JP6026203B2 - Method and apparatus for evaluating UV protection cosmetics - Google Patents

Method and apparatus for evaluating UV protection cosmetics Download PDF

Info

Publication number
JP6026203B2
JP6026203B2 JP2012217375A JP2012217375A JP6026203B2 JP 6026203 B2 JP6026203 B2 JP 6026203B2 JP 2012217375 A JP2012217375 A JP 2012217375A JP 2012217375 A JP2012217375 A JP 2012217375A JP 6026203 B2 JP6026203 B2 JP 6026203B2
Authority
JP
Japan
Prior art keywords
ultraviolet
substrate
distribution
coating film
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012217375A
Other languages
Japanese (ja)
Other versions
JP2014071007A (en
Inventor
祥 菊池
祥 菊池
麦 瀧本
麦 瀧本
俊希 市橋
俊希 市橋
智 内藤
智 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012217375A priority Critical patent/JP6026203B2/en
Publication of JP2014071007A publication Critical patent/JP2014071007A/en
Application granted granted Critical
Publication of JP6026203B2 publication Critical patent/JP6026203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Cosmetics (AREA)

Description

本発明は、紫外線防御化粧料の評価方法及び評価装置に関する。   The present invention relates to an evaluation method and an evaluation apparatus for ultraviolet protective cosmetics.

地表に到達する太陽光は280〜400nmの紫外線を含んでいる。これらの紫外線は280〜320nmの紫外線B波(UVB)と320〜400nmの紫外線A波(UVA)とに大別される。それぞれ過剰な暴露により皮膚へ悪影響を及ぼす。UVBは紅斑やシミなどの発生要因となり、UVAは皮膚の黒化、シワなどの発生要因となる。   Sunlight reaching the surface of the earth contains 280-400 nm ultraviolet light. These ultraviolet rays are roughly classified into ultraviolet B waves (UVB) of 280 to 320 nm and ultraviolet A waves (UVA) of 320 to 400 nm. Each has an adverse effect on the skin due to excessive exposure. UVB causes erythema and spots, and UVA causes skin darkening and wrinkles.

このような紫外線の悪影響から皮膚を防御するために、各種紫外線防御剤が開発され、これらを配合した紫外線防御化粧料が開発され販売されている。紫外線防御化粧料の紫外線防御効果を示す指標として、SPF(Sun Protection Factor)値やPFA(Protection Factor of UVA)値が用いられている。SPFは主にUVBに対する防御効果、PFAは主にUVAに対する防御効果を示す指標として用いられている。これらの値は、それぞれ以下の手順で算出される。ヒト皮膚に紫外線を照射し、紫外線防御化粧料を塗布した場所とそうでない場所において、紅斑を起こさせるために必要な最小の紫外線量(最小紅斑量)、又は数時間持続する黒化が認められるために必要な最小の紫外線量(最小持続型即時黒化量)を算出する。紫外線防御化粧料を塗布しない場所での最小紅斑量を、紫外線防御化粧料を塗布した場所での最小紅斑量で除した値をSPF値とする。紫外線防御化粧料を塗布しない場所での最小持続型即時黒化量を、紫外線防御化粧料を塗布した場所での最小持続型即時黒化量で除した値をPFA値とする。   In order to protect the skin from such adverse effects of ultraviolet rays, various ultraviolet protective agents have been developed, and ultraviolet protective cosmetics containing these have been developed and sold. SPF (Sun Protection Factor) values and PFA (Protection Factor of UVA) values are used as indices indicating the ultraviolet protection effect of UV protective cosmetics. SPF is mainly used as an index indicating a protective effect against UVB, and PFA is mainly used as an index indicating a protective effect against UVA. These values are calculated by the following procedure. The minimum amount of ultraviolet rays required to cause erythema (minimum erythema amount) or blackening that lasts for several hours is observed in places where human skin is irradiated with ultraviolet rays and UV protective cosmetics are applied and where it is not. Therefore, the minimum amount of ultraviolet rays (minimum continuous immediate blackening amount) necessary for the calculation is calculated. The value obtained by dividing the minimum erythema amount at a place where the UV protective cosmetic is not applied by the minimum erythema amount at the place where the UV protective cosmetic is applied is defined as an SPF value. A value obtained by dividing the minimum sustained immediate blackening amount at a place where the UV protective cosmetic is not applied by the minimum sustained immediate blackening amount at the place where the UV protective cosmetic is applied is defined as a PFA value.

SPFやPFAは紫外線防御化粧料の紫外線防御効果を客観的に評価できるという点で有用である一方、上述の方法は多数の被験者が必要となり、費用と時間がかかるという課題がある。また紫外線をヒト皮膚に照射することから、倫理的な観点において、ヒトを用いない評価方法が望まれてきている。そこでヒト皮膚を模した基板上に紫外線防御化粧料を塗布し、その基板の紫外線透過率からSPFの予測値としてin vitro SPF値を算出するという方法が知られている。具体的には、紫外線防御化粧料塗布膜の紫外領域の透過スペクトルを取得し、以下の式に基づいて値を算出する。   While SPF and PFA are useful in that they can objectively evaluate the UV protection effect of UV protection cosmetics, the above-described method requires a large number of subjects, and there is a problem that it is expensive and time consuming. In addition, since human skin is irradiated with ultraviolet rays, an evaluation method that does not use humans is desired from an ethical viewpoint. Therefore, a method is known in which an ultraviolet protective cosmetic is applied on a substrate simulating human skin, and an in vitro SPF value is calculated as a predicted SPF value from the ultraviolet transmittance of the substrate. Specifically, a transmission spectrum in the ultraviolet region of the ultraviolet protective cosmetic coating film is obtained, and a value is calculated based on the following equation.

この方法は、測定が簡便であるため、開発段階における紫外線防御化粧料の紫外線防御効果の評価や紫外線防御剤配合量を決定していく上で、非常に有用である。   Since this method is easy to measure, it is very useful for evaluating the UV protection effect of UV protection cosmetics in the development stage and determining the amount of UV protection agent blended.

上述した方法で得られる紫外線防御化粧料塗布膜の紫外線透過率は、製品自体に配合された紫外線防御剤組成に加え、塗布膜の厚さの均一性(平面方向における膜厚の分布)や塗布膜中の紫外線防御剤の分布の均一性等の要因によって大きく変動する値であることが知られている(例えば非特許文献1、2)。実際、in vitro SPF値を測定する上で、基板上に均一な厚さで塗布するという手技が求められるが、同じ量の紫外線防御化粧料を均一な厚さで塗布した場合でも、in vitro SPF値が変動する。このため、さらなる変動因子の制御が重要である。   The UV transmittance of the UV protective cosmetic coating film obtained by the above-described method is not only the UV protective agent composition blended in the product itself, but also the uniformity of the coating film thickness (film thickness distribution in the plane direction) and the coating It is known that the value varies greatly depending on factors such as the uniformity of the distribution of UV protection agents in the film (for example, Non-Patent Documents 1 and 2). Actually, in order to measure the in vitro SPF value, a technique of applying a uniform thickness on the substrate is required, but even when the same amount of UV protective cosmetic is applied with a uniform thickness, the in vitro SPF is applied. The value fluctuates. For this reason, it is important to further control the variation factors.

J. O'Neill, Journal of Pharmaceutical Sciences, vol. 73, No. 7, p. 888-891, 1984J. O'Neill, Journal of Pharmaceutical Sciences, vol. 73, No. 7, p. 888-891, 1984 B. Herzog, Journal of Cosmetic Science, vol. 53, p. 11-26, 2002B. Herzog, Journal of Cosmetic Science, vol. 53, p. 11-26, 2002

紫外線防御化粧料の膜厚が均一であっても、紫外線防御効果は大きく変化する。よって本発明は、膜厚以外の紫外線防御効果に影響を及ぼす因子の特定及び当該因子の解析方法、更には因子の解析に基づく、紫外線防御剤のin vivo性能評価方法を提供することに関する。   Even if the film thickness of the UV protection cosmetic is uniform, the UV protection effect changes greatly. Therefore, the present invention relates to the identification of factors other than the film thickness that influence the UV protection effect, the analysis method of the factors, and further the provision of an in vivo performance evaluation method for UV protection agents based on the analysis of the factors.

本発明者らは、紫外線防御化粧料塗布膜の平面方向における紫外線吸収性能の均一性が、紫外線防御化粧料の性能に大きく影響することを見出し、該紫外線防御性能の均一性が、基板上に塗布された紫外線防御化粧料塗布膜の平面方向における紫外線透過率の分布により表せることを見出した。更に、当該紫外線透過率分布の積分値が紫外線防御性能と相関が高いことを見出した。   The present inventors have found that the uniformity of the ultraviolet absorption performance in the plane direction of the UV protective cosmetic coating film greatly affects the performance of the UV protective cosmetic, and the uniformity of the UV protective performance is on the substrate. It has been found that it can be expressed by the distribution of ultraviolet transmittance in the planar direction of the applied ultraviolet protective cosmetic coating film. Furthermore, the present inventors have found that the integrated value of the UV transmittance distribution has a high correlation with UV protection performance.

すなわち本発明は、基板上に塗布された紫外線防御化粧料塗布膜の平面方向における紫外線透過率の分布を測定し、該分布に基づき該塗布膜の均一性を評価する、紫外線防御化粧料塗布膜の均一性評価方法を提供するものである。   That is, the present invention measures an ultraviolet transmittance distribution in the planar direction of an ultraviolet protective cosmetic coating film applied on a substrate, and evaluates the uniformity of the coated film based on the distribution. The uniformity evaluation method is provided.

また本発明は、前記の評価方法に基づく、紫外線防御化粧料の紫外線防御性能の評価方法を提供するものである   The present invention also provides a method for evaluating the UV protection performance of UV protection cosmetics based on the above evaluation method.

更に本発明は、前記の評価方法を用いた、紫外線防御化粧料のスクリーニング方法を提供するものである。   Furthermore, the present invention provides a screening method for UV protective cosmetics using the above evaluation method.

本発明の方法によれば、基板上に塗布された紫外線防御化粧料塗布膜の平面方向における紫外線防御性能の均一性が測定可能となり、よって、当該紫外線防御性能の分布より、紫外線防御化粧料の紫外線防御性能を正確に評価することができる。更に、紫外線防御化粧料のスクリーニングに有効である。   According to the method of the present invention, it becomes possible to measure the uniformity of the UV protection performance in the planar direction of the UV protection cosmetic coating film applied on the substrate. Therefore, from the distribution of the UV protection performance, The UV protection performance can be accurately evaluated. Furthermore, it is effective for screening of UV protection cosmetics.

本発明の評価装置の概要を示す図である。It is a figure which shows the outline | summary of the evaluation apparatus of this invention. 紫外線防御化粧料の塗布前と塗布後での紫外線透過光強度分布の変化を示す図である。It is a figure which shows the change of an ultraviolet transmitted light intensity distribution before application | coating of an ultraviolet protective cosmetic, and after application | coating. 紫外線防御化粧料塗布膜の紫外線透過率のヒストグラムを示す図である。It is a figure which shows the histogram of the ultraviolet-ray transmittance of a ultraviolet protective cosmetics coating film. 図3に示したデータを元に、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率の積をプロットしたグラフを示す図である。It is a figure which shows the graph which plotted the product of the ultraviolet-ray transmittance and the vertical axis | shaft on the horizontal axis based on the data shown in FIG. 3, and the vertical axis | shaft. 各解像度での紫外線防御化粧料の塗布後の紫外線透過光強度の分布を示す図である。It is a figure which shows distribution of the ultraviolet-ray transmitted light intensity after application | coating of the ultraviolet protective cosmetics in each resolution. 各解像度での紫外線防御化粧料塗布膜の紫外線透過率のヒストグラムを示す図である。It is a figure which shows the histogram of the ultraviolet-ray transmittance of the ultraviolet protective cosmetics coating film in each resolution. W/O型乳化化粧料塗布膜の紫外線透過率のヒストグラムを示す図である。It is a figure which shows the histogram of the ultraviolet-ray transmittance of a W / O type emulsified cosmetic coating film. O/W型乳化化粧料塗布膜の紫外線透過率のヒストグラムを示す図である。It is a figure which shows the histogram of the ultraviolet-ray transmittance of an O / W type emulsified cosmetic coating film. 図7に示したデータを元に、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率の積をプロットしたグラフを示す図である。FIG. 8 is a graph showing a plot of ultraviolet transmittance on the horizontal axis and the product of ultraviolet transmittance and existence ratio on the vertical axis based on the data shown in FIG. 7. 図8に示したデータを元に、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率の積をプロットしたグラフを示す図である。FIG. 9 is a graph showing a plot of ultraviolet transmittance on the horizontal axis and the product of ultraviolet transmittance and existence ratio on the vertical axis based on the data shown in FIG. 8. 図9及び図10に示したグラフのプロットの積分値とin vitro SPF値との関係を示す図である。It is a figure which shows the relationship between the integral value of the plot of the graph shown in FIG.9 and FIG.10, and an in vitro SPF value. 紫外線防御化粧料の塗布後の紫外線透過光強度の分布を示す図である。It is a figure which shows distribution of the ultraviolet transmitted light intensity | strength after application | coating of a ultraviolet protective cosmetic. 図12に示した紫外線防御化粧料の塗布膜について、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率の積をプロットしたグラフを示す図である。It is a figure which shows the graph which plotted the product of the ultraviolet-ray transmittance and the existence ratio on the vertical axis | shaft about the coating film of the ultraviolet protective cosmetics shown in FIG.

本発明の評価方法では、紫外線防御化粧料塗布膜の紫外線透過光強度の分布を測定する。評価に用いる紫外線の波長は280nm以上400nm以下であることが好ましく、in vitro SPFの評価と併せて実施する場合は、280nm以上320nm以下であることがより好ましい。評価に用いる紫外線の波長は単一の波長でも複数の波長を用いても良い。波長の設定には、バンドパスフィルターや分光器などを用いて任意の波長を設定できるようにすれば良い。紫外線光源としては水銀ランプなどの紫外線光源や太陽光、ソーラーシミュレーター(擬似太陽光源)などを用いれば良い。   In the evaluation method of the present invention, the distribution of the ultraviolet transmitted light intensity of the UV protective cosmetic coating film is measured. The wavelength of ultraviolet rays used for evaluation is preferably 280 nm or more and 400 nm or less, and more preferably 280 nm or more and 320 nm or less when carried out in combination with the evaluation of in vitro SPF. The wavelength of ultraviolet rays used for evaluation may be a single wavelength or a plurality of wavelengths. The wavelength may be set by setting an arbitrary wavelength using a bandpass filter, a spectroscope, or the like. As the ultraviolet light source, an ultraviolet light source such as a mercury lamp, sunlight, a solar simulator (pseudo solar light source), or the like may be used.

基板上の各場所での透過率測定の精度に違いがないようにするために、紫外線は基板に対して均一に照射することが望ましい。例えば、必要であれば、基板と紫外線光源の間に、光を拡散させる板を導入するか、又は、積分球や光ファイバーバンドルやライトガイド等を備えることで基板に均一に照明が当たるようにすれば良い。またこのような均一な拡散照明を用いることで製剤中の光散乱剤の寄与分も近似的に透過光で取り扱うことができるようになる。   In order to ensure that there is no difference in the accuracy of transmittance measurement at each location on the substrate, it is desirable to irradiate the substrate with ultraviolet rays uniformly. For example, if necessary, a light diffusing plate is introduced between the substrate and the ultraviolet light source, or an integrating sphere, an optical fiber bundle, a light guide, etc. are provided so that the substrate can be illuminated uniformly. It ’s fine. In addition, by using such uniform diffuse illumination, the contribution of the light scattering agent in the preparation can be approximately handled with transmitted light.

評価に用いる基板には特に制限はないが、280〜400nmの紫外線の透過性が高いものが好ましい。紫外線透過率の高い素材である石英板やポリメタクリル酸メチル(PMMA)を材質とした基板が挙げられる。また表面形状を皮膚に合わせるために各種テープなどを貼付した基板を用いることができる。更に、薄く切除された切除皮膚を用いても良い。切除皮膚の厚さに特に制限は無いが、ハンドリングのし易さや紫外線透過性から、0.5〜5mmが望ましい。テープとしては280〜400nmの紫外線の透過性が高いものであれば制限はないが、例えば医療用テープであるトランスポアテープ(登録商標、3M社製)が好ましい。   Although there is no restriction | limiting in particular in the board | substrate used for evaluation, The thing with the high transmittance | permeability of 280-400 nm ultraviolet rays is preferable. Examples thereof include a quartz plate and a substrate made of polymethyl methacrylate (PMMA), which are materials having high ultraviolet transmittance. Moreover, in order to match the surface shape with the skin, a substrate to which various tapes are attached can be used. Further, a thinly excised skin may be used. Although there is no restriction | limiting in particular in the thickness of excised skin, 0.5-5 mm is desirable from the ease of handling or ultraviolet-ray permeability. The tape is not particularly limited as long as it has a high transmittance of 280 to 400 nm, but for example, a transpore tape (registered trademark, manufactured by 3M), which is a medical tape, is preferable.

前記基板を保持する試料保持台は、紫外線防御化粧料を塗布する際に、基板が動かないように保持できるものであれば、特に制限は無いが、基板と光源の間に試料保持台が設置される場合は、その材質は紫外線透過率の高い素材であることが望ましい。   The sample holder for holding the substrate is not particularly limited as long as it can hold the substrate so that it does not move when applying the UV protective cosmetic, but the sample holder is installed between the substrate and the light source. In this case, the material is preferably a material having a high ultraviolet transmittance.

紫外線透過率の分布を評価する領域は、特に制限はないが、化粧料中の紫外線防御剤の分布の評価や基板上での塗りむらの評価を首尾良く行う観点から、好ましくは0.1mm四方以上、更に好ましくは0.5mm四方以上、より好ましくは1mm四方以上であり、好ましくは5cm四方以下、更に好ましくは3cm四方以下の領域で評価することが望ましい。この領域の設定には、異なる倍率の対物レンズや異なる大きさのカメラセンサーを使用すること等で調整すれば良い。   The region for evaluating the distribution of the ultraviolet transmittance is not particularly limited, but is preferably 0.1 mm square from the viewpoint of successfully evaluating the distribution of the UV protective agent in the cosmetic and the uneven coating on the substrate. More preferably, it is 0.5 mm square or more, more preferably 1 mm square or more, preferably 5 cm square or less, more preferably 3 cm square or less. This region may be set by using an objective lens having a different magnification or a camera sensor having a different size.

紫外線透過率の分布を評価する領域を設定する対物レンズには、石英などの紫外線透過率の高い材質のものを用いることが良い。またレンズの代わりにカセグレン鏡などの反射鏡を用いても良い。倍率には特に制限は無く、上述の必要な視野を確保できる倍率の対物レンズを選定すれば良い。本評価を行う際に、基板に紫外線防御化粧料を塗布する動作が含まれるため、作動距離が長い(2cm以上)レンズを選択するか、塗布動作の妨げにならないようにレンズを移動できる機構を備えていても良い。レンズを移動する機構を備える場合には、位置再現性の高い(5μm以下)機構を選定する必要がある。例えば、電動レボルバなどを利用することができる。   For the objective lens for setting the region for evaluating the distribution of the ultraviolet transmittance, it is preferable to use a material having a high ultraviolet transmittance such as quartz. A reflecting mirror such as a Cassegrain mirror may be used instead of the lens. There is no restriction | limiting in particular in magnification, What is necessary is just to select the objective lens of the magnification which can ensure the above-mentioned required visual field. When performing this evaluation, an operation to apply UV protective cosmetics to the substrate is included, so a lens with a long working distance (2 cm or more) is selected or a mechanism that can move the lens so as not to hinder the application operation. You may have. When a mechanism for moving the lens is provided, it is necessary to select a mechanism with high position reproducibility (5 μm or less). For example, an electric revolver can be used.

紫外線照射により、基板自体やその他部品から蛍光が発生する場合がある。この場合、これらの蛍光を除去する必要がある。基板と検出器の間にバンドパスフィルターや分光器などを設置して、照射した紫外線と同一の波長を検出器に導入できるようにすれば良い。   Fluorescence may be generated from the substrate itself or other components by ultraviolet irradiation. In this case, it is necessary to remove these fluorescences. A band pass filter or a spectroscope may be installed between the substrate and the detector so that the same wavelength as the irradiated ultraviolet light can be introduced into the detector.

紫外線透過光強度の分布を検出する検出器は、280nm以上400nm以下の紫外領域の受光感度が高いカメラが良い。例えば、背面照射型CCD(charge−coupled device)検出器などを用いることができる。このカメラで取得する紫外線透過光強度の平面方向の分布は、任意の時間に単一画像として取得しても良いし、連続画像として経時的に取得しても良い。透過光強度の分布の検出のための露光時間は、得られる透過光の強度に応じて、任意の露光時間を設定可能である。必要であれば画像取得の積算回数を増やしても良いが、紫外線防御化粧料塗布前後での撮像条件(露光時間や積算回数等)は統一する必要がある。   The detector that detects the distribution of the intensity of transmitted ultraviolet light is preferably a camera having a high light receiving sensitivity in the ultraviolet region of 280 nm to 400 nm. For example, a back-illuminated CCD (charge-coupled device) detector can be used. The distribution in the planar direction of the ultraviolet transmitted light intensity acquired by this camera may be acquired as a single image at an arbitrary time or may be acquired over time as a continuous image. As the exposure time for detecting the distribution of transmitted light intensity, an arbitrary exposure time can be set according to the intensity of transmitted light to be obtained. If necessary, the number of times of image acquisition may be increased, but the imaging conditions (exposure time, number of times of integration, etc.) before and after application of UV protective cosmetics need to be unified.

前記検出器において、紫外線透過光強度が各ピクセルでの紫外線検出強度として得られる。各ピクセルで検出した紫外線強度の紫外線防御化粧料塗布前後での変化率(塗布後の強度を塗布前の強度で除したもの)を紫外線透過率として算出する。この操作を測定領域の各ピクセルに対して行うことにより紫外線透過率の平面方向における分布を取得することができる。得られた紫外線透過率の分布の情報に基づいて、例えば紫外線透過率のヒストグラムを作成することが可能である。観察している領域全体の紫外線防御化粧料塗布膜の紫外線透過率は、各ピクセルで得られた紫外線透過率を平均化することで取得可能である。これらの情報から、紫外線透過率の分布と視野全体の紫外線透過率を同時に得ることができる。   In the detector, the ultraviolet transmitted light intensity is obtained as the ultraviolet detection intensity at each pixel. The rate of change of the UV intensity detected at each pixel before and after application of UV protective cosmetic (the intensity after application divided by the intensity before application) is calculated as the UV transmittance. By performing this operation on each pixel in the measurement region, it is possible to acquire the distribution of the ultraviolet transmittance in the plane direction. Based on the obtained ultraviolet transmittance distribution information, for example, a histogram of ultraviolet transmittance can be created. The ultraviolet transmittance of the UV protective cosmetic coating film over the entire area to be observed can be obtained by averaging the ultraviolet transmittance obtained in each pixel. From these pieces of information, it is possible to simultaneously obtain the UV transmittance distribution and the UV transmittance of the entire visual field.

当該紫外線透過率の分布は、紫外線防御化粧料塗布膜の平面方向における紫外線防御性能の均一性を表すものであり、平均的な紫外線透過率に対して、紫外線透過率の高い位置が高頻度で認められる場合は、均一性が低いと判断される。
また横軸に紫外線透過率、縦軸に紫外線透過率と存在比率(ピクセル数を全ピクセル数で除したもの)の積をプロットしたグラフを作成する。このグラフにおける各プロットの積分値(視覚的には、曲線下面積)は、透過率と対応する。つまり、紫外線防御化粧料塗布膜の紫外線透過率が高ければ、前記積分値は大きくなり、紫外線透過率が低ければ、前記積分値は小さくなる。積分値の算出は、各プロットの紫外線透過率と存在比率の積の総和として算出すれば良い。
The distribution of the UV transmittance represents the uniformity of the UV protection performance in the plane direction of the UV protective cosmetic coating film, and the position where the UV transmittance is high is more frequent than the average UV transmittance. If found, the uniformity is judged to be low.
Also, a graph is created in which the horizontal axis represents the ultraviolet transmittance, and the vertical axis represents the product of the ultraviolet transmittance and the existence ratio (the number of pixels divided by the total number of pixels). The integrated value of each plot in this graph (visually, the area under the curve) corresponds to the transmittance. That is, if the UV transmittance of the UV protective cosmetic coating film is high, the integrated value increases, and if the UV transmittance is low, the integrated value decreases. The integral value may be calculated as the sum of products of ultraviolet transmittance and existence ratio in each plot.

更に、塗布膜の分布の評価を行う場合には、各ピクセルで得られた紫外線透過率を紫外線吸光度に変換して解析を行うことも可能である。透過率から吸光度への変換は以下の式を用いて行う。   Furthermore, when evaluating the distribution of the coating film, it is also possible to perform analysis by converting the ultraviolet transmittance obtained in each pixel into ultraviolet absorbance. Conversion from transmittance to absorbance is performed using the following equation.

この操作により、紫外線吸光度の平面方向における分布を取得でき、紫外線吸光度のヒストグラムを作成することが可能である。また紫外線吸光度は、以下の式で表現される。   By this operation, the distribution of ultraviolet absorbance in the planar direction can be acquired, and a histogram of ultraviolet absorbance can be created. The ultraviolet absorbance is expressed by the following formula.

つまり、別途測定した評価波長における吸光係数と濃度の情報があれば、塗布膜内における紫外線防御剤の分散性が一定との近似をおいた場合、紫外線吸光度を吸光係数と濃度で除することにより光路長、つまり紫外線防御化粧料塗布膜の膜厚を取得できる。この操作を各ピクセルで実行することで紫外線防御化粧料塗布膜の膜厚の平面方向における分布を定量的に取得することが可能であり、紫外線防御化粧料塗布膜の膜厚のヒストグラムを作成することが可能である。ここで得たヒストグラムの標準偏差や半値幅等から、膜厚分布の広がりを評価することが可能である。これらの算出には、汎用のパーソナルコンピュータ等を用いることができる。   In other words, if there is information on the extinction coefficient and concentration at the separately measured evaluation wavelength, the UV absorbance is divided by the extinction coefficient and concentration when the dispersibility of the UV protective agent in the coating film is approximated to be constant. The optical path length, that is, the film thickness of the ultraviolet protective cosmetic coating film can be acquired. By performing this operation for each pixel, it is possible to quantitatively obtain the distribution in the planar direction of the film thickness of the UV protective cosmetic coating film, and create a histogram of the film thickness of the UV protective cosmetic coating film. It is possible. The spread of the film thickness distribution can be evaluated from the standard deviation and half-value width of the histogram obtained here. A general-purpose personal computer or the like can be used for these calculations.

好ましい解像度は好ましくは10ピクセル/mm以上、更に好ましくは50ピクセル/mm以上、一層好ましくは150ピクセル/mm以上であり、5000ピクセル/mm以下が好ましい。   The preferred resolution is preferably 10 pixels / mm or more, more preferably 50 pixels / mm or more, more preferably 150 pixels / mm or more, and preferably 5000 pixels / mm or less.

本評価に用いる紫外線防御化粧料の種類には特に制限はない。紫外線防御効果の高い紫外線防御化粧料であれば、塗布膜を透過する紫外線強度が低くなるので、より高感度なカメラの採用や露光時間などの撮像条件を変更すれば良い。
紫外線防御化粧料の塗布量、塗布方法についても特に制限はない。塗布量や塗布方法の違いによる塗布膜分布の違いの評価に用いることも可能である。塗布量については、ヒト皮膚でのSPF評価に用いられる試料塗布量や、in vitro SPFの評価に用いられる試料塗布量又はヒト皮膚に対して紫外線防御化粧料を適用する場合の実使用量が望ましい。具体的には、好ましくは0.1mg/cm2以上、更に好ましくは0.5mg/cm2以上であり、好ましくは10mg/cm2以下、更に好ましくは5.0mg/cm2以下の塗布量が望ましい。
塗布方法は、均一な厚さに塗布できるように、予め基板全体に万遍なく小さなスポット状に紫外線防御化粧料を設置し、全体に塗り広げることが望ましいが、均一な厚さに塗布できる方法であれば、この方法に制限されるものではない。
There are no particular restrictions on the type of UV protective cosmetic used in this evaluation. In the case of UV protective cosmetics having a high UV protection effect, the intensity of UV light that passes through the coating film will be low, so it is only necessary to adopt a more sensitive camera and change the imaging conditions such as exposure time.
There is no restriction | limiting in particular also about the application quantity and the application method of UV protection cosmetics. It can also be used to evaluate the difference in coating film distribution due to the difference in coating amount and coating method. Regarding the application amount, the sample application amount used for SPF evaluation on human skin, the sample application amount used for evaluation of in vitro SPF, or the actual use amount when applying UV protective cosmetics to human skin is desirable. . Specifically, the coating amount is preferably 0.1 mg / cm 2 or more, more preferably 0.5 mg / cm 2 or more, preferably 10 mg / cm 2 or less, more preferably 5.0 mg / cm 2 or less. desirable.
It is desirable to apply UV protective cosmetics in small spots uniformly throughout the entire substrate so that it can be applied to a uniform thickness. If so, it is not limited to this method.

本発明の評価方法により、基板上における紫外線防御化粧料の塗布膜の平面方向における紫外線防御能の均一性を正確に評価できる。したがって、本発明の方法は、塗布膜の均一性を指標とした紫外線防御化粧料の研究開発、紫外線防御化粧料の性能評価、スクリーニング、処方開発、SPF並びにin vitro SPF評価者の手技の評価等の目的で用いることが好ましい。   By the evaluation method of the present invention, it is possible to accurately evaluate the uniformity of the ultraviolet protection ability in the plane direction of the coating film of the ultraviolet protective cosmetic on the substrate. Therefore, the method of the present invention can be applied to research and development of UV protective cosmetics using the uniformity of the coating film as an index, performance evaluation of UV protective cosmetics, screening, formulation development, SPF, and evaluation of techniques of in vitro SPF evaluators, etc. It is preferable to use for this purpose.

上述した実施形態に関し、本発明においては更に以下の態様が開示される。
<1> 基板上に塗布された紫外線防御化粧料塗布膜の平面方向における紫外線透過率の分布を測定し、該分布に基づき該塗布膜の均一性を評価する、紫外線防御化粧料塗布膜の均一性評価方法。
<2> 下記1)〜3)の工程を含む、前記<1>に記載の評価方法。
1)紫外線防御化粧料を塗布しない基板の平面方向における紫外線透過光強度の分布を測定する。
2)前記基板に紫外線防御化粧料を塗布し、塗布後の基板の平面方向における紫外線透過光強度の分布を測定する。
3)紫外線防御化粧料塗布後の紫外線透過光強度の分布における特定の位置での透過光強度を、紫外線防御化粧料塗布前の紫外線透過光強度の分布における同位置での透過光強度で除する。この操作を前記基板における全ての測定領域に対して行うことで、紫外線防御化粧料塗布膜の紫外線透過率の分布を算出する。
<3> 得られた紫外線防御化粧料塗布膜の紫外線透過率の分布から該塗布膜全体の紫外線透過率を算出する工程を更に含む、前記<1>又は<2>に記載の評価方法。
<4> 前記基板が紫外線光源と紫外領域に感度を持つカメラとの間に挿入されている、前記<1>ないし<3>のいずれか1に記載の評価方法。
<5> 前記基板と紫外線光源の間に、拡散板、積分球又は光ファイバーバンドル等の光を均一化する拡散照明ユニットを備えた、前記<1>ないし<4>のいずれか1に記載の評価方法。
<6> 前記基板として、PMMA基板、石英板、医療用テープ又は切除皮膚を用いる前記<1>ないし<5>のいずれか1に記載の評価方法。
<7> 10ピクセル/mm以上、5000ピクセル/mm以下の解像度で前記分布を測定する、前記<1>ないし<6>のいずれか1に記載の評価方法。
<8> 前記<1>ないし<7>記載のいずれか1に記載の評価方法に基づく、紫外線防御化粧料の紫外線防御性能の評価方法。
<9> 前記<1>ないし<8>のいずれか1項に記載の評価方法を用いた、紫外線防御化粧料のスクリーニング方法。
<10> 塗布量が0.1mg/cm2以上、10mg/cm2以下である前記<1>ないし<9>のいずれか1に記載の方法。
<11> 測定面積が0.1mm四方以上、5cm四方以下である<1>ないし<10>のいずれか1に記載の方法。
With respect to the above-described embodiment, the following aspects are further disclosed in the present invention.
<1> Uniformity of an ultraviolet protective cosmetic coating film that measures the distribution of ultraviolet transmittance in the planar direction of the ultraviolet protective cosmetic coating film applied on the substrate and evaluates the uniformity of the coating film based on the distribution. Sex assessment method.
<2> The evaluation method according to <1>, including the following steps 1) to 3).
1) Measure the distribution of UV transmitted light intensity in the plane direction of the substrate to which UV protective cosmetics are not applied.
2) An ultraviolet protective cosmetic is applied to the substrate, and an ultraviolet transmitted light intensity distribution in the planar direction of the substrate after application is measured.
3) The transmitted light intensity at a specific position in the distribution of UV transmitted light intensity after application of UV protective cosmetic is divided by the transmitted light intensity at the same position in the distribution of UV transmitted light intensity before application of UV protective cosmetic. . By performing this operation on all the measurement areas on the substrate, the distribution of the ultraviolet transmittance of the ultraviolet protective cosmetic coating film is calculated.
<3> The evaluation method according to <1> or <2>, further including a step of calculating the ultraviolet transmittance of the entire coating film from the distribution of the ultraviolet transmittance of the obtained ultraviolet protective cosmetic coating film.
<4> The evaluation method according to any one of <1> to <3>, wherein the substrate is inserted between an ultraviolet light source and a camera having sensitivity in an ultraviolet region.
<5> The evaluation according to any one of <1> to <4>, further comprising a diffusion illumination unit that uniformizes light, such as a diffusion plate, an integrating sphere, or an optical fiber bundle, between the substrate and the ultraviolet light source. Method.
<6> The evaluation method according to any one of <1> to <5>, wherein a PMMA substrate, a quartz plate, a medical tape, or a cut skin is used as the substrate.
<7> The evaluation method according to any one of <1> to <6>, wherein the distribution is measured at a resolution of 10 pixels / mm or more and 5000 pixels / mm or less.
<8> A method for evaluating the ultraviolet protection performance of an ultraviolet protective cosmetic based on the evaluation method according to any one of <1> to <7>.
<9> A screening method for ultraviolet protective cosmetics using the evaluation method according to any one of <1> to <8>.
<10> The method according to any one of <1> to <9>, wherein the coating amount is 0.1 mg / cm 2 or more and 10 mg / cm 2 or less.
<11> The method according to any one of <1> to <10>, wherein the measurement area is 0.1 mm square or more and 5 cm square or less.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれに限定されるものではない。特に断らない限り「%」は「質量%」を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this. Unless otherwise specified, “%” means “mass%”.

〔実施例1 剤系の違いによる紫外線防御化粧料塗布膜の分布の違い〕
本発明の評価法を用いて、剤系の違いによる紫外線防御化粧料塗布膜の分布の違いについて評価を行った。評価試料として、W/O型乳化化粧料とO/W型乳化化粧料を用いた。それぞれの試料の組成は、以下の表1(W/O型乳化化粧料)、表2(O/W型乳化化粧料)に示したとおりである。共に紫外線防御剤として、メトキシケイ皮酸エチルヘキシル(ユビナールMC80、BASF社製)を8.0%、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル(ユビナールAplus、BASF社製)を2.0%含むように調製した。評価装置の概要は図1に示したとおりである。基板への評価試料の塗布は、予め基板全体に万遍なく小さなスポット状に紫外線防御化粧料を設置し、全体に塗り広げるようにして行った。測定条件は以下のとおりである。
[Example 1 Difference in distribution of UV protective cosmetic coating film due to difference in drug system]
Using the evaluation method of the present invention, the difference in the distribution of the UV protective cosmetic coating film due to the difference in the agent system was evaluated. As evaluation samples, W / O type emulsified cosmetics and O / W type emulsified cosmetics were used. The composition of each sample is as shown in Table 1 (W / O emulsified cosmetic) and Table 2 (O / W emulsified cosmetic) below. Both were prepared to contain 8.0% ethyl hexyl methoxycinnamate (Ubinal MC80, manufactured by BASF) and 2.0% hexyl diethylaminohydroxybenzoyl benzoate (Ubinal Apples, manufactured by BASF) as UV protection agents. The outline of the evaluation apparatus is as shown in FIG. Application of the evaluation sample to the substrate was performed by preliminarily placing the UV protective cosmetic material in a small spot uniformly on the entire substrate and spreading it over the entire substrate. The measurement conditions are as follows.

<測定条件>
光源:超高圧型130W 水銀ランプINTENSILIGHT C−HGFI(Nikon社製)。バンドパスフィルターFB380−10(thorlabs社製)、オパール光拡散ガラス(Edmund Optics社製)を用いて380nmを試料に均一に照射した。
評価基板:石英板にトランスポアテープ(登録商標、3M社製)を貼付したもの。
試料塗布量:2.0mg/cm2
対物レンズ:INFINIPROBE UVマイクロスコープレンズ・ライトアングル(INFINITY社製)
カメラ:XC−EU50(SONY社製)
<Measurement conditions>
Light source: Super high pressure type 130W mercury lamp INTENSILIGHT C-HGFI (manufactured by Nikon). The sample was uniformly irradiated with 380 nm using a bandpass filter FB380-10 (manufactured by thorlabs) and opal light diffusion glass (manufactured by Edmund Optics).
Evaluation substrate: A quartz plate with transpore tape (registered trademark, manufactured by 3M) attached.
Sample application amount: 2.0 mg / cm 2
Objective lens: INFINIPROBE UV microscope lens, right angle (manufactured by INFINITY)
Camera: XC-EU50 (manufactured by SONY)

前記のカメラにて検出された光を、カメラアダプターキット(DC−700、SONY社製)、及びUSB(Universal Serial Bus)接続ビデオキャプチャー(GV−USB2、IOデータ社製)を経由してパーソナルコンピュータに取り込み、tiff形式の画像として取得した。画像は紫外線防御化粧料の塗布前と塗布15分後に取得した。本条件での解像度は、170ピクセル/mmである。測定領域は、塗布領域内の4mm×3mmの領域とした。
前記測定で用いた紫外線防御化粧料の塗布膜について、in vitro SPF測定(Labsphere UV−1000S UV TRANSMITTANCE ANALYZER、Labsphere社製)を併せて行った。
Personal computer detects light detected by the camera via a camera adapter kit (DC-700, manufactured by Sony Corporation) and a USB (Universal Serial Bus) connection video capture (GV-USB2, manufactured by IO Data Corporation). And acquired as a tiff format image. Images were acquired before and 15 minutes after application of the UV protective cosmetic. The resolution under this condition is 170 pixels / mm. The measurement area was a 4 mm × 3 mm area in the coating area.
The in vitro SPF measurement (Labsphere UV-1000S UV TRANSMITTAN ANALYZER, manufactured by Labsphere) was performed on the coating film of the UV protective cosmetic used in the measurement.

図2に各紫外線防御化粧料の塗布前後の紫外線透過光強度の分布を示す。塗布により全体的に紫外線透過光強度が低下したが、その強度低下の程度は場所によって大きく異なった。またその剤系の違いによって紫外線透過光強度の分布の挙動が異なった。
紫外線防御化粧料塗布前後での紫外線透過光強度の変化から紫外線透過率を算出し、そのヒストグラムを図3に示す。本明細書では見易さのために、ヒストグラムを便宜上折れ線グラフで表示する。図3の括弧内には、in vitro SPFの測定値を記載した。ここから、比較的in vitro SPF値が低くなったO/W型乳化化粧料の塗布膜は、W/O型乳化化粧料の塗布膜よりも、紫外線透過率が高い(0.7〜0.95)領域が広くなっていることがわかった。対照的に、紫外線透過率が低い(0.05〜0.3)領域は、W/O型乳化化粧料の塗布膜の方が広くなっていた。
FIG. 2 shows the distribution of the intensity of transmitted ultraviolet light before and after application of each ultraviolet protective cosmetic. The intensity of ultraviolet transmitted light was reduced as a whole by coating, but the degree of the intensity reduction varied greatly depending on the location. In addition, the distribution behavior of UV light intensity varies depending on the agent system.
The UV transmittance is calculated from the change in the UV transmitted light intensity before and after the UV protective cosmetic application, and the histogram is shown in FIG. In this specification, for the sake of easy viewing, the histogram is displayed as a line graph for convenience. The measured value of in vitro SPF is shown in parentheses in FIG. From this, the coating film of the O / W type emulsified cosmetic with a relatively low in vitro SPF value has a higher ultraviolet transmittance than the coated film of the W / O type emulsified cosmetic (0.7 to 0.00). 95) It was found that the area was widened. In contrast, the W / O emulsified cosmetic coating film was wider in the region where the ultraviolet transmittance was low (0.05 to 0.3).

図4に、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率(ピクセル数を全ピクセル数で除したもの)の積をプロットしたグラフを示す。このグラフにおける各プロットの積分値(視覚的には、曲線下面積)は、観測領域全体における平均透過率と対応する。つまり、紫外線防御化粧料塗布膜の紫外線透過率が高ければ、前記積分値は大きくなり、紫外線透過率が低ければ、前記積分値は小さくなる。図4において、比較的紫外線透過率が低く、in vitro SPF値が高くなったW/O型乳化化粧料の塗布膜は、O/W型乳化化粧料の塗布膜よりも、前記積分値が小さくなっていることがわかった。仮に、ここでの積分値が同程度であれば、塗布膜の紫外線透過率も同程度であることが分かる。しかし、積分値が同程度でもグラフの形状が異なれば、塗布膜自体の紫外線透過率分布、塗布均一性は異なることが分かる。例えば、ピークトップの位置が高紫外線透過率側であれば、その塗布膜は比較的不均一であり、ピークトップの位置が低紫外線透過率側であれば、その塗布膜は比較的均一であると評価することも可能である。このように、本システムでは、紫外線防御化粧料塗布膜の紫外線透過率とその均一性を同時に評価することが可能である。   FIG. 4 is a graph in which the horizontal axis represents the ultraviolet transmittance, and the vertical axis represents the product of the ultraviolet transmittance and the existence ratio (the number of pixels divided by the total number of pixels). The integrated value of each plot in this graph (visually, the area under the curve) corresponds to the average transmittance in the entire observation region. That is, if the UV transmittance of the UV protective cosmetic coating film is high, the integrated value increases, and if the UV transmittance is low, the integrated value decreases. In FIG. 4, the coating film of the W / O type emulsified cosmetic having a relatively low ultraviolet transmittance and a high in vitro SPF value has a smaller integrated value than the coating film of the O / W type emulsified cosmetic. I found out that If the integrated values here are about the same, it can be seen that the ultraviolet transmittance of the coating film is also about the same. However, it can be seen that if the shape of the graph is different even if the integrated values are the same, the ultraviolet transmittance distribution and the coating uniformity of the coating film itself are different. For example, if the peak top position is on the high UV transmittance side, the coating film is relatively non-uniform, and if the peak top position is on the low UV transmittance side, the coating film is relatively uniform. It is also possible to evaluate. Thus, in this system, it is possible to simultaneously evaluate the UV transmittance and uniformity of the UV protective cosmetic coating film.

〔実施例2 解像度の違いによる紫外線防御化粧料塗布膜の分布評価結果の違い〕
本発明の評価法を用いて、解像度の違いによる紫外線防御化粧料塗布膜の分布評価結果の違いについて評価を行った。評価試料として、O/W型乳化化粧料を用いた。試料の組成は、先に述べた表2に示したとおりである。紫外線防御剤として、メトキシケイ皮酸エチルヘキシル(ユビナールMC80、BASF社製)を8.0%、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル(ユビナールAplus、BASF社製)を2.0%含むように調製した。基板への評価試料の塗布は、予め基板全体に万遍なく小さなスポット状に紫外線防御化粧料を設置し、全体に塗り広げるようにして行った。測定条件は以下のとおりである。
<測定条件>
光源:超高圧型130W 水銀ランプINTENSILIGHT C−HGFI(Nikon社製)。バンドパスフィルターFB380−10(thorlabs社製)、オパール光拡散ガラス(Edmund Optics社製)を用いて380nmを試料に均一に照射した。
評価基板:石英板にトランスポアテープ(登録商標、3M社製)を貼付したもの。
試料塗布量:2.0mg/cm2
対物レンズ:INFINIPROBE UVマイクロスコープレンズ・ライトアングル(INFINITY社製)
カメラ:XC−EU50(SONY社製)
[Example 2 Difference in distribution evaluation result of UV-protective cosmetic coating film due to difference in resolution]
Using the evaluation method of the present invention, the difference in the distribution evaluation result of the UV protective cosmetic coating film due to the difference in resolution was evaluated. An O / W emulsified cosmetic was used as an evaluation sample. The composition of the sample is as shown in Table 2 described above. As UV protection agents, 8.0% of ethylhexyl methoxycinnamate (Ubinal MC80, manufactured by BASF) and 2.0% of hexyl diethylaminohydroxybenzoylbenzoate (Ubinal Apples, manufactured by BASF) were prepared. Application of the evaluation sample to the substrate was performed by preliminarily placing the UV protective cosmetic material in a small spot uniformly on the entire substrate and spreading it over the entire substrate. The measurement conditions are as follows.
<Measurement conditions>
Light source: Super high pressure type 130W mercury lamp INTENSILIGHT C-HGFI (manufactured by Nikon). The sample was uniformly irradiated with 380 nm using a bandpass filter FB380-10 (manufactured by thorlabs) and opal light diffusion glass (manufactured by Edmund Optics).
Evaluation substrate: A quartz plate with transpore tape (registered trademark, manufactured by 3M) attached.
Sample application amount: 2.0 mg / cm 2
Objective lens: INFINIPROBE UV microscope lens, right angle (manufactured by INFINITY)
Camera: XC-EU50 (manufactured by SONY)

前記のカメラにて検出された光を、カメラアダプターキット(DC−700、SONY社製)、及びUSB(Universal Serial Bus)接続ビデオキャプチャー(GV−USB2、IOデータ社製)を経由してパーソナルコンピュータに取り込み、tiff形式の画像として取得した。画像は紫外線防御化粧料の塗布前と塗布15分後に取得した。取得した画像の解像度は、170ピクセル/mm、50ピクセル/mm、10ピクセル/mm、5ピクセル/mmとなるようにした。測定領域は、塗布領域内の4mm×3mmの領域とした。   Personal computer detects light detected by the camera via a camera adapter kit (DC-700, manufactured by Sony Corporation) and a USB (Universal Serial Bus) connection video capture (GV-USB2, manufactured by IO Data Corporation). And acquired as a tiff format image. Images were acquired before and 15 minutes after application of the UV protective cosmetic. The resolution of the acquired image was set to 170 pixels / mm, 50 pixels / mm, 10 pixels / mm, and 5 pixels / mm. The measurement area was a 4 mm × 3 mm area in the coating area.

図5に各解像度での紫外線防御化粧料の塗布後の紫外線透過光強度の分布を示す。解像度の違いによって紫外線透過光強度の分布評価結果が異なった。紫外線防御化粧料塗布前後での紫外線透過光強度の変化から紫外線透過率を算出し、そのヒストグラムを図6に示す。10ピクセル/mmでは、ヒストグラムの形状がそれ以上の解像度のヒストグラム形状とほぼ同じになり、50ピクセル/mm以上では、それ以上解像度を高くしてもヒストグラムの形状が大きく変化しなかった。このように、本システムを用いて行う分布評価においては、10ピクセル/mm以上が必要であり、50ピクセル/mm以上の解像度がより適していた。   FIG. 5 shows the distribution of the UV transmitted light intensity after application of the UV protective cosmetic at each resolution. The distribution evaluation result of UV transmitted light intensity was different depending on the resolution. The UV transmittance is calculated from the change in UV transmitted light intensity before and after the UV protective cosmetic application, and the histogram is shown in FIG. At 10 pixels / mm, the shape of the histogram was almost the same as that of the higher resolution, and at 50 pixels / mm or higher, the shape of the histogram did not change greatly even when the resolution was further increased. Thus, in the distribution evaluation performed using this system, 10 pixels / mm or more is necessary, and a resolution of 50 pixels / mm or more was more suitable.

〔実施例3 塗布の違いによる紫外線防御化粧料塗布膜の違い〕
本発明の評価法を用いて塗布の違いによる紫外線防御化粧料塗布膜の分布の違いについて評価を行った。評価試料として、W/O型乳化化粧料とO/W型乳化化粧料を用いた。それぞれの試料の組成は、表1(W/O型乳化化粧料)、表2(O/W型乳化化粧料)に示したとおりである。共に紫外線防御剤として、メトキシケイ皮酸エチルヘキシル(ユビナールMC80、BASF社製)を8.0%、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル(ユビナールAplus、BASF社製)を2.0%含むように調製した。基板への評価試料の塗布は、予め基板全体に万遍なく小さなスポット状に紫外線防御化粧料を設置し、全体に塗り広げるようにして行った。測定条件は以下のとおりである。
<測定条件>
光源:超高圧型130W 水銀ランプINTENSILIGHT C−HGFI(Nikon社製)。バンドパスフィルターFB380−10(thorlabs社製)、オパール光拡散ガラス(Edmund Optics社製)を用いて380nmを試料に均一に照射した。
評価基板:石英板にトランスポアテープ(登録商標、3M社製)を貼付したもの。
試料塗布量:2.0mg/cm2
対物レンズ:INFINIPROBE UVマイクロスコープレンズ・ライトアングル(INFINITY社製)
カメラ:XC−EU50(SONY社製)
[Example 3 Difference in UV-coating cosmetic coating film depending on application]
Using the evaluation method of the present invention, the difference in the distribution of the UV protective cosmetic coating film due to the difference in coating was evaluated. As evaluation samples, W / O type emulsified cosmetics and O / W type emulsified cosmetics were used. The composition of each sample is as shown in Table 1 (W / O emulsion cosmetic) and Table 2 (O / W emulsion cosmetic). Both were prepared to contain 8.0% ethyl hexyl methoxycinnamate (Ubinal MC80, manufactured by BASF) and 2.0% hexyl diethylaminohydroxybenzoyl benzoate (Ubinal Apples, manufactured by BASF) as UV protection agents. Application of the evaluation sample to the substrate was performed by preliminarily placing the UV protective cosmetic material in a small spot uniformly on the entire substrate and spreading it over the entire substrate. The measurement conditions are as follows.
<Measurement conditions>
Light source: Super high pressure type 130W mercury lamp INTENSILIGHT C-HGFI (manufactured by Nikon). The sample was uniformly irradiated with 380 nm using a bandpass filter FB380-10 (manufactured by thorlabs) and opal light diffusion glass (manufactured by Edmund Optics).
Evaluation substrate: A quartz plate with transpore tape (registered trademark, manufactured by 3M) attached.
Sample application amount: 2.0 mg / cm 2
Objective lens: INFINIPROBE UV microscope lens, right angle (manufactured by INFINITY)
Camera: XC-EU50 (manufactured by SONY)

前記のカメラにて検出された光を、カメラアダプターキット(DC−700、SONY社製)、及びUSB(Universal Serial Bus)接続ビデオキャプチャー(GV−USB2、IOデータ社製)を経由してパーソナルコンピュータに取り込み、tiff形式の画像として取得した。画像は紫外線防御化粧料の塗布前と塗布15分後に取得した。本条件での解像度は、170ピクセル/mmである。測定領域は、塗布領域内の4mm×3mmの領域とした。W/O型乳化化粧料及びO/W型乳化化粧料のそれぞれについて5回ずつ基板への塗布を実施し、測定を行った。
前記測定で用いた紫外線防御化粧料の塗布膜について、in vitro SPF測定(Labsphere UV−1000S UV TRANSMITTANCE ANALYZER、Labsphere社製)を併せて行った。
Personal computer detects light detected by the camera via a camera adapter kit (DC-700, manufactured by Sony Corporation) and a USB (Universal Serial Bus) connection video capture (GV-USB2, manufactured by IO Data Corporation). And acquired as a tiff format image. Images were acquired before and 15 minutes after application of the UV protective cosmetic. The resolution under this condition is 170 pixels / mm. The measurement area was a 4 mm × 3 mm area in the coating area. Each of the W / O type emulsified cosmetic and the O / W type emulsified cosmetic was applied to the substrate 5 times and measured.
The in vitro SPF measurement (Labsphere UV-1000S UV TRANSMITTAN ANALYZER, manufactured by Labsphere) was performed on the coating film of the UV protective cosmetic used in the measurement.

紫外線防御化粧料塗布前後での紫外線透過光強度の変化から紫外線透過率を算出し、そのヒストグラムを図7(W/O型乳化化粧料)と図8(O/W型乳化化粧料)に示す。図7、図8の凡例には、in vitro SPFの測定値を記載した。図7より、W/O型乳化化粧料では、in vitro SPF値が10.3〜22.3になった。この中で、比較的in vitro SPF値が低くなった塗布膜は、紫外線透過率が低い(0〜0.2)領域の存在比率が小さくなった。図8より、O/W型乳化化粧料では、in vitro SPF値が6.6〜8.7になった。O/W型乳化化粧料ではW/O型乳化化粧料に比べて、in vitro SPF値の変動が小さくなった。図8に示したヒストグラムの形状も大きな違いはなかったが、in vitro SPF値が8.7と最も高くなった塗布膜については、ヒストグラムの最頻値が他に比べて小さくなっていた。   The UV transmittance is calculated from the change in UV transmitted light intensity before and after the UV protective cosmetic application, and the histograms are shown in FIG. 7 (W / O emulsified cosmetic) and FIG. 8 (O / W emulsified cosmetic). . In the legends of FIGS. 7 and 8, the measured values of in vitro SPF are described. From FIG. 7, in the W / O type emulsified cosmetic, the in vitro SPF value was 10.3 to 22.3. Among these, the coating film having a relatively low in vitro SPF value has a small abundance ratio of a region having a low ultraviolet transmittance (0 to 0.2). From FIG. 8, in the O / W type emulsified cosmetic, the in vitro SPF value was 6.6 to 8.7. In the O / W type emulsified cosmetic, the fluctuation of the in vitro SPF value was smaller than that of the W / O type emulsified cosmetic. The shape of the histogram shown in FIG. 8 was not significantly different, but for the coating film having the highest in vitro SPF value of 8.7, the mode value of the histogram was smaller than the others.

図9(W/O型乳化化粧料)と図10(O/W型乳化化粧料)に、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率の積をプロットしたグラフを示す。このグラフにおける各プロットの積分値(視覚的には、曲線下面積)は、透過率と対応する。つまり、紫外線防御化粧料塗布膜の紫外線透過率が高ければ、前記積分値は大きくなり、紫外線透過率が低ければ、前記積分値は小さくなる。図9と図10から、算出した前記積分値の逆数とin vitro SPF値との関係を図11に示す。図11より、積分値の逆数とin vitro SPF値には高い相関が見られた。このように、本システムでは、紫外線防御化粧料塗布膜ごとの均一性と紫外線防御効果を併せて評価することが可能である。   FIG. 9 (W / O type emulsified cosmetic) and FIG. 10 (O / W type emulsified cosmetic) show graphs in which the horizontal axis represents the ultraviolet transmittance and the vertical axis represents the product of the ultraviolet transmittance and the existing ratio. The integrated value of each plot in this graph (visually, the area under the curve) corresponds to the transmittance. That is, if the UV transmittance of the UV protective cosmetic coating film is high, the integrated value increases, and if the UV transmittance is low, the integrated value decreases. From FIG. 9 and FIG. 10, the relationship between the reciprocal of the calculated integral value and the in vitro SPF value is shown in FIG. From FIG. 11, a high correlation was found between the reciprocal of the integral value and the in vitro SPF value. Thus, in this system, it is possible to evaluate the uniformity and the UV protection effect for each UV protection cosmetic coating film.

〔実施例4 紫外線防御剤組成の違いによる紫外線防御化粧料塗布膜の分布の違い〕
本発明の評価法を用いて紫外線防御剤組成の違いによる紫外線防御化粧料塗布膜の分布の違いについて評価を行った。評価試料として、先に述べた表2(試料(A))、及び以下の表3(試料(B))に示した組成のO/W型乳化化粧料を用いた。評価試料には、紫外線防御剤として、メトキシケイ皮酸エチルヘキシル(ユビナールMC80、BASF社製)を8.0%、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル(ユビナールAplus、BASF社製)を2.0%含むように調製した試料(A)と、紫外線防御剤として、メトキシケイ皮酸エチルヘキシル(ユビナールMC80、BASF社製)を4.0%、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル(ユビナールAplus、BASF社製)を1.0%含むように調製した試料(B)を用いた。基板への評価試料の塗布は、予め基板全体に万遍なく小さなスポット状に紫外線防御化粧料を設置し、全体に塗り広げるようにして行った。測定条件は以下のとおりである。
<測定条件>
光源:超高圧型130W 水銀ランプINTENSILIGHT C−HGFI(Nikon社製)。バンドパスフィルターFB380−10(thorlabs社製)、オパール光拡散ガラス(Edmund Optics社製)を用いて380nmを試料に均一に照射した。
評価基板:ポリメタクリル酸メチル(PMMA)基板(HELIOPLATE HD6)
試料塗布量:1.3mg/cm2
対物レンズ:INFINIPROBE UVマイクロスコープレンズ・ライトアングル(INFINITY社製)
カメラ:XC−EU50(SONY社製)
[Example 4 Difference in distribution of UV protective cosmetic coating film due to difference in UV protective agent composition]
Using the evaluation method of the present invention, the difference in the distribution of the UV protective cosmetic coating film due to the difference in the UV protective agent composition was evaluated. As evaluation samples, O / W type emulsified cosmetics having the compositions shown in Table 2 (Sample (A)) and Table 3 (Sample (B)) described above were used. The evaluation sample contains 8.0% ethylhexyl methoxycinnamate (Ubinal MC80, manufactured by BASF) and 2.0% diethylaminohydroxybenzoyl hexyl benzoate (Ubinal Plus, manufactured by BASF) as UV protection agents. 1. As a UV protection agent, 4.0% of ethyl hexyl methoxycinnamate (Ubinal MC80, manufactured by BASF) and diethylaminohydroxybenzoyl hexyl benzoate (Ubinal Plus, manufactured by BASF) were used as UV protection agents. Sample (B) prepared to contain 0% was used. Application of the evaluation sample to the substrate was performed by preliminarily placing the UV protective cosmetic material in a small spot uniformly on the entire substrate and spreading it over the entire substrate. The measurement conditions are as follows.
<Measurement conditions>
Light source: Super high pressure type 130W mercury lamp INTENSILIGHT C-HGFI (manufactured by Nikon). The sample was uniformly irradiated with 380 nm using a bandpass filter FB380-10 (manufactured by thorlabs) and opal light diffusion glass (manufactured by Edmund Optics).
Evaluation board: Polymethyl methacrylate (PMMA) board (HELIOPLATE HD6)
Sample application amount: 1.3 mg / cm 2
Objective lens: INFINIPROBE UV microscope lens, right angle (manufactured by INFINITY)
Camera: XC-EU50 (manufactured by SONY)

前記のカメラにて検出された光を、カメラアダプターキット(DC−700、SONY社製)、及びUSB(Universal Serial Bus)接続ビデオキャプチャー(GV−USB2、IOデータ社製)を経由してパーソナルコンピュータに取り込み、tiff形式の画像として取得した。画像は紫外線防御化粧料の塗布前と塗布15分後に取得した。本条件での解像度は、170ピクセル/mmである。測定領域は、塗布領域内の4mm×3mmの領域とした。   Personal computer detects light detected by the camera via a camera adapter kit (DC-700, manufactured by Sony Corporation) and a USB (Universal Serial Bus) connection video capture (GV-USB2, manufactured by IO Data Corporation). And acquired as a tiff format image. Images were acquired before and 15 minutes after application of the UV protective cosmetic. The resolution under this condition is 170 pixels / mm. The measurement area was a 4 mm × 3 mm area in the coating area.

図12に各紫外線防御化粧料の塗布後の紫外線透過光強度の分布を示す。紫外線防御剤配合量の違いによって、紫外線透過光強度の分布の挙動が異なった。紫外線防御化粧料塗布前後での紫外線透過光強度の変化から紫外線透過率を算出し、横軸に紫外線透過率、縦軸に紫外線透過率と存在比率の積をプロットしたグラフを図13に示す。このグラフにおける各プロットの積分値(視覚的には、曲線下面積)は、透過率と対応する。つまり、紫外線防御化粧料塗布膜の紫外線透過率が高ければ、前記積分値は大きくなり、紫外線透過率が低ければ、前記積分値は小さくなる。図13より、紫外線防御剤配合量が多い試料(A)では、試料(B)に比べて積分値が小さくなった。このように、紫外線防御剤配合量の増量による紫外線透過率の低下を評価可能である。また、図13のピークトップは、紫外線防御剤配合量が多い試料(A)の方が試料(B)よりも、低紫外線透過率側にシフトしていた。これは、紫外線防御剤配合量の増量により、透過率が高い(0.85〜1.0)領域が狭くなったと示していると考えられる。このように、本システムでは、紫外線防御剤配合量を変化させた場合の均一性の評価が可能である。   FIG. 12 shows the distribution of ultraviolet transmitted light intensity after application of each ultraviolet protective cosmetic. The behavior of the distribution of UV transmitted light intensity was different depending on the blending amount of UV protective agent. FIG. 13 is a graph in which the ultraviolet transmittance is calculated from the change in the ultraviolet transmitted light intensity before and after application of the ultraviolet protective cosmetic, and the product of the ultraviolet transmittance and the existing ratio is plotted on the vertical axis. The integrated value of each plot in this graph (visually, the area under the curve) corresponds to the transmittance. That is, if the UV transmittance of the UV protective cosmetic coating film is high, the integrated value increases, and if the UV transmittance is low, the integrated value decreases. From FIG. 13, the integrated value was smaller in the sample (A) with a larger amount of UV protection agent than in the sample (B). As described above, it is possible to evaluate the decrease in the ultraviolet transmittance due to the increase in the blending amount of the ultraviolet protective agent. In addition, the peak top in FIG. 13 was shifted to the low ultraviolet transmittance side in the sample (A) having a larger amount of the ultraviolet protective agent than in the sample (B). This is considered to indicate that the region of high transmittance (0.85 to 1.0) is narrowed by increasing the blending amount of the ultraviolet protective agent. Thus, in this system, it is possible to evaluate the uniformity when the blending amount of the UV protection agent is changed.

以上のように、本発明の方法によれば、基板上における紫外線防御化粧料の塗布膜の紫外線透過率分布を正確に評価でき、塗布膜の均一性の評価が可能になる。   As described above, according to the method of the present invention, the ultraviolet transmittance distribution of the coating film of the ultraviolet protective cosmetic on the substrate can be accurately evaluated, and the uniformity of the coating film can be evaluated.

Claims (8)

基板上に塗布された紫外線防御化粧料塗布膜の平面方向における紫外線透過率のヒストグラム10ピクセル/mm以上、5000ピクセル/mm以下の解像度で測定し、該ヒストグラムに基づき該塗布膜の均一性を評価する紫外線防御化粧料塗布膜の均一性評価方法。 A histogram of ultraviolet transmittance in the planar direction of the UV protective cosmetic coating film applied on the substrate is measured with a resolution of 10 pixels / mm or more and 5000 pixels / mm or less , and the uniformity of the coating film is determined based on the histogram. Uniformity evaluation method of UV protective cosmetic coating film to be evaluated. 下記1)〜)の工程を含む、請求項1に記載の評価方法。
1)紫外線防御化粧料を塗布しない基板の平面方向における紫外線透過光強度の分布を10ピクセル/mm以上、5000ピクセル/mm以下の解像度で測定する。
2)前記基板に紫外線防御化粧料を塗布し、塗布後の基板の平面方向における紫外線透過光強度の分布を前記解像度で測定する。
3)紫外線防御化粧料塗布後の紫外線透過光強度の分布における特定の位置での透過光強度を、紫外線防御化粧料塗布前の紫外線透過光強度の分布における同位置での透過光強度で除する。この操作を前記基板における全ての測定領域に対して行うことで、紫外線防御化粧料塗布膜の紫外線透過率の分布を算出する。
4)前記分布に基づきヒストグラムを作成する。
The evaluation method according to claim 1, comprising the following steps 1) to 4 ).
1) The distribution of the ultraviolet transmitted light intensity in the plane direction of the substrate to which the UV protective cosmetic is not applied is measured with a resolution of 10 pixels / mm or more and 5000 pixels / mm or less .
2) An ultraviolet protective cosmetic is applied to the substrate, and the distribution of ultraviolet transmitted light intensity in the planar direction of the substrate after application is measured with the resolution .
3) The transmitted light intensity at a specific position in the distribution of UV transmitted light intensity after application of UV protective cosmetic is divided by the transmitted light intensity at the same position in the distribution of UV transmitted light intensity before application of UV protective cosmetic. . By performing this operation on all the measurement areas on the substrate, the distribution of the ultraviolet transmittance of the ultraviolet protective cosmetic coating film is calculated.
4) Create a histogram based on the distribution.
得られた紫外線防御化粧料塗布膜の紫外線透過率の分布のヒストグラムに基づき該塗布膜全体の紫外線透過率を算出する工程を更に含む、請求項1又は2に記載の評価方法。 The evaluation method according to claim 1, further comprising a step of calculating an ultraviolet transmittance of the entire coating film based on a histogram of a distribution of the ultraviolet transmittance of the obtained ultraviolet protective cosmetic coating film. 前記基板が紫外線光源と紫外領域に感度を持つカメラとの間に挿入されている、請求項1ないし3のいずれか1項に記載の評価方法。   The evaluation method according to claim 1, wherein the substrate is inserted between an ultraviolet light source and a camera having sensitivity in the ultraviolet region. 前記基板と紫外線光源の間に、拡散板、積分球又は光ファイバーバンドル等の光を均一化する拡散照明ユニットを備えた、請求項1ないし4のいずれか1項に記載の評価方法。   The evaluation method according to any one of claims 1 to 4, further comprising a diffusion illumination unit that uniformizes light such as a diffuser plate, an integrating sphere, or an optical fiber bundle between the substrate and the ultraviolet light source. 前記基板として、PMMA基板、石英板、医療用テープ又は切除皮膚を用いる請求項1ないし5のいずれか1項に記載の評価方法。   The evaluation method according to claim 1, wherein a PMMA substrate, a quartz plate, a medical tape, or a cut skin is used as the substrate. 請求項1ないし記載のいずれか1項に記載の評価方法に基づく、紫外線防御化粧料の紫外線防御性能の評価方法。 The evaluation method of the ultraviolet protection performance of the ultraviolet protective cosmetics based on the evaluation method of any one of Claims 1 thru | or 6 . 請求項1ないしのいずれか1項に記載の評価方法を用いた、紫外線防御化粧料のスクリーニング方法。 A screening method for ultraviolet protective cosmetics using the evaluation method according to any one of claims 1 to 6 .
JP2012217375A 2012-09-28 2012-09-28 Method and apparatus for evaluating UV protection cosmetics Active JP6026203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217375A JP6026203B2 (en) 2012-09-28 2012-09-28 Method and apparatus for evaluating UV protection cosmetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217375A JP6026203B2 (en) 2012-09-28 2012-09-28 Method and apparatus for evaluating UV protection cosmetics

Publications (2)

Publication Number Publication Date
JP2014071007A JP2014071007A (en) 2014-04-21
JP6026203B2 true JP6026203B2 (en) 2016-11-16

Family

ID=50746343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217375A Active JP6026203B2 (en) 2012-09-28 2012-09-28 Method and apparatus for evaluating UV protection cosmetics

Country Status (1)

Country Link
JP (1) JP6026203B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183075A1 (en) 2015-05-12 2016-11-17 Profoot, Inc. Real time ultraviolet light reflectance imaging
JP6742108B2 (en) * 2016-02-17 2020-08-19 花王株式会社 Evaluation device, evaluation method, evaluation program, and recording medium
JP2019515289A (en) * 2016-04-27 2019-06-06 ヴォクセライト,エルエルシー Imaging device for evaluating the coverage of sunscreens
EP3511700B1 (en) * 2016-09-06 2023-10-04 Keio University Method for measuring a uv or infrared protection effect of an aqueous composition and device for preparing a measurement sample
CN111684265B (en) 2018-02-05 2024-03-29 株式会社资生堂 Method for evaluating effect of defending external damage to skin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010113961A1 (en) * 2009-03-30 2012-10-11 株式会社 資生堂 Application method for external preparation for skin, application evaluation method, application evaluation apparatus, and application evaluation program
JP5612846B2 (en) * 2009-10-08 2014-10-22 株式会社 資生堂 Method for evaluating uneven application of skin external preparation, unevenness evaluation apparatus, and uneven application evaluation program

Also Published As

Publication number Publication date
JP2014071007A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6026203B2 (en) Method and apparatus for evaluating UV protection cosmetics
Price et al. Irradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light‐curing units
CA2550390C (en) Method and system for measuring sub-surface composition of a sample
AU2008312804B2 (en) Ultraviolet protection effect evaluation method, evaluation device, evaluation program, and recording medium where the program is recorded
EP2618126B1 (en) Evaluation method of ultraviolet radiation protective effect, evaluation device, and recording medium
Van Gulick et al. Age-related changes in molecular organization of type I collagen in tendon as probed by polarized SHG and Raman microspectroscopy
Lademann et al. Synergy effects between organic and inorganic UV filters in sunscreens
JP5956691B2 (en) Radiation dosimetry method using fluorescence imaging with accuracy correction
Sohn et al. Film thickness frequency distribution of different vehicles determines sunscreen efficacy
US20160025481A1 (en) In vitro determination of sunscreen protection based on image analysis of sunscreens applied to skin
JPWO2010113961A1 (en) Application method for external preparation for skin, application evaluation method, application evaluation apparatus, and application evaluation program
Crowther Understanding sunscreen SPF performance using cross‐polarized UVA reflectance photography
Lee et al. Calibration of wide-field deconvolution microscopy for quantitative fluorescence imaging
Wei et al. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology
Blondel et al. Spatially-resolved multiply-excited autofluorescence and diffuse reflectance spectroscopy: Spectrolive medical device for skin in vivo optical biopsy
Roy et al. Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast
Bielfeldt et al. Multicenter methodology comparison of the FDA and ISO standard for measurement of in vitro UVA protection of sunscreen products
JP2008111834A (en) Method and device for evaluating ultraviolet radiation protective effect
Simon et al. Multispectral near-infrared reflectance and transillumination imaging of occlusal carious lesions: variations in lesion contrast with lesion depth
JP6742108B2 (en) Evaluation device, evaluation method, evaluation program, and recording medium
Logan et al. Multispectral near-infrared imaging of composite restorations in extracted teeth
Peller et al. Single-pixel hyperspectral imaging for real-time cancer detection: detecting damage in ex vivo porcine tissue samples
JP2013024749A (en) Spf evaluation device and method for cloth
US20200141863A1 (en) In vitro diffuse reflectance spectroscopy
Krishnaswamy et al. A raster scanning reflectance imager for non-model based quantification of tissue scatter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R151 Written notification of patent or utility model registration

Ref document number: 6026203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250