt% Mg, Al—Si having a solid phase temperature of about 560 ° C. and a liquid phase temperature of about 590 ° C. -Mg based bonding material was used. TCB bonding was performed at a pressure of 30 kg / mm 2 for 5 hours in a vacuum atmosphere heated to 560 ° C. The metal bonding material 126 was ground until the thickness of the metal bonding material 126 after TCB bonding became 20 μm, and the heater electrode 26 was obtained. When the cross section of the heater electrode 26 was observed with SEM / EPMA, it was confirmed that MgO was present at the bonding interface. As the bonding sheet, an epoxy resin sheet having a thickness of 300 μm was used. The cooling plate 30 was made of aluminum and had a diameter of 300 mm and a thickness of 25 mm.
[比較例1]
比較例1では、実施例1において、金属接合材126をセラミック焼結体22にTCB接合してヒータ電極26を形成する代わりに、金属ペーストを用いてヒータ電極を形成した以外は、実施例1と同様にして静電チャックヒータを製造した。具体的には、タングステン粉末と焼成助剤とをエチルセルロースバインダにて混練した金属ペーストをセラミック焼結体の表面に渦巻き状のパターンとなるように印刷し、窒素ガス中800℃で脱脂した後、窒素ガス中1600℃で焼成し、所定の厚み(ここでは50μm)に研削してヒータ電極を形成した。
[Comparative Example 1]
In Comparative Example 1, Example 1 was used except that instead of forming the heater electrode 26 by TCB joining the metal bonding material 126 to the ceramic sintered body 22 in Example 1, the heater electrode was formed using a metal paste. In the same manner, an electrostatic chuck heater was manufactured. Specifically, a metal paste kneaded with tungsten powder and a firing aid in an ethyl cellulose binder is printed on the surface of the ceramic sintered body so as to form a spiral pattern, and degreased at 800 ° C. in nitrogen gas, The heater electrode was formed by firing at 1600 ° C. in nitrogen gas and grinding to a predetermined thickness (here, 50 μm).
[均熱性評価試験−その1]
図示しない真空チャンバに静電チャックヒータを入れ、ウエハ載置面に温度測定用ウエハを載せた。温度測定用ウエハとしては、直径300mmのシリコンウエハの中心点、直径145mmの円周上の12点、直径290mmの円周上の12点に、それぞれ熱電対が埋め込まれたものを用いた。各円周上の複数の測定点は、等間隔に並んでいた。真空チャンバの内圧は10Pa未満に設定し、冷却板の冷媒通路に循環させる冷媒の温度は10℃に設定した。セラミックの目標温度は60℃に設定した。図示しないコントローラによりセラミックの温度が目標温度と一致するようにヒータ電極に供給する電力を制御したときの温度測定用ウエハの各点の温度の最大値から最小値を引いた温度差ΔT(℃)を均熱性の指標として求めた。また、ヒータ電極につき、直径200mmの円の内側の抵抗率(内側抵抗率)と直径200mmの円の外側の抵抗率(外側抵抗率)も測定した。その結果を表1に示す。表1から明らかなように、実施例1は、比較例1に比べて温度差ΔTが小さく、均熱性が優れていた。また、実施例1は、比較例1に比べて内側抵抗率と外側抵抗率のバラツキが少なかった。
[Soaking evaluation test-Part 1]
An electrostatic chuck heater was placed in a vacuum chamber (not shown), and a temperature measurement wafer was placed on the wafer placement surface. As the temperature measurement wafer, a silicon wafer having a diameter of 300 mm, 12 points on the circumference of 145 mm in diameter, and 12 points on the circumference of 290 mm in diameter were each embedded with a thermocouple. A plurality of measurement points on each circumference were arranged at equal intervals. The internal pressure of the vacuum chamber was set to less than 10 Pa, and the temperature of the refrigerant circulated in the refrigerant passage of the cooling plate was set to 10 ° C. The target temperature of the ceramic was set to 60 ° C. Temperature difference ΔT (° C.) obtained by subtracting the minimum value from the maximum value of the temperature of each point of the temperature measurement wafer when the power supplied to the heater electrode is controlled so that the ceramic temperature matches the target temperature by a controller (not shown). Was determined as a soaking index. Moreover, about the heater electrode, the inside resistivity (inside resistivity) of a circle with a diameter of 200 mm and the outside resistivity (outside resistivity) of a circle with a diameter of 200 mm were also measured. The results are shown in Table 1. As is apparent from Table 1, Example 1 had a smaller temperature difference ΔT than that of Comparative Example 1, and was excellent in heat uniformity. In addition, Example 1 had less variation in inner resistivity and outer resistivity than Comparative Example 1.
