JP6028007B2 - Electrolytic cell manufacturing method - Google Patents

Electrolytic cell manufacturing method Download PDF

Info

Publication number
JP6028007B2
JP6028007B2 JP2014217548A JP2014217548A JP6028007B2 JP 6028007 B2 JP6028007 B2 JP 6028007B2 JP 2014217548 A JP2014217548 A JP 2014217548A JP 2014217548 A JP2014217548 A JP 2014217548A JP 6028007 B2 JP6028007 B2 JP 6028007B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
anode
pan
welding
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014217548A
Other languages
Japanese (ja)
Other versions
JP2016084503A (en
Inventor
啓二 三吉
啓二 三吉
Original Assignee
株式会社イープラン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イープラン filed Critical 株式会社イープラン
Priority to JP2014217548A priority Critical patent/JP6028007B2/en
Publication of JP2016084503A publication Critical patent/JP2016084503A/en
Application granted granted Critical
Publication of JP6028007B2 publication Critical patent/JP6028007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電解槽の製作方法に関する。   The present invention relates to a method for manufacturing an electrolytic cell.

従来、食塩電解法等によるアルカリ水電解槽の構成部材には、陽極側にチタン、陰極側にニッケル等が用いられている。さらに最近は再生エネルギー等を利用するアルカリ水電解にて水素製造に使用する電解槽の陽極側もニッケル、陰極側もニッケルが使用されるようになっている。
例えば、イオン交換膜を有する電解槽において、厚みの薄いニッケル板(1)、厚みの薄いニッケル(2)と、厚みの薄いニッケル板(3)をこの順序でイオン交換膜に向かって配置して苛性枠室とすることにより、苛性室を極めて薄い厚さに構成する電解槽が提案されている(特許文献1)。
Conventionally, titanium or the like is used on the anode side and nickel or the like is used on the anode side in the constituent members of the alkaline water electrolysis tank by the salt electrolysis method or the like. More recently, nickel is used on the anode side and nickel on the cathode side of the electrolytic cell used for hydrogen production in alkaline water electrolysis utilizing regenerative energy and the like.
For example, in an electrolytic cell having an ion exchange membrane, a thin nickel plate (1), a thin nickel (2), and a thin nickel plate (3) are arranged in this order toward the ion exchange membrane. There has been proposed an electrolytic cell in which the caustic chamber is formed in a very thin thickness by using a caustic frame chamber (Patent Document 1).

特開2000−282278号公報JP 2000-282278 A

ところで、ニッケル板等の溶接は非常に難しく、TIG(Tungsten Inert Gas)溶接でも、溶接部の高温割れを起こし、漏れの原因になることがしばしばある。また、ニッケル板の溶接ができるような人材は限られており、工数の低減が問題となっている。このため、こういう電解槽を備えるアルカリ水電解の水素製造装置を大量生産するためには、溶接の効率化を考慮せざるを得なくなっている。   By the way, it is very difficult to weld a nickel plate or the like, and even TIG (Tungsten Inert Gas) welding often causes a hot crack in the welded part, which causes leakage. In addition, human resources capable of welding nickel plates are limited, and reduction of man-hours is a problem. For this reason, in order to mass-produce the alkaline water electrolysis hydrogen production apparatus provided with such an electrolytic cell, it is necessary to consider the efficiency of welding.

また、食塩電解の場合の複極式イオン交換膜電解槽は陽極側にチタン、陰極側にニッケル、ステンレスを使用していたが、隔壁にチタンクラッド(チタンとSS400の爆発圧着品)を用いていたが、ニッケル側の溶接は、抵抗溶接機を採用しており、溶接条件が非常にシビアなところであるため、抵抗溶接部にクラックが入ったり、SS400を巻き込んだり、必ずしも万全ではなかった。また、抵抗溶接機のスポットガンに溶着物が付着するなど、メンテナンスに時間がかかり、コストアップ、量産化に支障をきたしていた。   In addition, the bipolar ion exchange membrane electrolytic cell in the case of salt electrolysis used titanium on the anode side, nickel and stainless steel on the cathode side, but used titanium clad (explosion-bonded product of titanium and SS400) on the partition wall. However, since welding on the nickel side employs a resistance welder and the welding conditions are very severe, the resistance welded portion was cracked or SS400 was involved, and it was not always perfect. In addition, it takes time for maintenance, such as adhesion of deposits to the spot gun of a resistance welder, which has hindered cost increases and mass production.

本発明は、溶接の効率化を図り、電解槽の量産を可能とする電解槽の製作方法を提供することを目的とする。   An object of the present invention is to provide a method of manufacturing an electrolytic cell that improves the efficiency of welding and enables mass production of the electrolytic cell.

(1) 電解槽を製作組立する過程におけるリブ、パン及び隔壁の構成部材を接着するに際し、
前記リブ、前記パン及び前記隔壁の少なくとも2つの構成部材を重ねた組立状態のまま、レーザー溶接法により重ね溶接し、
前記リブ及び前記パンは、前記電解槽において、前記隔壁を挟んで、陰極側と陽極側とにそれぞれ配置され、
仮組立した前記電解槽を平面配置ではなく縦向きに立てて配置し、レーザー溶接法による溶接を行う2台のレーザー溶接装置により、陰極側と陽極側とを同時に重ね溶接することを特徴とする電解槽の製作方法。
(1) When bonding the constituent members of the rib, pan and partition in the process of manufacturing and assembling the electrolytic cell,
In the assembled state in which at least two components of the rib, the pan, and the partition wall are stacked, lap welding is performed by a laser welding method ,
In the electrolytic cell, the rib and the pan are disposed on the cathode side and the anode side, respectively, across the partition wall,
The electrolyzed cells that have been temporarily assembled are arranged vertically rather than in a planar arrangement, and the cathode side and the anode side are simultaneously overlap-welded by two laser welding apparatuses that perform welding by laser welding. How to make an electrolytic cell.

(1)の発明によれば、電解槽を製作組立する過程におけるリブ、パン及び隔壁の構成部材のうち、の少なくとも2つを重ねた組立状態のまま、レーザー溶接法により重ね溶接するので、抵抗溶接機で溶接した場合に比べ、溶接の効率化を図ることができる。
したがって、溶接の効率化を図り、電解槽の量産を可能とする電解槽の製作方法を提供できる。
また、隔壁を挟んで、陰極側と陽極側とにそれぞれ配置されたリブ及びパンを、2台のレーザー溶接装置により、陰極側と陽極側とを同時に重ね溶接するので、更に、溶接の効率化を図ることができる。
According to the invention of (1), since welding is carried out by a laser welding method in an assembled state in which at least two members of ribs, pans and partition walls in the process of manufacturing and assembling the electrolytic cell are stacked, resistance is increased. The efficiency of welding can be improved as compared with the case of welding with a welding machine.
Therefore, it is possible to provide a method for manufacturing an electrolytic cell that improves the efficiency of welding and enables mass production of the electrolytic cell.
In addition, ribs and pans arranged on the cathode side and the anode side, respectively, across the partition wall are welded simultaneously on the cathode side and the anode side by two laser welding devices, further increasing the efficiency of welding. Can be achieved.

本発明によれば、溶接の効率化を図り、電解槽の量産を可能とする電解槽の製作方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing efficiency of an electrolytic cell which aims at efficiency of welding and enables mass production of an electrolytic cell can be provided.

本発明の実施形態に係る電解槽の製作方法により溶接するアルカリ水電解槽における構成部材100の斜視図である。It is a perspective view of the component member 100 in the alkaline water electrolysis tank welded with the manufacturing method of the electrolysis tank concerning the embodiment of the present invention. 第1実施形態の実施例に係る電解槽の製作方法を説明する図である。It is a figure explaining the manufacturing method of the electrolytic cell which concerns on the Example of 1st Embodiment. 第1実施形態の実施例に係る電解槽の製作方法を説明する図である。It is a figure explaining the manufacturing method of the electrolytic cell which concerns on the Example of 1st Embodiment. 第2実施形態の実施例に係る電解槽の製作方法を説明する図である。It is a figure explaining the manufacturing method of the electrolytic cell which concerns on the Example of 2nd Embodiment. 第2実施形態の実施例による溶接後のマクロ断面写真である。It is a macro cross-sectional photograph after the welding by the Example of 2nd Embodiment.

以下、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。また、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
まず、前記実施形態に係る電解槽の製作方法により溶接するアルカリ水電解槽における構成部材の構成について、図面を参照しながら説明する。
図1は、本発明の実施形態に係る電解槽の製作方法により溶接するアルカリ水電解槽における構成部材100の斜視図である。
Hereinafter, although embodiment of this invention is described, this invention is not limited to this. In the following description of the embodiments, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
First, the structure of the structural member in the alkaline water electrolytic cell welded by the electrolytic cell manufacturing method according to the embodiment will be described with reference to the drawings.
FIG. 1 is a perspective view of a component member 100 in an alkaline water electrolysis tank that is welded by an electrolytic cell manufacturing method according to an embodiment of the present invention.

構成部材100は、1.5mm厚のニッケル板である陽極リブ1及び1mm厚のニッケル板である陽極パン2と、3mm厚のニッケル材である隔壁3と、隔壁3の反対面に、陽極パン2と同材質で同じ厚さの陰極パン4及び陽極リブ1と同材質で同じ厚さの陰極リブ5と、が組立られ、ファイバーレーザー溶接により、これら全てが接着される。   The component member 100 includes an anode rib 1 that is a 1.5 mm thick nickel plate, an anode pan 2 that is a 1 mm thick nickel plate, a partition wall 3 that is a 3 mm thick nickel material, and an anode pan on the opposite surface of the partition wall 3. The cathode pan 4 and the anode rib 1 of the same material and the same thickness as the cathode rib 5 are assembled, and all of them are bonded by fiber laser welding.

具体的には、電解槽を製作組立する過程において、陽極リブ1及び陽極パン2と、隔壁3と、陰極パン4及び陰極リブ5との構成部材100を接着するに際し、これらのうち少なくとも2つの構成部材100を重ねた組立状態のまま、レーザー溶接法により重ね溶接する。   Specifically, in the process of manufacturing and assembling the electrolytic cell, when the constituent members 100 of the anode rib 1 and the anode pan 2, the partition wall 3, the cathode pan 4 and the cathode rib 5 are bonded, at least two of them are used. The component members 100 are stacked and welded by the laser welding method with the assembled state.

[第1実施形態]
第1実施形態の電解槽の製作方法は、パン(陽極パン2又は陰極パン4)及び隔壁3の2層を重ねた組立状態のまま、レーザー溶接法により重ね溶接し、次に、リブ(陽極リブ1又は陽極リブ1)及び重ね溶接したパン(陽極パン2又は陰極パン4)の2層を重ねた組立状態のまま、レーザー溶接法により重ね溶接して一体化する。
[First Embodiment]
The electrolytic cell of the first embodiment is manufactured by laminating the two layers of the pan (anode pan 2 or cathode pan 4) and the partition wall 3 in the assembled state by laser welding, and then rib (anode). The two layers of the rib 1 or the anode rib 1) and the lap welded pan (the anode pan 2 or the cathode pan 4) are stacked and integrated by laser welding in the assembled state.

(実施例)
第1実施形態の電解槽の製作方法について、陽極側の実施例を説明する。
図2及び図3は、第1実施形態の実施例に係る電解槽の製作方法を説明する図である。
第1実施形態の実施例に係る電解槽の製作方法は、陽極リブ1、陽極パン2及び隔壁3を2回に分けて溶接する。
(Example)
An example of the anode side will be described with respect to the electrolytic cell manufacturing method of the first embodiment.
2 and 3 are diagrams for explaining a method of manufacturing an electrolytic cell according to an example of the first embodiment.
In the manufacturing method of the electrolytic cell according to the example of the first embodiment, the anode rib 1, the anode pan 2, and the partition 3 are welded in two steps.

まず、図2の断面図に示すように、陽極パン2と隔壁3との重ね接着溶接を陽極パン2側より、下記に示す表1のAに示すファイバーレーザー溶接条件で実施した。
ファイバーレーザー: 集光レンズ F0:F=200:200
ファイバー径・加工点径: 0.3mm/0.3mm
上記ファイバーレーザー溶接条件により、溶接ビード幅が表面2.2mm、深部0.8mm、溶け込み深さ3.1mmの適切な重ね接着6が実現できた。
First, as shown in the cross-sectional view of FIG. 2, the overlap bonding welding of the anode pan 2 and the partition wall 3 was performed from the anode pan 2 side under the fiber laser welding conditions shown in A of Table 1 shown below.
Fiber laser: Condensing lens F0: F = 200: 200
Fiber diameter and processing point diameter: 0.3mm / 0.3mm
Under the above-mentioned fiber laser welding conditions, it was possible to realize an appropriate lap adhesive 6 having a weld bead width of 2.2 mm on the surface, a depth of 0.8 mm, and a penetration depth of 3.1 mm.

次に、図3の断面図に示すように、陽極リブ1を配設して、陽極リブ1と隔壁3に重ね接着溶接された陽極パン2との重ね接着溶接を陽極リブ1側より、上記に示す表1のBに示すファイバーレーザー溶接条件で実施した。
上記ファイバーレーザー溶接条件により、溶接ビード幅が表層2.0mm、深部0.7mm、溶け込み深さが2.0mmの良好な重ね接着7が実現できた。
Next, as shown in the cross-sectional view of FIG. 3, the anode rib 1 is disposed, and the overlap bonding welding of the anode rib 1 and the anode pan 2 welded to the partition wall 3 by overlap bonding is performed from the anode rib 1 side. It implemented on the fiber laser welding conditions shown to B of Table 1 shown in these.
Under the above-mentioned fiber laser welding conditions, it was possible to realize a good overlap adhesion 7 with a weld bead width of 2.0 mm on the surface layer, a depth of 0.7 mm, and a penetration depth of 2.0 mm.

反面の陰極側も陽極側と同様の手順および条件により実施し、構成部材100(図1参照)の全ての接着を実現できた。   On the other hand, the same procedure and conditions as those on the anode side were also performed on the cathode side, and all of the components 100 (see FIG. 1) could be bonded.

[第2実施形態]
第2実施形態の電解槽の製作方法は、リブ(陽極リブ1又は陽極リブ1)、パン(陽極パン2又は陰極パン4)及び隔壁3の3層を重ねた組立状態のまま、レーザー溶接法により重ね溶接して一体化する。
[Second Embodiment]
The manufacturing method of the electrolytic cell of the second embodiment is a laser welding method in an assembled state in which three layers of a rib (anode rib 1 or anode rib 1), a pan (anode pan 2 or cathode pan 4) and a partition wall 3 are stacked. Are integrated by lap welding.

(実施例)
第2実施形態の電解槽の製作方法について、陽極側の実施例を説明する。
図4は、第2実施形態の実施例に係る電解槽の製作方法を説明する図である。
第1実施形態の実施例に係る電解槽の製作方法は、陽極リブ1、陽極パン2及び隔壁3を3枚重ねて接着溶接する。
(Example)
An example of the anode side will be described with respect to the method for manufacturing the electrolytic cell of the second embodiment.
FIG. 4 is a diagram for explaining an electrolytic cell manufacturing method according to an example of the second embodiment.
In the method of manufacturing an electrolytic cell according to the example of the first embodiment, three anode ribs 1, an anode pan 2, and a partition wall 3 are stacked and bonded.

図4の断面図に示すように、陽極リブ1、陽極パン2及び隔壁3の貫通接着溶接を陽極リブ1側より、下記に示す表2に示すファイバーレーザー溶接条件で実施した。
ファイバーレーザー: 集光レンズ F0:F=200:200
ファイバー径・加工点径: 0.3mm/0.3mm
上記ファイバーレーザー溶接条件により、溶接ビード幅が表面3.3mm、深部1mm、溶け込み深さ4.3mmの適切な重ね接着8が実現できた。
図5は、第2実施形態の実施例による溶接後のマクロ断面写真である。
As shown in the sectional view of FIG. 4, penetration bonding welding of the anode rib 1, the anode pan 2, and the partition wall 3 was performed from the anode rib 1 side under the fiber laser welding conditions shown in Table 2 below.
Fiber laser: Condensing lens F0: F = 200: 200
Fiber diameter and processing point diameter: 0.3mm / 0.3mm
Under the above-mentioned fiber laser welding conditions, it was possible to realize appropriate overlap bonding 8 with a weld bead width of 3.3 mm on the surface, a depth of 1 mm, and a penetration depth of 4.3 mm.
FIG. 5 is a macro sectional photograph after welding according to an example of the second embodiment.

反面の陰極側も陽極側と同様の手順および条件により実施し、構成部材100(図1参照)の全ての接着を実現できた。   On the other hand, the same procedure and conditions as those on the anode side were also performed on the cathode side, and all of the components 100 (see FIG. 1) could be bonded.

[第3実施形態]
第3実施形態の電解槽の製作方法は、図1に示すように、陽極リブ1及び陽極パン2と、隔壁3と、隔壁3の反対面に、陰極パン4及び陰極リブ5と、を仮組立した電解槽を平面配置ではなく縦向きに立てて配置し、レーザー溶接法による溶接を行う2台のレーザー溶接装置により、第2実施形態の実施例と同様のファイバーレーザー溶接条件で、陰極側と陽極側とを同時に重ね溶接する。
[Third Embodiment]
As shown in FIG. 1, the electrolytic cell manufacturing method of the third embodiment is provided with an anode rib 1 and an anode pan 2, a partition wall 3, and a cathode pan 4 and a cathode rib 5 on the opposite surface of the partition wall 3. The assembled electrolytic cell is placed vertically rather than in a plane, and two laser welding devices that perform welding by the laser welding method are used on the cathode side under the same fiber laser welding conditions as in the example of the second embodiment. And the anode side are overlapped and welded simultaneously.

上記実施形態に係る電解槽の製作方法によれば、以下の作用効果を奏する。
上記実施形態のニッケル板のレーザー溶接法によれば、A側(陽極側)にニッケル板のリブ、ニッケル板のパン、が隔壁をはさんでB側(陰極側)にも対照的に配列されており、A側とB側が完全にレーザー溶接によって、完全に一体化されている。
ニッケル板の隔壁を設けることによって、差圧に対する強度アップ、同じニッケル同志の溶接であるため、溶接歪みがすくない。
According to the method for manufacturing an electrolytic cell according to the above-described embodiment, the following effects can be obtained.
According to the laser welding method of the nickel plate of the above embodiment, the rib of the nickel plate and the pan of the nickel plate are arranged in contrast on the B side (cathode side) across the partition wall on the A side (anode side). The A side and the B side are completely integrated by laser welding.
By providing the partition of the nickel plate, the strength against the differential pressure is increased and welding of the same nickel is performed, so the welding distortion is not great.

従来の抵抗溶接機を使用して、A側(陽極側)、B側(陰極側)を一体化することは、ほぼ不可能であり、レーザー溶接法であれば、確実に、高品質で漏れのない製品となる。また、2枚のニッケル板(例えば、陽極側の陽極パン2と隔壁3、陽極リブ1と陽極パン2、並びに、陰極側の陰極パン4と隔壁3、陰極リブ5と陰極パン4)のように片側を2回に分けてレーザー溶接してもよいし、ニッケル間に隙間がないように接合することで、3枚のニッケル板(例えば、陽極リブ1と陽極パン2と隔壁3)を一度にレーザー溶接を行うこともできる。   It is almost impossible to integrate the A side (anode side) and B side (cathode side) using a conventional resistance welder. It becomes the product without. Also, two nickel plates (for example, anode pan 2 and partition 3 on the anode side, anode rib 1 and anode pan 2, and cathode pan 4 and partition 3 on the cathode side, cathode rib 5 and cathode pan 4) One side may be laser-welded in two steps, or three nickel plates (for example, anode rib 1, anode pan 2, and partition wall 3) may be joined once by joining so that there is no gap between nickel. Laser welding can also be performed.

また、予め、リブとパン、パンと隔壁を、点溶接にて位置の固定をし、位置ずれ防止の治具で押さえつけておくことで、より正確にリブ、隔壁を等ピッチに配列することができる。   In addition, by fixing the position of ribs and pans, pans and bulkheads in advance by spot welding, and pressing them with a jig for preventing displacement, the ribs and bulkheads can be more accurately arranged at equal pitches. it can.

また、A側、B側のリブとパンを挟んで、ニッケル板の隔壁がリブと等間隔に配列されており、ニッケル板の隔壁は、ニッケル板のリブ、ニッケル板のパンの厚さよりも同等かまたは厚くしておくのが望ましい。また、差圧に関しても当然だが、A側サイドとB側サイドのレーザー溶接が重ならないようにしておくことが望ましい。   In addition, the partition of the nickel plate is arranged at equal intervals with the rib across the A side and B side ribs and the pan, and the partition of the nickel plate is equal to the thickness of the rib of the nickel plate and the pan of the nickel plate It is desirable to keep it thick or thick. As a matter of course, it is desirable that the laser welding on the A side and the B side should not overlap.

また、第3実施形態において、製品である電解槽を縦にして、2台のレーザー溶接機でA側、B側を同時溶接し、歪みが出ないように、配列を考慮しながら、施工することで、高品質、大量生産が期待できる。   In the third embodiment, the electrolytic cell as a product is placed vertically, and the A side and the B side are simultaneously welded by two laser welders, and the construction is performed in consideration of the arrangement so that distortion does not occur. Therefore, high quality and mass production can be expected.

このような上記実施形態に係る電解槽の製作方法によれば、100A/dm2のような高電流密度でも安定した運転ができ、電解電圧の低い単極式および複極式電解槽を提供できる。   According to the method for manufacturing an electrolytic cell according to the above-described embodiment, a stable operation can be performed even at a high current density of 100 A / dm 2, and a single electrode type and a bipolar electrode electrolytic cell having a low electrolysis voltage can be provided.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

例えば、第3実施形態において、2台のレーザー溶接機で、製品である電解槽を縦型にして、A側、B側を同時レーザー溶接することが、望ましいが、例えば、A側だけを横にして片方ずつレーザー溶接を行うことも可能である。その場合は、溶接歪みが発生しないように、逆歪みをかけるのが望ましい。   For example, in the third embodiment, it is desirable to use two laser welders to make the product electrolytic cell a vertical type and simultaneously perform laser welding on the A side and the B side. It is also possible to perform laser welding one by one. In that case, it is desirable to apply reverse distortion so that welding distortion does not occur.

1 陽極リブ
2 陽極パン
3 隔壁
4 陰極パン
5 陰極リブ
6,7,8 重ね溶着部
100 構成部材
DESCRIPTION OF SYMBOLS 1 Anode rib 2 Anode pan 3 Partition 4 Cathode pan 5 Cathode rib 6,7,8 Overlaying part 100 Constituent member

Claims (1)

電解槽を製作組立する過程におけるリブ、パン及び隔壁の構成部材を接着するに際し、
前記リブ、前記パン及び前記隔壁の少なくとも2つの構成部材を重ねた組立状態のまま、レーザー溶接法により重ね溶接し、
前記リブ及び前記パンは、前記電解槽において、前記隔壁を挟んで、陰極側と陽極側とにそれぞれ配置され、
仮組立した前記電解槽を平面配置ではなく縦向きに立てて配置し、レーザー溶接法による溶接を行う2台のレーザー溶接装置により、陰極側と陽極側とを同時に重ね溶接することを特徴とする電解槽の製作方法。
When bonding the components of ribs, pans and partition walls in the process of manufacturing and assembling the electrolytic cell,
In the assembled state in which at least two components of the rib, the pan, and the partition wall are stacked, lap welding is performed by a laser welding method ,
In the electrolytic cell, the rib and the pan are disposed on the cathode side and the anode side, respectively, across the partition wall,
The electrolyzed cells that have been temporarily assembled are arranged vertically rather than in a planar arrangement, and the cathode side and the anode side are simultaneously overlap-welded by two laser welding apparatuses that perform welding by laser welding. How to make an electrolytic cell.
JP2014217548A 2014-10-24 2014-10-24 Electrolytic cell manufacturing method Expired - Fee Related JP6028007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217548A JP6028007B2 (en) 2014-10-24 2014-10-24 Electrolytic cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217548A JP6028007B2 (en) 2014-10-24 2014-10-24 Electrolytic cell manufacturing method

Publications (2)

Publication Number Publication Date
JP2016084503A JP2016084503A (en) 2016-05-19
JP6028007B2 true JP6028007B2 (en) 2016-11-16

Family

ID=55971888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217548A Expired - Fee Related JP6028007B2 (en) 2014-10-24 2014-10-24 Electrolytic cell manufacturing method

Country Status (1)

Country Link
JP (1) JP6028007B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377620B2 (en) * 1994-08-31 2003-02-17 旭硝子株式会社 Method for manufacturing chamber frame of bipolar electrolyzer
DE19641125A1 (en) * 1996-10-05 1998-04-16 Krupp Uhde Gmbh Electrolysis apparatus for the production of halogen gases
JP3041792B1 (en) * 1999-03-31 2000-05-15 東亞合成株式会社 Electrolyzer with thin caustic chamber

Also Published As

Publication number Publication date
JP2016084503A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
US20230290927A1 (en) Connecting contact leads to lithium-based electrodes
CN106463685A (en) Battery pack tab welding method
JP5067186B2 (en) Separator welding method and separator welding apparatus
TWI787474B (en) Honeycomb panel, manufacturing method thereof, and shell
CN209811451U (en) Heat exchanger element
JP2012125837A (en) Method for manufacturing panel structure
JP2014194876A (en) Method of manufacturing fuel cell-related parts and fuel cell-related parts, welding jig device
CN102039472A (en) Tailor welding method of thick aluminium alloy plate
JP3696137B2 (en) Method for producing electrolytic cell unit and electrolytic cell unit
CN104002004A (en) Thick metal plate large-area butt joint braze welding method
TW201836092A (en) Vapor chamber
JP2014194877A (en) Fuel cell-related parts and manufacturing method therefor
KR101429854B1 (en) Method for friction stir welding aluminum sheets using bulk process
JP2006114444A (en) Fuel cell stack and joining method for separator
JP2009064593A (en) Welding method of metal separator for fuel cell, and welding device of metal separator for fuel cell
JP6028007B2 (en) Electrolytic cell manufacturing method
JP2008168319A (en) Butt welded joint of steel plate
KR20140010565A (en) Method for welding aluminum member using friction stir welding technology
JP5546997B2 (en) Welding method, battery manufacturing method, and battery
JP5569261B2 (en) Lead member and lead member manufacturing method
US9574278B2 (en) Easily produced interconnecting module for a high-temperature water electrolysis device
JP2012035296A (en) Welding method
JP5056996B2 (en) Separator
JP2019160558A (en) Fuel cell separator assembly and method of manufacturing fuel cell separator assembly
JP6505324B2 (en) Method of manufacturing bipolar plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6028007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees