JP6027430B2 - Oil film thickness measurement method during reciprocating wear test - Google Patents

Oil film thickness measurement method during reciprocating wear test Download PDF

Info

Publication number
JP6027430B2
JP6027430B2 JP2012277733A JP2012277733A JP6027430B2 JP 6027430 B2 JP6027430 B2 JP 6027430B2 JP 2012277733 A JP2012277733 A JP 2012277733A JP 2012277733 A JP2012277733 A JP 2012277733A JP 6027430 B2 JP6027430 B2 JP 6027430B2
Authority
JP
Japan
Prior art keywords
film thickness
pin
oil film
eddy current
wear test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012277733A
Other languages
Japanese (ja)
Other versions
JP2014122795A (en
Inventor
憲志 山本
憲志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012277733A priority Critical patent/JP6027430B2/en
Publication of JP2014122795A publication Critical patent/JP2014122795A/en
Application granted granted Critical
Publication of JP6027430B2 publication Critical patent/JP6027430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、往復動摩耗試験中の油膜厚測定方法に関するものである。   The present invention relates to a method for measuring an oil film thickness during a reciprocating wear test.

従来、エンジンのピストンやベアリング等のように潤滑油を介して摺動する金属部品が自動車等に広く用いられているが、これらの金属部品の摩耗を試験により評価することは極めて重要であり、例えば、図5に模式的に示す如く、金属製の稼働片1とピン2とを供試体とし、図示しないモータやクランク機構からなる往復動装置により前記稼働片1を往復動させる一方、該稼働片1に対し前記ピン2を試験治具3により保持して上方から摺接させるようにした往復動摩耗試験が知られている。   Conventionally, metal parts that slide through lubricating oil, such as engine pistons and bearings, have been widely used in automobiles, etc., but it is extremely important to evaluate the wear of these metal parts by testing, For example, as schematically shown in FIG. 5, the working piece 1 is reciprocated by a reciprocating device comprising a metal working piece 1 and a pin 2 and a motor or a crank mechanism (not shown). A reciprocating wear test is known in which the pin 2 is held by a test jig 3 and slidably contacted with a piece 1 from above.

斯かる往復動摩耗試験は、稼働片1とピン2との間を潤滑しながら行われるが、その潤滑条件の違いにより試験の評価は大きく変動してしまうので、試験中の潤滑条件を正確に把握するために稼働片1とピン2との摺接面間の油膜の厚さを測定する必要があり、従来においては、静電容量式、X線式、レーザー式、超音波式といった測定方法を用いて稼働片1とピン2との摺接面間の油膜の厚さを測定するようにしている。   Such a reciprocating wear test is performed while lubricating between the working piece 1 and the pin 2, but the evaluation of the test greatly fluctuates due to the difference in the lubrication conditions. In order to grasp it, it is necessary to measure the thickness of the oil film between the sliding contact surfaces of the working piece 1 and the pin 2, and conventionally, measurement methods such as capacitance type, X-ray type, laser type, and ultrasonic type are used. Is used to measure the thickness of the oil film between the sliding contact surfaces of the operating piece 1 and the pin 2.

尚、この種の往復動摩耗試験中の油膜厚測定方法に関連する先行技術文献情報としては下記の特許文献1等がある。   The prior art document information related to the oil film thickness measuring method during this type of reciprocating wear test includes the following Patent Document 1.

特開平10−26581号公報Japanese Patent Laid-Open No. 10-26581

しかしながら、静電容量式、X線式、レーザー式、超音波式の何れの測定方法を用いた場合でも、往復動摩耗試験中に稼働片1とピン2との間を潤滑している油膜の厚さを測定するにあたっては、大型の計測設備が必要となってコストが高くなる上、その事前準備に煩雑な手順が必要となって多大な労力と時間がかかるという問題があった。   However, even when using any of the measurement methods of capacitance type, X-ray type, laser type, and ultrasonic type, the oil film that lubricates between the working piece 1 and the pin 2 during the reciprocating wear test is used. In measuring the thickness, there is a problem that a large measuring equipment is required and the cost is increased, and a complicated procedure is required for the preliminary preparation, which requires a lot of labor and time.

本発明は上述の実情に鑑みてなしたもので、従来よりもコストを安価に抑え且つ事前準備に要する時間と労力を軽減し得る往復動摩耗試験中の油膜厚測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for measuring an oil film thickness during a reciprocating wear test capable of reducing the cost and reducing the time and labor required for preparation in advance. And

本発明は、往復動する金属製の稼働片に対し金属製のピンを摺接させて行う往復動摩耗試験中に、稼働片とピンとの間を潤滑している油膜の厚さを測定する方法であって、ピンの摺接面から0.2mm±0.05mmの範囲で設定した摩耗代だけ後退した位置に渦電流式膜厚センサを埋設しておき、該渦電流式膜厚センサのコイルに高周波電流を流して高周波磁界を発生させ、該高周波磁界により稼働片表面に渦電流が誘導された時の前記コイルのインピーダンス変化を検出し、その変化量を換算して油膜の厚さを求めることを特徴とするものである。 The present invention relates to a method for measuring the thickness of an oil film that lubricates between a working piece and a pin during a reciprocating wear test performed by sliding a metal pin against a reciprocating metal working piece. An eddy current film thickness sensor is embedded in a position retracted by a wear allowance set within a range of 0.2 mm ± 0.05 mm from the sliding surface of the pin, and the coil of the eddy current film thickness sensor A high-frequency current is caused to flow to generate a high-frequency magnetic field, and when the eddy current is induced on the surface of the working piece by the high-frequency magnetic field, the impedance change of the coil is detected, and the change amount is converted to obtain the thickness of the oil film It is characterized by this.

即ち、ピンに埋設された渦電流式膜厚センサのコイルに高周波電流を流して高周波磁界を発生させると、該高周波磁界により稼働片表面に電磁誘導による渦電流が発生し、この渦電流が反電磁界磁場を形成し、この反電磁界磁場の作用により前記コイルのインピーダンスが高周波磁界発生源(渦電流式膜厚センサ)から稼働片表面までの距離に相関して変化するので、そのインピーダンスの変化量を換算することで油膜の厚さが求められる。   That is, when a high-frequency magnetic field is generated by flowing a high-frequency current through the coil of the eddy-current film thickness sensor embedded in the pin, an eddy current due to electromagnetic induction is generated on the surface of the operating piece by the high-frequency magnetic field, and this eddy current is counteracted. An electromagnetic field is formed, and the impedance of the coil changes in correlation with the distance from the high frequency magnetic field source (eddy current type film thickness sensor) to the surface of the operating piece by the action of the demagnetizing field. The oil film thickness is obtained by converting the amount of change.

この際、ピンの摺接面は試験時間が長くなるにつれ稼働片側の摺動により徐々に摩耗してくるが、渦電流式膜厚センサはピンの摺接面から所要の摩耗代だけ後退した位置に埋設されているので、渦電流式膜厚センサの先端に摩耗が及ぶまでに十分な試験時間が確保されることになり、渦電流式膜厚センサが損傷する前に必要な試験データの収集を図ることが可能となる。   At this time, the sliding surface of the pin gradually wears due to sliding on one side as the test time becomes longer, but the eddy current film thickness sensor is moved back from the sliding surface of the pin by the required wear allowance. The test data is collected before the tip of the eddy current film thickness sensor is damaged. Can be achieved.

また、本発明においては、ピンの摺接面から渦電流式膜厚センサを後退させる摩耗代を0.2mm±0.05mmの範囲で設定すると良いことが本発明者の研究結果により見いだされており、この範囲に摩耗代を設定すれば、正確な油膜の厚さを測定することが可能な感度を保ちながら試験時間を極力長く確保することが可能となる。   In addition, in the present invention, it has been found by the inventor's research results that the wear allowance for retreating the eddy current film thickness sensor from the sliding surface of the pin should be set in the range of 0.2 mm ± 0.05 mm. If the wear allowance is set within this range, it is possible to ensure the test time as long as possible while maintaining the sensitivity with which an accurate oil film thickness can be measured.

上記した本発明の往復動摩耗試験中の油膜厚測定方法によれば、下記の如き種々の優れた効果を奏し得る。   According to the oil film thickness measuring method during the reciprocating wear test of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、供試体であるピンに埋設した渦電流式膜厚センサにより往復動摩耗試験中に稼働片とピンとの間の油膜の厚さを測定することができるので、大型の計測設備を不要としてコストを安価に抑えることができ、しかも、その事前準備に煩雑な手順を要しないことから労力と時間を従来より大幅に軽減することができる。   (I) According to the invention described in claim 1 of the present invention, the thickness of the oil film between the operating piece and the pin is determined during the reciprocating wear test by the eddy current film thickness sensor embedded in the pin as the specimen. Since measurement can be performed, large-scale measuring equipment is not required and costs can be kept low. In addition, labor and time can be greatly reduced compared to conventional methods because no complicated procedures are required for the preparation. .

(II)本発明の請求項に記載の発明によれば、ピンの摺接面から渦電流式膜厚センサを後退させる摩耗代を0.2mm±0.05mmの範囲で設定することにより、正確な油膜の厚さを測定することが可能な感度を保ちながら試験時間を極力長く確保することができる。 According to the invention described in claim 1, (II) the present invention, by setting the wear allowance to retract the eddy current film thickness sensor from the sliding surface of the pin in the range of 0.2 mm ± 0.05 mm, The test time can be ensured as long as possible while maintaining the sensitivity capable of accurately measuring the thickness of the oil film.

本発明を実施する形態の一例を示す模式的な拡大図である。It is a typical enlarged view which shows an example of the form which implements this invention. 図1の渦電流式膜厚センサの電気系統を概略的に示す回路図である。FIG. 2 is a circuit diagram schematically showing an electrical system of the eddy current film thickness sensor of FIG. 1. 図1のピンに対する渦電流式膜厚センサの配置状態を示す正面図である。It is a front view which shows the arrangement | positioning state of the eddy current type film thickness sensor with respect to the pin of FIG. 図3の要部を切り欠いて示す詳細図である。FIG. 4 is a detailed view showing a main part of FIG. 一般的な往復動摩耗試験の様子を示す概略図である。It is the schematic which shows the mode of a general reciprocating abrasion test.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、先に図5で説明した例の場合と同様に、金属製の稼働片1とピン2とを供試体とし、図示しないモータやクランク機構からなる往復動装置により前記稼働片1を往復動させる一方、該稼働片1に対し前記ピン2を試験治具3により保持して上方から摺接させるようにした往復動摩耗試験を対象とし、この往復動摩耗試験中に稼働片1とピン2との間を潤滑している油膜4の厚さを測定するものであり、図1においては、稼働片1とピン2との摺接面間に油膜4が介在している様子を模式的な拡大図として示している。   FIG. 1 shows an example of an embodiment for carrying out the present invention. As in the example described with reference to FIG. 5, a metal working piece 1 and a pin 2 are used as specimens, and a motor or crank (not shown) is shown. A reciprocating wear test in which the operating piece 1 is reciprocated by a reciprocating device composed of a mechanism, while the pin 2 is held by the test jig 3 to be in sliding contact with the operating piece 1 from above. The thickness of the oil film 4 that lubricates between the working piece 1 and the pin 2 is measured during the reciprocating wear test. In FIG. 1, the sliding contact surface between the working piece 1 and the pin 2 is measured. A state in which the oil film 4 is interposed therebetween is shown as a schematic enlarged view.

そして、本形態例においては、ピン2の先端部分に渦電流式膜厚センサ5が埋設されており、図2に概略的に示す如く、この渦電流式膜厚センサ5に内蔵されているコイル6に対し電源7が高周波電流発生器8を介して接続され、該高周波電流発生器8により前記コイル6に高周波電流を流して高周波磁界を発生させ得るようにしてあり、また、前記コイル6に高周波電流を流す電気回路の適宜位置には、電圧値と電流値とを検出する電圧・電流計9が介装されており、該電圧・電流計9の検出信号9aが演算装置10に導かれて前記コイル6のインピーダンス変化が検出され、その変化量が油膜4の厚さに換算されて求められるようになっている。   In this embodiment, an eddy current film thickness sensor 5 is embedded at the tip of the pin 2, and a coil built in the eddy current film thickness sensor 5 is schematically shown in FIG. 6 is connected to a power source 7 via a high-frequency current generator 8 so that the high-frequency current generator 8 can cause a high-frequency current to flow through the coil 6 to generate a high-frequency magnetic field. A voltage / ammeter 9 for detecting a voltage value and a current value is interposed at an appropriate position of the electric circuit for supplying a high-frequency current. Thus, a change in impedance of the coil 6 is detected, and the amount of change is converted into the thickness of the oil film 4 to be obtained.

ここで、図3及び図4に示すように、前記ピン2は軸心部分を中空とした円筒状に形成されており、その中空部分の先端側に渦電流式膜厚センサ5が嵌合装着されているが、前記ピン2の摺接面から所要の摩耗代xだけ後退した位置に埋設されるようになっており、より具体的には、前記摩耗代xが0.2mm±0.05mmの範囲で設定されている。尚、図3及び図4に示す例においては、前記ピン2の側面に前記渦電流式膜厚センサ5のコイル6を逃がすためのスリット11が形成されており、該スリット11は前記ピン2の基端から先端近くまで延びて終端が円弧形状を成すようにしてある。   Here, as shown in FIGS. 3 and 4, the pin 2 is formed in a cylindrical shape with a hollow shaft center portion, and an eddy current film thickness sensor 5 is fitted and mounted on the tip side of the hollow portion. However, the wear margin x is embedded in a position retracted from the sliding contact surface of the pin 2 by a required wear allowance x. More specifically, the wear allowance x is 0.2 mm ± 0.05 mm. It is set in the range. In the example shown in FIGS. 3 and 4, a slit 11 for releasing the coil 6 of the eddy current film thickness sensor 5 is formed on the side surface of the pin 2. It extends from the proximal end to the vicinity of the distal end, and the end has an arc shape.

而して、このようにした場合、前記ピン2に埋設された渦電流式膜厚センサ5のコイル6に高周波電流発生器8により高周波電流を流して高周波磁界を発生させると、該高周波磁界により稼働片1表面に電磁誘導による渦電流が発生し、この渦電流が反電磁界磁場を形成し、この反電磁界磁場の作用により前記コイル6のインピーダンスが高周波磁界発生源(渦電流式膜厚センサ5)から稼働片1表面までの距離に相関して変化するので、そのインピーダンスの変化量を電圧・電流計9が検出する電圧値と電流値に基づいて演算装置10にて求め、これを換算することで油膜4の厚さが求められる。   Thus, in this case, when a high frequency current is caused to flow through the coil 6 of the eddy current film thickness sensor 5 embedded in the pin 2 by the high frequency current generator 8, a high frequency magnetic field is generated by the high frequency magnetic field. An eddy current due to electromagnetic induction is generated on the surface of the operating piece 1, and this eddy current forms a demagnetizing magnetic field. Due to the action of the demagnetizing magnetic field, the impedance of the coil 6 becomes a high frequency magnetic field generating source (eddy current type film thickness Since it changes in relation to the distance from the sensor 5) to the surface of the working piece 1, the amount of change in impedance is obtained by the arithmetic unit 10 based on the voltage value and current value detected by the voltmeter / ammeter 9, and this is calculated. The thickness of the oil film 4 is obtained by conversion.

この際、ピン2の摺接面は試験時間が長くなるにつれ稼働片1側の摺動により徐々に摩耗してくるが、渦電流式膜厚センサ5はピン2の摺接面から所要の摩耗代xだけ後退した位置に埋設されているので、渦電流式膜厚センサ5の先端に摩耗が及ぶまでに十分な試験時間が確保されることになり、渦電流式膜厚センサ5が損傷する前に必要な試験データの収集を図ることが可能となる。   At this time, the sliding contact surface of the pin 2 gradually wears due to sliding on the working piece 1 side as the test time becomes longer, but the eddy current film thickness sensor 5 is required to wear from the sliding contact surface of the pin 2. Since it is buried at a position retracted by a margin x, a sufficient test time is secured until the tip of the eddy current film thickness sensor 5 is worn, and the eddy current film thickness sensor 5 is damaged. It becomes possible to collect the test data required before.

従って、上記形態例によれば、供試体であるピン2に埋設した渦電流式膜厚センサ5により往復動摩耗試験中に稼働片1とピン2との間の油膜4の厚さを測定することができるので、大型の計測設備を不要としてコストを安価に抑えることができ、しかも、その事前準備に煩雑な手順を要しないことから労力と時間を従来より大幅に軽減することができる。   Therefore, according to the above embodiment, the thickness of the oil film 4 between the working piece 1 and the pin 2 is measured during the reciprocating wear test by the eddy current film thickness sensor 5 embedded in the pin 2 as the specimen. Therefore, it is possible to reduce the cost at a low cost by eliminating the need for a large-scale measuring facility, and it is possible to significantly reduce labor and time as compared with the prior art because no complicated procedure is required for the preliminary preparation.

また、ピン2の摺接面から渦電流式膜厚センサ5を後退させる摩耗代xを0.2mm±0.05mmの範囲で設定すると良いことが本発明者の研究結果により見いだされており、この範囲に摩耗代xを設定すれば、正確な油膜4の厚さを測定することが可能な感度を保ちながら試験時間を極力長く確保することができる。   Further, it has been found by the inventor's research results that the wear allowance x for retracting the eddy current film thickness sensor 5 from the sliding contact surface of the pin 2 should be set in the range of 0.2 mm ± 0.05 mm. If the wear allowance x is set within this range, the test time can be secured as long as possible while maintaining the sensitivity with which the accurate thickness of the oil film 4 can be measured.

尚、本発明の往復動摩耗試験中の油膜厚測定方法は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the oil film thickness measuring method during the reciprocating wear test of the present invention is not limited to the above-described embodiments, and it is needless to say that various changes can be made without departing from the scope of the present invention. .

1 稼働片
2 ピン
4 油膜
5 渦電流式膜厚センサ
6 コイル
x 摩耗代
1 Operating piece 2 Pin 4 Oil film 5 Eddy current film thickness sensor 6 Coil x Wear allowance

Claims (1)

往復動する金属製の稼働片に対し金属製のピンを摺接させて行う往復動摩耗試験中に、稼働片とピンとの間を潤滑している油膜の厚さを測定する方法であって、ピンの摺接面から0.2mm±0.05mmの範囲で設定した摩耗代だけ後退した位置に渦電流式膜厚センサを埋設しておき、該渦電流式膜厚センサのコイルに高周波電流を流して高周波磁界を発生させ、該高周波磁界により稼働片表面に渦電流が誘導された時の前記コイルのインピーダンス変化を検出し、その変化量を換算して油膜の厚さを求めることを特徴とする往復動摩耗試験中の油膜厚測定方法。 During a reciprocating wear test performed by sliding a metal pin against a reciprocating metal working piece, a method of measuring the thickness of the oil film lubricating between the working piece and the pin, An eddy current film thickness sensor is embedded in a position retracted by a wear allowance set within a range of 0.2 mm ± 0.05 mm from the sliding surface of the pin, and a high frequency current is applied to the coil of the eddy current film thickness sensor. Generating a high-frequency magnetic field, detecting an impedance change of the coil when an eddy current is induced on the surface of the operating piece by the high-frequency magnetic field, and converting the amount of change to obtain the thickness of the oil film. Oil film thickness measurement method during reciprocating wear test.
JP2012277733A 2012-12-20 2012-12-20 Oil film thickness measurement method during reciprocating wear test Active JP6027430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277733A JP6027430B2 (en) 2012-12-20 2012-12-20 Oil film thickness measurement method during reciprocating wear test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012277733A JP6027430B2 (en) 2012-12-20 2012-12-20 Oil film thickness measurement method during reciprocating wear test

Publications (2)

Publication Number Publication Date
JP2014122795A JP2014122795A (en) 2014-07-03
JP6027430B2 true JP6027430B2 (en) 2016-11-16

Family

ID=51403406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277733A Active JP6027430B2 (en) 2012-12-20 2012-12-20 Oil film thickness measurement method during reciprocating wear test

Country Status (1)

Country Link
JP (1) JP6027430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310787B (en) * 2021-07-08 2022-11-01 济南大学 Multifunctional friction wear test device under controllable stable magnetic field environment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997411U (en) * 1982-12-20 1984-07-02 三菱重工業株式会社 Gap measurement device between piston ring and cylinder
JPH1026581A (en) * 1996-07-11 1998-01-27 Nippon Soken Inc Friction/abrasion testing machine
KR101095418B1 (en) * 2003-08-07 2011-12-16 베르트질레 슈바이츠 악티엔게젤샤프트 A method and apparatus for the lubrication of a reciprocating piston combustion engine
JP5730747B2 (en) * 2010-12-10 2015-06-10 株式会社荏原製作所 Eddy current sensor and polishing method and apparatus
JP2013001329A (en) * 2011-06-20 2013-01-07 Hitachi Plant Technologies Ltd Electric-car line position measurement device

Also Published As

Publication number Publication date
JP2014122795A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
Zhang et al. Defect imaging curved surface based on flexible eddy current array sensor
KR20220155997A (en) Shaft workpiece in-place non-contact detection method
Yan et al. Online nondestructive testing for fine steel wire rope in electromagnetic interference environment
Lachambre et al. Extraction of stress intensity factors for 3D small fatigue cracks using digital volume correlation and X-ray tomography
KR20110119822A (en) Carburization detection method
JP5149562B2 (en) Nondestructive measuring method and nondestructive measuring device
JP6027430B2 (en) Oil film thickness measurement method during reciprocating wear test
CN206192262U (en) Non -contact current vortex sensor test platform
US20120043962A1 (en) Method and apparatus for eddy current inspection of case-hardended metal components
Yilai et al. Research on internal and external defect identification of drill pipe based on weak magnetic inspection
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
JP2012063296A (en) Barkhausen noise inspection device
FR2814233B1 (en) SENSOR MODULE INTEGRATING THE MEASUREMENT OF THE RACE OF A ROD AS WELL AS THE MEASUREMENT OF THE EFFORT EXERCISED ON SAID ROD
KR102187106B1 (en) A Test Device For Titanium Turbine blade
JP5910124B2 (en) Bearing remaining life prediction method
CN208653462U (en) Spindle inclination mechanism for testing
US10914566B2 (en) Position sensing system with an electromagnet
CN208155193U (en) A kind of multi-functional test pin of cubing
KR20130089430A (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
RU2526598C1 (en) Electromagnetic control over turbojet hollow blade
CN112846937B (en) Main shaft state online monitoring system and method
CN207487644U (en) A kind of axle endoporus roughness measurement tooling
JP5922383B2 (en) Wall thickness inspection method, calibration tool, and eddy current detection system
CN103529118B (en) Probe of pipe leakage flux flaw detection system
CN107064288A (en) A kind of stress intensity factor assay method of I types crackle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250