[均熱性評価試験−その2]
実施例1と比較例1につき、上述した[均熱性評価試験−その1]において、セラミックの目標温度を60℃に設定する代わりに、セラミックの目標温度を20℃(1分間)に設定した後80℃(1分間)に設定するのを1サイクルとし、これを5万サイクル実施した。初期を含み1万サイクルごとにIRカメラにて温度の測定を行い、均熱性の指標である温度差ΔTを求めた。その結果を図4に示す。図4から、実施例1では、初期から5万サイクル後まで温度差ΔTは絶えず3℃未満で小さいままだった。それに対して、比較例1では、初期において既に温度差ΔTが4℃を超え、また、サイクル回数が増加するにつれて温度差ΔTが更に増大した。比較例1では、サイクル回数が増加するにつれてヒータ電極がセラミック焼結体から剥離し、その剥離した部分の周辺ではセラミック焼結体から冷却板へ熱を効率よく逃がすことができなくなり、その結果均熱性が悪化したと考えられる。それに対して、実施例1では、5万サイクルまでヒータ電極がセラミック焼結体から剥離しなかったと考えられる。このように、ヒータ電極とセラミック焼結体との接合強度は、ヒータ電極としてTCB接合した金属接合材を用いた場合の方が金属ペーストの焼成体を用いた場合に比べて高いことがわかる。
[Soaking evaluation test-2]
In Example 1 and Comparative Example 1, after setting the target temperature of the ceramic to 20 ° C. (1 minute) instead of setting the target temperature of the ceramic to 60 ° C. One cycle was set to 80 ° C. (1 minute), and this was carried out for 50,000 cycles. The temperature was measured with an IR camera every 10,000 cycles including the initial stage, and the temperature difference ΔT, which is a soaking index, was obtained. The result is shown in FIG. From FIG. 4, in Example 1, the temperature difference ΔT was constantly less than 3 ° C. from the initial stage until 50,000 cycles. In contrast, in Comparative Example 1, the temperature difference ΔT already exceeded 4 ° C. in the initial stage, and the temperature difference ΔT further increased as the number of cycles increased. In Comparative Example 1, the heater electrode peels from the ceramic sintered body as the number of cycles increases, and heat cannot be efficiently released from the ceramic sintered body to the cooling plate around the peeled portion. It is thought that the thermal properties deteriorated. On the other hand, in Example 1, it is considered that the heater electrode did not peel from the ceramic sintered body until 50,000 cycles. Thus, it can be seen that the bonding strength between the heater electrode and the ceramic sintered body is higher when the metal bonding material bonded with TCB is used as the heater electrode than when the sintered body of the metal paste is used.
[実施例2〜5]
実施例1では、ヒータ電極26の厚みを研削により20μmとしたが、実施例2では10μm、実施例3では50μm、実施例4では100μm、実施例5では200μm(研削なし)とした。
[Examples 2 to 5]
In Example 1, the thickness of the heater electrode 26 was 20 μm by grinding, but in Example 2, it was 10 μm, Example 3 was 50 μm, Example 4 was 100 μm, and Example 5 was 200 μm (no grinding).
[比較例2〜5]
比較例1では、ヒータ電極の厚みを研削により50μmとしたが、比較例2では10μm、比較例3では20μm、比較例4では100μm、比較例5では200μm(研削なし)とした。
[Comparative Examples 2 to 5]
In Comparative Example 1, the thickness of the heater electrode was 50 μm by grinding. However, Comparative Example 2 was 10 μm, Comparative Example 3 was 20 μm, Comparative Example 4 was 100 μm, and Comparative Example 5 was 200 μm (no grinding).
[均熱性評価試験−その3]
上述した[均熱性評価試験−その1]にしたがって、各実施例、各比較例の均熱性を求めた。ヒータ電極の厚みと均熱性(ΔT)との関係を図5に示す。図5から、比較例のうち最も均熱性に優れていたのはヒータ電極の厚みが50μmのものであり、それより厚くても薄くても均熱性が悪化した。比較例において厚みが20μm以下のものは、研削時にヒータ電極が剥離したり欠けたりしたため、抵抗率が不均一になり均熱性が悪化した。これは、比較例のヒータ電極は金属ペーストを焼成したものであるため、内部に気泡が入ったり脆くなったりして抵抗率が不均一になったことが原因と考えられる。一方、同じヒータ電極の厚みの実施例と比較例とを比較すると、いずれも実施例の方が均熱性が優れていた。また、実施例のうちヒータ電極の厚みが10〜50μmの場合、比較例のうち最も均熱性が高いもの(ヒータ電極の厚みが50μmのもの)よりも更に均熱性が高かった。実施例のヒータ電極は、TCB接合の前後で大部分が固相のままだった金属接合材であるため、研削しても剥離や欠けが生じず、抵抗率が均一になったと考えられる。
[Soaking evaluation test-Part 3]
In accordance with the above-described [Soaking evaluation test-No. 1], the soaking properties of each example and each comparative example were determined. FIG. 5 shows the relationship between the thickness of the heater electrode and the thermal uniformity (ΔT). As shown in FIG. 5, the heater electrode with the most uniform heat uniformity among the comparative examples had a heater electrode thickness of 50 μm, and the heat uniformity deteriorated regardless of whether it was thicker or thinner. In the comparative example, when the thickness was 20 μm or less, the heater electrode was peeled off or chipped during grinding, so the resistivity became non-uniform and the thermal uniformity deteriorated. This is probably because the heater electrode of the comparative example is made by firing a metal paste, and bubbles are contained inside or become brittle, resulting in non-uniform resistivity. On the other hand, when Examples and Comparative Examples having the same heater electrode thickness were compared, the Examples were superior in heat uniformity. Further, in the examples, when the thickness of the heater electrode was 10 to 50 μm, the temperature uniformity was higher than that of the comparative example having the highest temperature uniformity (thickness of the heater electrode being 50 μm). Since the heater electrode of the example is a metal bonding material that remains mostly in a solid phase before and after TCB bonding, it is considered that no peeling or chipping occurs even when grinding, and the resistivity becomes uniform.
20 静電チャックヒータ、22 セラミック焼結体、22a ウエハ載置面、22b 表面、24 静電電極、26 ヒータ電極、26a,26b 端部、28a,28b 給電端子、30 冷却板、30a 表面、32 冷媒通路、34a,34b 貫通孔、40 接着層、50 金型、52 黒鉛シート、126 金属接合体、W ウエハ。 20 Electrostatic chuck heater, 22 Ceramic sintered body, 22a Wafer mounting surface, 22b surface, 24 Electrostatic electrode, 26 Heater electrode, 26a, 26b End, 28a, 28b Power supply terminal, 30 Cooling plate, 30a Surface, 32 Refrigerant passage, 34a, 34b through-hole, 40 adhesive layer, 50 mold, 52 graphite sheet, 126 metal joint, W wafer.
Claims (6)
を含むセラミックヒータの製法。 A metal bonding material containing Al and Mg is stretched around one surface of the ceramic sintered body, and the metal bonding material is heated to a temperature below the liquidus temperature of the metal bonding material and applied to the ceramic sintered body. A method for producing a ceramic heater, comprising an electrode forming step of forming a heater electrode by pressure bonding.
前記電極形成工程のあと、前記ヒータ電極を厚みが10〜50μmとなるまで研削する研削工程
を含むセラミックヒータの製法。 It is a manufacturing method of the ceramic heater of Claim 1, Comprising:
After the said electrode formation process, the grinding process of grinding the said heater electrode until it becomes thickness 10-50 micrometers, The manufacturing method of the ceramic heater.
前記研削工程のあと、前記セラミック焼結体のうち前記ヒータ電極が形成された面に樹脂製の接着層を介して金属冷却板を接合する冷却板接合工程
を含むセラミックヒータの製法。 A method for producing a ceramic heater according to claim 2,
After the said grinding process, the manufacturing method of the ceramic heater including the cooling plate joining process of joining a metal cooling plate to the surface in which the said heater electrode was formed among the said ceramic sintered compact through the resin-made adhesive layer.
前記セラミック焼結体の前記ウエハ載置面とは反対側の面に張り巡らされたヒータ電極と、
を備え、
前記ヒータ電極は、Al−Si−Mg系接合材又はAl−Mg系接合材を用いたものであり、接合界面にはMgOが存在する、
セラミックヒータ。 A ceramic sintered body having a wafer mounting surface;
A heater electrode stretched around a surface of the ceramic sintered body opposite to the wafer mounting surface;
With
The heater electrode is an Al-Si-Mg-based bonding material or an Al-Mg-based bonding material, and MgO is present at the bonding interface.
Ceramic heater.
請求項4に記載のセラミックヒータ。 The heater electrode has a thickness of 10 to 50 μm.
The ceramic heater according to claim 4.
前記セラミック焼結体のうち前記ヒータ電極が形成された面に樹脂製の接着層を介して接合された金属冷却板
を備えたセラミックヒータ。 A ceramic heater according to claim 4 or 5,
The ceramic heater provided with the metal cooling plate joined to the surface in which the said heater electrode was formed among the said ceramic sintered compact through the resin-made adhesive layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013250009A JP6030045B2 (en) | 2013-12-03 | 2013-12-03 | Ceramic heater and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013250009A JP6030045B2 (en) | 2013-12-03 | 2013-12-03 | Ceramic heater and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015109139A JP2015109139A (en) | 2015-06-11 |
JP6030045B2 true JP6030045B2 (en) | 2016-11-24 |
Family
ID=53439370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013250009A Active JP6030045B2 (en) | 2013-12-03 | 2013-12-03 | Ceramic heater and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6030045B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6608444B2 (en) * | 2015-12-28 | 2019-11-20 | 日本碍子株式会社 | Disc heater and heater cooling plate assembly |
JP6518024B1 (en) * | 2017-10-30 | 2019-05-22 | 日本碍子株式会社 | Electrostatic chuck and manufacturing method thereof |
KR20220163508A (en) * | 2018-05-31 | 2022-12-09 | 어플라이드 머티어리얼스, 인코포레이티드 | Extreme uniformity heated substrate support assembly |
JP6839314B2 (en) * | 2019-03-19 | 2021-03-03 | 日本碍子株式会社 | Wafer mounting device and its manufacturing method |
KR20230043781A (en) * | 2020-06-29 | 2023-03-31 | 스미토모 오사카 세멘토 가부시키가이샤 | wafer support device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3450023B2 (en) * | 1992-01-24 | 2003-09-22 | 日本碍子株式会社 | Metal / ceramic joint, metal-ceramic composite structure using the same, and method of manufacturing the same |
JP4346134B2 (en) * | 1998-11-12 | 2009-10-21 | 九州電力株式会社 | Ceramic heating or glass tableware for electromagnetic heating and its manufacturing method |
JP5018244B2 (en) * | 2007-05-30 | 2012-09-05 | 住友大阪セメント株式会社 | Electrostatic chuck |
JP6049509B2 (en) * | 2012-03-28 | 2016-12-21 | 日本碍子株式会社 | Manufacturing method of ceramic heater, heater electrode and ceramic heater |
-
2013
- 2013-12-03 JP JP2013250009A patent/JP6030045B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015109139A (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6030045B2 (en) | Ceramic heater and manufacturing method thereof | |
JP5018244B2 (en) | Electrostatic chuck | |
JP3154629U (en) | Electrostatic chuck | |
JP4040284B2 (en) | Electrode built-in susceptor for plasma generation and manufacturing method thereof | |
JP3155802U (en) | Wafer mounting device | |
JP5117146B2 (en) | Heating device | |
JP5396353B2 (en) | Electrostatic chuck and manufacturing method thereof | |
CN110770877B (en) | Component for semiconductor manufacturing device | |
JP2001274230A (en) | Wafer holder for semiconductor manufacturing device | |
JP6325424B2 (en) | Electrostatic chuck | |
JPWO2012128348A1 (en) | Electrostatic chuck device | |
JP5982887B2 (en) | Electrostatic chuck device | |
CN106068251B (en) | Method for manufacturing bonded body | |
JP2009238949A (en) | Electrostatic chuck and method of manufacturing the same | |
JP3808407B2 (en) | Electrode built-in susceptor and manufacturing method thereof | |
JP2003124299A (en) | Electrode contained susceptor and its manufacturing method | |
JP2007258609A (en) | Heating apparatus | |
WO2019208191A1 (en) | Wafer support pedestal | |
JP2005197391A (en) | Electrode-burying member for plasma generator | |
JP3746935B2 (en) | Susceptor and manufacturing method thereof | |
JP2003077783A (en) | Ceramic heater for semiconductor manufacturing/ inspecting device and manufacturing method therefor | |
JP4307218B2 (en) | Wafer holding member and manufacturing method thereof | |
JP6667386B2 (en) | Holding device | |
JP5961917B2 (en) | Wafer holder | |
JP2005197393A (en) | Electrode-burying member for plasma generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6030045 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |