JP6029085B2 - Metal molded body and method for producing metal molded body - Google Patents

Metal molded body and method for producing metal molded body Download PDF

Info

Publication number
JP6029085B2
JP6029085B2 JP2012212838A JP2012212838A JP6029085B2 JP 6029085 B2 JP6029085 B2 JP 6029085B2 JP 2012212838 A JP2012212838 A JP 2012212838A JP 2012212838 A JP2012212838 A JP 2012212838A JP 6029085 B2 JP6029085 B2 JP 6029085B2
Authority
JP
Japan
Prior art keywords
molded body
top plate
metal
thickness
wall portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012212838A
Other languages
Japanese (ja)
Other versions
JP2014065064A (en
Inventor
正禎 沼野
正禎 沼野
宏治 森
宏治 森
泰輔 坪田
泰輔 坪田
河部 望
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012212838A priority Critical patent/JP6029085B2/en
Publication of JP2014065064A publication Critical patent/JP2014065064A/en
Application granted granted Critical
Publication of JP6029085B2 publication Critical patent/JP6029085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、筐体やカバーなどに利用される金属成形体、及びその製造方法に関するものである。特に、角部が鋭利で、角部近傍の剛性に優れ、生産性にも優れる金属成形体に関するものである。   The present invention relates to a metal molded body used for a housing, a cover, and the like, and a manufacturing method thereof. In particular, the present invention relates to a metal molded body having sharp corners, excellent rigidity in the vicinity of the corners, and excellent productivity.

ノート型パーソナルコンピュータや携帯電話といった携帯用の電子・電気機器などの筐体の構成材料に、金属では、軽量であるアルミニウムやアルミニウム合金が利用されている。特許文献1では、更に軽量で、比強度、比剛性にも優れる金属として、マグネシウム合金を提案している。   As a constituent material of a casing of a portable electronic / electric device such as a notebook personal computer or a cellular phone, light aluminum or aluminum alloy is used as a metal. Patent Document 1 proposes a magnesium alloy as a metal that is lighter in weight and excellent in specific strength and specific rigidity.

また、特許文献1は、マグネシウム合金からなる圧延板に、多段階のプレス加工を施すことで、角部が鋭利なプレス成形体を製造できることを提案している。このプレス成形体は、上記角部の外側曲げ半径が素材に用いた薄い圧延板の厚さよりも小さく、スタイリッシュ感がある。   Patent Document 1 proposes that a press-formed body with sharp corners can be manufactured by performing multi-stage pressing on a rolled plate made of a magnesium alloy. This press-formed body has a stylish feeling because the outer bending radius of the corner is smaller than the thickness of the thin rolled plate used for the material.

特開2010-069504号公報JP 2010-069504

筐体の代表的な形態として、特許文献1に記載されるような、矩形状の天板と、天板の周縁に繋がり、この天板に対して垂直に立設される壁部とを具える断面]状の立体が挙げられる。一方、ノート型パーソナルコンピュータの上蓋などといった開閉動作を行う筐体では、壁部が天板に対して垂直ではなく、壁部の外表面が天板の内面に向かって傾斜した形状、つまり天板の外表面の延長面と壁部の外表面の延長面とがつくる角が鋭角となるように両者が繋がった形状が利用されている。このような壁部の外表面が傾斜している筐体は、傾斜面(壁部)に指を引っ掛けることで、開動作を行い易い。   As a typical form of the casing, there is a rectangular top plate as described in Patent Document 1, and a wall portion that is connected to the periphery of the top plate and is erected perpendicularly to the top plate. A cross-section] solid. On the other hand, in a case that opens and closes, such as an upper lid of a notebook personal computer, the wall is not perpendicular to the top plate, and the outer surface of the wall is inclined toward the inner surface of the top plate, that is, the top plate A shape is used in which the outer surface of the wall and the extended surface of the outer surface of the wall portion are connected so that the angle formed by the extended surface becomes an acute angle. Such a case in which the outer surface of the wall portion is inclined can be easily opened by hooking a finger on the inclined surface (wall portion).

上述の壁部の外表面が鋭角に傾斜し、かつ上述のような鋭利な角部を有し、更に上記角部近傍の剛性に優れる成形体、及びこの成形体を生産性よく製造可能な製造方法の開発が望まれている。   A molded body in which the outer surface of the above-mentioned wall portion is inclined at an acute angle and has the sharp corner portion as described above, and further excellent in rigidity in the vicinity of the corner portion, and manufacture capable of producing the molded body with high productivity Development of a method is desired.

例えば、樹脂では、壁部の外表面が鋭角に傾斜し、かつ鋭利な角部を有する成形体が実現されている。しかし、樹脂は、金属よりも剛性や強度に劣る。   For example, with a resin, a molded body in which the outer surface of the wall portion is inclined at an acute angle and has a sharp corner portion is realized. However, resin is inferior in rigidity and strength to metal.

一方、金属では、ダイキャスト法やチクソモールド法を利用すれば、複雑な形状の成形体を製造できる。しかし、ダイキャスト法やチクソモールド法では、厚さが薄く、かつ面積が大きなものを製造することに限界がある。また、同じ金属種で比較すると、ダイキャスト材やチクソモールド材は、圧延やプレス加工といった塑性加工が施されたものと比較して剛性や強度に劣り、落下などの衝撃によって角部が潰れるなど変形したり、破損したりする恐れがある。   On the other hand, in the case of metal, if a die casting method or a thixo mold method is used, a molded body having a complicated shape can be manufactured. However, the die casting method and the thixo mold method have a limit in manufacturing a thin product with a large area. In addition, when compared with the same metal type, die cast materials and thixo mold materials are inferior in rigidity and strength compared to those subjected to plastic processing such as rolling and pressing, and the corners are crushed by impact such as dropping. There is a risk of deformation or damage.

他方、鍛造やプレス加工といった塑性加工を利用した場合、加工硬化による剛性や強度の向上が望める。また、素材に圧延板といった塑性加工材を利用することでも、剛性や強度の向上が望める上に、圧延は、均一的な厚さの薄板や広幅板などを製造できるため、薄板を利用することで、軽量、薄型の成形体を製造できる。更に、広幅板を利用することで、大型の成形体を製造できる。加えて、特許文献1に記載されるように多段階のプレス加工を行うことで、鋭利な角部であって、剛性や耐衝撃性に優れる角部を有する成形体を製造できる。従って、金属板にプレス加工といった塑性加工を施して、壁部の外表面が鋭角に傾斜し、かつ鋭利な角部を有する成形体が製造できれば、生産性にも優れると期待される。   On the other hand, when plastic working such as forging or pressing is used, improvement in rigidity and strength by work hardening can be expected. In addition, it is possible to improve the rigidity and strength by using a plastic processed material such as a rolled plate as a raw material. In addition, rolling can produce a thin plate or a wide plate with a uniform thickness. Thus, a lightweight and thin molded body can be produced. Furthermore, a large molded body can be manufactured by using a wide plate. In addition, by performing multi-stage pressing as described in Patent Document 1, it is possible to produce a molded body having sharp corners and corners having excellent rigidity and impact resistance. Therefore, if the metal plate is subjected to plastic working such as press working so that the molded body having the outer surface of the wall portion inclined at an acute angle and having the sharp corner portion can be manufactured, it is expected to be excellent in productivity.

しかし、金属板にプレス加工といった塑性加工を施して、壁部の外表面が鋭角に傾斜し、かつ鋭利な角部を有する成形体を製造する具体的な手法が検討されていない。   However, a specific method for producing a molded body having a sharp corner portion by subjecting the metal plate to plastic working such as press working so that the outer surface of the wall portion is inclined at an acute angle has not been studied.

例えば、金属板にプレス加工を施して断面[状の成形体を作製し、この成形体の壁部に切削加工を施すことで、上述の壁部の外表面が鋭角に傾斜し、かつ、角部が鋭利な成形体を製造できる。しかし、切削することで、壁部の厚さが天板部の厚さよりも薄くなる。そのため、角部及びその近傍の剛性の低下を招く。また、壁部は、天板部の補強材(リブ)としても機能するが、上述のように厚さが薄くなることで、補強効果の低下を招く。   For example, by pressing a metal plate to produce a cross-section-shaped formed body and cutting the wall portion of the formed body, the outer surface of the wall portion described above is inclined at an acute angle, and A molded body with sharp parts can be produced. However, the thickness of the wall portion becomes thinner than the thickness of the top plate portion by cutting. For this reason, the corner portion and the vicinity thereof are reduced in rigidity. The wall portion also functions as a reinforcing material (rib) for the top plate portion. However, as the thickness is reduced as described above, the reinforcing effect is reduced.

従って、本発明の目的の一つは、角部が鋭利で、角部近傍の剛性に優れ、生産性にも優れる金属成形体を提供することにある。本発明の他の目的は、角部が鋭利で、角部近傍の剛性に優れる金属成形体を生産性よく製造可能な金属成形体の製造方法を提供することにある。   Accordingly, one of the objects of the present invention is to provide a metal molded body having sharp corners, excellent rigidity in the vicinity of the corners, and excellent productivity. Another object of the present invention is to provide a method for producing a metal molded body capable of producing a metal molded body having sharp corners and excellent rigidity in the vicinity of the corners with high productivity.

本発明者らは、金属板を素材とし、プレス加工といった塑性加工を利用して、壁部の外表面が天板部の外表面に対して鋭角に傾斜し、かつ、鋭利な角部を有する金属成形体を製造することを検討した。具体的には、特許文献1に記載されるように、圧延板に多段にプレス加工を施して、鋭利な角部を有する成形体を作製し、この成形体を素材として、更にプレス加工を施すことを検討した。   The present inventors use a metal plate as a raw material, and use plastic working such as press working, and the outer surface of the wall portion is inclined at an acute angle with respect to the outer surface of the top plate portion, and has a sharp corner portion. The production of metal compacts was studied. Specifically, as described in Patent Document 1, a rolled plate is subjected to multi-stage press processing to produce a molded body having sharp corners, and this molded body is used as a material for further pressing. I examined that.

図3(a)に示すように、天板部121と、天板部121に対して垂直に立設する壁部123とを具え、天板部121と壁部123とを繋ぐ角部125が鋭利である断面]状の成形体120を用意する。また、利用する金型200は、図3(A)に示すように、成形体120の内側に配置する部材を複数の分割構造とした。具体的には、金型200は、成形体120の内側に配置する部材として、錘台状の天板上パッド201と、天板上パッド201の外周面を構成する傾斜面210に接触する傾斜面220及び壁部123の内面を支持するための傾斜面223とを具える断面三角形状の分割上パッド202とを具える。また、金型200は、成形体120の外側に配置する部材として、成形体120の壁部123を成形体120の内側に向かって押し付けるための傾斜面206を有する上パンチ205を具える。その他、金型200は、成形体120を支持する下パンチ203と、上パンチ205を受けるガイド207とを具える。   As shown in FIG. 3 (a), the top plate portion 121 and a wall portion 123 standing upright with respect to the top plate portion 121 are provided, and a corner portion 125 connecting the top plate portion 121 and the wall portion 123 is provided. A shaped body 120 having a sharp cross-section] shape is prepared. In addition, as shown in FIG. 3 (A), the mold 200 to be used has a plurality of divided structures for members disposed inside the molded body 120. Specifically, the mold 200 is a member disposed on the inner side of the molded body 120, and a tilting table that contacts a frustum-shaped top plate pad 201 and an inclined surface 210 that constitutes the outer peripheral surface of the top plate pad 201. A split upper pad 202 having a triangular cross section including a surface 220 and an inclined surface 223 for supporting the inner surface of the wall 123 is provided. Further, the mold 200 includes an upper punch 205 having an inclined surface 206 for pressing the wall portion 123 of the molded body 120 toward the inner side of the molded body 120 as a member disposed outside the molded body 120. In addition, the mold 200 includes a lower punch 203 that supports the molded body 120 and a guide 207 that receives the upper punch 205.

天板上パッド201は、上方から下方に向かって先細るように傾斜面210が設けられ、分割上パッド202は、下方から上方に向かって先細るように傾斜面220及び傾斜面223が設けられている。天板部121の内面の中央領域に複数の分割上パッド202,202を配置し、これら分割上パッド202,202間に挿入すると共に、分割上パッド202,202における内側の傾斜面220に天板上パッド201の傾斜面210を摺接させながら、天板上パッド201を上方から下方に移動する。この移動によって、分割上パッド202,202は、パッド202,202間が押し広げられ、天板部121の中央から壁部123側に移動し、最終的に、分割上パッド202,202の周縁が成形体120において天板部121の内面と壁部123の内面とを繋ぐ角部に接する。このとき、天板上パッド201の端面(図3(B)では下面)と、分割上パッド202,202の端面(図3(B)では下面)とは、面一となり、天板部121の内面全体に接するように配置されて、上記内面を支持することができる。かつ、分割上パッド202,202における外側の傾斜面223は、上パンチ205の傾斜面206が成形体120の壁部123を押し付けるときに、壁部123の内面側から壁部123を支持することができる。   The top plate upper pad 201 is provided with an inclined surface 210 so as to taper downward from above, and the divided upper pad 202 is provided with an inclined surface 220 and an inclined surface 223 so as to taper upward from below. ing. A plurality of divided upper pads 202, 202 are disposed in the central region of the inner surface of the top plate portion 121, inserted between the divided upper pads 202, 202, and the inclined surface of the top plate upper pad 201 on the inner inclined surface 220 of the divided upper pads 202, 202. While the 210 is in sliding contact, the top plate pad 201 is moved downward from above. By this movement, the division upper pads 202, 202 are pushed and spread between the pads 202, 202 and move from the center of the top plate portion 121 to the wall portion 123 side, and finally the periphery of the division upper pads 202, 202 is the top plate in the molded body 120. It contacts the corner that connects the inner surface of the portion 121 and the inner surface of the wall portion 123. At this time, the end surface of the top plate pad 201 (the lower surface in FIG. 3B) and the end surfaces of the divided upper pads 202 and 202 (the lower surface in FIG. 3B) are flush with each other, and the entire inner surface of the top plate portion 121 It is arrange | positioned so that it may contact | connect and can support the said inner surface. Further, the outer inclined surface 223 of the divided upper pads 202, 202 can support the wall portion 123 from the inner surface side of the wall portion 123 when the inclined surface 206 of the upper punch 205 presses the wall portion 123 of the molded body 120. .

一方、天板上パッド201を下方から上方に移動して、天板上パッド201と分割上パッド202,202との係合状態を解除すると、分割上パッド202,202を移動できる。   On the other hand, when the top plate upper pad 201 is moved from below to above and the engagement state between the top plate upper pad 201 and the divided upper pads 202 and 202 is released, the divided upper pads 202 and 202 can be moved.

上述の金型200を利用して成形体130を製造した。具体的には、図3(A)に示すように下パンチ203に成形体120を配置し、この成形体120の内側に分割上パッド202,202を配置し、天板上パッド201を下方に移動して、パッド201,202,202を所定の位置に配置する。そして、ガイド207に向かって、上パンチ205を下方に移動する。この移動に伴って、成形体120の壁部123は、上パンチ205に具える傾斜面206に押し付けられて、成形体120の内側に向かって折り曲げられる。このとき、壁部123は、分割上パッド202,202の外側の傾斜面223によってその内側が支持され、傾斜面206,223の双方に挟まれることで精度よく折り曲げられる。折り曲げ後、図3(B)に示す状態から、天板上パッド201及び上パンチ205を移動し、更に、分割上パッド202,202を抜き出すことで、図3(b)に示すように、天板部131に対して鋭角に折り曲げられた壁部133を具え、天板部131と壁部133とを繋ぐ角部135も鋭利な成形体130が得られる。また、この製造方法では、天板部131の厚さと壁部133の厚さとを実質的に等しくすることができる。   A molded body 130 was manufactured using the mold 200 described above. Specifically, as shown in FIG. 3A, the molded body 120 is arranged on the lower punch 203, the divided upper pads 202, 202 are arranged inside the molded body 120, and the top plate upper pad 201 is moved downward. Thus, the pads 201, 202, 202 are arranged at predetermined positions. Then, the upper punch 205 is moved downward toward the guide 207. Along with this movement, the wall portion 123 of the molded body 120 is pressed against an inclined surface 206 included in the upper punch 205 and bent toward the inside of the molded body 120. At this time, the wall portion 123 is supported on the inner side by the inclined surface 223 on the outer side of the upper divided pads 202 and 202 and is bent with high accuracy by being sandwiched between both the inclined surfaces 206 and 223. After bending, from the state shown in FIG. 3 (B), the top plate upper pad 201 and the upper punch 205 are moved, and further, the divided upper pads 202, 202 are extracted, as shown in FIG. A sharp molded body 130 having a wall portion 133 bent at an acute angle with respect to 131 and a corner portion 135 connecting the top plate portion 131 and the wall portion 133 is also obtained. Further, in this manufacturing method, the thickness of the top plate portion 131 and the thickness of the wall portion 133 can be made substantially equal.

しかし、成形体120の内側に配置するパッド201,202,202を分割構造とすることで、成形後の成形体130の天板部131の内面において、パッド201,202の境界に対応した箇所に筋状の痕が残ったり、パッド201,202の寸法のばらつきによっては、天板部131の内面に段差が生じる恐れがある、との知見を得た。上記痕や段差などは、研磨などによってある程度除去できるものの、工程数の増加から、生産性の低下を招く。また、寸法精度の低下を招き得る。更に、上記段差などを十分に除去できない場合には、外観の不良を招く。パッド201,202を高精度に加工していても、経時的に摩耗したり、可動部分に異物などを噛み込んだりするなどして、所定の位置にパッド201,202などを配置できなくなると、上述のような寸法のばらつきが生じ得る。   However, by making the pads 201, 202, 202 arranged inside the molded body 120 into a split structure, streak marks remain at locations corresponding to the boundaries of the pads 201, 202 on the inner surface of the top plate portion 131 of the molded body 130 after molding. In other words, it has been found that there may be a step on the inner surface of the top plate portion 131 depending on variations in the dimensions of the pads 201 and 202. Although the above-mentioned marks and steps can be removed to some extent by polishing or the like, the increase in the number of steps causes a decrease in productivity. Moreover, the dimensional accuracy may be reduced. Further, when the above-mentioned step or the like cannot be sufficiently removed, the appearance is deteriorated. Even if the pads 201, 202 are processed with high accuracy, if the pads 201, 202, etc. cannot be placed in a predetermined position due to wear over time or foreign matter biting into the movable part, etc. Dimensional variations can occur.

そこで、本発明者らは、素材とする成形体120の内側に配置する金型部材を分割構造とせず、一体物として更に検討した結果、素材とする成形体の内面において特に角部近傍を金型部材で支持しない状態で素材の壁部を押し付けても、壁部を精度よく折り曲げられて、表面性状に優れる成形体が得られる、との驚くべき知見を得た。つまり、金属の金型成形は、素材の内側と外側との双方を支持した状態で行う、少なくとも、内側金型部材と素材において成形後の成形体の内面となる部分(以下、素材の内面側部分と呼ぶ)とを接触させた状態で加工を行うという常識に反し、内側金型部材と素材の内面側部分の少なくとも一部とを接触させない状態で成形しても、所望の形状の成形体が得られた、といえる。本発明は、上記知見に基づくものである。   Therefore, as a result of further examination of the mold member disposed inside the molded body 120 as a material, instead of a split structure, as a unitary product, the vicinity of the corner portion on the inner surface of the molded body as the material is particularly The inventors have obtained a surprising finding that even when the wall portion of the material is pressed without being supported by the mold member, the wall portion can be bent with high accuracy and a molded article having excellent surface properties can be obtained. In other words, metal molding is performed in a state where both the inner side and the outer side of the material are supported, and at least the inner mold member and the material that forms the inner surface of the molded body after molding (hereinafter referred to as the inner surface side of the material). Contrary to the common sense that processing is performed in a state in which the inner mold member and at least part of the inner surface side portion of the material are not in contact with each other, a molded body having a desired shape is formed. It can be said that. The present invention is based on the above findings.

本発明の金属成形体は、金属板からなる天板部と、上記天板部に繋がり、上記天板部に対して立設される壁部とを具える。上記天板部の外表面と上記壁部の外表面とを繋ぐ角部の外側曲げ半径をR、上記天板部の厚さをttとするとき、外側曲げ半径Rは厚さtt以下である。上記角部は、上記天板部の外表面の延長面と上記壁部の外表面の延長面とがつくる仮想角が90°未満である部分を有する。そして、上記壁部の厚さが上記天板部の厚さ以上である。 The metal molded body of the present invention includes a top plate portion made of a metal plate and a wall portion that is connected to the top plate portion and is erected with respect to the top plate portion. When the outer bending radius of the corner portion connecting the outer surface of the top plate portion and the outer surface of the wall portion is R, and the thickness of the top plate portion is t t , the outer bending radius R is a thickness t t or less. It is. The corner portion has a portion where an imaginary angle formed by an extended surface of the outer surface of the top plate portion and an extended surface of the outer surface of the wall portion is less than 90 °. And the thickness of the said wall part is more than the thickness of the said top-plate part.

本発明の金属成形体は、外側曲げ半径Rが天板部の厚さtt以下であることから、天板部と壁部とを繋ぐ角部が鋭利で、スタイリッシュ感があり意匠性に優れる。かつ、本発明の金属成形体は、上記仮想角が鋭角である部分を有する、端的に言うと、壁部が天板部の内側に向かって傾いた形状である部分、つまり断面があり溝形状である部分を有するため、本発明の金属成形体を、開動作を行うような部材に利用した場合、この傾斜を利用して、開動作を容易に行える。従って、本発明の金属成形体は、形状に基づく付加価値が高く、工業的意義が高い。また、本発明の金属成形体は、壁部の厚さが天板部の厚さ以上であることから、壁部自体が剛性に優れる上に、天板部と壁部とを繋ぐ鋭利な角部及びその近傍の剛性を高められる。そのため、本発明の金属成形体を筐体やカバーといった外装部材に利用した場合、落下などの衝撃を受けても変形し難く、樹脂の成形体のように割れたりもせず、長期に亘り、シャープな角部を維持でき、優れた美観を有することができる。更に、壁部自体が剛性に優れることで、壁部を天板部の補強材として十分に機能させることができ、本発明の金属成形体は、長期に亘り、所定の形状を維持し易い。 Since the outer bending radius R is equal to or less than the thickness t t of the top plate portion, the metal molded body of the present invention has sharp corners connecting the top plate portion and the wall portion, is stylish, and has excellent design. . In addition, the metal molded body of the present invention has a portion where the imaginary angle is an acute angle, in short, a portion where the wall portion is inclined toward the inside of the top plate portion, that is, a cross-section and a groove shape Therefore, when the metal molded body of the present invention is used for a member that performs an opening operation, the opening operation can be easily performed using this inclination. Therefore, the metal molded body of the present invention has high added value based on the shape and high industrial significance. In addition, since the thickness of the wall portion is equal to or greater than the thickness of the top plate portion, the metal molded body of the present invention is excellent in rigidity and has a sharp angle connecting the top plate portion and the wall portion. The rigidity of the part and its vicinity can be increased. Therefore, when the metal molded body of the present invention is used for an exterior member such as a casing or a cover, it is difficult to be deformed even when subjected to an impact such as dropping, and it does not crack like a resin molded body, and is sharp for a long time It is possible to maintain a perfect corner and have an excellent aesthetic appearance. Furthermore, since the wall portion itself is excellent in rigidity, the wall portion can sufficiently function as a reinforcing material for the top plate portion, and the metal molded body of the present invention can easily maintain a predetermined shape for a long period of time.

本発明の金属成形体は、例えば、以下の本発明の金属成形体の製造方法によって製造することができる。本発明の金属成形体の製造方法は、金属板にプレス加工を施して金属成形体を製造する方法に係るものであり、以下の第一プレス工程、第二プレス工程、第三プレス工程を具える。
第一プレス工程 一様な厚さの金属板にプレス加工を施して、天板部と、この天板部に対して立設される壁部とを具える断面]状の第一成形体を形成する工程。
第二プレス工程 上記天板部の外表面と上記壁部の外表面とを繋ぐ角部の外側曲げ半径が上記天板部の厚さ以下となるように上記第一成形体にプレス加工を施して第二成形体を形成する工程。
第三プレス工程 上記第二成形体の内側に柱状金型を配置した状態で、上記第二成形体に具える壁部の外表面に別の金型を押し付けて、上記別の金型に有する所定の傾斜面に沿って上記壁部を上記第二成形体の内側に向かって傾斜させて、金属成形体を形成する工程。
そして、上記第三プレス工程では、上記第二成形体に具える壁部の内面に上記柱状金型の外周面が接しないように上記柱状金型を配置して、上記壁部の内面を上記柱状金型によって支持しない状態で、上記壁部の外表面を上記第二成形体の内側に向かって押し付ける。
The metal molded body of the present invention can be produced, for example, by the following method for producing a metal molded body of the present invention. The method for producing a metal molded body of the present invention relates to a method for producing a metal molded body by subjecting a metal plate to press working, and comprises the following first press step, second press step, and third press step. Yeah.
First pressing step A metal plate having a uniform thickness is subjected to press working, and a first section having a cross-sectional shape including a top plate portion and a wall portion standing on the top plate portion is formed. Forming step.
Second pressing step The first molded body is pressed so that the outer bending radius of the corner portion connecting the outer surface of the top plate portion and the outer surface of the wall portion is equal to or less than the thickness of the top plate portion. Forming the second molded body.
Third press step With the columnar mold disposed inside the second molded body, another mold is pressed against the outer surface of the wall provided in the second molded body, and the second mold has the other mold. A step of inclining the wall portion toward the inside of the second molded body along a predetermined inclined surface to form a metal molded body.
In the third pressing step, the columnar mold is disposed so that the outer peripheral surface of the columnar mold does not contact the inner surface of the wall portion included in the second molded body, and the inner surface of the wall portion is The outer surface of the wall portion is pressed toward the inside of the second molded body without being supported by the columnar mold.

本発明の金属成形体の製造方法は、上述の鋭利な角部を有し、かつ壁部の外表面が鋭角に傾斜した金属成形体を多段階のプレス加工によって製造することで、素材の一部を切削して上述の特定の形状にする場合に比較して、上記角部近傍の剛性に優れる金属成形体を製造できる。また、本発明の金属成形体の製造方法は、多段階のプレス加工という同種の加工によって上述の特定の形状の金属成形体を製造できるため、プレス加工と切削加工といった全く異なる加工を組み合わせる場合に比較して、作業性に優れる。これらの点から、本発明の金属成形体の製造方法は、上述の特定の形状の金属成形体を生産性よく製造することができる。   The method for producing a metal molded body according to the present invention is a method of manufacturing a metal molded body having the above-mentioned sharp corners and having an outer surface of the wall inclined at an acute angle by multi-stage pressing. Compared with the case where the portion is cut into the specific shape described above, a metal molded body having excellent rigidity in the vicinity of the corner portion can be manufactured. In addition, the metal molded body manufacturing method of the present invention can manufacture a metal molded body of the above-mentioned specific shape by the same type of processing called multi-stage pressing, so when combining completely different processing such as pressing and cutting. Compared with workability. From these points, the method for producing a metal molded body of the present invention can produce the metal molded body having the specific shape described above with high productivity.

本発明の金属成形体の一形態として、上記外側曲げ半径Rが0.3mm以下である形態が挙げられる。   One form of the metal molded body of the present invention is a form in which the outer bending radius R is 0.3 mm or less.

上記形態は、角部が非常に鋭利であるため、スタイリッシュ感がより高められ、美観に優れる。   In the above-mentioned form, since the corners are very sharp, the stylish feeling is further enhanced and the aesthetic appearance is excellent.

本発明の金属成形体の一形態として、金属成形体は、マグネシウム、マグネシウム合金、アルミニウム、及びアルミニウム合金から選択される1種の金属から構成された形態が挙げられる。   As one form of the metal molded body of the present invention, the metal molded body includes a form composed of one kind of metal selected from magnesium, magnesium alloy, aluminum, and aluminum alloy.

上記形態は、軽金属で構成されることで、軽量である。特に、マグネシウム合金から構成された形態は、剛性、強度、耐衝撃性といった機械的特性に優れる。   The said form is lightweight by being comprised with a light metal. In particular, a form made of a magnesium alloy is excellent in mechanical properties such as rigidity, strength, and impact resistance.

本発明の金属成形体の一形態として、上記天板部の厚さttが3.0mm以下である形態が挙げられる。 As one form of the metal molded body of the present invention, a form in which the thickness t t of the top plate portion is 3.0 mm or less can be mentioned.

上記形態は、天板部が薄いことから、壁部も薄くでき、全体が薄いといえる。従って、上記形態は、薄型の外装部材などを構築することができる。   In the above embodiment, since the top plate portion is thin, the wall portion can be thinned, and the whole can be said to be thin. Therefore, the said form can construct | assemble a thin exterior member.

本発明の金属成形体の一形態として、上記壁部において上記仮想角に沿った長さが10mm以下である形態が挙げられる。   As one form of the metal molded body of the present invention, a form in which the length along the imaginary angle in the wall portion is 10 mm or less can be mentioned.

壁部における仮想角に沿った長さが短いほど、この長さに起因する金属成形体の剛性の向上効果を得難くなり、金属成形体の剛性は、壁部の厚さに影響を受け易くなる。上記形態は、壁部における仮想角に沿った長さが短いことから、壁部の厚さが天板部と同等以上であるという本発明の特徴の一つによる剛性の向上効果をより効果的に得られる。   The shorter the length along the imaginary angle in the wall, the harder it is to obtain the effect of improving the rigidity of the metal molded body due to this length, and the rigidity of the metal molded body is more susceptible to the wall thickness. Become. Since the length along the imaginary angle in the wall portion is short in the above form, the rigidity improvement effect by one of the features of the present invention that the thickness of the wall portion is equal to or more than that of the top plate portion is more effective. Is obtained.

本発明の金属成形体の一形態として、上記天板部の室温における引張強さが250MPa以上である形態が挙げられる。   One form of the metal molded body of the present invention is a form in which the top plate portion has a tensile strength at room temperature of 250 MPa or more.

上記形態は、天板部が高強度であることで剛性にも優れ、変形などし難い。また、本発明の金属成形体は、その全体が一様な材質から構成される上に、上述のように塑性加工が施されることで、壁部は天板部と同程度以上の強度や剛性を有するといえる。そのため、上記形態は、その全体が剛性に優れ、変形し難い。   The said form is excellent also in rigidity because a top-plate part is high intensity | strength, and cannot deform | transform easily. In addition, the metal molded body of the present invention is made of a uniform material as a whole and is subjected to plastic working as described above, so that the wall portion has a strength equal to or higher than that of the top plate portion. It can be said that it has rigidity. Therefore, the whole form is excellent in rigidity and hardly deformed.

本発明の金属成形体は、角部が鋭利で、角部近傍の剛性に優れる上に、生産性にも優れる。本発明の金属成形体の製造方法は、角部が鋭利で、角部近傍の剛性に優れる金属成形体を生産性よく製造することができる。   The metal molded body of the present invention has sharp corners, excellent rigidity in the vicinity of the corners, and excellent productivity. The method for producing a metal molded body of the present invention can produce a metal molded body having sharp corners and excellent rigidity in the vicinity of the corners with high productivity.

本発明の金属成形体の製造方法の手順を説明する工程説明図である。It is process explanatory drawing explaining the procedure of the manufacturing method of the metal molded object of this invention. 天板部と壁部との連結部分の成形状態を説明する部分拡大図である。It is the elements on larger scale explaining the molding state of the connection part of a top plate part and a wall part. 鋭利な角部を有する素材に、分割構造の内側金型部材を用いてプレス加工を施して、壁部の外表面を傾斜させる手順を説明する工程説明図である。It is process explanatory drawing explaining the procedure which gives the raw material which has a sharp corner | angular part using the inner mold member of a division | segmentation structure, and inclines the outer surface of a wall part.

以下、図1を適宜参照して本発明の実施の形態を説明する。
[金属成形体]
<形状>
本発明の金属成形体は、一様な材質の金属からなる板材の一部が折り曲げられた箇所を有する成形体である。具体的には、金属成形体1は、図1(d)に示すように板状の天板部10と、角部15を介して天板部10に繋がり、天板部10に対して立設される壁部20とを具え、断面]状、又は断面L状である。そして、金属成形体1は、壁部20のうち、少なくとも一部は、その外表面の延長面が、天板部10の外表面の延長面に対して鋭角(両延長面がつくる角θが90°未満)に設けられている点を特徴の一つとする。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 as appropriate.
[Metal compact]
<Shape>
The metal molded body of the present invention is a molded body having a portion where a part of a plate made of a uniform metal is bent. Specifically, the metal molded body 1 is connected to the top plate portion 10 via the plate-like top plate portion 10 and the corner portion 15 as shown in FIG. The wall portion 20 is provided and has a cross-section] shape or a cross-section L-shape. In the metal molded body 1, at least a part of the wall portion 20 has an extended surface of the outer surface with respect to the extended surface of the outer surface of the top plate portion 10 (the angle θ formed by both extended surfaces is One of the features is that it is provided at less than 90 °.

(天板部)
天板部10は、矩形板状が代表的である。矩形板に具える四つの角部は、曲げ半径が小さいほど、シャープな外観を実現でき、金属質感やスタイリッシュ感を与えられる。一方、角部の半径がある程度大きいと、衝撃を受けても変形し難い上に、金属で構成されていながらも、柔らかさや温かみといった感じを与えられる。また、角部の半径がある程度大きいと、角部に過大な力が集中しない。更に、角部の半径がある程度大きいと、手になじみやすいなどの効果がある。天板部10の面積や幅、長さは、適宜選択することができる。例えば、ノート型パーソナルコンピュータの上蓋に利用する場合、外形寸法は、例えば、幅:200mm〜400mm×長さ:150mm〜300mmなどが挙げられ、矩形板に具える四つの角部のコーナ半径は0.5mm〜20mmなどが挙げられる。
(Top plate)
The top plate 10 is typically a rectangular plate. The smaller the bend radius of the four corners of the rectangular plate, the sharper the appearance can be achieved, giving it a metallic texture and a stylish feeling. On the other hand, if the radius of the corner is large to some extent, it is difficult to be deformed even when subjected to an impact, and a soft and warm feeling can be given even though it is made of metal. Also, if the corner radius is large to some extent, excessive force is not concentrated on the corner. Furthermore, when the corner radius is large to some extent, there is an effect that it is easy to adjust to the hand. The area, width, and length of the top plate portion 10 can be selected as appropriate. For example, when used for the top lid of a notebook personal computer, the external dimensions include, for example, width: 200 mm to 400 mm × length: 150 mm to 300 mm, and the corner radius of the four corners included in the rectangular plate is 0.5. mm to 20 mm.

天板部10の外表面は、その全体が平坦な形態(図1(d)に示す形態)、中央領域が平坦であり、周縁領域が中心側から周縁に向かって傾斜した形態(傾斜角は鈍角)などとすることができる。特に、中央領域と傾斜部分とが滑らかな曲面によって繋がれていると、金属で構成されていながらも、柔らかさや温かみといった感じを与えられる。   The outer surface of the top plate 10 is entirely flat (the form shown in FIG. 1 (d)), the central area is flat, and the peripheral area is inclined from the center side toward the peripheral edge (the inclination angle is Obtuse angle). In particular, when the central region and the inclined portion are connected by a smooth curved surface, a feeling of softness and warmth can be given even though the center region and the inclined portion are made of metal.

天板部10の外表面は、ヘアライン加工やダイヤモンドカット加工、エッチング加工、ブラスト加工(梨地加工)などの種々の機械加工が施された形態とすることができる。金属成形体1が筐体やカバーなどの外装部材に利用される場合、天板部10の外表面は、外装部品の外表面を構成することから、上述の機械加工が施されることで、金属質感を高められ、意匠性に優れる。   The outer surface of the top plate portion 10 can be formed in various forms such as hairline processing, diamond cut processing, etching processing, and blast processing (texture processing). When the metal molded body 1 is used for an exterior member such as a housing or a cover, the outer surface of the top plate portion 10 constitutes the outer surface of the exterior component. Metal texture is enhanced and design is excellent.

また、天板部10は、その一部に厚さが異なる箇所(溝、突起、貫通孔など)を有する形態とすることができる。例えば、ロゴなどの刻印によって形成された溝又は突起、窓部を形成する孔などを有する形態が挙げられる。これらの形態も、意匠性に優れる。なお、溝や貫通孔などは、壁部20を形成する前の素材(金属板100)の段階で形成することもできるし、壁部20を形成後に設けることもできる。刻印などは、金属成形体1の製造中に外観を損ねないように、壁部20を形成した後に設けることが好ましい。   Further, the top plate portion 10 can be configured to have portions (grooves, protrusions, through holes, etc.) having different thicknesses at a part thereof. For example, the form which has the groove | channel or processus | protrusion formed by stamps, such as a logo, the hole which forms a window part, etc. is mentioned. These forms are also excellent in design. The groove, the through hole, and the like can be formed at the stage of the material (metal plate 100) before forming the wall portion 20, or can be provided after the wall portion 20 is formed. The engraving or the like is preferably provided after the wall portion 20 is formed so as not to impair the appearance during manufacture of the metal molded body 1.

(壁部)
壁部20は、主として、天板部10に対する補強材として機能すると共に、天板部10の外表面に対して鋭角に傾いて設けられていることで、上述のように開動作時に指を引っ掛ける部分としても機能することができる。
(Wall)
The wall portion 20 mainly functions as a reinforcing material for the top plate portion 10 and is provided at an acute angle with respect to the outer surface of the top plate portion 10 so that the finger is hooked during the opening operation as described above. It can also function as a part.

壁部20は、天板部10の周縁全周に亘って設けられた形態、天板部10の周縁において任意の一部(例えば、天板部10が矩形状の場合、四辺の任意の一部、一辺の全部又は一部、対向する二辺の全部又は一部、連続する三辺の全部又は一部)に設けられた形態、又は上記周縁の少なくとも一部に設けられた形態が挙げられる。また、壁部20は、天板部10の周縁に対して一つだけ設けられた形態(連続して設けられた形態)、天板部10の周縁に対して離散的に複数存在する形態が挙げられる。壁部20の形成領域が多いほど、天板部10が大面積であっても、剛性を高められ、天板部10の変形を抑制し易い。   The wall portion 20 has a form provided over the entire periphery of the top plate portion 10, and any part of the periphery of the top plate portion 10 (for example, if the top plate portion 10 is rectangular, any one of the four sides). Part, all or part of one side, all or part of two opposite sides, all or part of three consecutive sides), or form provided on at least a part of the peripheral edge. . Further, the wall 20 has a configuration in which only one wall portion 20 is provided with respect to the periphery of the top plate portion 10 (a continuously provided configuration), and a plurality of shapes that exist discretely with respect to the periphery of the top plate portion 10. Can be mentioned. The greater the area where the wall portion 20 is formed, the higher the rigidity, and the easier it is to suppress the deformation of the top plate portion 10, even if the top plate portion 10 has a large area.

壁部20において仮想角(後述)に沿った長さは適宜選択することができる。天板部10の面積や形状にもよるが、上記長さが10mm以下であると、天板部10の外表面における平坦な領域に直交する方向の大きさも小さくなり、薄型化を図ることができる。薄型化・軽量化を考慮すると、上記長さは、5mm以下、更に3mm以下とすることもできる。本発明の金属成形体では、壁部20における上記長さが短くても、壁部20の厚さが厚いため、補強材として機能することができる。複数の壁部を具える形態では、少なくとも一部の壁部における上記長さを異ならせた形態とすることを容易にできる。一つの連続する壁部を具える形態でも、所望の設計形状に従って、部分的に上記長さを異ならせることができる。壁部20における上記長さを適宜調整することで、コネクタ端子や、赤外線通信・無線通信などに用いる部品などを付加することができながら、全体に亘って強度と薄さとを兼ね備えた金属成形体1とすることができる。   The length along a virtual angle (described later) in the wall portion 20 can be selected as appropriate. Although it depends on the area and shape of the top plate part 10, if the length is 10 mm or less, the size in the direction perpendicular to the flat region on the outer surface of the top plate part 10 is also reduced, and the thickness can be reduced. it can. In consideration of reduction in thickness and weight, the length can be 5 mm or less, and further 3 mm or less. In the metal molded body of the present invention, even if the length of the wall portion 20 is short, the wall portion 20 is thick, so that it can function as a reinforcing material. In the form including a plurality of wall portions, it is possible to easily adopt a form in which the lengths of at least some of the wall portions are different. Even in a form having one continuous wall portion, the length can be partially varied according to a desired design shape. By appropriately adjusting the length of the wall portion 20, it is possible to add connector terminals and parts used for infrared communication / wireless communication, etc., but the metal molded body has both strength and thinness throughout. Can be one.

<外側曲げ半径>
金属成形体1は、天板部10の外表面と壁部20の外表面とを繋ぐ角部15の外側曲げ半径をR、天板部10の厚さ(後述)をttとするとき、R≦ttであることを特徴の一つとする。角部15の外側曲げ半径Rが小さいことで、金属成形体1は、スタイリッシュ感を有し、美観に優れる。外側曲げ半径Rは、適宜選択することができ、小さいほどシャープな外観となり、スタイリッシュ感を高められる。例えば、R≦(2/3)×tt、R≦(1/2)×ttを満たす形態が挙げられる。又は、R≦0.3mmを満たす形態が挙げられる。但し、外側曲げ半径Rは、小さ過ぎると落下などの衝撃によって潰れる(変形する)恐れがあるため、0.1mm以上が好ましく、0.2mm以上0.3mm以下がより好ましい。外側曲げ半径Rの大きさが所望の値になるように、金型の形状を選択する。
<Outside bending radius>
When the metal molded body 1 has an outer bend radius of the corner 15 connecting the outer surface of the top plate 10 and the outer surface of the wall 20 as R, and the thickness of the top plate 10 (described later) is t t One of the characteristics is that R ≦ t t . Since the outer bending radius R of the corner portion 15 is small, the metal molded body 1 has a stylish feeling and excellent aesthetic appearance. The outer bending radius R can be selected as appropriate. The smaller the outer bending radius R, the sharper the appearance and the more stylish. For example, a configuration that satisfies R ≦ (2/3) × t t and R ≦ (1/2) × t t can be given. Or the form which satisfy | fills R <= 0.3mm is mentioned. However, if the outer bending radius R is too small, the outer bending radius R may be crushed (deformed) by an impact such as dropping, and is preferably 0.1 mm or more, and more preferably 0.2 mm or more and 0.3 mm or less. The mold shape is selected so that the outer bending radius R has a desired value.

<仮想角>
天板部10の外表面の延長面(図1(d)では一点鎖線で示す)と壁部20の外表面の延長面(図1(d)では一点鎖線で示す)とをとり、両延長面がつくる仮想角をθとするとき、金属成形体1は、仮想角θが鋭角、つまり、0°<θ<90°である部分を有することを特徴の一つとする。仮想角θの大きさは適宜選択することができる。上述のように指を引っ掛ける部分としての機能では、仮想角θは、10°以上45°以下程度が好適であり、20°以上30°以下がより好ましい。仮想角θの大きさが所望の値となるように、金型の形状を選択する。なお、図1(d)では、θは、仮想角の対頂角を示す。天板部10に設けられた壁部20の全域に亘って仮想角θが鋭角である形態(つまり、壁部20の任意の位置について仮想角θを取ったとき、仮想角θが鋭角である形態)、天板部10に設けられた壁部20のうち、一部の壁部20についての仮想角θのみが鋭角である形態(つまり、壁部20についての仮想角θが鋭角である部分と、鋭角以外である部分とを有する形態)のいずれでもよい。
<Virtual corner>
Take the extension surface of the outer surface of the top plate 10 (indicated by the alternate long and short dash line in FIG. 1 (d)) and the extension surface of the outer surface of the wall 20 (indicated by the alternate long and short dash line in FIG. 1 (d)). When the virtual angle formed by the surface is θ, the metal molded body 1 is characterized in that the virtual angle θ has an acute angle, that is, a portion where 0 ° <θ <90 °. The magnitude of the virtual angle θ can be selected as appropriate. As described above, the virtual angle θ is preferably about 10 ° to 45 °, and more preferably 20 ° to 30 ° in the function as a part to hook the finger. The shape of the mold is selected so that the size of the virtual angle θ becomes a desired value. In FIG. 1 (d), θ represents the vertical angle of the virtual angle. Form in which the virtual angle θ is an acute angle over the entire area of the wall portion 20 provided on the top plate 10 (that is, when the virtual angle θ is taken for an arbitrary position of the wall portion 20, the virtual angle θ is an acute angle) Form), of the wall portions 20 provided on the top plate portion 10, only the virtual angle θ for some of the wall portions 20 is an acute angle (that is, the portion where the virtual angle θ for the wall portion 20 is an acute angle) And a form having a portion other than an acute angle).

<厚さ>
天板部10は、その全体(上述の溝、突起、貫通孔を有する場合には、これらを除く箇所の全体)に亘って一様な厚さを有する形態が代表的である。この場合、図1(d)に示すように、天板部10の外表面と内面とは平行に配置され、両面の間の距離が厚さとなる。そこで、天板部10において上述の溝などを除いた箇所から選択した1点、好ましくは2点以上の地点について、上記距離=厚さを測定し、これらの平均値を天板部10の厚さttとする。天板部10の厚さttは、薄いほど軽量化、薄型化を図ることができ、3.0mm以下、更に2.5mm以下、2mm以下、1.5mm以下、特に1.0mm以下が挙げられ、0.1mm以上、更に0.3mm以上1.2mm以下が好ましい。
<Thickness>
The top plate portion 10 is typically in a form having a uniform thickness over the entire surface (when the above-described grooves, protrusions, and through-holes are included, the entire portion excluding these). In this case, as shown in FIG. 1 (d), the outer surface and the inner surface of the top plate portion 10 are arranged in parallel, and the distance between both surfaces is the thickness. Therefore, the distance = thickness is measured for one point selected from the place excluding the above-mentioned grooves in the top plate part 10, preferably two or more points, and the average value of these is calculated as the thickness of the top plate part 10. Let t t . The thickness t t of the top plate portion 10 can be reduced in weight and thickness as it is thinner, 3.0 mm or less, 2.5 mm or less, 2 mm or less, 1.5 mm or less, particularly 1.0 mm or less, 0.1 mm or less In addition, 0.3 mm or more and 1.2 mm or less are more preferable.

壁部20もその全体に亘って一様な厚さを有する形態が代表的である。この場合、図1(d)に示すように、壁部20の外表面と、壁部20の内面とは平行に配置され、両面の間の距離が厚さとなる。そこで、壁部20の任意の箇所から選択した1点、好ましくは2点以上の地点について、上記距離=厚さを測定し、これらの平均値を壁部20の厚さtlとする。 The wall portion 20 is typically in a form having a uniform thickness throughout. In this case, as shown in FIG. 1 (d), the outer surface of the wall portion 20 and the inner surface of the wall portion 20 are arranged in parallel, and the distance between both surfaces is the thickness. Therefore, the distance = thickness is measured at one point selected from an arbitrary portion of the wall portion 20, preferably two or more points, and the average value thereof is set as the thickness t 1 of the wall portion 20.

そして、金属成形体1は、壁部20の厚さtlが天板部10の厚さttと実質的に等しい(tt=tl)、又は天板部10の厚さtt以上である(tl>tt)ことを特徴の一つとする。壁部20は、少なくとも天板部10の厚さttと等しく、十分な厚さを有するため、上述の仮想角に沿った長さが短くても、天板部10の補強材として十分に機能できる。従って、壁部20によって天板部10の剛性を高められる上に、角部15及びその近傍の剛性も高められることから、金属成形体1は、角部15がシャープな状態を維持し易い。 In the metal molded body 1, the thickness t l of the wall portion 20 is substantially equal to the thickness t t of the top plate portion 10 (t t = t l ), or is equal to or greater than the thickness t t of the top plate portion 10. (T l > t t ) is one of the features. Since the wall portion 20 is at least equal to the thickness t t of the top plate portion 10 and has a sufficient thickness, even if the length along the imaginary angle is short, it is sufficient as a reinforcing material for the top plate portion 10. Can function. Accordingly, the rigidity of the top plate 10 can be increased by the wall 20 and the rigidity of the corner 15 and the vicinity thereof can also be increased. Therefore, the metal molded body 1 can easily maintain the corner 15 in a sharp state.

<材質>
金属成形体を構成する金属は、種々の組成を利用できる。特に、板状の素材にプレス加工といった塑性加工を施すことが可能な金属が好ましい。例えば、マグネシウム、マグネシウム合金(Mgが50質量%以上及び添加元素、残部不可避不純物)、アルミニウム、アルミニウム合金、銅、銅合金、鋼、ステンレス鋼、チタン、チタン合金などであれば、これらの展伸材は、プレス加工といった塑性加工を良好に施すことができて好ましい。なかでも、マグネシウムやその合金、アルミニウムやその合金は、軽量であり、携帯用機器といった軽量が望まれる用途に適する。とりわけ、マグネシウム合金は、アルミニウムやその合金よりも軽量で、かつ強度、剛性、耐衝撃性といった機械的特性にも優れる上に、Mgに添加元素を含有することで耐食性にも優れて好ましい。
<Material>
The metal which comprises a metal forming body can utilize a various composition. In particular, a metal that can be subjected to plastic working such as press working on a plate-like material is preferable. For example, if magnesium, magnesium alloy (Mg is 50% by mass or more and added elements, the remaining inevitable impurities), aluminum, aluminum alloy, copper, copper alloy, steel, stainless steel, titanium, titanium alloy, etc. The material is preferable because it can be favorably subjected to plastic working such as press working. Among these, magnesium and its alloys, aluminum and its alloys are lightweight, and are suitable for applications where lightweight is desired, such as portable devices. In particular, a magnesium alloy is preferable because it is lighter than aluminum and its alloys and has excellent mechanical properties such as strength, rigidity, and impact resistance, and also has excellent corrosion resistance by containing an additive element in Mg.

マグネシウム合金の添加元素は、例えば、Al,Zn,Mn,Si,Be,Ca,Sr,Y,Cu,Ag,Sn,Li,Zr,Ce,Ni,Au及び希土類元素(Y,Ceを除く)から選択された1種以上の元素が挙げられる。添加元素の合計含有量は、0.001質量%以上50質量%以下が挙げられる。特に、Alを含有するMg-Al系合金は、耐食性や機械的特性に優れて好ましい。Alの含有量は、0.1質量%以上12質量%以下が好ましい。Al以外の各元素の含有量は、0.01質量%以上10質量%以下、更に0.1質量%以上5質量%以下が挙げられる。特に、Si,Sn,Y,Ce,Ca及び希土類元素(Y,Ceを除く)から選択される少なくとも1種の元素を合計0.001質量%以上、好ましくは合計0.1質量%以上5質量%以下含有するマグネシウム合金は、耐熱性や難燃性に優れる。マグネシウム合金中の不純物は、例えば、Feなどが挙げられる。   The additive elements of the magnesium alloy include, for example, Al, Zn, Mn, Si, Be, Ca, Sr, Y, Cu, Ag, Sn, Li, Zr, Ce, Ni, Au, and rare earth elements (excluding Y and Ce). One or more elements selected from Examples of the total content of additive elements include 0.001% by mass or more and 50% by mass or less. In particular, an Mg-Al alloy containing Al is preferable because of its excellent corrosion resistance and mechanical properties. The Al content is preferably 0.1% by mass or more and 12% by mass or less. The content of each element other than Al is 0.01% by mass to 10% by mass, and further 0.1% by mass to 5% by mass. In particular, at least one element selected from Si, Sn, Y, Ce, Ca and rare earth elements (excluding Y and Ce) is contained in a total of 0.001% by mass or more, preferably in a total of 0.1% by mass or more and 5% by mass or less. Magnesium alloys are excellent in heat resistance and flame retardancy. Examples of the impurities in the magnesium alloy include Fe.

Mg-Al系合金のより具体的な組成は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2質量%以上1.5質量%以下。例えば、AZ31合金、AZ61合金、AZ80合金、AZ91合金など)、AM系合金(Mg-Al-Mn系合金、Mn:0.15質量%以上0.5質量%以下。例えば、AM60、AM100など)、AS系合金(Mg-Al-Si系合金、Si:0.2質量%以上6.0質量%以下。例えば、AS41など)、AX系合金(Mg-Al-Ca系合金、Ca:0.2質量%以上6.0質量%以下)、AJ系合金(Mg-Al-Sr系合金、Sr:0.2質量%以上7.0質量%以下)などが挙げられる。その他、Mg-Al-RE系合金(RE(希土類元素):0.001質量%以上(好ましくは0.1質量%以上)5質量%以下)などが挙げられる。   More specific compositions of Mg-Al alloys include, for example, AZ-based alloys according to ASTM standards (Mg-Al-Zn-based alloys, Zn: 0.2 mass% to 1.5 mass%. For example, AZ31 alloy, AZ61 alloy, AZ80 Alloy, AZ91 alloy, etc.), AM alloy (Mg-Al-Mn alloy, Mn: 0.15 mass% to 0.5 mass%. For example, AM60, AM100, etc.), AS alloy (Mg-Al-Si alloy, Si: 0.2 mass% to 6.0 mass%, for example, AS41, etc., AX alloy (Mg—Al—Ca alloy, Ca: 0.2 mass% to 6.0 mass%), AJ alloy (Mg—Al—Sr) Based alloys, Sr: 0.2 mass% or more and 7.0 mass% or less). In addition, Mg-Al-RE alloy (RE (rare earth element): 0.001% by mass or more (preferably 0.1% by mass or more) 5% by mass or less) can be used.

Mg-Al系合金のうち、Alを7.2質量%超含有する合金、特にAlを8.3質量%以上9.5質量%以下、Znを0.5質量%以上1.5質量%以下含有するMg-Al系合金、代表的にはAZ91合金やAZ91合金相当のAl及びZnを含むマグネシウム合金は、耐食性及び機械的特性に更に優れる。   Among Mg-Al alloys, alloys containing Al over 7.2% by mass, especially Mg-Al alloys containing Al in the range of 8.3% to 9.5% by mass and Zn in the range of 0.5% to 1.5% by mass, typical In addition, AZ91 alloy and magnesium alloy containing Al and Zn equivalent to AZ91 alloy are further excellent in corrosion resistance and mechanical properties.

<機械的特性>
金属成形体1は、強度が高いほど、一般に剛性に優れて好ましい。特に、天板部10は、金属成形体1に占める割合が高いことから、高強度、高剛性であることが好ましい。例えば、室温における引張強さが250MPa以上を満たすものが挙げられる。このような強度を満たす金属種は、例えば、マグネシウム合金では、AZ91合金といったAlを7.2質量%超含有するもの、アルミニウム合金では、JIS規格に規定される2000系合金、5000系合金、6000系合金、7000系合金、その他、各種のステンレス鋼やチタン合金などが挙げられる。材質によっては、室温における引張強さが280MPa以上、300MPa以上を満たす形態とすることもできる。
<Mechanical properties>
In general, the higher the strength of the metal molded body 1, the better the rigidity, which is preferable. In particular, since the ratio of the top plate portion 10 to the metal molded body 1 is high, it is preferable that the top plate portion 10 has high strength and high rigidity. For example, those having a tensile strength at room temperature of 250 MPa or more can be mentioned. The metal species satisfying such strength is, for example, magnesium alloy containing AZ91 alloy such as Al containing more than 7.2% by mass, and aluminum alloy including 2000 series alloy, 5000 series alloy, 6000 series alloy specified in JIS standard. 7000 series alloys, and various other stainless steels and titanium alloys. Depending on the material, the tensile strength at room temperature may be 280 MPa or more and 300 MPa or more.

なお、金属成形体1は、その全体が一様な材質から構成され、かつ壁部20は後述するようにプレス加工が施されることで、壁部20は加工硬化によって天板部10と同程度以上の強度や剛性を有すると考えられる。   The metal molded body 1 is entirely made of a uniform material, and the wall portion 20 is pressed as described later, so that the wall portion 20 is the same as the top plate portion 10 by work hardening. It is thought that it has strength and rigidity more than about.

<その他>
金属成形体1の外表面及び内面の少なくとも一部に塗装層を具えると、装飾性を高められる。特に、透明な塗装層とすると、金属質感を高められる。その他、材質によっては、陽極酸化処理や化成処理、めっきなどの防食処理を具えると、耐食性の向上を図ることができる。
<Others>
When a coating layer is provided on at least a part of the outer surface and the inner surface of the metal molded body 1, the decorativeness can be improved. In particular, when a transparent coating layer is used, the metal texture can be enhanced. In addition, depending on the material, an anti-corrosion treatment such as anodizing treatment, chemical conversion treatment or plating can improve corrosion resistance.

[製造方法]
金属成形体1は、所望の組成からなる金属板100を用意し、この金属板100に対して、多段階のプレス加工を施す本発明の金属成形体の製造方法を利用することで製造できる。
[Production method]
The metal molded body 1 can be manufactured by preparing a metal plate 100 having a desired composition and using the metal molded body manufacturing method of the present invention in which multi-stage pressing is performed on the metal plate 100.

<金属板の準備工程>
素材とする金属板100は、所望の組成からなる圧延板が好適である。圧延板は、公知の製造方法によって製造したものや市販品を利用することができる。金属板100は所定の大きさに切断したものを利用することができる。また、金属板100は、一様な厚さt100のものとする。金属板100において少なくとも、成形後に壁部20となる箇所及びその近傍が一様な厚さであればよく、後述するプレス加工に影響を与えない範囲において、金属板100の一部に上述のように溝や貫通孔などを具えるものを利用することができる。この場合、溝や貫通孔などの形成部分を除く箇所の厚さが一様であればよい。その他、長尺な板材を巻き取ったコイル材を素材に利用することもできる。この場合、コイル材を繰り出して、プレス加工装置に連続的に供給し、適宜切断、打抜きなどの工程へ供するとよい。
<Preparation process of metal plate>
The metal plate 100 used as a material is preferably a rolled plate having a desired composition. As the rolled plate, a product produced by a known production method or a commercially available product can be used. The metal plate 100 can be cut to a predetermined size. The metal plate 100 is intended for uniform thickness t 100. In the metal plate 100, at least the portion that becomes the wall portion 20 after molding and the vicinity thereof need only have a uniform thickness, and within the range that does not affect the press working described later, a part of the metal plate 100 is as described above. It is possible to use those having a groove or a through hole. In this case, it is only necessary that the thickness of the portion excluding the formation portion such as the groove and the through hole is uniform. In addition, the coil material which wound up the elongate board | plate material can also be utilized for a raw material. In this case, the coil material may be fed out and continuously supplied to the press working apparatus, and may be used for processes such as cutting and punching as appropriate.

特に、マグネシウム合金からなる圧延板を利用する場合には、双ロール鋳造法といった連続鋳造法によって製造された鋳造板に、好ましくは溶体化処理(例えば、加熱温度:350℃以上420℃以下、加熱時間:1時間以上40時間以下)を施した後、1パス以上の温間圧延(素材温度:150℃以上400℃以下(好ましくは280℃以下)、1パスあたりの圧下率:5%以上40%以下)を施して得られたものであると、プレス加工といった塑性加工性に優れて好ましい。圧延後、歪みを除去するために熱処理(例えば、加熱温度:250℃以上350℃以下)を施したり、平坦性を高めるために矯正加工(温間又は冷間)を施したり、表面性状を高めるために研磨(好ましくは湿式)を施したりすることができる。上記熱処理によって再結晶組織とすることで、塑性加工性を高めたり、上記矯正加工によって予め素材に歪みなどのエネルギーを蓄積してプレス加工時に動的再結晶化を発現させたりすることで塑性加工性を高めたり、平坦性を高めたりすることで金型への配置精度を向上したり、上記研磨によってプレス加工時の割れや疵の発生を抑制したりすることができる。   In particular, when using a rolled plate made of a magnesium alloy, a cast plate manufactured by a continuous casting method such as a twin roll casting method is preferably subjected to a solution treatment (for example, heating temperature: 350 ° C. to 420 ° C., heating (1 hour to 40 hours or less) and then warm rolling for 1 pass or more (material temperature: 150 ° C to 400 ° C (preferably 280 ° C or less), rolling reduction per pass: 5% to 40 % Or less) is preferable because of excellent plastic workability such as press working. After rolling, heat treatment (for example, heating temperature: 250 ° C. or more and 350 ° C. or less) is performed to remove distortion, straightening processing (warm or cold) is performed to improve flatness, and surface properties are enhanced. Therefore, polishing (preferably wet) can be applied. By forming a recrystallized structure by the above heat treatment, plastic workability is improved by increasing plastic workability, or by accumulating energy such as strain in the material in advance by the above-mentioned straightening process and expressing dynamic recrystallization during press working. It is possible to improve the placement accuracy in the mold by increasing the property and improving the flatness, or to suppress the occurrence of cracks and wrinkles during press working by the polishing.

<成形工程>
用意した金属板100に多段階のプレス加工を施す。いずれの段階も、温間加工とすると、材質によらず塑性加工性を高められ、高品位な成形体を形成できる。温間加工では、加熱によって金属を柔らかくする、換言すれば加熱温度における引張強さを200MPa以下、更に100MPa以下、特に70MPa以下とすると共に、伸びを10%以上、更に30%以上、特に50%以上とすることができ、成形限界を飛躍的に改善できる。従って、温間加工とすることで、本発明の金属成形体の製造方法のように、素材(又は成形体)を完全に拘束しない成形法を適用し易くなる。更に、温間加工では、加熱によって弾性限界を低くする、換言すれば加熱温度における0.2%耐力を180MPa以下、更に90MPa以下、特に90MPa以下とすることができ、成形加工後の変形の戻り、いわゆるスプリングバックを抑制できる。従って、温間加工とすることで、安定した成形が可能な上に、素材の強度を低下させて加工を行うことで、角部や稜線部の変形が容易になり、シャープな形状の成形体を得易く、好ましい。温間加工を行う場合の具体的な加熱温度(素材温度)は、素材の融点、特に液相線温度を絶対温度で表した温度の30%以上75%以下、好ましくは上記温度の40%以上70%以下が挙げられる。特に、軽金属であるアルミニウム合金やマグネシウム合金の場合には、上述の温度範囲のうち、高い方が好ましい結果を得ている。具体的には、150℃以上350℃以下、特に200℃以上300℃以下程度が好ましい。室温での塑性加工性に劣るマグネシウムやその合金からなる素材を利用する場合には、全段階のプレス加工を温間加工とすることが好ましい。材質によっては、複数のプレス加工のうち、少なくとも一つの段階を冷間加工とすることができる。全段階のプレス加工条件を、素材とする金属板100の厚さt100を実質的に変化させないように調整することで、最終的に得られる金属成形体1は、その全体に亘って厚さが均一的であり、厚さt100に等しい。以下、段階ごとに説明する。
<Molding process>
Multistage pressing is performed on the prepared metal plate 100. In any stage, when warm working is performed, plastic workability can be improved regardless of the material, and a high-quality molded body can be formed. In warm working, the metal is softened by heating, in other words, the tensile strength at the heating temperature is 200 MPa or less, further 100 MPa or less, especially 70 MPa or less, and the elongation is 10% or more, further 30% or more, especially 50%. Thus, the molding limit can be dramatically improved. Therefore, by performing warm working, it becomes easy to apply a molding method that does not completely constrain the material (or molded body) as in the method of manufacturing a metal molded body of the present invention. Furthermore, in warm working, the elastic limit is lowered by heating, in other words, the 0.2% proof stress at the heating temperature can be 180 MPa or less, more preferably 90 MPa or less, particularly 90 MPa or less, so that deformation after forming is restored, so-called Springback can be suppressed. Therefore, by using warm processing, stable molding is possible, and processing by reducing the strength of the material facilitates deformation of corners and ridges, and sharp shaped products It is easy to obtain and preferable. The specific heating temperature (material temperature) when performing warm processing is 30% to 75% of the melting point of the material, especially the liquidus temperature expressed as an absolute temperature, preferably 40% or more of the above temperature. 70% or less. In particular, in the case of an aluminum alloy or a magnesium alloy which is a light metal, a higher result is obtained in the above temperature range. Specifically, it is preferably about 150 ° C. or higher and 350 ° C. or lower, particularly about 200 ° C. or higher and 300 ° C. or lower. In the case of using a material made of magnesium or an alloy thereof inferior in plastic workability at room temperature, it is preferable that the press working at all stages is warm working. Depending on the material, at least one of the plurality of press workings can be cold working. The pressing conditions of all stages, by adjusting the thickness t 100 of the metal plate 100 to the material so as not substantially alter, metal moldings 1 finally obtained, thickness over its entire of It is uniform, the equal to the thickness t 100. Hereinafter, each step will be described.

(第一プレス工程)
この工程は、最終的に製造しようとする金属成形体1の大まかな外形(代表的には断面]状)を形成するための工程である。この工程では、例えば、図1(A),図1(B)に示す第一金型50を利用して、図1(b)に示す天板部111と、天板部111に立設する壁部113と、壁部113に繋がるフランジ部117とを有する第一成形体110を形成するために、プレス加工として、絞り加工や曲げ加工を行う。以下、工程の説明においては、絞り加工を代表として記述するが、曲げ加工も同様である。天板部111の形状は平坦なものに限定されず、曲面で構成される面や、曲面部分や傾斜した部分(断面が直線で構成される部分)を有するものでもよい。また、任意の凹凸、貫通孔や切欠(切れ込み)などを具えることもできる。ここでは、図1に示すような平坦なものを代表して説明し、上述した形状については詳細な説明を省略する。
(First press process)
This step is a step for forming a rough outer shape (typically a cross section) of the metal molded body 1 to be finally manufactured. In this step, for example, using the first mold 50 shown in FIGS. 1 (A) and 1 (B), the top plate portion 111 shown in FIG. 1 (b) and the top plate portion 111 are erected. In order to form the first molded body 110 having the wall portion 113 and the flange portion 117 connected to the wall portion 113, drawing or bending is performed as press working. Hereinafter, in the description of the process, the drawing process is described as a representative, but the bending process is also the same. The shape of the top plate portion 111 is not limited to a flat shape, and may include a surface formed by a curved surface, a curved surface portion, or an inclined portion (a portion formed by a straight section). Moreover, arbitrary unevenness | corrugations, a through-hole, a notch (cut), etc. can be provided. Here, a flat surface as shown in FIG. 1 will be described as a representative, and detailed description of the shape described above will be omitted.

第一金型50は、柱状の上パンチ51と、上パンチ51に対向配置されて金属板100の大部分を支持する柱状の下パッド53と、金属板100の周縁部を支持するしわ押さえ55と、しわ押さえ55と共に金属板100の周縁部を支持し、かつ、上パンチ51との間で金属板100の周縁部近傍を挟み込み、壁部113を形成するダイ57とを具える。   The first mold 50 includes a columnar upper punch 51, a columnar lower pad 53 that is disposed opposite to the upper punch 51 and supports most of the metal plate 100, and a wrinkle presser 55 that supports the peripheral portion of the metal plate 100. And a die 57 that supports the peripheral edge of the metal plate 100 together with the wrinkle retainer 55 and sandwiches the vicinity of the peripheral edge of the metal plate 100 with the upper punch 51 to form the wall 113.

第一金型50を用いて第一成形体110を成形するには、例えば、以下のように行う。図1(A)に示すように、下パッド53の端面と、ダイ57の端面とを面一に配置し、これらの端面の上に金属板100を配置する。金属板100の周縁部分をしわ押さえ55の端面とダイ57の端面とで挟持した状態で、上パンチ51を金属板100に押し付けて、金属板100の一部を絞る。金属板100において上パンチ51の外周面と、ダイ57の内周面とで挟まれる領域は、上パンチ51の端面と下パッド53の端面に挟持される領域(天板部111を構成する領域)に対して立設するように変形し、壁部113を形成する。壁部113が所定の長さになったら、上パンチ51の押し付けをやめて、上方に移動することで、フランジ部117を有する第一成形体110が得られる(図1(b))。第一成形体110は、天板部111と壁部113とを繋ぐ角部115の外側曲げ半径R110が、素材に用いた金属板100の厚さt100以上である(R110≧t100)。 The first molded body 110 is molded using the first mold 50, for example, as follows. As shown in FIG. 1 (A), the end surface of the lower pad 53 and the end surface of the die 57 are disposed flush with each other, and the metal plate 100 is disposed on these end surfaces. With the peripheral portion of the metal plate 100 held between the end surface of the wrinkle retainer 55 and the end surface of the die 57, the upper punch 51 is pressed against the metal plate 100 to squeeze a part of the metal plate 100. In the metal plate 100, the region sandwiched between the outer peripheral surface of the upper punch 51 and the inner peripheral surface of the die 57 is the region sandwiched between the end surface of the upper punch 51 and the end surface of the lower pad 53 (the region constituting the top plate portion 111). ) To form a wall 113. When the wall portion 113 reaches a predetermined length, the first molded body 110 having the flange portion 117 is obtained by stopping the pressing of the upper punch 51 and moving upward (FIG. 1 (b)). The first molded body 110 has an outer bend radius R 110 of the corner 115 that connects the top plate portion 111 and the wall 113, the thickness t 100 over which the metal plate 100 using a material (R 110 ≧ t 100 ).

得られた第一成形体110からフランジ部117、壁部113の一部を切断して、壁部113の長さを調整する。天板部111を精度よく拘束すると共に、壁部113を金型や切削加工機、レーザー加工機などで加工を行うことで、壁部20の仮想角に沿った長さ、壁部20における天板部10に対して垂直方向の長さ(立設高さ)、形状などを精度よく調整できる。   The flange portion 117 and a part of the wall portion 113 are cut from the obtained first molded body 110, and the length of the wall portion 113 is adjusted. The top plate 111 is restrained with high accuracy, and the wall 113 is processed with a mold, a cutting machine, a laser processing machine, etc., so that the length along the virtual angle of the wall 20 and the top of the wall 20 are reduced. The length (standing height), shape, etc. in the direction perpendicular to the plate portion 10 can be adjusted with high accuracy.

なお、第一成形体は、特許文献1に記載される金型を用いて、プレス加工として曲げ加工を行うことでも、形成することができる。この場合、所望の長さの壁部を成形可能なように金属板の大きさを調製しておくことで、フランジ部117の切断が不要である。   Note that the first molded body can also be formed by performing bending as press working using the mold described in Patent Document 1. In this case, the flange 117 is not required to be cut by adjusting the size of the metal plate so that a wall having a desired length can be formed.

(第二プレス工程)
この工程は、第一成形体110において、天板部111の外表面と壁部113の外表面とを繋ぐ角部115の外側曲げ半径R110を小さくするための工程である。この工程では、例えば、図1(C)に示す第二金型70を利用して、天板部121と、天板部121に立設する壁部123と、天板部121と壁部123とを繋ぐ角部125とを具え、角部125の外側曲げ半径R120が天板部121の厚さt120以下である第二成形体120(図1(c))を形成するために、プレス加工として、壁部123に対する圧縮加工を行う。第二成形体120の天板部121は、第一成形体110の天板部111によって実質的に構成され、壁部123は、第一成形体110の壁部113によって実質的に構成され、角部125の外側曲げ半径R120が第一成形体110の角部115の外側曲げ半径R110よりも小さい。多くの場合、天板部121の厚さt120は、金属板100の厚さt100に等しく、R120≦R110≦t100=t120である。なお、天板部111の一部を圧縮して天板部121の厚さを薄くする、又は厚くする工程を加えたり、刻印のような凹凸を形成する工程を同時に行ったりすることができる。
(Second press process)
This process, in a first molding 110 is a step for reducing the outer bending radius R 110 of the corner 115 which connects the outer surface of the outer surface and the wall portion 113 of the top plate 111. In this step, for example, using the second mold 70 shown in FIG. 1 (C), the top plate 121, the wall 123 standing on the top 121, the top 121 and the wall 123 In order to form the second molded body 120 (FIG. 1 (c)), the outer bending radius R 120 of the corner 125 is equal to or less than the thickness t 120 of the top plate 121. As the pressing process, the wall part 123 is compressed. The top plate portion 121 of the second molded body 120 is substantially constituted by the top plate portion 111 of the first molded body 110, and the wall portion 123 is substantially constituted by the wall portion 113 of the first molded body 110, The outer bending radius R 120 of the corner portion 125 is smaller than the outer bending radius R 110 of the corner portion 115 of the first molded body 110. In many cases, the thickness t 120 of the top plate 121 is equal to the thickness t 100 of the metal plate 100, and R 120 ≦ R 110 ≦ t 100 = t 120 . Note that a step of compressing a part of the top plate portion 111 to reduce or increase the thickness of the top plate portion 121, or a step of forming unevenness such as engraving can be performed simultaneously.

第二金型70は、素材となる第一成形体110の天板部111(第二プレス工程後では天板部121)を挟持する柱状の天板上パッド71及び下パンチ73と、素材となる第一成形体110の壁部113(第二プレス工程後では壁部123)を押し付ける段差部76が設けられた上パンチ75と、上パンチ75と共に壁部113(123)を支持し、かつ、天板上パッド71との間で壁部113を挟み、第一成形体110に具える天板部111と壁部113とを繋ぐ角部115の外側曲げ半径R110を小さくして、シャープな角部125を形成するガイド77とを具える。 The second mold 70 includes a columnar top plate upper pad 71 and a lower punch 73 that sandwich the top plate portion 111 (the top plate portion 121 after the second pressing step) of the first molded body 110 as a material, An upper punch 75 provided with a stepped portion 76 that presses the wall 113 of the first molded body 110 (the wall 123 after the second pressing step), and supports the wall 113 (123) together with the upper punch 75, and The wall 113 is sandwiched between the top plate pad 71 and the outer bending radius R 110 of the corner 115 connecting the top plate 111 and the wall 113 included in the first molded body 110 is reduced to be sharp. And a guide 77 for forming a corner portion 125.

第二金型70を用いて第二成形体120を成形するには、例えば、以下のように行う。下パンチ73の端面と、ガイド77の端面とを面一に配置し、下パンチ73の上に第一成形体110を配置する。天板上パッド71を下パンチ73側に向かって移動して、第一成形体110の天板部111の内面に天板上パッド71を押し付けると共に、上パンチ75をガイド77側に向かって移動して、第一成形体110の壁部113の端面に上パンチ75の段差部76を押し付ける。この押し付けによって、下パンチ73の端面とガイド77の内周面とがつくる角部に壁部113を構成する金属が充填されて、シャープな角部125を成形することができる。   For example, the second molded body 120 is molded using the second mold 70 as follows. The end surface of the lower punch 73 and the end surface of the guide 77 are disposed flush with each other, and the first molded body 110 is disposed on the lower punch 73. The top plate upper pad 71 is moved toward the lower punch 73 side, the top plate upper pad 71 is pressed against the inner surface of the top plate portion 111 of the first molded body 110, and the upper punch 75 is moved toward the guide 77 side. Then, the stepped portion 76 of the upper punch 75 is pressed against the end surface of the wall portion 113 of the first molded body 110. By this pressing, the corner portion formed by the end surface of the lower punch 73 and the inner peripheral surface of the guide 77 is filled with the metal constituting the wall portion 113, and the sharp corner portion 125 can be formed.

なお、第二成形体は、特許文献1に記載されるように、段差部が設けられた天板上パンチと、有底筒状の成形穴が設けられたダイ(端的にいうと、下パンチ73と、上パンチ75とガイド77とが一体になったようなダイ)とを具える金型を用いても、形成することもできる。この成形穴の底面(第一成形体の天板部を支持する面)と内周面(壁部の外周面に接する面)とがつくる角部が第二成形体120の角部125を形成することから、上記角部の曲げ半径は、R120≦t120を成形可能な値を適宜選択する。 In addition, as described in Patent Document 1, the second molded body includes a top plate punch with a stepped portion and a die with a bottomed cylindrical molding hole (in short, the lower punch It can also be formed by using a mold including 73 and a die in which the upper punch 75 and the guide 77 are integrated. The corner formed by the bottom surface (the surface that supports the top plate portion of the first molded body) and the inner peripheral surface (the surface that contacts the outer peripheral surface of the wall portion) forms the corner portion 125 of the second molded body 120. Therefore, the bending radius of the corner is appropriately selected as a value capable of forming R 120 ≦ t 120 .

上記では、シャープな角部を具える外形を有する形状を成形する場合について説明した。素材の天板部(第一成形体の天板部)が凹凸を具える場合、これら凹凸を構成する周壁部分についても、上述した圧縮加工と同様な加工を行うことでシャープな外観を有する凹凸を成形できる。この場合、金型において上記凹凸に圧縮加工を施す場所に、パンチ、ダイ、ガイド、パッドを適切に動作するように配置するとよい。また、第二プレス工程において、段差部76の大きさを調整することで、壁部123の厚さを天板部121の厚さよりも厚くすることができる。この場合、次の第三プレス工程後に得られる金属成形体1の壁部20の厚さも、天板部10の厚さよりも厚くすることができる。   In the above, the case where the shape which has the external shape which has a sharp corner | angular part was shape | molded was demonstrated. When the top plate portion of the material (top plate portion of the first molded body) has irregularities, the irregularities having a sharp appearance can be obtained by performing the same processing as the compression processing described above on the peripheral wall portions constituting the irregularities. Can be molded. In this case, the punch, the die, the guide, and the pad may be disposed so as to appropriately operate at a place where the concave and convex portions are compressed in the mold. Further, in the second pressing step, the thickness of the wall portion 123 can be made larger than the thickness of the top plate portion 121 by adjusting the size of the stepped portion 76. In this case, the thickness of the wall portion 20 of the metal molded body 1 obtained after the next third pressing step can also be made thicker than the thickness of the top plate portion 10.

(第三プレス工程)
この工程は、第二成形体120の壁部123を内側に向かって折り曲げ、天板部10に対して壁部20が傾斜して設けられた金属成形体1を形成する工程であり、プレス加工として曲げ加工を行う。この工程では、例えば、図1(D)に示す第三金型90を利用する。
(Third press process)
This step is a step in which the wall portion 123 of the second molded body 120 is bent inward to form the metal molded body 1 in which the wall portion 20 is inclined with respect to the top plate portion 10, and press working As a bending process. In this step, for example, a third mold 90 shown in FIG. 1 (D) is used.

第三金型90は、素材となる第二成形体120の内側に挿入配置されて、天板部121(第三プレス工程後では天板部10)の内面の一部に接する柱状の天板上パッド91と、天板上パッド91と共に天板部121を挟持する柱状の下パンチ93と、素材となる第二成形体120の壁部123(第三プレス工程後では壁部20)の外周面に接して、壁部123を第二成形体120の内側に向かって押し付けるための傾斜面96が設けられた上パンチ95と、上パンチ95を受けるガイド97とを具える。   The third mold 90 is inserted and arranged inside the second molded body 120 as a raw material, and a columnar top plate that is in contact with a part of the inner surface of the top plate part 121 (the top plate part 10 after the third pressing step). Upper pad 91, columnar lower punch 93 that sandwiches the top plate portion 121 together with the top plate upper pad 91, and the outer periphery of the wall portion 123 (the wall portion 20 after the third pressing step) of the second molded body 120 that is the material An upper punch 95 provided with an inclined surface 96 for pressing the wall portion 123 toward the inside of the second molded body 120 in contact with the surface, and a guide 97 for receiving the upper punch 95 are provided.

天板上パッド91は、一般的には柱状体である。ここでは、天板上パッド91の端面の形状は、第二成形体120の天板部121の外形に相似形状であり(ここでは矩形状)、かつ上記端面の大きさは、天板部121の内面よりも小さい。そのため、天板上パッド91を第二成形体120の内側に配置すると、天板上パッド91の外周面と、壁部123の内周面とは接触せず、両面の間には隙間が設けられる。つまり、第二成形体120の角部125及び角部125に繋がる壁部123は、天板上パッド91によって支持されない。   The top plate pad 91 is generally a columnar body. Here, the shape of the end surface of the top plate pad 91 is similar to the outer shape of the top plate portion 121 of the second molded body 120 (here, a rectangular shape), and the size of the end surface is the top plate portion 121. Smaller than the inner surface. Therefore, when the top plate pad 91 is disposed inside the second molded body 120, the outer peripheral surface of the top plate pad 91 and the inner peripheral surface of the wall portion 123 do not contact each other, and a gap is provided between both surfaces. It is done. That is, the corner portion 125 of the second molded body 120 and the wall portion 123 connected to the corner portion 125 are not supported by the top plate pad 91.

なお、下パンチ93は、第二プレス工程で用いた下パンチ73と同一形状が好ましく、兼用部品としてもよい。下パンチ73,93は、その端面の形状及び面積が第一成形体110の天板部111の投影形状及び投影面積(=第二成形体120の天板部120の投影形状及び投影面積=金属成形体1の天板部10の投影形状及び投影面積)に等しいものを用意する。   The lower punch 93 preferably has the same shape as the lower punch 73 used in the second pressing step, and may be a dual-purpose part. The bottom punches 73 and 93 have end faces in the shape and area of the projection shape and projection area of the top plate portion 111 of the first molded body 110 (= projection shape and projection area of the top plate portion 120 of the second molded body 120 = metal). A thing equal to the projected shape and projected area of the top plate portion 10 of the molded body 1 is prepared.

第三金型90を用いて金属成形体1を成形するには、例えば、以下のように行う。下パンチ93,ガイド97の端面を面一に配置し、下パンチ93の上に第二成形体120を配置する。天板上パッド91の端面が第二成形体120の天板部121の内面の一部に接するように、天板上パッド91を第二成形体120の内側に配置する。このとき、天板上パッド91の外周面と第二成形体120の壁部123の内面とは平行状態にあり、天板上パッド91の端面は天板部121の内面に接して支持するものの、天板上パッド91の外周面は壁部123に接しておらず、壁部123を支持しない。   For example, the metal molded body 1 is molded using the third mold 90 as follows. End surfaces of the lower punch 93 and the guide 97 are arranged flush with each other, and the second molded body 120 is arranged on the lower punch 93. The top plate pad 91 is disposed inside the second molded body 120 so that the end surface of the top plate pad 91 is in contact with a part of the inner surface of the top plate portion 121 of the second molded body 120. At this time, the outer peripheral surface of the top plate pad 91 and the inner surface of the wall part 123 of the second molded body 120 are in a parallel state, and the end surface of the top plate pad 91 is in contact with and supported by the inner surface of the top plate part 121. The outer peripheral surface of the top plate pad 91 is not in contact with the wall portion 123 and does not support the wall portion 123.

次に、上パンチ95をガイド97側に向かって移動する。この移動によって、第二成形体120の壁部123の外周面に上パンチ95の傾斜面96が押し付けられ、傾斜面96の傾斜に沿って、壁部123が天板部121の内側に向かって折り曲げられる。つまり、壁部123は、傾斜面96の角度に応じて折り曲げられる。壁部123を所望の角度に折り曲げられるように、傾斜面96の角度、及び天板上パッド91の外寸(天板上パッド91の外周面と壁部123の内周面との間の間隔)を調整するとよい。傾斜面96は、その断面形状が直線形状、曲線形状など任意の形状とすることができる。図1では傾斜面96が断面直線状の場合、図2では傾斜面96が断面曲線状の場合を示す。特に、壁部20の外表面を断面曲線形状とすると共に、内側に向かって凹む形状とする場合、図2に示すように、天板上パッド91と上パンチ95とで壁部123の上端側領域を挟持すると共に、天板上パッド91にこの上端側領域を当接することで、曲がりを拘束する。このように壁部123の一部を金型で支持することで、加工時に壁部20が曲がり過ぎず、所望の形状を安定して得られる。なお、壁部20の外表面が上述のように凹んだ形状である場合、凹部をつくる曲面の下端と上端とに接する平面をとり、この平面を壁部の外表面の延長面とし、この平面と天板部の外表面の延長面とで仮想角をとる。   Next, the upper punch 95 is moved toward the guide 97 side. By this movement, the inclined surface 96 of the upper punch 95 is pressed against the outer peripheral surface of the wall portion 123 of the second molded body 120, and the wall portion 123 is directed toward the inside of the top plate portion 121 along the inclination of the inclined surface 96. It can be bent. That is, the wall portion 123 is bent according to the angle of the inclined surface 96. The angle of the inclined surface 96 and the outer dimension of the top plate upper pad 91 (the distance between the outer peripheral surface of the top plate pad 91 and the inner peripheral surface of the wall portion 123 so that the wall portion 123 can be bent at a desired angle. ) Should be adjusted. The inclined surface 96 can have an arbitrary shape such as a linear shape or a curved shape in cross section. FIG. 1 shows a case where the inclined surface 96 has a linear cross section, and FIG. 2 shows a case where the inclined surface 96 has a curved cross section. In particular, when the outer surface of the wall portion 20 has a curved cross-sectional shape and a shape that is recessed toward the inside, as shown in FIG. While sandwiching the region, the bending is restrained by bringing the upper end side region into contact with the upper pad 91 on the top plate. In this way, by supporting a part of the wall portion 123 with a mold, the wall portion 20 is not excessively bent during processing, and a desired shape can be stably obtained. When the outer surface of the wall portion 20 has a concave shape as described above, a plane that contacts the lower end and the upper end of the curved surface forming the recess is taken, and this plane is used as an extension surface of the outer surface of the wall portion. An imaginary angle is taken by the extended surface of the outer surface of the top plate portion.

特に、金属板100として、剛性に優れる材質のもの(例えば、室温における引張強さが250MPa以上を満たすもの)を用いることで、上述のように角部125及びその近傍や壁部123の内面全域を金型によって支持しなくても、座屈などすることなく、精度よく曲げ加工を行うことができる。又は、第二成形体120の壁部123の長さ(天板部121からの立設高さに等しい)が5mm以下程度と短いものを用いると、座屈などすることなく、精度よく曲げ加工を行うことができる。更に、この曲げ加工を温間加工とすると、上述のように、素材の加熱によって素材を柔らかくして加工を行うことで、成形加工後の変形の戻りを抑制でき、角部の成形を容易にできる。また、温間加工とする場合に素材を予め成形温度近傍に予熱しておくことで、加熱して高温になっている金型に素材を投入した際に素材の熱歪み変形を抑制できる。そのため、金型の所望の位置に素材を精度よく、簡単に配置できて好ましい。   In particular, the metal plate 100 is made of a material having excellent rigidity (for example, a material having a tensile strength of 250 MPa or more at room temperature), so that the corner portion 125 and its vicinity and the entire inner surface of the wall portion 123 as described above. Even if it is not supported by a mold, it can be bent accurately without buckling. Alternatively, if the length of the wall portion 123 of the second molded body 120 (equal to the standing height from the top plate portion 121) is as short as about 5 mm or less, bending is performed accurately without buckling. It can be performed. Furthermore, when this bending process is a warm process, as described above, the process of softening the material by heating the material can suppress the return of deformation after the molding process, thereby facilitating the molding of the corners. it can. Further, by preheating the material in the vicinity of the molding temperature in the case of warm working, it is possible to suppress the thermal strain deformation of the material when the material is put into a mold heated to a high temperature. Therefore, it is preferable that the material can be easily and accurately placed at a desired position of the mold.

<その他の工程>
プレス加工により導入された歪みや残留応力の除去、耐食性の向上、機械的特性の向上などを目的として、プレス加工後に熱処理を施すことができる。熱処理条件は、材質にもよるが、加熱温度:100℃以上450℃以下程度、加熱時間:5分以上40時間以下程度が挙げられる。その他、上述のように防食、保護、装飾などを目的として、塗装層や防食層などを形成することができる。
<Other processes>
Heat treatment can be performed after the press working for the purpose of removing distortion and residual stress introduced by the press working, improving the corrosion resistance, and improving the mechanical properties. Although the heat treatment conditions depend on the material, the heating temperature is about 100 ° C. to 450 ° C., and the heating time is about 5 minutes to 40 hours. In addition, a coating layer, an anticorrosion layer, etc. can be formed for the purpose of anticorrosion, protection and decoration as described above.

<効果>
上述の製造方法は、鋭利な角部(ここでは外側曲げ半径R=R120≦t120=t100=tt)を有し、壁部20が天板部10に対して鋭角に曲げられ、かつ壁部20の厚さtlが天板部10の厚さttと同等以上である(ここではtl=tt=t120=t100)という特定の形状を有する金属成形体1を1種類の加工(全てプレス加工)によって形成できる。従って、この製造方法は、金属成形体1を生産性よく製造できる。
<Effect>
The manufacturing method described above has a sharp corner (here, the outer bending radius R = R 120 ≦ t 120 = t 100 = t t ), the wall 20 is bent at an acute angle with respect to the top plate 10, And the thickness t l of the wall portion 20 is equal to or greater than the thickness t t of the top plate portion 10 (here, t l = t t = t 120 = t 100 ). It can be formed by one type of processing (all press processing). Therefore, this manufacturing method can manufacture the metal molded body 1 with high productivity.

[試験例]
上述の製造方法を用いて、以下のように種々の金属からなるプレス成形体を作製し、形状や物性を調べた。
[Test example]
Using the manufacturing method described above, press-molded bodies made of various metals were produced as follows, and the shapes and physical properties were examined.

<試料No.1>
試料No.1は、素材の金属板100として、ASTM規格のAZ91D合金相当の組成(Mg-9.0%Al-1.0%Zn、1%未満のMn,Fe,Si,Ni,Cu,Caなどの添加元素及び不可避不純物を含む、全て質量%)を有するマグネシウム合金からなるものを利用した。ここでは、双ロール連続鋳造法により得られた鋳造板(厚さ4mm)に温間圧延を施し(板温度:200℃以上480℃以下、ロール温度:100℃以上350℃以下、1パスあたりの圧下率を5%以上40%以下、目標厚さ:0.6mm)、得られた圧延板に更に矯正加工及び湿式研磨を施して、面粗さRmax:6.1μmの金属板(厚さ:0.6mm)を用意した。面粗さRmaxは、JIS B 0601(1982)に規定される最大高さとする(他の試料も同様)。なお、成形温度(ここでは250℃)における金属板100の引張強さは59.5MPa、0.2%耐力は16.9MPaであり、(0.2%耐力)/(引張強さ)=0.28である。
<Sample No.1>
Sample No. 1 has a composition equivalent to ASTM standard AZ91D alloy (Mg-9.0% Al-1.0% Zn, less than 1% of Mn, Fe, Si, Ni, Cu, Ca, etc.) A material made of a magnesium alloy containing all elements and unavoidable impurities and having a mass%) was used. Here, warm rolling was performed on the cast plate (thickness 4 mm) obtained by the twin roll continuous casting method (plate temperature: 200 ° C to 480 ° C, roll temperature: 100 ° C to 350 ° C, per pass) The reduction ratio is 5% or more and 40% or less, target thickness: 0.6mm), and the obtained rolled plate is further subjected to straightening and wet polishing to obtain a metal plate with a surface roughness Rmax of 6.1μm (thickness: 0.6mm) ) Was prepared. The surface roughness Rmax is the maximum height specified in JIS B 0601 (1982) (the same applies to other samples). Note that the tensile strength of the metal plate 100 at the forming temperature (here, 250 ° C.) is 59.5 MPa, the 0.2% yield strength is 16.9 MPa, and (0.2% yield strength) / (tensile strength) = 0.28.

用意した金属板100を所定の形状・大きさに打抜き、以下の多段階の温間プレス加工を施す。試料No.1では、各工程における予熱温度及び成形温度は250℃とする。まず、図1(A)に示す第一金型50を用いて温間プレス加工(ここでは絞り加工、素材温度:250℃)を行い、フランジ部117を具える第一成形体110を製造する。第一成形体110からフランジ部117を切断除去すると共に、第二金型70での成形に最適な形状や所望の壁部113の長さなどとなるように第一成形体110を調整する。   The prepared metal plate 100 is punched into a predetermined shape and size and subjected to the following multi-stage warm pressing. In sample No. 1, the preheating temperature and the molding temperature in each step are 250 ° C. First, warm pressing (here, drawing, material temperature: 250 ° C.) is performed using the first mold 50 shown in FIG. 1 (A) to produce a first molded body 110 having a flange portion 117. . The flange portion 117 is cut and removed from the first molded body 110, and the first molded body 110 is adjusted so as to have an optimum shape for molding with the second mold 70 and a desired length of the wall portion 113.

次に、図1(C)に示す第二金型70を用いて温間プレス加工(ここでは圧縮加工、素材温度:250℃)を行い、外側曲げ半径R120が天板部121の厚さt120(ここでは金属板100の厚さt100=0.6mmに等しい)以下であるシャープな角部を有する第二成形体120を製造する。図1(C)に示す上パンチ75において段差部76の段差(素材の厚さ方向の大きさ)を0.6mmとした。ここでは、天板部121は、外寸200mm×320mmの長方形状であり、長方形の各角部のコーナ半径は5.0mmである。また、壁部123の長さ(天板部121の外表面から垂直方向の大きさ)は3mm、外側曲げ半径R120は、0.3mm(=(1/2)×t120=(1/2)×t100)とした。 Next, warm pressing (here, compression processing, material temperature: 250 ° C.) is performed using the second mold 70 shown in FIG. 1 (C), and the outer bending radius R 120 is the thickness of the top plate 121. A second molded body 120 having a sharp corner which is equal to or less than t 120 (here, the thickness t 100 of the metal plate 100 is equal to 0.6 mm) is manufactured. In the upper punch 75 shown in FIG. 1 (C), the step of the stepped portion 76 (size in the thickness direction of the material) was set to 0.6 mm. Here, the top plate 121 has a rectangular shape with an outer dimension of 200 mm × 320 mm, and the corner radius of each corner of the rectangle is 5.0 mm. Further, the length of the wall portion 123 (size in the vertical direction from the outer surface of the top plate portion 121) is 3 mm, and the outer bending radius R 120 is 0.3 mm (= (1/2) × t 120 = (1/2 ) × t 100 ).

次に、図1(D)に示す第三金型90を用いて温間プレス加工(ここでは曲げ加工、素材温度:250℃)を行い、天板部10と壁部20との仮想角θが40°である金属成形体1を得た。第一金型50、第二金型70、及び第三金型90において素材が接触する部分には全て、DLCコーティングを施した(面粗さRmax:2.6μm仕上げ)。更に、第一金型50、第二金型70、及び第三金型90の表面に潤滑剤を塗布した。潤滑剤は、引火温度が加工温度(ここでは250℃)以上であるものを用いた。上述のようにして多段階のプレス加工を行った結果、ねじれなどの歪みがなく(形状判定:歪み○)、コーナでの割れがなく(形状判定:コーナ○)、良好な表面性状・外観を有する金属成形体1が得られた。また、金属成形体1は天板部10の周縁の実質的に全域に亘って壁部20を具え、天板部10と壁部20との仮想角θの実質的に全域が同様の鋭角(ここでは40°)である。   Next, warm pressing (here, bending, material temperature: 250 ° C.) is performed using the third mold 90 shown in FIG. 1 (D), and the virtual angle θ between the top 10 and the wall 20 A metal molded body 1 having an angle of 40 ° was obtained. All portions of the first mold 50, the second mold 70, and the third mold 90 that were in contact with the material were subjected to DLC coating (surface roughness Rmax: 2.6 μm finish). Further, a lubricant was applied to the surfaces of the first mold 50, the second mold 70, and the third mold 90. As the lubricant, a lubricant whose ignition temperature is equal to or higher than the processing temperature (here, 250 ° C.) was used. As a result of multi-stage pressing as described above, there is no distortion such as torsion (shape judgment: distortion ○), there is no crack at the corner (shape judgment: corner ○), and good surface properties and appearance A metal molded body 1 was obtained. Further, the metal molded body 1 includes a wall portion 20 substantially over the entire periphery of the top plate portion 10, and substantially the same virtual angle θ between the top plate portion 10 and the wall portion 20 is the same acute angle ( Here, it is 40 °).

得られた試料No.1の金属成形体1は、外側曲げ半径R(稜線Rコーナ)が天板部10の厚さtt(ここでは金属板100の厚さt100=0.6mmに等しい)以下であり、ここでは、R=0.3mmである。つまり、金属成形体1の外側曲げ半径Rは、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さttは、0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。かつ、壁部20の厚さtlは、0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している上に、天板部10の厚さttに等しい。壁部20において仮想角に沿った長さは3mmであり、壁部123の長さに等しい。天板部10から試験片を切り出して、室温における引張強さを求めたところ、335MPa(≧250MPa)であった。金属成形体1の面粗さRmaxを調べたところ、6.1μmであり、素材の金属板100の値を実質的に維持していた。 The obtained metal molded body 1 of sample No. 1 has an outer bending radius R (ridge line R corner) of the thickness t t of the top plate portion 10 (here, the thickness t 100 of the metal plate 100 is equal to 0.6 mm) Where R = 0.3 mm. That is, the outer bending radius R of the metal molded body 1 substantially maintains the outer bending radius R 120 of the second molded body 120 = 0.3 mm. Further, the thickness t t of the top plate portion 10 is 0.6 mm, and the thickness of the metal plate 100 used for the material is substantially maintained. Further, the thickness t l of the wall portion 20 is 0.6 mm, which substantially maintains the thickness of the metal plate 100 used as the material, and is equal to the thickness t t of the top plate portion 10. In the wall part 20, the length along the virtual angle is 3 mm, which is equal to the length of the wall part 123. When a test piece was cut out from the top plate 10 and the tensile strength at room temperature was determined, it was 335 MPa (≧ 250 MPa). When the surface roughness Rmax of the metal molded body 1 was examined, it was 6.1 μm, and the value of the metal plate 100 as a raw material was substantially maintained.

<試料No.2>
試料No.2では、試料No.1に対して、組成の異なる金属板100を利用した。具体的には、ASTM規格のAZ31B合金相当の組成(Mg-3.0%Al-1.0%Zn、1%未満のMn,Fe,Si,Ni,Cu,Caなどの添加元素及び不可避不純物を含む、全て質量%)を有するマグネシウム合金からなる金属板100を用意した。試料No.2の金属板100は、以下のように作製した。厚さ200mmのインゴットを鋳造し、適宜切削して厚さ150mmの素材とし、この素材に200℃以上の温度で熱間圧延加工を施して、得られた熱間圧延板(厚さ4mm)に、試料No.1と同様の条件で温間圧延を施した。そして、得られた圧延板(厚さ0.6mm)に、試料No.1と同様に矯正加工及び湿式研磨を施して、面粗さRmax:5.8μm、厚さ:0.6mmの金属板100を用意した。なお、成形温度(ここでは250℃)における金属板100の引張強さは51.2MPa、0.2%耐力は15.4MPaであり、(0.2%耐力)/(引張強さ)=0.30である。
<Sample No. 2>
In sample No. 2, a metal plate 100 having a different composition from that of sample No. 1 was used. Specifically, the composition equivalent to ASTM standard AZ31B alloy (Mg-3.0% Al-1.0% Zn, including less than 1% additive elements such as Mn, Fe, Si, Ni, Cu, Ca and inevitable impurities, all A metal plate 100 made of a magnesium alloy having a mass%) was prepared. The metal plate 100 of sample No. 2 was produced as follows. Casting an ingot with a thickness of 200mm, cutting it appropriately to make a material with a thickness of 150mm, and subjecting this material to hot rolling at a temperature of 200 ° C or higher, to the resulting hot rolled plate (thickness 4mm) Warm rolling was performed under the same conditions as in Sample No. 1. Then, the obtained rolled plate (thickness 0.6 mm) is subjected to correction processing and wet polishing in the same manner as in sample No. 1 to prepare a metal plate 100 having a surface roughness Rmax: 5.8 μm and a thickness: 0.6 mm. did. Note that the tensile strength of the metal plate 100 at the forming temperature (here, 250 ° C.) is 51.2 MPa, the 0.2% proof stress is 15.4 MPa, and (0.2% proof stress) / (tensile strength) = 0.30.

用意した金属板100に、試料No.1と同様の手順・条件で多段階の温間プレス加工を施し、金属成形体1を作製した。ここでは、第二成形体120は、外寸200mm×320mmの長方形状、天板部のコーナ半径:5.0mm、壁部123の長さ:3mm、外側曲げ半径R120:0.3mm(=(1/2)×t120=(1/2)×t100)であり、シャープな角部を有する。多段階のプレス加工の結果、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。 The prepared metal plate 100 was subjected to multi-stage warm pressing in the same procedure and conditions as the sample No. 1 to produce a metal molded body 1. Here, the second molded body 120 has a rectangular shape with an outer dimension of 200 mm × 320 mm, a corner radius of the top plate portion: 5.0 mm, a length of the wall portion 123: 3 mm, an outer bending radius R 120 : 0.3 mm (= (1 / 2) × t 120 = (1/2) × t 100 ) and has sharp corners. As a result of the multi-stage pressing, a metal molded body 1 having no distortion such as torsion, no cracks at the corners, and good surface properties and appearance was obtained.

得られた試料No.2の金属成形体1は、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm=壁部123の長さ、天板部10の室温における引張強さ:270MPa(≧250MPa)、面粗さRmax:5.8μmであった。面粗さも素材の金属板100の値を実質的に維持していた。 The obtained metal molded body 1 of Sample No. 2 has an outer bending radius R = 0.3 mm (≦ thickness t t of the top plate portion 10 = thickness t 100 of the metal plate 100 = 0.6 mm), and the second substantially maintains the outer bend radius R 120 = 0.3 mm of the molded body 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Furthermore, the virtual angle θ between the top plate 10 and the wall 20: 40 °, the length along the virtual angle at the wall 20: 3 mm = the length of the wall 123, the tensile strength of the top 10 at room temperature : 270 MPa (≧ 250 MPa), surface roughness Rmax: 5.8 μm. The surface roughness also substantially maintained the value of the metal plate 100 as the material.

<試料No.3,4>
試料No.3,4では、試料No.1に対して、厚さが異なる金属板100を利用した。試料No.3,4に用いた金属板100は、試料No.1と同様の組成(ASTM規格のAZ91D合金相当)のマグネシウム合金を用いて、試料No.1と同様にして作製した。但し、温間圧延条件を調整して、試料No.3では、金属板100の厚さt100:1.0mmとし、試料No.4では、金属板100の厚さt100:3.0mmとした。試料No.3の金属板100の面粗さRmax:5.2μm、試料No.4の金属板100の面粗さRmax:6.1μmである。試料No.3,4のいずれも、成形温度(ここでは250℃)における金属板100の引張強さは、59.5MPa、0.2%耐力は16.9MPaであり、(0.2%耐力)/(引張強さ)=0.28である。
<Sample No. 3, 4>
In sample Nos. 3 and 4, a metal plate 100 having a thickness different from that of sample No. 1 was used. The metal plate 100 used for the samples No. 3 and 4 was manufactured in the same manner as the sample No. 1 using a magnesium alloy having the same composition as the sample No. 1 (equivalent to ASTM standard AZ91D alloy). However, the warm rolling conditions were adjusted so that the thickness t 100 of the metal plate 100 was 1.0 mm for sample No. 3 and the thickness t 100 of the metal plate 100 was 3.0 mm for sample No. 4. The surface roughness Rmax of the metal plate 100 of sample No. 3 is 5.2 μm, and the surface roughness Rmax of the metal plate 100 of sample No. 4 is 6.1 μm. In both sample Nos. 3 and 4, the tensile strength of the metal plate 100 at the forming temperature (here 250 ° C.) is 59.5 MPa, 0.2% proof stress is 16.9 MPa, (0.2% proof stress) / (tensile strength ) = 0.28.

用意した金属板100にそれぞれ、試料No.1と同様の手順・条件(コーティングの材質のみ以下に変更)で多段階の温間プレス加工を施し、金属成形体1を作製した。コーティグの材質は、試料No.3:CrN(面粗さRmax:2.6μm仕上げ)、試料No.4:VC(面粗さRmax:2.6μm仕上げ)とした。   Each of the prepared metal plates 100 was subjected to multi-stage warm pressing in the same procedure and conditions as in Sample No. 1 (only the coating material was changed to the following) to produce a metal compact 1. The material of the coating was Sample No. 3: CrN (surface roughness Rmax: 2.6 μm finish), Sample No. 4: VC (surface roughness Rmax: 2.6 μm finish).

試料No.3の第二成形体120は、外寸200mm×320mmの長方形状、天板部121の厚さt120:1.0mm(=金属板100の厚さt100)、天板部のコーナ半径:5.0mm、壁部123の長さ:3mm、外側曲げ半径R120:0.3mm(<(1/2)×t120=0.5mm)であり、シャープな角部を有する。 The second molded body 120 of sample No. 3 has a rectangular shape with an outer dimension of 200 mm × 320 mm, the thickness t 120 of the top plate 121: 1.0 mm (= the thickness t 100 of the metal plate 100 ), and the corner of the top plate The radius is 5.0 mm, the length of the wall 123 is 3 mm, the outer bending radius R 120 is 0.3 mm (<(1/2) × t 120 = 0.5 mm), and it has sharp corners.

試料No.4の第二成形体120は、外寸200mm×320mmの長方形状、天板部121の厚さt120:3.0mm(=金属板100の厚さt100)、天板部のコーナ半径:5.0mm、壁部123の長さ:10mm、外側曲げ半径R120:0.3mm(<(1/2)×t120=1.5mm)であり、シャープな角部を有する。 The second molded body 120 of sample No. 4 has a rectangular shape with an outer dimension of 200 mm × 320 mm, the thickness t 120 of the top plate 121: 3.0 mm (= the thickness t 100 of the metal plate 100 ), and the corner of the top plate The radius is 5.0 mm, the length of the wall 123 is 10 mm, the outer bending radius R 120 is 0.3 mm (<(1/2) × t 120 = 1.5 mm), and it has sharp corners.

多段階のプレス加工の結果、試料No.3,4のいずれも、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。   As a result of the multi-stage pressing, Sample Nos. 3 and 4 were all free from distortion such as torsion, cracked at the corners, and obtained a metal molded body 1 having good surface properties and appearance.

得られた試料No.3,4の金属成形体1はいずれも、外側曲げ半径R=0.3mmであり、天板部10の厚さtt(ここでは、試料No.3:厚さtt=金属板100の厚さt100=1.0mm、試料No.4:厚さtt=金属板100の厚さt100=3.0mm)以下である。また、試料No.3,4の金属成形体1の外側曲げ半径Rはいずれも、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。更に、試料No.3の天板部10の厚さtt:1.0mm=壁部20の厚さtl:1.0mmであり、試料No.4の天板部10の厚さtt:3.0mm=壁部20の厚さtt=3.0mmであり、いずれも素材に用いた金属板100の厚さを実質的に維持している。試料No.3の壁部20において仮想角に沿った長さ:3mm=壁部123の長さ、試料No.3の天板部10と壁部20との仮想角θ:40°である。試料No.4の壁部20において仮想角に沿った長さ:10mm=壁部123の長さ、試料No.4の天板部10と壁部20との仮想角θ:30°である。試料No.3,4のいずれも、天板部10の室温における引張強さ:335MPa(≧250MPa)であった。また、試料No.3の金属成形体1の面粗さRmaxは5.2μm、試料No.4の金属成形体1の面粗さRmaxは6.1μmであり、いずれも素材の金属板100の面粗さを実質的に維持していた。 Each of the obtained metal molded bodies 1 of sample Nos. 3 and 4 has an outer bending radius R = 0.3 mm, and the thickness t t of the top plate 10 (here, sample No. 3: thickness t t = the thickness t 100 = 1.0 mm of the metal plate 100, the sample No.4: thickness t 100 = 3.0 mm thickness t t = metal plate 100) or less. Further, the outer bending radius R of the metal molded body 1 of Sample Nos. 3 and 4 substantially maintains the outer bending radius R 120 of the second molded body 120 = 0.3 mm. Further, the thickness t t of the top plate 10 of the sample No. 3 is 1.0 mm = the thickness t l of the wall 20 is 1.0 mm, and the thickness t t of the top 10 of the sample No. 4 is 3.0. mm = thickness t t of the wall portion 20 = 3.0 mm, and both substantially maintain the thickness of the metal plate 100 used for the material. In the wall part 20 of the sample No. 3, the length along the virtual angle: 3 mm = the length of the wall part 123, and the virtual angle θ between the top plate part 10 and the wall part 20 of the sample No. 3 is 40 °. In the wall part 20 of the sample No. 4, the length along the virtual angle: 10 mm = the length of the wall part 123, and the virtual angle θ: 30 ° between the top plate part 10 and the wall part 20 of the sample No. 4. In each of sample Nos. 3 and 4, the tensile strength at room temperature of the top plate 10 was 335 MPa (≧ 250 MPa). The surface roughness Rmax of the metal molded body 1 of sample No. 3 is 5.2 μm, and the surface roughness Rmax of the metal molded body 1 of sample No. 4 is 6.1 μm. Was substantially maintained.

<試料No.5〜8>
試料No.5〜8では、試料No.1に対して、成形条件を異ならせて金属成形体1を製造した。試料No.5〜8に用いた金属板100は、試料No.1と同様の組成(ASTM規格のAZ91D合金相当)のマグネシウム合金を用いて、試料No.1と同様にして作製した(面粗さRmax:6.1μm、厚さt100:0.6mm)。
<Sample Nos. 5-8>
In Sample Nos. 5 to 8, the metal molded body 1 was manufactured by changing the molding conditions as compared with Sample No. 1. The metal plate 100 used for Samples Nos. 5 to 8 was prepared in the same manner as Sample No. 1 using a magnesium alloy having the same composition as that of Sample No. 1 (equivalent to ASTM standard AZ91D alloy) (surface roughness). is Rmax: 6.1μm, the thickness t 100: 0.6mm).

試料No.5では、第一金型50及び第三金型90は試料No.1と同様のもの、第二金型70は、図1(C)に示す上パンチ75において段差部76の段差(素材の厚さ方向の大きさ)を0.66mmとしたものを用いた。この第二金型70を用いて、外寸200mm×320mmの長方形状、天板部121の厚さt120:0.6mm(=金属板100の厚さt100)、壁部123の厚さ:0.66mm、天板部のコーナ半径:5.0mm、壁部123の長さ:3mm、外側曲げ半径R120:0.2mm(<(1/2)×t120=0.3mm、かつ<(1/2)×t100=0.3mm)、シャープな角部を有する第二成形体120を作製した。その他の条件は、試料No.1と同様とした。多段階のプレス加工の結果、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。 In sample No. 5, the first mold 50 and the third mold 90 are the same as in sample No. 1, and the second mold 70 is the step of the step portion 76 in the upper punch 75 shown in FIG. The material (size in the thickness direction of the material) was 0.66 mm. Using this second mold 70, a rectangular shape having an outer dimension of 200 mm × 320 mm, a thickness t 120 of the top plate 121: 0.6 mm (= thickness t 100 of the metal plate 100 ), a thickness of the wall 123: 0.66 mm, corner radius of top plate: 5.0 mm, length of wall 123: 3 mm, outer bending radius R 120 : 0.2 mm (<(1/2) × t 120 = 0.3 mm and <(1/2 ) × t 100 = 0.3 mm), a second molded body 120 having sharp corners was produced. The other conditions were the same as for sample No. 1. As a result of the multi-stage pressing, a metal molded body 1 having no distortion such as torsion, no cracks at the corners, and good surface properties and appearance was obtained.

得られた試料No.5の金属成形体1は、外側曲げ半径R=0.2mm(≦天板部10の厚さtt)以下であり、第二成形体120の外側曲げ半径R120=0.2mmを実質的に維持している。天板部10の厚さttは、0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。かつ、壁部20の厚さtlは、0.66mmであり、素材に用いた金属板100の厚さよりも厚くなっている上に、天板部10の厚さttより厚い。壁部20の厚さが天板部10の厚さよりも厚い試料No.5の金属成形体1は、上述した試料No.1の金属成形体1よりも、ねじれ難くすることができることを確認した。天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:335MPa(≧250MPa)、面粗さRmax:6.1μmであった。面粗さも素材の金属板100の値を実質的に維持していた。 The obtained metal molded body 1 of sample No. 5 has an outer bending radius R = 0.2 mm (≦ thickness t t of the top plate 10) or less, and the outer bending radius R 120 of the second molded body 120 = 0.2. mm is maintained substantially. The thickness t t of the top plate portion 10 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Further, the thickness t l of the wall portion 20 is 0.66 mm, which is larger than the thickness of the metal plate 100 used for the material, and is thicker than the thickness t t of the top plate portion 10. It was confirmed that the metal molded body 1 of the sample No. 5 in which the thickness of the wall portion 20 is thicker than the thickness of the top plate portion 10 can be more difficult to twist than the metal molded body 1 of the sample No. 1 described above. . Virtual angle θ between the top 10 and the wall 20: 40 °, length along the virtual angle at the wall 20: 3 mm, tensile strength at room temperature of the top 10: 335 MPa (≧ 250 MPa), surface roughness Rmax: 6.1 μm. The surface roughness also substantially maintained the value of the metal plate 100 as the material.

試料No.6〜8では、試料No.1に対して温間プレス加工の予熱温度及び成形温度(250℃)を異ならせた。具体的には、試料No.6では200℃、試料No.7では180℃、試料No.8では150℃とした。その他の条件は、試料No.1と同様とした。なお、各試料について金属板100の成形温度(ここでは200℃,180℃,150℃)における金属板100の引張強さ及び0.2%耐力を調べたところ、以下の通りであった。
200℃ 引張強さ:111MPa、0.2%耐力:51MPa、0.2%耐力/引張強さ:0.46
180℃ 引張強さ:155MPa、0.2%耐力:74MPa、0.2%耐力/引張強さ:0.48
150℃ 引張強さ:201MPa、0.2%耐力:109MPa、0.2%耐力/引張強さ:0.54
In sample Nos. 6 to 8, the preheating temperature and the molding temperature (250 ° C.) of the warm press processing were different from those of sample No. 1. Specifically, the sample No. 6 was 200 ° C, the sample No. 7 was 180 ° C, and the sample No. 8 was 150 ° C. The other conditions were the same as for sample No. 1. For each sample, the tensile strength and 0.2% proof stress of the metal plate 100 at the molding temperature of the metal plate 100 (here, 200 ° C., 180 ° C., 150 ° C.) were examined.
200 ℃ Tensile strength: 111MPa, 0.2% proof stress: 51MPa, 0.2% proof stress / Tensile strength: 0.46
180 ℃ Tensile strength: 155MPa, 0.2% proof stress: 74MPa, 0.2% proof stress / Tensile strength: 0.48
150 ℃ Tensile strength: 201MPa, 0.2% proof stress: 109MPa, 0.2% proof stress / Tensile strength: 0.54

上述の条件で多段階のプレス加工を行った結果、試料No.6では、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。得られた試料No.6の金属成形体1は、天板部10の外寸:200mm×320mm、天板部10のコーナ半径:5.0mm、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:335MPa(≧250MPa)、面粗さRmax:6.1μmであった。面粗さも素材の金属板100の値を実質的に維持していた。 As a result of performing multi-stage pressing under the above-mentioned conditions, Sample No. 6 has a metal molded body 1 that has no distortion such as torsion, no cracks at the corners, and good surface properties and appearance. . The obtained metal molded body 1 of Sample No. 6 has an outer dimension of the top plate part 10: 200 mm × 320 mm, a corner radius of the top plate part 10: 5.0 mm, an outer bending radius R = 0.3 mm (≦ top plate part 10 of a thickness t t = the thickness t 100 = 0.6 mm of the metal plate 100), substantially maintains the outer bend radius R 120 = 0.3 mm of the second mold component 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Further, the virtual angle θ between the top plate 10 and the wall 20: 40 °, the length along the virtual angle in the wall 20: 3 mm, the tensile strength at room temperature of the top plate 10: 335 MPa (≧ 250 MPa), The surface roughness Rmax was 6.1 μm. The surface roughness also substantially maintained the value of the metal plate 100 as the material.

一方、上述の条件で多段階のプレス加工を行った結果、試料No.7では、反りやねじれなどの歪みがあったものの(形状判定:歪み×)、コーナでの割れがなく、コーナ形状が良好な金属成形体1が得られた。反りやねじれは、成形の形状を最適化することで制御可能であり、実際に調整を行った結果、実用に供するレベルの金属成形体が得られることが確認できた。なお、得られた試料No.7の金属成形体1は、天板部10の外寸:200mm×320mm、天板部10のコーナ半径:5.0mm、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:335MPa(≧250MPa)、面粗さRmax:6.1μmであった。 On the other hand, as a result of performing multi-stage pressing under the above conditions, sample No. 7 had distortion such as warping and twisting (shape determination: distortion ×), but there was no crack at the corner and the corner shape was A good metal molded body 1 was obtained. Warpage and twisting can be controlled by optimizing the shape of the molding, and as a result of actual adjustment, it was confirmed that a metal molded body at a level for practical use was obtained. The obtained metal molded body 1 of sample No. 7 has an outer dimension of the top plate portion 10: 200 mm × 320 mm, a corner radius of the top plate portion 10: 5.0 mm, an outer bending radius R = 0.3 mm (≦ top plate a part thickness t t = the thickness t 100 = 0.6 mm of the metal plate 100 of 10) substantially maintain the outer bend radius R 120 = 0.3 mm of the second mold component 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Further, the virtual angle θ between the top plate 10 and the wall 20: 40 °, the length along the virtual angle in the wall 20: 3 mm, the tensile strength at room temperature of the top plate 10: 335 MPa (≧ 250 MPa), The surface roughness Rmax was 6.1 μm.

他方、上述の条件で多段階のプレス加工を行った結果、試料No.8では、反りやねじれなどの歪みがある上に、コーナに割れもある金属成形体1を得た(形状判定:コーナ形状×、歪み×)。但し、金属成形体1においてコーナ以外の稜線部分には、割れがない部分も得られており、試料No.8の種々の評価は、この割れがない部分を用いて行った。その結果、試料No.8の金属成形体1は、天板部10の外寸:200mm×320mm、天板部10のコーナ半径:5.0mm、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:335MPa(≧250MPa)、面粗さRmax:6.1μmであった。 On the other hand, as a result of performing multi-stage pressing under the above-mentioned conditions, in Sample No. 8, there was obtained a metal molded body 1 having distortions such as warping and twisting and cracks in the corner (shape determination: corner Shape x, distortion x). However, in the metal molded body 1, a portion having no crack was also obtained in the ridge line portion other than the corner, and various evaluations of Sample No. 8 were performed using the portion having no crack. As a result, the metal molded body 1 of sample No. 8 has an outer dimension of the top plate portion 10: 200 mm × 320 mm, a corner radius of the top plate portion 10: 5.0 mm, an outer bending radius R = 0.3 mm (≦ top plate portion 10 of a thickness t t = the thickness t 100 = 0.6 mm of the metal plate 100), substantially maintains the outer bend radius R 120 = 0.3 mm of the second mold component 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Further, the virtual angle θ between the top plate 10 and the wall 20: 40 °, the length along the virtual angle in the wall 20: 3 mm, the tensile strength at room temperature of the top plate 10: 335 MPa (≧ 250 MPa), The surface roughness Rmax was 6.1 μm.

<試料No.9〜12>
試料No.9〜12では、試料No.1に対して、組成の異なる金属板100を利用した。
<Sample Nos. 9-12>
In Samples Nos. 9 to 12, a metal plate 100 having a different composition from that of Sample No. 1 was used.

試料No.9では、ASTM規格のAZ91D合金相当の組成(Mg-9.0%Al-1.0%Zn、1%未満のMn,Fe,Si,Ni,Cuなどの添加元素及び不可避不純物を含む、全て質量%)にCaを1.0質量%添加したマグネシウム合金からなる金属板100(厚さ:0.6mm)を用意した。試料No.10では、ASTM規格のAZ91D合金相当の組成(Mg-9.0%Al-1.0%Zn、1%未満のMn,Fe,Si,Ni,Cuなどの添加元素及び不可避不純物を含む、全て質量%)にCaを2.0質量%添加したマグネシウム合金からなる金属板100(厚さ:0.6mm)を用意した。試料No.9,10の金属板100はいずれも、試料No.1と同様にして作製した。なお、試料No.9,10について、成形温度(ここでは250℃)における金属板100の引張強さ及び0.2%耐力を調べたところ、以下の通りであった。
試料No.9 引張強さ:61.0MPa、0.2%耐力:18.0MPa、0.2%耐力/引張強さ:0.30
試料No.10 引張強さ:61.5MPa、0.2%耐力:18.2MPa、0.2%耐力/引張強さ:0.30
Sample No. 9 has a composition equivalent to ASTM standard AZ91D alloy (Mg-9.0% Al-1.0% Zn, less than 1% including additive elements such as Mn, Fe, Si, Ni, Cu, and inevitable impurities). %), A metal plate 100 (thickness: 0.6 mm) made of a magnesium alloy with Ca added by 1.0 mass% was prepared. Sample No. 10 has a composition equivalent to ASTM standard AZ91D alloy (Mg-9.0% Al-1.0% Zn, less than 1% including additive elements such as Mn, Fe, Si, Ni, Cu and inevitable impurities) %), A metal plate 100 (thickness: 0.6 mm) made of a magnesium alloy in which 2.0 mass% of Ca was added was prepared. The metal plates 100 of Samples Nos. 9 and 10 were produced in the same manner as Sample No. 1. For sample Nos. 9 and 10, the tensile strength and 0.2% proof stress of the metal plate 100 at the forming temperature (250 ° C. in this case) were examined.
Sample No.9 Tensile strength: 61.0 MPa, 0.2% yield strength: 18.0 MPa, 0.2% yield strength / tensile strength: 0.30
Sample No. 10 Tensile strength: 61.5 MPa, 0.2% yield strength: 18.2 MPa, 0.2% yield strength / tensile strength: 0.30

用意した試料No.9,10の金属板100にそれぞれ、試料No.1と同様の手順・条件で多段階の温間プレス加工を施し、金属成形体1を作製した。試料No.9,10のいずれも、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。得られた試料No.9,10の金属成形体1はいずれも、天板部10の外寸:200mm×320mm、天板部10のコーナ半径:5.0mm、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:332MPa(試料No.9)、330MPa(試料No.10)、面粗さRmax:6.1μmであった。面粗さも素材の金属板100の値を実質的に維持していた。 Each of the prepared metal plates 100 of Samples Nos. 9 and 10 was subjected to multi-stage warm pressing in the same procedure and conditions as Sample No. 1 to produce a metal compact 1. Samples Nos. 9 and 10 were both free from distortion such as torsion, cracked at the corners, and obtained a metal molded body 1 having good surface properties and appearance. Each of the obtained metal molded bodies 1 of Sample Nos. 9 and 10 has an outer dimension of the top plate portion 10: 200 mm × 320 mm, a corner radius of the top plate portion 10: 5.0 mm, an outer bending radius R = 0.3 mm (≦ a thickness t t = the thickness t 100 = 0.6 mm of the metal plate 100) of the top plate portion 10, substantially maintains the outer bend radius R 120 = 0.3 mm of the second mold component 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Further, the virtual angle θ between the top plate 10 and the wall 20: 40 °, the length along the virtual angle in the wall 20: 3 mm, the tensile strength at room temperature of the top 10: 332 MPa (Sample No. 9 ), 330 MPa (Sample No. 10), and surface roughness Rmax: 6.1 μm. The surface roughness also substantially maintained the value of the metal plate 100 as the material.

試料No.11,12では、金属板100として、市販のアルミニウム合金板(JIS合金番号A5052合金相当の組成を有するもの、厚さ:0.6mm、面粗さRmax:4.1μm)を用意した。用意したアルミニウム合金板の成形温度(ここでは250℃、又は室温(25℃))における引張強さ及び0.2%耐力を調べたところ、以下の通りであった。
250℃ 引張強さ:48.4MPa、0.2%耐力:14.4MPa、0.2%耐力/引張強さ:0.30
室温 引張強さ:251MPa、0.2%耐力:215MPa、0.2%耐力/引張強さ:0.86
In Samples Nos. 11 and 12, a commercially available aluminum alloy plate (having a composition equivalent to JIS alloy number A5052 alloy, thickness: 0.6 mm, surface roughness Rmax: 4.1 μm) was prepared as the metal plate 100. The tensile strength and 0.2% proof stress at the forming temperature (250 ° C. or room temperature (25 ° C.)) of the prepared aluminum alloy plate were examined.
250 ℃ Tensile strength: 48.4MPa, 0.2% yield strength: 14.4MPa, 0.2% yield strength / tensile strength: 0.30
Room temperature Tensile strength: 251 MPa, 0.2% yield strength: 215 MPa, 0.2% yield strength / tensile strength: 0.86

試料No.11では、用意した金属板100に試料No.1と同様の手順・条件で多段階の温間プレス加工を施し、金属成形体1を作製した。その結果、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。得られた試料No.11の金属成形体1は、天板部10の外寸:200mm×320mm、天板部10のコーナ半径:5.0mm、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:251MPa(≧250MPa)、面粗さRmax:4.1μmであった。面粗さも素材の金属板100の値を実質的に維持していた。 In Sample No. 11, the metal sheet 100 was prepared by subjecting the prepared metal plate 100 to multi-stage warm pressing in the same procedure and conditions as in Sample No. 1. As a result, a metal molded body 1 having no distortion such as torsion, no cracks at the corners, and good surface properties and appearance was obtained. The obtained metal molded body 1 of sample No. 11 has an outer dimension of the top plate portion 10: 200 mm × 320 mm, a corner radius of the top plate portion 10: 5.0 mm, an outer bending radius R = 0.3 mm (≦ top plate portion 10 of a thickness t t = the thickness t 100 = 0.6 mm of the metal plate 100), substantially maintains the outer bend radius R 120 = 0.3 mm of the second mold component 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Furthermore, the virtual angle θ between the top plate portion 10 and the wall portion 20: 40 °, the length along the virtual angle in the wall portion 20: 3 mm, the tensile strength at room temperature of the top plate portion 10: 251 MPa (≧ 250 MPa), The surface roughness Rmax was 4.1 μm. The surface roughness also substantially maintained the value of the metal plate 100 as the material.

一方、試料No.12では、試料No.1に対して、成形温度を異ならせた。具体的には室温(25℃)とし、多段階の冷間プレス加工とした。その他の条件は、試料No.1と同様とした。   On the other hand, in sample No. 12, the molding temperature was different from that of sample No. 1. Specifically, the temperature was set to room temperature (25 ° C.), and multistage cold pressing was performed. The other conditions were the same as for sample No. 1.

上述の条件で多段階のプレス加工を行った結果、試料No.12では、ねじれなどの歪みがなく、コーナでの割れがなく、良好な表面性状・外観を有する金属成形体1が得られた。但し、コーナに関しては、コーナ先端部分(アール部分)から壁部側に少し離れた部分では、意図する形状から少しずれた形状であることが確認された(形状判定:コーナ△)。より詳細には、上パンチ95において加工面となる傾斜面96から離れるような形状でずれていることが確認された。しかし、目標とする形状や規格、金属成形体の生産性などを考慮すれば、十分に実用に供するレベルであると考えられる。なお、試料No.12の金属成形体1は、天板部10の外寸:200mm×320mm、天板部10のコーナ半径:5.0mm、外側曲げ半径R=0.3mm(≦天板部10の厚さtt=金属板100の厚さt100=0.6mm)であり、第二成形体120の外側曲げ半径R120=0.3mmを実質的に維持している。また、天板部10の厚さtt:0.6mm=壁部20の厚さtl:0.6mmであり、素材に用いた金属板100の厚さを実質的に維持している。更に、天板部10と壁部20との仮想角θ:40°、壁部20において仮想角に沿った長さ:3mm、天板部10の室温における引張強さ:251MPa(≧250MPa)、面粗さRmax:4.1μmであった。面粗さも素材の金属板100の値を実質的に維持していた。 As a result of performing multi-stage press processing under the above-mentioned conditions, Sample No. 12 was free from distortion such as torsion, cracked at the corner, and obtained a metal molded body 1 having good surface properties and appearance. . However, regarding the corner, it was confirmed that the portion slightly away from the corner tip portion (R portion) toward the wall portion has a shape slightly deviated from the intended shape (shape determination: corner Δ). More specifically, it has been confirmed that the upper punch 95 is displaced in a shape away from the inclined surface 96 that is the processing surface. However, considering the target shape and standard, the productivity of the metal molded body, etc., it is considered that the level is sufficiently practical. The metal molded body 1 of sample No. 12 has an outer dimension of the top plate 10: 200 mm × 320 mm, a corner radius of the top plate 10: 5.0 mm, an outer bending radius R = 0.3 mm (≦ top plate 10 a thickness t t = the thickness t 100 = 0.6 mm of the metal plate 100), substantially maintains the outer bend radius R 120 = 0.3 mm of the second mold component 120. Further, the thickness t t of the top plate portion 10 is 0.6 mm = the thickness t l of the wall portion 20 is 0.6 mm, and the thickness of the metal plate 100 used as the material is substantially maintained. Furthermore, the virtual angle θ between the top plate portion 10 and the wall portion 20: 40 °, the length along the virtual angle in the wall portion 20: 3 mm, the tensile strength at room temperature of the top plate portion 10: 251 MPa (≧ 250 MPa), The surface roughness Rmax was 4.1 μm. The surface roughness also substantially maintained the value of the metal plate 100 as the material.

試料No.1〜12の組成、製造条件、金属板の物性・金属成形体の物性などを表1〜表3にまとめて示す。   Tables 1 to 3 collectively show the composition, production conditions, physical properties of the metal plate, physical properties of the metal molded body, and the like of Sample Nos. 1 to 12.

Figure 0006029085
Figure 0006029085

Figure 0006029085
Figure 0006029085

Figure 0006029085
Figure 0006029085

表1〜3に示すように、試料No.1〜12(好ましくは試料No.1〜6,No.9〜12)の金属成形体1はいずれも、上述のように角部15の外側曲げ半径Rが天板部10の厚さtt以下であることから、スタイリッシュ感があり、美観に優れる。この角部15は、上述のようにプレス加工といった塑性加工によって成形されることで、加工硬化によって、剛性に優れる上に、塑性加工によって成形されることで、延性を有し、外力に対して割れ難い特徴を有する。また、金属成形体1は、壁部20が天板部10の内側に向かって傾斜した形状であることから、上蓋などの外装部材に利用する場合に、壁部20の外表面を指の引っ掛かりなどに利用して、開動作を容易に行うことができると期待される。更に、金属成形体1は、壁部20の厚さtlが一様で、かつ天板部10の厚さttと同等又はそれ以上の厚さであることから、壁部20を天板部10の補強材として十分に機能させられる上に、壁部20自体が剛性に優れることで、角部15の剛性を更に高められ、角部15が鋭利な状態を維持し易い。従って、金属成形体1は、長期に亘り、スタイリッシュ感を有することができる。その他、この例に示す金属成形体1は、厚さが0.6mm程度と薄いことで、薄型、軽量の筐体やカバーなどの部材を構築することができる。 As shown in Tables 1 to 3, each of the metal molded bodies 1 of sample Nos. 1 to 12 (preferably sample Nos. 1 to 6 and Nos. 9 to 12) is bent outside the corner 15 as described above. Since the radius R is equal to or less than the thickness t t of the top plate part 10, there is a sense of stylishness and excellent aesthetics. The corner portion 15 is formed by plastic working such as press working as described above, and is excellent in rigidity by work hardening, and has ductility by being formed by plastic working, and is resistant to external force. It has characteristics that are difficult to break. In addition, since the metal molded body 1 has a shape in which the wall portion 20 is inclined toward the inside of the top plate portion 10, when used for an exterior member such as an upper lid, the outer surface of the wall portion 20 is caught by a finger. It is expected that the opening operation can be performed easily. Further, since the metal molded body 1 has a uniform thickness t l of the wall portion 20 and is equal to or greater than a thickness t t of the top plate portion 10, the wall portion 20 is attached to the top plate. In addition to being sufficiently functioned as a reinforcing material for the portion 10, the rigidity of the corner portion 15 can be further increased by the excellent rigidity of the wall portion 20 itself, and the corner portion 15 can easily maintain a sharp state. Therefore, the metal molded body 1 can have a stylish feeling for a long time. In addition, since the metal molded body 1 shown in this example is as thin as about 0.6 mm, it is possible to construct a thin and lightweight member such as a casing or a cover.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。   In addition, this invention is not limited to embodiment mentioned above, It can change suitably in the range which does not deviate from the summary of this invention.

本発明の金属成形体は、各種の電子・電気機器の筐体やカバーといった外装部材に好適に利用することができる。特に、本発明の金属成形体は、ノート型パーソナルコンピュータ、携帯電話に代表される携帯用情報端末、携帯型ゲーム機、デジタルカメラといった携帯用電子・電気機器類において、液晶素子、EL素子、プラズマ素子といった表示素子を具える表示パネルを支持する筐体(上蓋や下筐体など)などに好適に利用することができる。本発明の金属成形体の製造方法は、角部が鋭利で、角部近傍の剛性が高い本発明の金属成形体の製造に好適に利用することができる。   The metal molded body of the present invention can be suitably used for exterior members such as housings and covers of various electronic and electrical devices. In particular, the metal molded body of the present invention is used for liquid crystal elements, EL elements, plasmas in portable electronic / electrical devices such as notebook personal computers, portable information terminals represented by mobile phones, portable game machines, and digital cameras. It can be suitably used for a casing (such as an upper lid or a lower casing) that supports a display panel including a display element such as an element. The method for producing a metal molded body of the present invention can be suitably used for the production of the metal molded body of the present invention having sharp corners and high rigidity near the corners.

1 金属成形体 10 天板部 15 角部 20 壁部
100 金属板
110 第一成形体 111 天板部 113 壁部 115 角部
117 フランジ部
120 (第二)成形体 121 天板部 123 壁部 125 角部
130 成形体 131 天板部 133 壁部 135 角部
50 第一金型 51 上パンチ 53 下パッド 55 しわ押さえ 57 ダイ
70 第二金型 71 天板上パッド 73 下パンチ 75 上パンチ
76 段差部 77 ガイド
90 第三金型 91 天板上パッド 93 下パンチ 95 上パンチ
96 傾斜面 97 ガイド
200 金型 201 天板上パッド 202 分割上パッド 203 下パンチ
205 上パンチ 207 ガイド 206,210,220,223 傾斜面
1 Metal molding 10 Top plate 15 Corner 20 Wall
100 metal plate
110 First molded body 111 Top plate 113 Wall 115 Corner
117 Flange
120 (2nd) Molded body 121 Top plate part 123 Wall part 125 Corner part
130 Molded body 131 Top plate part 133 Wall part 135 Corner part
50 First mold 51 Upper punch 53 Lower pad 55 Wrinkle retainer 57 Die
70 Second mold 71 Top pad 73 Lower punch 75 Upper punch
76 Step 77 Guide
90 Third mold 91 Top plate pad 93 Lower punch 95 Upper punch
96 Inclined surface 97 Guide
200 Mold 201 Top pad 202 Split upper pad 203 Lower punch
205 Upper punch 207 Guide 206,210,220,223 Inclined surface

Claims (6)

金属板からなる天板部と、前記天板部に繋がり、前記天板部に対して立設された壁部とを具える金属成形体であって、
前記天板部の外表面と前記壁部の外表面とを繋ぐ角部の外側曲げ半径をR、前記天板部の厚さをttとするとき、前記外側曲げ半径Rは前記厚さtt以下であり、
前記角部は、前記天板部の外表面の延長面と前記壁部の外表面の延長面とがつくる仮想角が90°未満である部分を有し、
前記壁部の厚さが前記天板部の厚さ以上であり、
前記壁部において前記仮想角に沿った長さが10mm以下である金属成形体。
A metal molded body comprising a top plate portion made of a metal plate, and a wall portion connected to the top plate portion and erected with respect to the top plate portion,
When the outer bending radius of the corner portion connecting the outer surface of the top plate portion and the outer surface of the wall portion is R, and the thickness of the top plate portion is t t , the outer bending radius R is the thickness t. t or less,
The corner portion has a portion where an imaginary angle formed by an extended surface of the outer surface of the top plate portion and an extended surface of the outer surface of the wall portion is less than 90 °,
Ri Der thickness of the wall portion is greater than or equal to the thickness of the top plate portion,
A metal molded body having a length along the virtual angle of 10 mm or less in the wall portion .
前記外側曲げ半径Rが0.3mm以下である請求項1に記載の金属成形体。   2. The metal molded body according to claim 1, wherein the outer bending radius R is 0.3 mm or less. マグネシウム、マグネシウム合金、アルミニウム、及びアルミニウム合金から選択される1種の金属から構成されている請求項1又は請求項2に記載の金属成形体。 3. The metal molded body according to claim 1 , wherein the metal molded body is composed of one kind of metal selected from magnesium, a magnesium alloy, aluminum, and an aluminum alloy. 前記厚さttが3.0mm以下である請求項1から請求項3のいずれか1項に記載の金属成形体。 4. The metal molded body according to claim 1, wherein the thickness t t is 3.0 mm or less. 前記天板部の室温における引張強さが250MPa以上である請求項1から請求項4のいずれか1項に記載の金属成形体。 5. The metal molded body according to claim 1, wherein the top plate portion has a tensile strength at room temperature of 250 MPa or more. 金属板にプレス加工を施して金属成形体を製造する金属成形体の製造方法であって、
一様な厚さの金属板にプレス加工を施して、天板部と、この天板部に対して立設され、互いに対向する壁部とを具える第一成形体を形成する第一プレス工程と、
前記天板部の外表面と前記壁部の外表面とを繋ぐ角部の外側曲げ半径が前記天板部の厚さ以下となるように前記第一成形体にプレス加工を施して第二成形体を形成する第二プレス工程と、
前記第二成形体の内側に柱状金型を配置した状態で、前記第二成形体に具える壁部の外表面に別の金型を押し付けて、前記別の金型に有する所定の傾斜面に沿って前記壁部を前記第二成形体の内側に向かって傾斜させて、金属成形体を形成する第三プレス工程とを具え、
前記第三プレス工程では、前記第二成形体に具える壁部の内面に前記柱状金型の外周面が接しないように前記壁部の内面との間に隙間をあけて前記柱状金型を配置して、前記第二成形体の角部を含む前記壁部の内面全域を前記柱状金型によって支持しない状態で、前記壁部の外表面を前記第二成形体の内側に向かって押し付ける金属成形体の製造方法。
A metal molded body manufacturing method for manufacturing a metal molded body by pressing a metal plate,
Is subjected to press working on a metal plate of uniform thickness, a top plate portion, erected against the top plate portion, the first press forming a first molded body Ru comprising a wall portion that face each other Process,
Second molding is performed by pressing the first molded body so that the outer bending radius of the corner portion connecting the outer surface of the top plate portion and the outer surface of the wall portion is equal to or less than the thickness of the top plate portion. A second pressing step for forming a body;
In a state where the columnar mold is disposed inside the second molded body, another mold is pressed against the outer surface of the wall provided in the second molded body, and the predetermined inclined surface of the other mold is provided. And a third pressing step of forming a metal molded body by inclining the wall portion toward the inside of the second molded body along the line,
In the third pressing step, the columnar mold is formed with a gap between the inner surface of the wall part so that the outer peripheral surface of the columnar mold does not contact the inner surface of the wall part included in the second molded body. A metal that is arranged and presses the outer surface of the wall portion toward the inside of the second molded body in a state where the entire inner surface of the wall portion including the corner portion of the second molded body is not supported by the columnar mold. Manufacturing method of a molded object.
JP2012212838A 2012-09-26 2012-09-26 Metal molded body and method for producing metal molded body Expired - Fee Related JP6029085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212838A JP6029085B2 (en) 2012-09-26 2012-09-26 Metal molded body and method for producing metal molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212838A JP6029085B2 (en) 2012-09-26 2012-09-26 Metal molded body and method for producing metal molded body

Publications (2)

Publication Number Publication Date
JP2014065064A JP2014065064A (en) 2014-04-17
JP6029085B2 true JP6029085B2 (en) 2016-11-24

Family

ID=50741968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212838A Expired - Fee Related JP6029085B2 (en) 2012-09-26 2012-09-26 Metal molded body and method for producing metal molded body

Country Status (1)

Country Link
JP (1) JP6029085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043962A (en) * 2017-11-29 2018-05-18 艾来得科技(苏州)有限公司 A kind of bending forming mechanism

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116940A1 (en) * 2016-12-21 2018-06-28 住友電気工業株式会社 Magnesium alloy
CN107096833A (en) * 2017-03-15 2017-08-29 深圳市安普旭电子科技有限公司 A kind of four Edge Bend moulds
KR102050588B1 (en) * 2017-09-26 2019-12-03 (주)티에스이 Manufacturing method of mobile phone metal case formed by banding and process using cam cype mold
CN108465738A (en) * 2018-05-29 2018-08-31 苏州宝成汽车冲压有限公司 Fuel injection system continuous mould blank is molded synchronizing device
CN114951402B (en) * 2022-08-03 2022-10-21 成都工业职业技术学院 Forming device of computer shell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010268A (en) * 1973-05-31 1975-02-01
JP2010069504A (en) * 2008-09-18 2010-04-02 Sumitomo Electric Ind Ltd Pressed body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043962A (en) * 2017-11-29 2018-05-18 艾来得科技(苏州)有限公司 A kind of bending forming mechanism

Also Published As

Publication number Publication date
JP2014065064A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP6029085B2 (en) Metal molded body and method for producing metal molded body
KR20160020585A (en) Pressed product
JP6065346B2 (en) Magnesium alloy press-molded body, magnesium alloy rolled plate, method for producing magnesium alloy molded body, and method for producing magnesium alloy plate
KR101324715B1 (en) A method for increasing formability of magnesium alloy sheet and magnesium alloy sheet prepared by the same method
JP5374993B2 (en) Magnesium alloy molded body and method for producing magnesium alloy molded body
US20080075624A1 (en) Magnesium alloy sheet processing method and magnesium alloy sheet
JP2011006754A (en) Magnesium alloy sheet
WO2011004672A1 (en) Magnesium alloy plate
JP6019960B2 (en) Metal molded body and method for producing metal molded body
JPWO2017047601A1 (en) Panel-shaped molded product and manufacturing method thereof
CN109097640B (en) Manufacturing method of etchable high-strength aluminum for middle plate of mobile phone
CN105026143A (en) Clad automotive body panel with sharp character lines
CN110527878B (en) Manufacturing method of aluminum alloy special for notebook computer
Mori et al. Two-stage cold stamping of magnesium alloy cups having small corner radius
JP2014221493A (en) Press body
CN106900157A (en) Miniaturized electronics housing and its forming method and the aluminium alloy for miniaturized electronics housing roll sheet material
JP2020075258A (en) Press molding method
JP2022119601A (en) Aluminium alloy plate processing method
CN112458345B (en) Manufacturing method of pen-level panel high-strength alumina 6S50
CN105779917B (en) A kind of preparation method of wide cut fine grain magnesium alloy ultrathin plate
JP2014176883A (en) Automobile panel press molding method
WO2006046320A1 (en) Case made of magnesium alloy
JP2021079408A (en) Press forming metallic mold
JPH0751247B2 (en) Overhanging / drawing method of amorphous metal foil
JP2008149351A (en) Method for press-forming metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6029085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161009

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees