JP6028296B2 - Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell - Google Patents
Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell Download PDFInfo
- Publication number
- JP6028296B2 JP6028296B2 JP2012027276A JP2012027276A JP6028296B2 JP 6028296 B2 JP6028296 B2 JP 6028296B2 JP 2012027276 A JP2012027276 A JP 2012027276A JP 2012027276 A JP2012027276 A JP 2012027276A JP 6028296 B2 JP6028296 B2 JP 6028296B2
- Authority
- JP
- Japan
- Prior art keywords
- ring
- dye
- photosensitizing dye
- substituted
- oxide semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
本発明は緑色の新規光増感色素ならびに該色素を含む金属酸化物半導体電極および該色素を含む色素増感太陽電池に関するものである。 The present invention relates to a novel green photosensitizing dye, a metal oxide semiconductor electrode containing the dye, and a dye-sensitized solar cell containing the dye.
化石燃料の枯渇およびその燃焼による地球温暖化に伴い、これに替わる新エネルギーの開発が急務になってきている。太陽エネルギーは次世代の持続的発展を支えるに十分なポテンシャルを有するクリーンで環境にやさしいエネルギー源である。太陽エネルギーを電気に変換する方法としてはシリコン系の半導体太陽電池が開発されてきている。しかし、ここで使用されるシリコンは非常に高純度である必要があり、この精製工程に費やされる多大なエネルギーと複雑な工程のため高い製造コストが要求される。 With the depletion of fossil fuels and the global warming caused by their combustion, the development of new energy alternatives has become an urgent task. Solar energy is a clean and environmentally friendly energy source with sufficient potential to support the next generation of sustainable development. Silicon-based semiconductor solar cells have been developed as a method for converting solar energy into electricity. However, the silicon used here needs to have a very high purity, and a high production cost is required because of the enormous amount of energy and complicated processes that are consumed in the purification process.
色素増感太陽電池は、比較的高い変換効率を有し、従来型の太陽電池と比べ低コストであるため、現在、学問的また営業的に広く注目されてきている。特に、1991年にグレッツェルらが報告したこの色素増感太陽電池は、光電変換効率が10〜11%に達してきている。これはナノチタニア粒子表面に色素を吸着することにより、可視光領域の光を吸収することを可能にするものであり、色素の役割は光捕集作用を有することから特に重要である。このような色素としては、N3と呼ばれるシス−ビス(イソチオシアナト)−ビス(2,2’−ビピリジン−4,4’−カルボキシレート)ルテニウム(II)、N719と呼ばれるシス−ビス(イソチオシアナト)−ビス(2,2’−ビピリジン−4,4’−カルボキシレート)ルテニウム(II)ビス(テトラn−ブチルアンモニウム)およびZ907と呼ばれるシス−ビス(イソチオシアナト)−(2,2’−ビピリジン−4,4’−カルボキシレート)−(2,2’−ビピリジン−4,4’−ジノニル)ルテニウム(II)がよく知られている。 Since dye-sensitized solar cells have a relatively high conversion efficiency and are lower in cost than conventional solar cells, they are currently attracting widespread academic and commercial attention. In particular, this dye-sensitized solar cell reported by Gretzell et al. In 1991 has reached a photoelectric conversion efficiency of 10 to 11%. This makes it possible to absorb light in the visible light region by adsorbing the dye on the surface of the nanotitania particles, and the role of the dye is particularly important since it has a light collecting action. Such dyes include cis-bis (isothiocyanato) -bis (2,2′-bipyridine-4,4′-carboxylate) ruthenium (II) called N3, cis-bis (isothiocyanato) -bis called N719. (2,2′-Bipyridine-4,4′-carboxylate) ruthenium (II) bis (tetra n-butylammonium) and cis-bis (isothiocyanato)-(2,2′-bipyridine-4,4) called Z907 '-Carboxylate)-(2,2'-bipyridine-4,4'-dinonyl) ruthenium (II) is well known.
また、色素増感太陽電池は、シリコン系半導体太陽電池と異なり、複数の色素を用いることでセルの多色化が可能となる。 In addition, unlike a silicon-based semiconductor solar cell, a dye-sensitized solar cell can be multicolored by using a plurality of dyes.
しかしながら、従来、色素増感太陽電池に用いられてきた色素は主にポリピリジンRu系色素であり、その大部分は赤色を示す(特許文献1〜4)。 However, the dyes conventionally used in dye-sensitized solar cells are mainly polypyridine Ru-based dyes, most of which show red (Patent Documents 1 to 4).
本発明の目的は、セルの多色化に寄与し、かつ良好な光電変換効率を有する新規な緑色光増感色素、これを酸化物半導体上に吸着させた金属酸化物半導体電極、および該酸化物半導体電極を用いた色素増感太陽電池を提供することを目的とする。 An object of the present invention is to provide a novel green light sensitizing dye that contributes to multicolorization of cells and has a good photoelectric conversion efficiency, a metal oxide semiconductor electrode in which this is adsorbed on an oxide semiconductor, and the oxidation It is an object to provide a dye-sensitized solar cell using a semiconductor electrode.
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、下記式(1)の構造を有する化合物が、良好な光電変換効率を有する緑色の太陽電池用光増感色素であることを見出し、本発明を完成するにいたった。 As a result of intensive studies to achieve the above object, the present inventor has found that the compound having the structure of the following formula (1) is a green solar cell photosensitizing dye having good photoelectric conversion efficiency. The headline and the present invention were completed.
(式(1)中、Aは共役系であり、Bは構造式b1−b2またはb1−b2−b3からなり、前記b1、b2、およびb3は、それぞれ無置換もしくは置換されたアリールまたは無置換もしくは置換されたヘテロアリールから選択され、前記Bは少なくとも一の前記アリールおよび少なくとも一の前記ヘテロアリールを含み、RはC1−20のアルキルまたはC1−C20のアルコキシである。) (In the formula (1), A is a conjugated system, B consists of structural formula b 1 -b 2 or b 1 -b 2 -b 3, wherein b 1, b 2, and b 3 are each unsubstituted Or selected from substituted aryl or unsubstituted or substituted heteroaryl, wherein B comprises at least one aryl and at least one heteroaryl, wherein R is C1-20 alkyl or C1-C20 alkoxy is there.)
本発明の光増感色素を用いた太陽電池は、緑色のセルと良好な光電変換効率を有することができる。 The solar cell using the photosensitizing dye of the present invention can have a green cell and good photoelectric conversion efficiency.
本発明は、光増感色素ならびにそれを用いた酸化物半導体電極および太陽電池に関する。以下、本発明の好適な実施形態について詳細に説明する。なお、以下に示す実施形態は、本発明の単なる一例であって、当業者であれば、適宜設計変更可能である。 The present invention relates to a photosensitizing dye, and an oxide semiconductor electrode and a solar cell using the same. Hereinafter, preferred embodiments of the present invention will be described in detail. The following embodiment is merely an example of the present invention, and those skilled in the art can change the design as appropriate.
(光増感色素)
本発明の光増感色素は、下記式(1)の構造を有する。
(Photosensitizing dye)
The photosensitizing dye of the present invention has a structure represented by the following formula (1).
(式(1)中、Aは共役系であり、Bは構造式b1−b2またはb1−b2−b3からなり、前記b1、b2、およびb3は、それぞれ無置換もしくは置換されたアリールまたは無置換もしくは置換されたヘテロアリールから選択され、前記Bは少なくとも一の前記アリールおよび少なくとも一の前記ヘテロアリールを含み、RはC1−20のアルキルまたはC1−C20のアルコキシである。) (In the formula (1), A is a conjugated system, B consists of structural formula b 1 -b 2 or b 1 -b 2 -b 3, wherein b 1, b 2, and b 3 are each unsubstituted Or selected from substituted aryl or unsubstituted or substituted heteroaryl, wherein B comprises at least one aryl and at least one heteroaryl, wherein R is C1-20 alkyl or C1-C20 alkoxy is there.)
本発明の光増感色素は、中心金属としてZn2+イオンが配位したポルフィリン骨格を有する。 The photosensitizing dye of the present invention has a porphyrin skeleton in which Zn 2+ ions are coordinated as a central metal.
前記式(1)中、Aは共役系である。これらに限定されないが、Aは、無置換または置換されたアルケン、アルキン、アリール、およびヘテロアリールであってもよい。前記Aのアルケンの具体例は、エチレン、ブテン、ヘキセン、オクテン、デセン、ドデセンなどを含む。また、前記Aのアルキンの具体例は、エチン、ブチン、ヘキシンなどを含む。前記Aのアリールとしては、これらに限定されないが、フェニレン環およびナフタレン環を含み、前記Aのへテロアリールとしては、チオフェン環、ピロール環、フラン環、イミダゾール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環などの5員環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、1,2,3−トリアジン環などの6員環を含む。好ましくは、単環式のアリールまたはヘテロアリールである。 In the formula (1), A is a conjugated system. Although not limited thereto, A may be unsubstituted or substituted alkene, alkyne, aryl, and heteroaryl. Specific examples of the alkene of A include ethylene, butene, hexene, octene, decene, dodecene and the like. Specific examples of the alkyne of A include ethyne, butyne, hexyne and the like. The aryl of A includes, but is not limited to, a phenylene ring and a naphthalene ring, and the heteroaryl of A includes a thiophene ring, a pyrrole ring, a furan ring, an imidazole ring, a pyrazole ring, an oxazole ring, and an isoxazole ring. , 5-membered rings such as thiazole ring and isothiazole ring, and 6-membered rings such as pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring and 1,2,3-triazine ring. Preferably, it is monocyclic aryl or heteroaryl.
前記Aは置換基として、分岐を含んでもよいC1〜20のアルキル、C1〜20のアルコキシ、ハロゲンを有してもよい。 Said A may have a C1-20 alkyl which may contain a branch, C1-20 alkoxy, and a halogen as a substituent.
前記式(1)中、Bは構造式b1−b2またはb1−b2−b3からなり、前記b1、b2、およびb3は、それぞれ無置換もしくは置換されたアリールまたは無置換もしくは置換されたヘテロアリールから選択され、前記Bは少なくとも一の前記アリールおよび少なくとも一の前記ヘテロアリールを含む。前記Bのアリールの例には、フェニレン環およびナフタレン環を含む。また前記Bのへテロアリールの例には、チオフェン環、ピロール環、フラン環、イミダゾール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環などの5員環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、1,2,3−トリアジン環などの6員環、キノリン環、イソキノリン環、キナゾリン環、フタラジン環、プテリジン環、クマリン環、クロモン環、1,4−ベンゾジアゼピン環、インドール環、ベンズイミダゾール環、ベンゾフラン環、プリン環、アクリジン環、フェノキサジン環、フェノチアジン環などの多環式へテロ環を含む。 In the formula (1), B comprises the structural formula b 1 -b 2 or b 1 -b 2 -b 3 , and the b 1 , b 2 , and b 3 are each an unsubstituted or substituted aryl or non-substituted Selected from substituted or substituted heteroaryl, said B comprises at least one said aryl and at least one said heteroaryl. Examples of the aryl of B include a phenylene ring and a naphthalene ring. Examples of the heteroaryl of B include a thiophene ring, a pyrrole ring, a furan ring, an imidazole ring, a pyrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, and the like, a pyridine ring, and a pyrimidine ring. , Pyridazine ring, pyrazine ring, 6-membered ring such as 1,2,3-triazine ring, quinoline ring, isoquinoline ring, quinazoline ring, phthalazine ring, pteridine ring, coumarin ring, chromone ring, 1,4-benzodiazepine ring, indole And a polycyclic hetero ring such as a ring, a benzimidazole ring, a benzofuran ring, a purine ring, an acridine ring, a phenoxazine ring and a phenothiazine ring.
前記Bのアリールまたはヘテロアリールは置換基を有してもよく、これらに限定されないが、分岐を含んでもよいC1〜20のアルキル、C1〜20のアルコキシ、およびハロゲンにより置換されてもよい。 The aryl or heteroaryl of B may have a substituent, but is not limited thereto, and may be substituted with C1-20 alkyl, C1-20 alkoxy, and halogen which may include a branch.
前記式(1)中、Rは分岐を含んでもよいC1−20のアルキルまたはC1−C20のアルコキシである。 In the formula (1), R is a C1-20 alkyl or C1-C20 alkoxy which may contain a branch.
式(1)を有する本願発明の光増感色素は、例えば、以下の化合物A〜Cを含む。なお、本発明の光増感色素の製造方法に関しては、以下に示す実施例において具体的に詳述する。 The photosensitizing dye of the present invention having the formula (1) includes, for example, the following compounds A to C. In addition, regarding the manufacturing method of the photosensitizing dye of this invention, it explains in full detail in the Example shown below.
(金属酸化物半導体電極)
本発明は、さらに該光増感色素を用いた金属酸化物半導体電極に関する。本発明の金属酸化物半導体電極は、上述した本発明の光増感色素を金属酸化物半導体の電極の表面に吸着させたものである。この金属酸化物半導体電極は、好ましくは多孔質電極とする。これによって、前記電極の実質的な表面積を増大させることができ、前記電極への光増感色素の吸着量を増大させて、前記金属酸化物半導体電極を含む太陽電池の光電変換効率を増大させることができるようになる。
(Metal oxide semiconductor electrode)
The present invention further relates to a metal oxide semiconductor electrode using the photosensitizing dye. The metal oxide semiconductor electrode of the present invention is obtained by adsorbing the above-described photosensitizing dye of the present invention on the surface of a metal oxide semiconductor electrode. This metal oxide semiconductor electrode is preferably a porous electrode. Accordingly, the substantial surface area of the electrode can be increased, the amount of photosensitizing dye adsorbed on the electrode can be increased, and the photoelectric conversion efficiency of the solar cell including the metal oxide semiconductor electrode can be increased. Will be able to.
本発明の金属酸化物半導体には、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、またはチタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、もしくはニオブ酸カリウムなどのぺロブスカイト構造を有する化合物を用いることができる。 The metal oxide semiconductor of the present invention includes titanium, tin, zinc, iron, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, or tantalum oxide, or strontium titanate, titanium. A compound having a perovskite structure such as calcium oxide, sodium titanate, barium titanate, or potassium niobate can be used.
該光増感色素を金属酸化物半導体薄膜上に吸着させる方法としては、任意の公知の方法を用いることができる。たとえば、二酸化チタン等の金属酸化物半導体薄膜を本発明の光増感色素溶液に所定の温度で浸漬する方法(ディップ法、ローラ法、エヤーナイフ法など)や、該光増感色素溶液を金属酸化物半導体層状面に塗布する方法(ワイヤーバー法、アプリケーション法、スピン法、スプレー法、オフセット印刷法、スクリーン印刷法など)を挙げることができる。 Any known method can be used as a method for adsorbing the photosensitizing dye on the metal oxide semiconductor thin film. For example, a method of immersing a metal oxide semiconductor thin film such as titanium dioxide in the photosensitizing dye solution of the present invention at a predetermined temperature (dip method, roller method, air knife method, etc.), or metal oxidation of the photosensitizing dye solution Examples thereof include a method of applying to a semiconductor layered surface (wire bar method, application method, spin method, spray method, offset printing method, screen printing method, etc.).
(色素増感太陽電池)
本発明はさらに、透明電極1、上記金属酸化物半導体電極2、電解質3、および対電極4を含む色素増感太陽電池に関する(図1参照)。
(Dye-sensitized solar cell)
The present invention further relates to a dye-sensitized solar cell including the transparent electrode 1, the metal oxide semiconductor electrode 2, the electrolyte 3, and the counter electrode 4 (see FIG. 1).
透明電極1は、透明基板上に透明導電層を形成して構成される(図示せず)。透明基板は、汎用のガラス基板、石英基板、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、およびポリエチレンなどの透明プラスチック基板を用いることができる。透明導電層は、酸化スズ、フッ素ドープ酸化スズ、ITO、ATO、酸化亜鉛、アルミドープ酸化亜鉛、またはこれらの表面に酸化スズもしくはフッ素ドープ酸化スズの皮膜を設けた光透過性の透明導電層から構成することができる。 The transparent electrode 1 is configured by forming a transparent conductive layer on a transparent substrate (not shown). As the transparent substrate, a general-purpose glass substrate, quartz substrate, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethylene, and other transparent plastic substrates can be used. The transparent conductive layer is composed of tin oxide, fluorine-doped tin oxide, ITO, ATO, zinc oxide, aluminum-doped zinc oxide, or a light-transmissive transparent conductive layer in which a coating of tin oxide or fluorine-doped tin oxide is provided on the surface thereof. Can be configured.
電解質3としては、固体状、および液体状のものを用いることができる。具体的には、ヨウ素系電解質、臭素系電解質、セレン系電解質、硫黄系電解質、キノン/ヒドロキノン系電解質、およびコバルト錯体系電解質を用いることができる。これらに限定されないが、I2、LiI、ジメチルプロピルイミダゾリウムヨージド、t−ブチルピリジン、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド等を、アセトニトリル、メトキシアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニル、炭酸プロピレン等の電気的に不活性な有機溶剤に溶かした溶液等が好適に用いられる。 As the electrolyte 3, a solid state or a liquid state can be used. Specifically, iodine-based electrolyte, bromine-based electrolyte, selenium-based electrolyte, sulfur-based electrolyte, quinone / hydroquinone-based electrolyte, and cobalt complex-based electrolyte can be used. But are not limited to, I 2, LiI, dimethylpropyl imidazolium iodide, t- butyl pyridine, 1,2-dimethyl-3-propyl imidazolium iodide, etc., acetonitrile, methoxy acetonitrile, propylene carbonate, ethylene carbonate, A solution or the like dissolved in an electrically inert organic solvent such as 3-methoxypropionyl or propylene carbonate is preferably used.
また、電解質組成物中の成分の揮発を低減する目的で、上述した電解質組成物にゲル化剤またはポリマー架橋モノマーを溶解させ、ゲル状電解質として使用してもよい。さらに上記電解質と可塑剤とを用いてポリマーに溶解させ、可塑剤を揮発除去することで全固体型の色素増感太陽電池を形成してもよい。 Further, for the purpose of reducing volatilization of components in the electrolyte composition, a gelling agent or a polymer crosslinking monomer may be dissolved in the electrolyte composition described above and used as a gel electrolyte. Further, an all-solid-state dye-sensitized solar cell may be formed by dissolving in the polymer using the electrolyte and the plasticizer and volatilizing and removing the plasticizer.
対電極4は、例えば、チタン、Al、SUS等の金属基板、ガラス基板またはプラスチック基板の上に形成される白金、カーボン、ニッケル、クロム、ステンレス、フッ素ドープ酸化スズおよびITOなどの導電層から構成される。また、対電極4は白金あるいはカーボンなどの触媒層(図示せず)を含んでもよく、さらに白金は硫黄材料で処理されていてもよい(例えば、特許文献5参照)。 The counter electrode 4 is composed of, for example, a conductive layer such as platinum, carbon, nickel, chromium, stainless steel, fluorine-doped tin oxide, and ITO formed on a metal substrate such as titanium, Al, and SUS, a glass substrate, or a plastic substrate. Is done. The counter electrode 4 may include a catalyst layer (not shown) such as platinum or carbon, and the platinum may be treated with a sulfur material (see, for example, Patent Document 5).
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
(色素Aの合成)
4‐(5‐ヘキシルチオフェン‐2‐イル)ベンズアルデヒドの合成
(Synthesis of Dye A)
Synthesis of 4- (5-hexylthiophen-2-yl) benzaldehyde
反応容器に、4‐ブロモベンズアルデヒド(9.17g)、2‐(5‐ヘキシルチオフェン‐2‐イル)‐4,4,5,5‐テトラメチル‐1,3,2‐ジオキサボロラン(14.00g)、リン酸三カリウム(11.00g)、トルエン(150ml)と、ジクロロ[1,1‐ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)(0.20g)を加えて撹拌し、70℃に加熱した。反応終了後、反応液をセライトに通し、ろ液を濃縮した。これをシリカゲルカラム(クロロホルム)で展開分離し、生成物(4‐(5‐ヘキシルチオフェン‐2‐イル)ベンズアルデヒド、7.79g)を得た。 To the reaction vessel, 4-bromobenzaldehyde (9.17 g), 2- (5-hexylthiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (14.00 g) , Tripotassium phosphate (11.00 g), toluene (150 ml) and dichloro [1,1-bis (diphenylphosphino) ferrocene] palladium (II) (0.20 g) were added and stirred and heated to 70 ° C. did. After completion of the reaction, the reaction solution was passed through celite, and the filtrate was concentrated. This was developed and separated on a silica gel column (chloroform) to obtain a product (4- (5-hexylthiophen-2-yl) benzaldehyde, 7.79 g).
5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリンの合成Synthesis of 5- (4-methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin
反応容器に、ピロール(0.92g)、4‐(5‐ヘキシルチオフェン‐2‐イル)ベンズアルデヒド(2.79g)、テレフタルアルデヒド酸メチル(0.56g)、クロロホルム(130ml)とエタノール(0.5ml)を加え、約10℃に冷却した。そこへ、三フッ化ホウ素(0.47g)を滴下し、そのまま2時間撹拌した。この溶液に、2,3‐ジクロロ‐5,6‐ジシアノ‐1,4‐ベンゾキノン(2.32g)を加え、さらに1時間撹拌した。反応液をセライトとシリカゲルに通し、ろ液を濃縮して粗成生物を得た。これをシリカゲルカラム(クロロホルム/ヘキサン=3/2)により展開分離し、生成物(5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン、0.34g)を得た。 In a reaction vessel, pyrrole (0.92 g), 4- (5-hexylthiophen-2-yl) benzaldehyde (2.79 g), methyl terephthalaldehyde (0.56 g), chloroform (130 ml) and ethanol (0.5 ml) ) And cooled to about 10 ° C. Thereto, boron trifluoride (0.47 g) was added dropwise and stirred as such for 2 hours. To this solution was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (2.32 g), and the mixture was further stirred for 1 hour. The reaction solution was passed through celite and silica gel, and the filtrate was concentrated to obtain a crude product. This was developed and separated by a silica gel column (chloroform / hexane = 3/2), and the product (5- (4-methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) was obtained. ) Phenyl] porphyrin, 0.34 g).
5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン亜鉛(II)錯体の合成Synthesis of 5- (4-methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin zinc (II) complex
5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン(0.33g)をクロロホルム(16.5ml)に溶解させた。そこへ、メタノール(6ml)に溶解させた酢酸亜鉛二水和物(0.62g)を滴下した。反応終了をTLCで確認後、水を加えて分液した。有機層を水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を留去し、粗成生物を得た。これをシリカゲルカラム(クロロホルム)で展開分離し、紫色生成物(5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン亜鉛(II)錯体、0.33g)を得た。 5- (4-Methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin (0.33 g) was dissolved in chloroform (16.5 ml). Thereto was added dropwise zinc acetate dihydrate (0.62 g) dissolved in methanol (6 ml). After confirming the completion of the reaction by TLC, water was added to separate the layers. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain a crude product. This was developed and separated on a silica gel column (chloroform), and the purple product (5- (4-methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin zinc) (II) complex, 0.33 g) was obtained.
5‐(4‐カルボキシルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン亜鉛(II)錯体の合成Synthesis of 5- (4-carboxylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin zinc (II) complex
5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン亜鉛(II)錯体(0.31g)をTHF(30ml)と水(7ml)に溶解させた。そこへ48%水酸化ナトリウム(0.70g)を加え、原料が無くなるまで約68℃で加熱した。反応終了後、THFを留去した。残渣に3%ギ酸水を加え、弱酸性にした。紫色沈殿物を回収して、紫色生成物(5‐(4‐カルボキシルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン亜鉛(II)錯体、0.28g)を得た。
1H‐NMR(δH/ppm,THF,400MHz)0.96(t,9H),1.50‐1.40(m,18H),1.81(quin,6H),2.95(t,6H),6.92(d,3H),7.51(d,3H),8.00(d,6H),8.20(d,6H),8.31(d,2H),8.43(d,2H),8.84‐8.96(m,8H)
5- (4-Methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin zinc (II) complex (0.31 g) in THF (30 ml) and water (7 ml). Thereto was added 48% sodium hydroxide (0.70 g), and the mixture was heated at about 68 ° C. until the raw material disappeared. After completion of the reaction, THF was distilled off. 3% aqueous formic acid was added to the residue to make it weakly acidic. The purple precipitate was collected and the purple product (5- (4-carboxylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin zinc (II) complex, 0.28 g) was obtained.
1 H-NMR (δ H / ppm, THF, 400 MHz) 0.96 (t, 9H), 1.50-1.40 (m, 18H), 1.81 (quin, 6H), 2.95 (t , 6H), 6.92 (d, 3H), 7.51 (d, 3H), 8.00 (d, 6H), 8.20 (d, 6H), 8.31 (d, 2H), 8 .43 (d, 2H), 8.84-8.96 (m, 8H)
(色素Bの合成)
2‐(4‐ヘキシルフェニル)‐4,4,5,5‐テトラメチル‐1,3,2‐ジオキサボロランの合成
(Synthesis of Dye B)
Synthesis of 2- (4-hexylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane
反応容器に、1‐ブロモ‐4‐ヘキシルベンゼン(10.00g)、ビス(ピナコレート)ジボラン(12.60g)、酢酸カリウム(12.13g)とDMF(200ml)を加えて撹拌した。そこへビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.61g)を投入して80℃に加温した。一晩加熱撹拌した後、クロロホルムと水を加えて分液洗浄した。有機層を無水硫酸ナトリウムで乾燥させ、溶媒を留去した。これをシリカゲルカラム(ヘキサン→ヘキサン/クロロホルム=1/2)で精製して、生成物(2‐(4‐ヘキシルフェニル)‐4,4,5,5‐テトラメチル‐1,3,2‐ジオキサボロラン、9.30g)を得た。 To the reaction vessel, 1-bromo-4-hexylbenzene (10.00 g), bis (pinacolato) diborane (12.60 g), potassium acetate (12.13 g) and DMF (200 ml) were added and stirred. Bis (triphenylphosphine) palladium (II) dichloride (0.61 g) was added thereto and heated to 80 ° C. After heating and stirring overnight, chloroform and water were added to separate and wash. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off. This was purified with a silica gel column (hexane → hexane / chloroform = 1/2) to give the product (2- (4-hexylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane. 9.30 g).
5‐(4‐ヘキシルフェニル)チオフェン‐2‐カルバルデヒドの合成Synthesis of 5- (4-hexylphenyl) thiophene-2-carbaldehyde
反応容器に2‐(4‐ヘキシルフェニル)‐4,4,5,5‐テトラメチル‐1,3,2‐ジオキサボロラン(5.10g)、5‐ブロモチオフェン‐2‐カルバルデヒド(4.07g)、10%炭酸ナトリウム水溶液(55ml)とジオキサン(60ml)を加えて撹拌した。そこへテトラキストリフェニルホスフィンパラジウム(598mg)を投入し、80℃に加温した。一晩加熱撹拌した後、クロロホルムと水を加えて分液洗浄した。有機層を無水硫酸ナトリウムで乾燥させ、溶媒を留去した。これをシリカゲルカラム(ヘキサン/クロロホルム=4/1→クロロホルム)で精製して、生成物(5‐(4‐ヘキシルフェニル)チオフェン‐2‐カルバルデヒド、4.70g)を得た。 2- (4-Hexylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5.10 g), 5-bromothiophene-2-carbaldehyde (4.07 g) in a reaction vessel A 10% aqueous sodium carbonate solution (55 ml) and dioxane (60 ml) were added and stirred. Tetrakistriphenylphosphine palladium (598 mg) was added thereto and heated to 80 ° C. After heating and stirring overnight, chloroform and water were added to separate and wash. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off. This was purified by a silica gel column (hexane / chloroform = 4/1 → chloroform) to obtain a product (5- (4-hexylphenyl) thiophene-2-carbaldehyde, 4.70 g).
5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐メトキシカルボニルフェニル)ポルフィリンの合成Synthesis of 5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-methoxycarbonylphenyl) porphyrin
ピロール(1.58g)、5‐(4‐ヘキシルフェニル)チオフェン‐2‐カルバルデヒド(4.80g)、テレフタルアルデヒド酸メチル(0.97g)をクロロホルム(180ml)とエタノール(3ml)に溶解させ、約10℃に冷却した。そこへ、三フッ化ホウ素(0.83g)を滴下し、そのまま2時間撹拌した。この溶液に、2,3‐ジクロロ‐5,6‐ジシアノ‐1,4‐ベンゾキノン(4.10g)を入れ、さらに1時間撹拌した。反応液をセライトとシリカゲルに通し、ろ液を濃縮して粗成生物を得た。これをシリカゲルカラム(クロロホルム)により展開分離し、生成物(5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン、0.50g)を得た。 Pyrrole (1.58 g), 5- (4-hexylphenyl) thiophene-2-carbaldehyde (4.80 g), methyl terephthalaldehyde (0.97 g) were dissolved in chloroform (180 ml) and ethanol (3 ml), Cooled to about 10 ° C. Thereto was added boron trifluoride (0.83 g) dropwise, and the mixture was stirred as it was for 2 hours. To this solution was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (4.10 g), and the mixture was further stirred for 1 hour. The reaction solution was passed through celite and silica gel, and the filtrate was concentrated to obtain a crude product. This was developed and separated by a silica gel column (chloroform), and the product (5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-methoxycarbonylphenyl) porphyrin, 0 .50 g) was obtained.
5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン亜鉛(II)錯体の合成Synthesis of 5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-methoxycarbonylphenyl) porphyrin zinc (II) complex
5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン(0.50g)をクロロホルム(120ml)に溶解させた。そこへ、メタノール(60ml)に溶解させた酢酸亜鉛二水和物(0.70g)を滴下した。反応終了をTLCで確認後、水を加えて分液した。有機層を水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を留去し、粗成生物を得た。これをシリカゲルカラム(ヘキサン/クロロホルム=2/1)で展開分離し、紫色生成物(5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン亜鉛(II)錯体、0.40g)を得た。 5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-methoxycarbonylphenyl) porphyrin (0.50 g) was dissolved in chloroform (120 ml). Thereto was added dropwise zinc acetate dihydrate (0.70 g) dissolved in methanol (60 ml). After confirming the completion of the reaction by TLC, water was added to separate the layers. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain a crude product. This was developed and separated on a silica gel column (hexane / chloroform = 2/1), and the purple product (5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4- Methoxycarbonylphenyl) porphyrin zinc (II) complex, 0.40 g) was obtained.
5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐カルボキシルフェニル)ポルフィリン亜鉛(II)錯体の合成Synthesis of 5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-carboxylphenyl) porphyrin zinc (II) complex
5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン亜鉛(II)錯体(0.40g)をTHF(50ml)と水(30ml)に溶解させた。そこへ48%水酸化ナトリウム(3ml)を加え、約68℃で加熱した。反応終了後、THFを留去した。残渣に3%ギ酸水を加え、弱酸性にした。クロロホルムで抽出し、有機層を水洗した。有機層を無水硫酸ナトリウムで乾燥させて溶媒を留去した。これをシリカゲルカラム(クロロホルム→クロロホルム/酢酸エチル=4/1)で精製して、紫色生成物(5,10,15‐トリ[5‐(4‐ヘキシルフェニル)チオフェン‐2‐イル]‐20‐(4‐カルボキシルフェニル)ポルフィリン亜鉛(II)錯体、0.30g)を得た。
1H‐NMR(δH/ppm,CDCl3,400MHz)0.92(t,9H),1.30‐1.42(m,18H),1.69(quin,6H),2.69(t,6H),7.31(d,6H),7.67(d,3H),7.79(d,6H),7.87(d,3H),8.36(d,2H),8.52(d,2H),8.91‐9.34(m,8H)
(比較例の合成)
比較例として、以下の化合物を合成した。
5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-methoxycarbonylphenyl) porphyrin zinc (II) complex (0.40 g) in THF (50 ml) and water (30 ml). 48% sodium hydroxide (3 ml) was added thereto, and the mixture was heated at about 68 ° C. After completion of the reaction, THF was distilled off. 3% aqueous formic acid was added to the residue to make it weakly acidic. Extraction was performed with chloroform, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off. This was purified with a silica gel column (chloroform → chloroform / ethyl acetate = 4/1) to give a purple product (5,10,15-tri [5- (4-hexylphenyl) thiophen-2-yl] -20- (4-carboxylphenyl) porphyrin zinc (II) complex, 0.30 g) was obtained.
1 H-NMR (δ H / ppm, CDCl 3 , 400 MHz) 0.92 (t, 9H), 1.30-1.42 (m, 18H), 1.69 (quin, 6H), 2.69 ( t, 6H), 7.31 (d, 6H), 7.67 (d, 3H), 7.79 (d, 6H), 7.87 (d, 3H), 8.36 (d, 2H), 8.52 (d, 2H), 8.91-9.34 (m, 8H)
(Synthesis of Comparative Example)
As comparative examples, the following compounds were synthesized.
(比較例1の合成)
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリンの合成
(Synthesis of Comparative Example 1)
Synthesis of 5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin
反応容器に、ピロール(2.73g)、2‐ホルミル‐5‐ヘキシルチオフェン(6.0g)、テレフタルアルデヒド酸メチル(1.67g)、クロロホルム(1500ml)とエタノール(6ml)を加え、約10℃に冷却した。そこへ、三フッ化ホウ素(1.45g)を滴下し、そのまま2時間撹拌した。この溶液に、2,3‐ジクロロ‐5,6‐ジシアノ‐1,4‐ベンゾキノン(6.94g)を加え、さらに1時間撹拌した。反応液をセライトとシリカゲルに通し、ろ液を濃縮して粗成生物を得た。これをシリカゲルカラム(クロロホルム/ヘキサン=3/1)により展開分離し、生成物(5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン、1.43g)を得た。 To a reaction vessel, pyrrole (2.73 g), 2-formyl-5-hexylthiophene (6.0 g), methyl terephthalaldehyde (1.67 g), chloroform (1500 ml) and ethanol (6 ml) were added, and the temperature was about 10 ° C. Cooled to. Thereto was added boron trifluoride (1.45 g) dropwise, and the mixture was stirred for 2 hours. To this solution was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (6.94 g), and the mixture was further stirred for 1 hour. The reaction solution was passed through celite and silica gel, and the filtrate was concentrated to obtain a crude product. This was developed and separated by a silica gel column (chloroform / hexane = 3/1), and the product (5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin, 1.43 g) was obtained.
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐カルボキシルフェニル)ポルフィリンの合成Synthesis of 5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-carboxylphenyl) porphyrin
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン(0.15g)をTHF(50ml)と水(10ml)に溶解させた。そこへ48%水酸化ナトリウム(1.50g)を加え、原料が無くなるまで約68℃で加熱した。反応終了後、THFを留去した。残渣に3%ギ酸水を加え、弱酸性にした。沈殿物を回収し、シリカゲルカラム(クロロホルム→クロロホルム/THF=5/1)で展開分離して、紫色生成物(5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐カルボキシルフェニル)ポルフィリン、0.10g)を得た。
1H‐NMR(δH/ppm,CDCl3,400MHz)0.98(t,9H),1.40‐1.50(m,12H),1.60(quin,6H),1.96(quin,6H),3.14(t,6H),7.17(d,3H),7.71(d,3H),8.35(d,2H),8.54(d,2H),8.78‐9.14(m,8H)
5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin (0.15 g) was dissolved in THF (50 ml) and water (10 ml). Thereto was added 48% sodium hydroxide (1.50 g), and the mixture was heated at about 68 ° C. until the raw material disappeared. After completion of the reaction, THF was distilled off. 3% aqueous formic acid was added to the residue to make it weakly acidic. The precipitate was collected, developed and separated on a silica gel column (chloroform → chloroform / THF = 5/1), and the purple product (5,10,15-tri (5-hexylthiophen-2-yl) -20- ( 4-carboxylphenyl) porphyrin, 0.10 g).
1 H-NMR (δ H / ppm, CDCl 3 , 400 MHz) 0.98 (t, 9H), 1.40-1.50 (m, 12H), 1.60 (quin, 6H), 1.96 ( quin, 6H), 3.14 (t, 6H), 7.17 (d, 3H), 7.71 (d, 3H), 8.35 (d, 2H), 8.54 (d, 2H), 8.78-9.14 (m, 8H)
(比較例2の合成)
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン銅(II)錯体の合成
(Synthesis of Comparative Example 2)
Synthesis of 5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin copper (II) complex
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン(0.53g)をクロロホルム(100ml)に溶解させた。そこへ、メタノール(40ml)に溶解させた酢酸銅(0.50g)を滴下した。反応終了をTLCで確認後、溶媒を留去し、粗成生物を得た。これをシリカゲルカラム(クロロホルム/ヘキサン=1/1)で展開分離し、紫色生成物(5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン銅(II)錯体、0.42g)を得た。 5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin (0.53 g) was dissolved in chloroform (100 ml). Thereto was added dropwise copper acetate (0.50 g) dissolved in methanol (40 ml). After confirming the completion of the reaction by TLC, the solvent was distilled off to obtain a crude product. This was developed and separated on a silica gel column (chloroform / hexane = 1/1), and a purple product (5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin was obtained. Copper (II) complex, 0.42 g) was obtained.
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐カルボキシルフェニル)ポルフィリン銅(II)錯体の合成Synthesis of 5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-carboxylphenyl) porphyrin copper (II) complex
5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン銅(II)錯体(0.42g)をTHF(100ml)と水(10ml)に溶解させた。そこへ48%水酸化ナトリウム(1.50g)を加え、原料が無くなるまで約68℃で加熱した。反応終了後、THFを留去した。残渣に3%ギ酸水を加え、弱酸性にした。沈殿物を回収し、シリカゲルカラム(クロロホルム→クロロホルム/THF=5/1)で展開分離して、紫色生成物(5,10,15‐トリ(5‐ヘキシルチオフェン‐2‐イル)‐20‐(4‐カルボキシルフェニル)ポルフィリン銅(II)錯体、0.40g)を得た。 5,10,15-tri (5-hexylthiophen-2-yl) -20- (4-methoxycarbonylphenyl) porphyrin copper (II) complex (0.42 g) dissolved in THF (100 ml) and water (10 ml) I let you. Thereto was added 48% sodium hydroxide (1.50 g), and the mixture was heated at about 68 ° C. until the raw material disappeared. After completion of the reaction, THF was distilled off. 3% aqueous formic acid was added to the residue to make it weakly acidic. The precipitate was collected, developed and separated on a silica gel column (chloroform → chloroform / THF = 5/1), and the purple product (5,10,15-tri (5-hexylthiophen-2-yl) -20- ( 4-carboxylphenyl) porphyrin copper (II) complex, 0.40 g) was obtained.
(比較例3の合成)
5,10,15‐トリメシチル‐20‐(4‐メトキシカルボニルフェニル)ポルフィリンの合成
(Synthesis of Comparative Example 3)
Synthesis of 5,10,15-trimesityl-20- (4-methoxycarbonylphenyl) porphyrin
反応容器に、ピロール(2.45g)、2,4,6−トリメチルベンズアルデヒド(4.06g)、テレフタルアルデヒド酸メチル(1.50g)、クロロホルム(540ml)とエタノール(7ml)を加え、約10℃に冷却した。そこへ、三フッ化ホウ素(1.43g)を滴下し、そのまま2時間撹拌した。この溶液に、2,3‐ジクロロ‐5,6‐ジシアノ‐1,4‐ベンゾキノン(6.22g)を加え、さらに1時間撹拌した。反応液をセライトとシリカゲルに通し、ろ液を濃縮して粗成生物を得た。これをシリカゲルカラム(クロロホルム/ヘキサン=3/2)により展開分離し、生成物(5,10,15‐トリメシチル‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン、1.13g)を得た。 To a reaction vessel, pyrrole (2.45 g), 2,4,6-trimethylbenzaldehyde (4.06 g), methyl terephthalaldehyde (1.50 g), chloroform (540 ml) and ethanol (7 ml) were added, and the temperature was about 10 ° C. Cooled to. Thereto was added boron trifluoride (1.43 g) dropwise, and the mixture was stirred as it was for 2 hours. To this solution was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (6.22 g), and the mixture was further stirred for 1 hour. The reaction solution was passed through celite and silica gel, and the filtrate was concentrated to obtain a crude product. This was developed and separated by a silica gel column (chloroform / hexane = 3/2) to obtain a product (5,10,15-trimesityl-20- (4-methoxycarbonylphenyl) porphyrin, 1.13 g).
5,10,15‐トリメシチル‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン亜鉛(II)錯体の合成Synthesis of 5,10,15-trimesityl-20- (4-methoxycarbonylphenyl) porphyrin zinc (II) complex
5,10,15‐トリメシチル‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン(0.60g)をクロロホルム(70ml)に溶解させた。そこへ、メタノール(20ml)に溶解させた酢酸亜鉛二水和物(1.98g)を滴下した。反応終了をTLCで確認後、水を加えて分液した。有機層を水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を留去し、粗成生物を得た。これをシリカゲルカラム(クロロホルム)で展開分離し、紫色生成物(5,10,15‐トリメシチル‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン亜鉛(II)錯体、0.60g)を得た。 5,10,15-trimesityl-20- (4-methoxycarbonylphenyl) porphyrin (0.60 g) was dissolved in chloroform (70 ml). To this was added dropwise zinc acetate dihydrate (1.98 g) dissolved in methanol (20 ml). After confirming the completion of the reaction by TLC, water was added to separate the layers. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain a crude product. This was developed and separated on a silica gel column (chloroform) to obtain a purple product (5,10,15-trimesityl-20- (4-methoxycarbonylphenyl) porphyrin zinc (II) complex, 0.60 g).
5,10,15‐トリメシチル‐20‐(4‐カルボキシルフェニル)ポルフィリン亜鉛(II)錯体の合成Synthesis of 5,10,15-trimesityl-20- (4-carboxylphenyl) porphyrin zinc (II) complex
5,10,15‐トリメシチル‐20‐(4‐メトキシカルボニルフェニル)ポルフィリン亜鉛(II)錯体(0.60g)をTHF(60ml)と水(20ml)に溶解させた。そこへ48%水酸化ナトリウム(2.0g)を加え、原料が無くなるまで約68℃で加熱した。反応終了後、THFを留去した。残渣に3%ギ酸水を加え、弱酸性にした。沈殿物を回収し、シリカゲルカラム(クロロホルム→クロロホルム/THF=5/1)で展開分離して、紫色生成物(5,10,15‐トリメシチル‐20‐(4‐カルボキシルフェニル)ポルフィリン亜鉛(II)錯体、0.45g)を得た。
1H‐NMR(δH/ppm,CDCl3,400MHz)1.85(s,18H),2.64(s,9H),7.29(s,6H),8.37(s,2H),8.51(s,2H),8.78‐8.83(m,8H)
5,10,15-trimesityl-20- (4-methoxycarbonylphenyl) porphyrin zinc (II) complex (0.60 g) was dissolved in THF (60 ml) and water (20 ml). Thereto was added 48% sodium hydroxide (2.0 g), and the mixture was heated at about 68 ° C. until the raw material disappeared. After completion of the reaction, THF was distilled off. 3% aqueous formic acid was added to the residue to make it weakly acidic. The precipitate was collected, developed and separated on a silica gel column (chloroform → chloroform / THF = 5/1), and the purple product (5,10,15-trimesityl-20- (4-carboxylphenyl) porphyrin zinc (II) A complex, 0.45 g) was obtained.
1 H-NMR (δ H / ppm, CDCl 3 , 400 MHz) 1.85 (s, 18H), 2.64 (s, 9H), 7.29 (s, 6H), 8.37 (s, 2H) 8.51 (s, 2H), 8.78-8.83 (m, 8H)
(比較例4の合成)
5‐(4‐カルボキシルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリンの合成
(Synthesis of Comparative Example 4)
Synthesis of 5- (4-carboxylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin
5‐(4‐メトキシカルボニルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン(15mg)をTHF(10ml)と水(3ml)に溶解させた。そこへ48%水酸化ナトリウム(0.30g)を加え、約68℃で加熱した。反応終了後、THFを留去した。残渣に3%ギ酸水を加え、弱酸性にした。紫色沈殿物を回収し、シリカゲルカラム(クロロホルム→クロロホルム/THF=5/1)で展開分離して、紫色生成物(5‐(4‐カルボキシルフェニル)‐10,15,20‐トリ[4‐(5‐ヘキシルチオフェン‐2‐イル)フェニル]ポルフィリン、14mg)を得た。
1H‐NMR(δH/ppm,THF,400MHz)−2.65(s,2H),0.95(t,9H),1.40‐1.50(m,18H),1.81(quin,6H),2.94(t,6H),6.92(d,3H),7.51(d,3H),8.02(d,6H),8.21(d,6H),8.32(d,2H),8.46(d,2H),8.83‐8.94(m,8H)
5- (4-Methoxycarbonylphenyl) -10,15,20-tri [4- (5-hexylthiophen-2-yl) phenyl] porphyrin (15 mg) was dissolved in THF (10 ml) and water (3 ml). . 48% sodium hydroxide (0.30 g) was added thereto, and the mixture was heated at about 68 ° C. After completion of the reaction, THF was distilled off. 3% aqueous formic acid was added to the residue to make it weakly acidic. The purple precipitate was recovered, developed and separated on a silica gel column (chloroform → chloroform / THF = 5/1), and the purple product (5- (4-carboxylphenyl) -10,15,20-tri [4- ( 5-hexylthiophen-2-yl) phenyl] porphyrin, 14 mg).
1 H-NMR (δ H / ppm, THF, 400 MHz) -2.65 (s, 2H), 0.95 (t, 9H), 1.40-1.50 (m, 18H), 1.81 ( quin, 6H), 2.94 (t, 6H), 6.92 (d, 3H), 7.51 (d, 3H), 8.02 (d, 6H), 8.21 (d, 6H), 8.32 (d, 2H), 8.46 (d, 2H), 8.83-8.94 (m, 8H)
(紫外吸収スペクトルの測定)
上記合成例により調製した各種色素AおよびBならびに比較例1〜3について、それぞれDMF溶媒を用いて濃度0.015mMの溶液を調製し、分光光度計(SHIMADZU UVmini1240)を用いて吸収スペクトルを測定した。結果を図2に示す。
(色素増感太陽電池の作製)
(1)以下の手順により、上記合成例により調製した各種色素AおよびBならびに比較例1〜3を用いた色素増感太陽電池を作製した。
(Measurement of ultraviolet absorption spectrum)
For various dyes A and B prepared in the above synthesis example and Comparative Examples 1 to 3, solutions having a concentration of 0.015 mM were prepared using a DMF solvent, and absorption spectra were measured using a spectrophotometer (SHIMADZU UVmini 1240). . The results are shown in FIG.
(Preparation of dye-sensitized solar cell)
(1) Dye-sensitized solar cells using various dyes A and B and Comparative Examples 1 to 3 prepared according to the above synthesis examples were prepared by the following procedure.
i. 基板(フッ素ドープ酸化スズ膜付ガラス板、35mm×33mm)上の1辺1cmの正方形面積部分にスクリーン印刷により酸化チタンペースト[触媒化成製PST−21NR]を膜厚8μmにスクリーン印刷し、乾燥後、その上にさらに酸化チタンペースト[触媒化成製PST−400C]を膜厚4μmにスクリーン印刷した。これを500℃で焼成することで、発電層を形成した。 i. Screen printing a titanium oxide paste [catalyst conversion PST-21NR] to a film thickness of 8 μm by screen printing on a 1 cm square area on a substrate (fluorine-doped tin oxide film-coated glass plate, 35 mm × 33 mm), After drying, a titanium oxide paste [PST-400C manufactured by Catalytic Chemicals] was further screen-printed thereon with a film thickness of 4 μm. This was fired at 500 ° C. to form a power generation layer.
ii. 前記発電層を形成した電極を色素溶液[濃度:0.3mM、溶媒:アセトニトリル/t−ブタノール1/1(v/v)の混合溶媒]に40℃で2時間、浸漬することで、色素を前記発電層の酸化チタン上に担持させアノード電極を得た。 ii. By immersing the electrode forming the power generation layer in a dye solution [concentration: 0.3 mM, solvent: mixed solvent of acetonitrile / t-butanol 1/1 (v / v)] at 40 ° C. for 2 hours, A dye was supported on the titanium oxide of the power generation layer to obtain an anode electrode.
iii. 上記アノード電極の発電層の周囲に接着剤を施し、このアノード電極と、別途用意した電解液注入孔を有するチオアセトアミドで処理した白金被覆チタン板(カソード電極)とを、該接着剤により接着し、両電極が50μm程度の一定間隔を置いて平行に配置されるようにした。 iii. Adhesive is applied around the power generation layer of the anode electrode, and the anode electrode and a platinum-coated titanium plate (cathode electrode) treated with thioacetamide having a separately prepared electrolyte injection hole are bonded with the adhesive. The electrodes were bonded so that both electrodes were arranged in parallel at a constant interval of about 50 μm.
iv. 次いで、電解液注入口より電解液を注入した。ここで、用いた電解液は、ヨウ素0.1M、1−プロピル−3−メチルイミダゾリウムヨウ化物0.8M、N−メチルベンゾイミダゾール0.5M、3−メトキシプロピオニトリルを溶媒とする溶液を用いた。 iv. Next, an electrolytic solution was injected from the electrolytic solution inlet. Here, the electrolytic solution used is a solution using iodine 0.1M, 1-propyl-3-methylimidazolium iodide 0.8M, N-methylbenzimidazole 0.5M, 3-methoxypropionitrile as a solvent. Using.
v. 接着剤を用いて電解液注入孔を封止し、アノード電極上に端子取り出しのためのハンダを塗布して実験用セルを完成させた。 v. The electrolyte injection hole was sealed using an adhesive, and solder for terminal removal was applied onto the anode electrode to complete the experimental cell.
(分光感度の測定)
作製した太陽電池セルの分光感度を分光感度測定装置(分光計器株式会社製CEP−2000)で測定した。結果を図3に示す。また、これらの太陽電池セルの外観を図4に示す。
(Measurement of spectral sensitivity)
The spectral sensitivity of the produced solar battery cell was measured with a spectral sensitivity measuring device (CEP-2000 manufactured by Spectrometer Co., Ltd.). The results are shown in FIG. Moreover, the external appearance of these photovoltaic cells is shown in FIG.
(性能試験)
AM1.5、 1SUN(100mW/cm2)の照射条件下で、上記のとおり作製した太陽電池セルの初期光電変換効率を測定した。結果を表1に示す。
(performance test)
The initial photoelectric conversion efficiency of the solar cell produced as described above was measured under irradiation conditions of AM1.5 and 1 SUN (100 mW / cm 2 ). The results are shown in Table 1.
なお光電変換効率は下記式により計算した。
光電変換効率(%)=
100×[(短絡電流密度×開放電圧×曲線因子)/(照射太陽光エネルギー)]
上記表1のとおり、本発明の光増感色素を用いて作製した色素増感太陽電池は、高い光電変換効率を示し、かつ緑色のセルを提供することができた。
The photoelectric conversion efficiency was calculated by the following formula.
Photoelectric conversion efficiency (%) =
100 × [(Short-circuit current density × Open circuit voltage × Curve factor) / (Irradiated solar energy)]
As shown in Table 1 above, the dye-sensitized solar cell produced using the photosensitizing dye of the present invention showed high photoelectric conversion efficiency and was able to provide a green cell.
1 透明電極
2 金属酸化物半導体電極
3 電解質
4 対電極
DESCRIPTION OF SYMBOLS 1 Transparent electrode 2 Metal oxide semiconductor electrode 3 Electrolyte 4 Counter electrode
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012027276A JP6028296B2 (en) | 2012-02-10 | 2012-02-10 | Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012027276A JP6028296B2 (en) | 2012-02-10 | 2012-02-10 | Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013163756A JP2013163756A (en) | 2013-08-22 |
JP6028296B2 true JP6028296B2 (en) | 2016-11-16 |
Family
ID=49175327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012027276A Expired - Fee Related JP6028296B2 (en) | 2012-02-10 | 2012-02-10 | Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6028296B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5911059B2 (en) * | 2012-02-10 | 2016-04-27 | 島根県 | Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell |
CN105176135B (en) * | 2015-09-05 | 2017-11-28 | 四川大学 | One kind is used for indoline base porphyrin nir dye and its preparation of DSSC |
CN108550469B (en) * | 2018-04-20 | 2020-03-27 | 南京邮电大学 | Preparation method and application of metalloporphyrin framework/polypyrrole composite flexible electrode |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4548779B2 (en) * | 2004-01-23 | 2010-09-22 | 日本電信電話株式会社 | Organic photoelectric conversion device and organic solar cell |
JP4752269B2 (en) * | 2004-12-28 | 2011-08-17 | ソニー株式会社 | Porphyrin compound and method for producing the same, organic semiconductor film, and semiconductor device |
JP5911059B2 (en) * | 2012-02-10 | 2016-04-27 | 島根県 | Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell |
-
2012
- 2012-02-10 JP JP2012027276A patent/JP6028296B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013163756A (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hara et al. | Novel conjugated organic dyes for efficient dye‐sensitized solar cells | |
Qian et al. | Molecular engineering of D–D–π–A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells | |
CN101235214B (en) | Organic ruthenium dye and dye sensitization solar battery | |
Kim et al. | Novel conjugated organic dyes containing bis-dimethylfluorenyl amino phenyl thiophene for efficient solar cell | |
Pasunooti et al. | Synthesis, characterization and application of trans-D–B–A-porphyrin based dyes in dye-sensitized solar cells | |
Dessì et al. | Thiazolo [5, 4-d] thiazole-based organic sensitizers with strong visible light absorption for transparent, efficient and stable dye-sensitized solar cells | |
KR100844871B1 (en) | A dye for dye-sensitized solar cell and solar cell using it | |
El-Shishtawy et al. | Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells | |
Qian et al. | Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells | |
Duan et al. | A new class of organic dyes containing β-substituted 2, 2′-bithiophenene unit as a π-linker for dye-sensitized solar cells: Structural modification for understanding relationship of structure and photovoltaic performances | |
Iqbal et al. | Influence of spatial arrangements of π-spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells | |
Cogal et al. | Asymmetric phthalocyanine derivatives containing 4-carboxyphenyl substituents for dye-sensitized solar cells | |
Narayanaswamy et al. | Simple metal-free dyes derived from triphenylamine for DSSC: A comparative study of two different anchoring group | |
Zhou et al. | Effect of imidazole derivatives in triphenylamine-based organic dyes for dye-sensitized solar cells | |
Ci et al. | Influence of the benzo [d] thiazole-derived π-bridges on the optical and photovoltaic performance of D–π–A dyes | |
Li et al. | A new carbazole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell | |
Lu et al. | Influence of the additional electron-withdrawing unit in β-functionalized porphyrin sensitizers on the photovoltaic performance of dye-sensitized solar cells | |
Xiang et al. | Synthesis and characterization of trivalent metal porphyrin with NCS ligand for application in dye-sensitized solar cells | |
Cai et al. | Efficient organic dyes containing dibenzo heterocycles as conjugated linker part for dye-sensitized solar cells | |
Han et al. | Enhanced photovoltaic performances of dye-sensitized solar cells sensitized with DD-π-A phenothiazine-based dyes | |
Hu et al. | Rigid triarylamine-based D–A–π–A structural organic sensitizers for solar cells: the significant enhancement of open-circuit photovoltage with a long alkyl group | |
Liu et al. | Tuning band structures of dyes for dye-sensitized solar cells: Effect of different π-bridges on the performance of cells | |
Manfredi et al. | Performance enhancement of a dye-sensitized solar cell by peripheral aromatic and heteroaromatic functionalization in di-branched organic sensitizers | |
Qian et al. | Phenothiazine-functionalized push–pull Zn porphyrin photosensitizers for efficient dye-sensitized solar cells | |
JP5911059B2 (en) | Photosensitizing dye, metal oxide semiconductor electrode containing the dye, and dye-sensitized solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20150825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6028296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |