JP6024963B2 - Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method - Google Patents

Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method Download PDF

Info

Publication number
JP6024963B2
JP6024963B2 JP2012249348A JP2012249348A JP6024963B2 JP 6024963 B2 JP6024963 B2 JP 6024963B2 JP 2012249348 A JP2012249348 A JP 2012249348A JP 2012249348 A JP2012249348 A JP 2012249348A JP 6024963 B2 JP6024963 B2 JP 6024963B2
Authority
JP
Japan
Prior art keywords
nitrogen
plant
fixing
bacillus
inoculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012249348A
Other languages
Japanese (ja)
Other versions
JP2014096996A (en
Inventor
横山 正
正 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2012249348A priority Critical patent/JP6024963B2/en
Publication of JP2014096996A publication Critical patent/JP2014096996A/en
Application granted granted Critical
Publication of JP6024963B2 publication Critical patent/JP6024963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バチルス属に属し、窒素固定能を有する新規バチルス属窒素固定細菌に関し、当該バチルス属窒素固定細菌を含む植物生育促進剤及び当該バチルス属窒素固定細菌を利用した水稲栽培方法に関する。   The present invention relates to a novel Bacillus genus nitrogen-fixing bacterium belonging to the genus Bacillus and having a nitrogen-fixing ability, a plant growth promoter containing the Bacillus genus nitrogen-fixing bacterium, and a paddy rice cultivation method using the Bacillus genus nitrogen-fixing bacterium.

窒素固定細菌は、水稲根圏やその他の作物根圏に緩く共生し、植物体に窒素栄養を供給することで生育促進効果を奏する細菌として知られている。窒素固定細菌に関する研究の歴史は長く、1971年にYoshidaら(非特許文献1)により水稲根圏における窒素固定活性が発見・報告された。また、Watanabe and Furusaka(非特許文献2)は、水稲根圏には多数の窒素固定細菌が生息していることを明らかにした。さらに、BaldaniとDobereiner(非特許文献3)やLadhaら(非特許文献4)は、水稲の根からAzospirillum lipoferumとA. brasilenseを単離した。一方、GreenlandとWatanabeは、日本やフィリピンの長期肥料連用水田の窒素収支を測定し、水田における生物窒素固定を50〜75KgN/haと推定した。   Nitrogen-fixing bacteria are known as bacteria that grow symbiotically loosely in the rice rhizosphere and other crop rhizospheres, and exert growth-promoting effects by supplying nitrogen nutrients to plants. Research on nitrogen-fixing bacteria has a long history. In 1971, Yoshida et al. (Non-Patent Document 1) discovered and reported nitrogen-fixing activity in the rice rhizosphere. Watanabe and Furusaka (Non-Patent Document 2) revealed that a large number of nitrogen-fixing bacteria inhabit the rice rhizosphere. Furthermore, Baldani and Dobereiner (Non-patent Document 3) and Ladha et al. (Non-patent Document 4) isolated Azospirillum lipoferum and A. brasilense from the roots of rice. On the other hand, Greenland and Watanabe measured the nitrogen balance of long-term fertilizer continuous paddy fields in Japan and the Philippines, and estimated the biological nitrogen fixation in paddy fields to be 50-75KgN / ha.

以上のような長年の研究から、Azospirillum属細菌を水稲に接種することで当該水稲の根圏における窒素固定活性を上昇させ、栄養窒素を供給するための化学窒素肥料の使用量を低減しながら同程度の収量を達成技術が試験されている。ところが、窒素固定能を有するAzospirillum属細菌は、微生物担体に担持された状態での生残率が極めて低く、水稲栽培や他の植物栽培における生育促進剤として利用しても所期の効果を達成するのが困難であった。   Based on these long-standing studies, the inoculation of Azospirillum bacteria into paddy rice increased the nitrogen fixation activity in the rhizosphere of the paddy rice, while reducing the amount of chemical nitrogen fertilizer used to supply nutrient nitrogen. Techniques that achieve a degree of yield have been tested. However, Azospirillum bacteria with nitrogen-fixing ability have a very low survival rate when they are supported on microbial carriers, and even when used as growth promoters in paddy rice cultivation and other plant cultivation, they achieve the desired effects. It was difficult to do.

Yoshidaら(1971):Soil Sci. Soc. Am. Proc. 35:156-157.1971Yoshida et al. (1971): Soil Sci. Soc. Am. Proc. 35: 156-157.1971 Watanabe and Furusaka (1980):(‘Microbial ecology of flooded rice soils‘, in Alexander, (ed.), Advances in Microbial Ecology, Vol. 4, Plenum Publishing CorporationWatanabe and Furusaka (1980): (‘Microbial ecology of flooded rice soils’, in Alexander, (ed.), Advances in Microbial Ecology, Vol. 4, Plenum Publishing Corporation BaldaniとDobereiner (1980):Biol Biochem 12: 433-439, 1980)Baldani and Dobereiner (1980): Biol Biochem 12: 433-439, 1980) Ladhaら(1982):Can. J. Microbiol. 28:478-485, 1982Ladha et al. (1982): Can. J. Microbiol. 28: 478-485, 1982

そこで、本発明は、上述したような実情に鑑み、水稲を初めとする各種植物に対して窒素栄養を供給することができ、且つ、植物生育促進剤として使用して高い生残率を示す新規なバチルス属窒素固定細菌を提供し、当該バチルス属窒素固定細菌を利用した植物生育促進剤及び植物の栽培方法を提供することを目的とする。   Therefore, in view of the above situation, the present invention is capable of supplying nitrogen nutrition to various plants including paddy rice and is used as a plant growth promoter and exhibits a high survival rate. An object of the present invention is to provide a nitrogen-fixing bacterium belonging to the genus Bacillus and to provide a plant growth promoter and a plant cultivation method using the nitrogen-fixing bacterium.

上述した目的を達成するため、本発明者らが鋭意検討した結果、東京都府中市東京農工大学畑圃場の土壌を分離源として目的の特性を有する微生物を単離、同定すべく鋭意検討した結果、バチルス・プミルスに分類されて窒素固定能を有する新規微生物株を単離、同定することができた。本発明は、これら新規微生物株が有する窒素固定能に基づいてなされたものである。   As a result of intensive studies by the present inventors in order to achieve the above-mentioned object, as a result of intensive studies to isolate and identify microorganisms having the desired characteristics using the soil in the field of Tokyo University of Agriculture and Technology, Fuchu City, Tokyo as a separation source Thus, it was possible to isolate and identify a novel microbial strain classified as Bacillus pumilus and having nitrogen-fixing ability. The present invention has been made based on the nitrogen fixing ability of these novel microbial strains.

本発明は以下を包含する。
(1)窒素固定能を有し、バチルス・プミルス(Bacillus pumilus)に分類されるバチルス属窒素固定細菌。
(2)受託番号NITE BP-1356で特定されるバチルス・プミルス(Bacillus pumilus)TUAT1株であることを特徴とする(1)記載のバチルス属窒素固定細菌。
The present invention includes the following.
(1) A nitrogen-fixing bacterium belonging to the genus Bacillus that has nitrogen-fixing ability and is classified as Bacillus pumilus.
(2) The Bacillus genus nitrogen-fixing bacterium according to (1), which is a Bacillus pumilus TUAT1 strain identified by the accession number NITE BP-1356.

(3)上記(1)又は(2)記載のバチルス属窒素固定細菌を含む、植物生育促進剤。
(4)上記バチルス属窒素固定細菌は栄養細胞及び/又は胞子であることを特徴とする(3)記載の植物生育促進剤。
(3) A plant growth promoter comprising the Bacillus genus nitrogen-fixing bacterium according to (1) or (2) above.
(4) The plant growth promoter according to (3), wherein the Bacillus genus nitrogen-fixing bacterium is a vegetative cell and / or a spore.

(5)上記(1)又は(2)記載のバチルス属窒素固定細菌若しくは上記(3)又は(4)記載の植物生育促進剤を対象の植物に作用させる、植物の製造方法。
(6)上記バチルス属窒素固定細菌又は上記植物生育促進剤を、上記植物の根圏に供給することを特徴とする(5)記載の植物の製造方法。
(5) A method for producing a plant, wherein the Bacillus genus nitrogen-fixing bacterium according to (1) or (2) or the plant growth promoter according to (3) or (4) is allowed to act on a target plant.
(6) The method for producing a plant according to (5), wherein the Bacillus genus nitrogen-fixing bacterium or the plant growth promoter is supplied to the rhizosphere of the plant.

(7)上記植物はイネ科植物であることを特徴とする(5)又は(6)記載の植物の製造方法。
(8)上記イネ科植物はイネであり、水稲栽培であることを特徴とする(7)記載の植物の製造方法。
(7) The method for producing a plant according to (5) or (6), wherein the plant is a gramineous plant.
(8) The method for producing a plant according to (7), wherein the gramineous plant is rice and is cultivated in paddy rice.

本発明に係る新規なバチルス属窒素固定細菌は、優れた窒素固定能を有するため、植物に対して優れた生育促進作用を有している。したがって、本発明に係るバチルス属窒素固定細菌を利用することによって、優れた生育促進作用を有する植物生育促進剤を提供することができる。また、本発明に係るバチルス属窒素固定細菌を水稲に代表される植物の栽培に利用することによって、当該植物の生育を促進できることとなり、植物製造に係るコストを大幅に低減することができる。   Since the novel Bacillus genus nitrogen-fixing bacterium according to the present invention has an excellent nitrogen-fixing ability, it has an excellent growth promoting effect on plants. Therefore, by using the Bacillus genus nitrogen-fixing bacterium according to the present invention, a plant growth promoter having an excellent growth promoting action can be provided. Moreover, by using the Bacillus genus nitrogen-fixing bacterium according to the present invention for cultivation of plants represented by paddy rice, the growth of the plant can be promoted, and the cost for plant production can be greatly reduced.

ポット試験における各処理区の乾物蓄積量を示す特性図である。It is a characteristic view which shows the dry matter accumulation amount of each process area in a pot test.

以下、本発明を詳細に説明する。
<新規バチルス属窒素固定細菌>
本発明に係るバチルス属窒素固定細菌は、バチルス・プミルス(Bacillus pumilus)に分類され、窒素固定能を有する微生物である。ここで、窒素固定能とは、気体の窒素分子(N2)を窒素化合物(アンモニア、硝酸塩、二酸化窒素等)に変換する能力を意味する。本発明に係るバチルス属窒素固定細菌は、窒素固定能を有するために、根圏に生息することによって植物に窒素を供給することができる。このとき、本発明に係るバチルス属窒素固定細菌は、必ずしも植物との共生を図ることはない、いわゆる単生窒素固定菌類であり、多種多様な植物に対して窒素を供給することができる。
Hereinafter, the present invention will be described in detail.
<New Bacillus genus nitrogen-fixing bacteria>
The Bacillus genus nitrogen-fixing bacterium according to the present invention is classified as Bacillus pumilus and is a microorganism having nitrogen-fixing ability. Here, the nitrogen fixing ability means the ability to convert gaseous nitrogen molecules (N 2 ) into nitrogen compounds (ammonia, nitrate, nitrogen dioxide, etc.). Since the Bacillus nitrogen-fixing bacterium according to the present invention has a nitrogen-fixing ability, it can supply nitrogen to plants by living in the rhizosphere. At this time, the Bacillus genus nitrogen-fixing bacterium according to the present invention is a so-called single nitrogen-fixing fungus that does not necessarily coexist with a plant, and can supply nitrogen to a wide variety of plants.

なお、窒素固定能については、例えば、窒素安定同位体自然存在比(δ15N値)を用いて評価することができる。δ15N値は元素分析計を接続した質量分析計を用いて測定することができる。この方法は、土壌における15Nの自然存在比が高いために土壌由来窒素の原子量は重くなるのに対して、空気中における15Nの自然存在比が低いために空気由来窒素の原子量は軽くなるという原理に基づいている。すなわち、化学肥料由来の窒素や微生物による窒素固定で供給された窒素は、土壌中に存在する土壌由来の窒素原子より原子量が軽くなる。そのため、化学窒素肥料や微生物による窒素固定で供給された窒素を蓄積した植物体は、原子量の軽い窒素を多く含むこととなる。一方、土壌由来の窒素を吸収した植物体は、原子量の高い窒素を多く含むこととなる。したがって、供試微生物を植物体の根圏に生息させた後、当該植物体のδ15N値を測定することによって、微生物における窒素固定能を評価することができる。 The nitrogen fixing ability can be evaluated using, for example, a nitrogen stable isotope natural abundance ratio (Δ 15 N value). The δ 15 N value can be measured using a mass spectrometer connected to an element analyzer. This method increases the atomic mass of nitrogen derived from soil due to the high natural abundance ratio of 15 N in soil, while the atomic mass of nitrogen derived from air decreases due to the low natural abundance ratio of 15 N in air. Based on the principle. That is, nitrogen derived from chemical fertilizer and nitrogen supplied by nitrogen fixation by microorganisms have a lighter atomic weight than soil-derived nitrogen atoms present in the soil. Therefore, a plant body that accumulates nitrogen supplied by nitrogen fixation by chemical nitrogen fertilizer or microorganisms contains a large amount of nitrogen having a light atomic weight. On the other hand, a plant body that has absorbed nitrogen derived from soil contains a large amount of nitrogen having a high atomic weight. Therefore, after incubating the test microorganism in the rhizosphere of the plant body, the nitrogen fixing ability of the microorganism can be evaluated by measuring the δ 15 N value of the plant body.

本発明者らは、このような手法によって東京都府中市東京農工大学畑圃場の土壌からバチルス・プミルス(Bacillus pumilus)に分類され、窒素固定能を有する新規微生物株を単離している。本発明者は、この新規微生物株をバチルス・プミルス(Bacillus pumilus)TUAT1と命名し、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NITE特許微生物寄託センター:〒292-0818千葉県木更津市かずさ鎌足2-5-8)に2012年5月10日付けで受託番号NITE BP-1356として国際寄託している。   The present inventors have isolated a novel microbial strain having a nitrogen-fixing ability, which is classified into Bacillus pumilus from soil in the field of Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, by such a technique. The present inventor named this new microbial strain as Bacillus pumilus TUAT1 and incorporated the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center (NITE Patent Microorganism Deposit Center: Kazusa Kisarazu City, Chiba Prefecture 292-0818) 2-5-8 in Kamaishi) International deposit has been made on May 10, 2012 under the accession number NITE BP-1356.

本発明に係るバチルス属窒素固定細菌は、当該受託番号NITE BP-1356で特定されるバチルス・プミルス(Bacillus pumilus)TUAT1株及び、当該TUAT1株と同一の株に分類され、且つ窒素固定能を有する微生物を含むこととなる。   The Bacillus genus nitrogen-fixing bacterium according to the present invention is classified into the Bacillus pumilus TUAT1 strain specified by the accession number NITE BP-1356 and the same strain as the TUAT1 strain, and has a nitrogen-fixing ability. It will contain microorganisms.

また、受託番号NITE BP-1356で特定されるバチルス・プミルス(Bacillus pumilus)TUAT1株は、配列番号1に示す塩基配列を含む16SrDNAを有している。したがって、本発明に係るバチルス属窒素固定細菌は、配列番号1に示す塩基配列に対して95%以上、好ましくは98%以上、より好ましくは99%以上の相同性を有する塩基配列を含む16SrDNAを有するバチルス・プミルス(Bacillus pumilus)であって、窒素固定能を有する微生物を含むこととなる。   Further, the Bacillus pumilus TUAT1 strain specified by the accession number NITE BP-1356 has 16S rDNA containing the base sequence shown in SEQ ID NO: 1. Therefore, the Bacillus genus nitrogen-fixing bacterium according to the present invention contains 16S rDNA containing a base sequence having a homology of 95% or more, preferably 98% or more, more preferably 99% or more with respect to the base sequence shown in SEQ ID NO: 1. Bacillus pumilus having a nitrogen-fixing ability.

<植物生育促進剤>
本発明に係るバチルス属窒素固定細菌における窒素固定能を利用することによって、植物に栄養窒素を供給することができる。すなわち、本発明に係るバチルス属窒素固定細菌は植物生育促進剤として使用することができる。なお、本発明に係るバチルス属窒素固定細菌は、栄養細胞及び胞子のいずれの状態で使用しても良い。
<Plant growth promoter>
By utilizing the nitrogen fixing ability of the Bacillus genus nitrogen-fixing bacterium according to the present invention, nutrient nitrogen can be supplied to the plant. That is, the Bacillus genus nitrogen-fixing bacterium according to the present invention can be used as a plant growth promoter. In addition, you may use the Bacillus genus nitrogen fixed bacteria which concern on this invention in any state of a vegetative cell and a spore.

本発明に係るバチルス属窒素固定細菌の栄養細胞を植物生育促進剤として利用する場合、例えば、以下に例示列挙するような培地を使用して適切な条件下で培養する。すなわち、使用可能な培地としては、NFb培地(リンゴ酸 5.0g、K2HPO4 0.5g、MgSO4・7H2O 0.2g、NaCl 0.1g、CaCl2 0.02g、Na2MoO4・2H2O 0.002g、MnSO4・H2O 0.01g、KOH 4.5g、Fe EDTA(1.64% W/V%) 4.0ml、Biotin 0.1mlを蒸留水1lに溶解し、NaOHまたはKOHでpHを6.8に調整)、トリプチケースソイ培地(日本ベクトン・ディッキンソン株式会社製)等を挙げることができる。また、培養条件としては、培養温度が20〜30度、好ましくは25〜28度とすることができ、培地pHは6.8が望ましい。 When the vegetative cells of the Bacillus genus nitrogen-fixing bacterium according to the present invention are used as a plant growth promoter, for example, culture is performed under appropriate conditions using a medium as exemplified below. In other words, usable media include NFb medium (malic acid 5.0 g, K 2 HPO 4 0.5 g, MgSO 4 .7H 2 O 0.2 g, NaCl 0.1 g, CaCl 2 0.02 g, Na 2 MoO 4 .2H 2 O 0.002 g, MnSO 4 · H 2 O 0.01 g, KOH 4.5 g, Fe EDTA (1.64% W / V%) 4.0 ml, Biotin 0.1 ml are dissolved in 1 l of distilled water, and the pH is adjusted to 6.8 with NaOH or KOH) , Trypticase soy medium (Nippon Becton Dickinson Co., Ltd.) and the like. Moreover, as culture conditions, the culture temperature can be 20 to 30 degrees, preferably 25 to 28 degrees, and the medium pH is desirably 6.8.

本発明に係るバチルス属窒素固定細菌の胞子を植物生育促進剤として利用する場合、使用可能な胞子形成用培地としては、上記の培地で良く、寒天プレート及び液体培地を25℃に1週間程度静置することで得られる。液体培地で静置する場合は、胞子が団粒化する傾向があるので、適切な界面活性剤の一定量を加えることでそれが防ぐことが可能である。胞子状態での接種は、胞子の生残性が数ヶ月維持され、接種効果の安定性が増加する。   When the spore of the Bacillus genus nitrogen-fixing bacterium according to the present invention is used as a plant growth promoter, the spore-forming medium that can be used may be the above-mentioned medium, and the agar plate and the liquid medium are kept at 25 ° C. for about 1 week. It is obtained by placing. When left in a liquid medium, the spores tend to agglomerate and can be prevented by adding a certain amount of a suitable surfactant. Inoculation in the spore state maintains the survival of the spore for several months and increases the stability of the inoculation effect.

以上のように培養された本発明に係るバチルス属窒素固定細菌(栄養細胞及び/又は胞子)を植物生育促進剤とする場合、本発明に係るバチルス属窒素固定細菌(栄養細胞及び/又は胞子)を単独で使用しても良いが、当該バチルス属窒素固定細菌と他の任意成分とを配合して特定の製剤としてもよい。製剤の形態としては、例えば、液剤、粉剤、粒剤、乳剤、油剤、懸濁剤、水和剤、水溶剤、粒剤、ペースト剤、カプセル剤、煙霧剤(エアゾール剤)等を挙げることができる。   When the Bacillus nitrogen-fixing bacteria (vegetative cells and / or spores) according to the present invention cultured as described above are used as plant growth promoters, the Bacillus nitrogen-fixing bacteria (vegetative cells and / or spores) according to the present invention are used. May be used alone, but the Bacillus genus nitrogen-fixing bacteria and other optional components may be blended to form a specific preparation. Examples of the form of the preparation include liquids, powders, granules, emulsions, oils, suspensions, wettable powders, water solvents, granules, pastes, capsules, aerosols (aerosols) and the like. it can.

他の任意配合としては、例えば、液体担体や固体担体等のバチルス属窒素固定細菌を担持するための担体、界面活性剤(乳化剤、分散剤、消泡剤等)、補助剤等が挙げられる。液体担体としては、リン酸緩衝液、炭酸緩衝液、生理食塩水等が挙げられる。固体担体としては、カオリン、粘土、タルク、ベントナイト、チョーク、石英、アタパルジャイト、モンモリロナイト、ホワイトカーボン、珪藻土等の天然鉱物粉末、ケイ酸、アルミナ、ケイ酸塩等の合成鉱物粉末、結晶性セルロース、コーンスターチ、ゼラチン、アルギン酸等の高分子性天然物が挙げられる。また、固体担体としては、例えば、バーミキュライト、ケイ砂、雲母、軽石、石こう、炭酸カルシウム、ドロマイト、マグネシウム、消石灰、リン石灰、ゼオライト、硫安などの無機物質を使用しても良い。また、固体担体としては、例えば、大豆粉、タバコ粉、クルミ粉、小麦粉、木粉、でんぷん、結晶セルロースなどの植物性有機物質を使用しても良い。さらに、固体担体としては、クマロン樹脂、石油樹脂、アルキド樹脂、ポリ塩化ビニル、ポリアルキレングリコール、ケトン樹脂、エステルガム、コーパルガム、ダンマルガムなどの合成または天然の高分子化合物や、カルナバロウ、蜜ロウなどのワックス類及び尿素類等を使用しても良い。   Other optional formulations include, for example, carriers for supporting Bacillus genus nitrogen-fixing bacteria such as liquid carriers and solid carriers, surfactants (emulsifiers, dispersants, antifoaming agents, etc.), adjuvants and the like. Examples of the liquid carrier include phosphate buffer, carbonate buffer, and physiological saline. Solid carriers include natural mineral powders such as kaolin, clay, talc, bentonite, chalk, quartz, attapulgite, montmorillonite, white carbon, diatomaceous earth, synthetic mineral powders such as silicic acid, alumina, silicate, crystalline cellulose, corn starch And high molecular weight natural products such as gelatin and alginic acid. In addition, as the solid carrier, for example, inorganic substances such as vermiculite, silica sand, mica, pumice, gypsum, calcium carbonate, dolomite, magnesium, slaked lime, phosphorus lime, zeolite, and ammonium sulfate may be used. Further, as the solid carrier, for example, plant organic substances such as soybean powder, tobacco powder, walnut powder, wheat flour, wood powder, starch, crystalline cellulose and the like may be used. Furthermore, as solid carriers, there are synthetic or natural polymer compounds such as coumarone resin, petroleum resin, alkyd resin, polyvinyl chloride, polyalkylene glycol, ketone resin, ester gum, copal gum, dammar gum, carnauba wax and beeswax. Waxes and ureas may be used.

乳化剤または分散剤としては、通常、界面活性剤が用いられる。界面活性剤としては、非イオン性、陽イオン性、陰イオン性および両イオン性のものが使用されるが、通常は非イオン性および/または陰イオン性のものが好適に使用される。適当な非イオン性界面活性剤としては、例えば、ラウリルアルコール、ステアリルアルコール、オレイルアルコールなどの高級アルコールにエチレンオキシドを重合付加させたもの;イソオクチルフェノール、ノニルフェノールなどのアルキルフェノールにエチレンオキシドを重合付加させたもの;ブチルナフトール、オクチルナフトールなどのアルキルナフトールにエチレンオキシドを重合付加させたもの;バルミチン酸、ステアリン酸、オレイン酸などの高級脂肪酸にエチレンオキシドを重合付加させたもの;ステアリンりん酸、ジラウリルりん酸などのモノもしくはジアルキルりん酸にエチレンオキシドを重合付加させたもの;ドデシルアミン、ステアリン酸アミドなどのアミンにエチレンオキシドを重合付加させたもの;ソルビタンなどの多価アルコールの高級脂肪酸エステルおよびそれにエチレンオキシドを重合付加させたもの;エチレンオキシドとプロピレンオキシドを重合付加させたもの;ジオクチルサクシネートなどの多価脂肪酸とアルコールとのエステルなどが挙げられる。適当な陰イオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム、オレイルアルコール硫酸エステルアミン塩などのアルキル硫酸エステル塩;スルホこはく酸ジオクチルエステルナトリウム、2−エチルヘキセンスルホン酸ナトリウムなどのアルキルスルホン酸塩;イソプロピルナフタレンスルホン酸ナトリウム、メチレンビスナフタレンスルホン酸ナトリウム、リグニンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアリールスルホン酸塩;トリポリリン酸ソーダなどのリン酸塩などが挙げられる。   As the emulsifier or dispersant, a surfactant is usually used. As the surfactant, nonionic, cationic, anionic and zwitterionic ones are used, but usually nonionic and / or anionic ones are preferably used. Suitable nonionic surfactants include, for example, those obtained by polymerizing and adding ethylene oxide to higher alcohols such as lauryl alcohol, stearyl alcohol and oleyl alcohol; those obtained by polymerizing and adding ethylene oxide to alkylphenols such as isooctylphenol and nonylphenol; Polymerized addition of ethylene oxide to alkyl naphthols such as butyl naphthol and octyl naphthol; Polymerized addition of ethylene oxide to higher fatty acids such as valmitic acid, stearic acid and oleic acid; Mono- or stearic acid, dilauryl phosphate, etc. Polymerized addition of ethylene oxide to dialkyl phosphoric acid; Polymerized addition of ethylene oxide to amines such as dodecylamine and stearamide; Sorbitan What higher fatty acid ester of a polyhydric alcohol and it shall was ethylene oxide polymerized addition; ethylene oxide and propylene oxide that was polymerized addition, polyhydric fatty acid esters of an alcohol, such as dioctyl succinate. Suitable anionic surfactants include, for example, alkyl sulfate salts such as sodium lauryl sulfate and oleyl alcohol sulfate ester amine salts; alkyl sulfonate salts such as sodium sulfosuccinate dioctyl ester and sodium 2-ethylhexene sulfonate. Aryl sulfonates such as sodium isopropyl naphthalene sulfonate, sodium methylene bisnaphthalene sulfonate, sodium lignin sulfonate, sodium dodecylbenzene sulfonate; phosphates such as sodium tripolyphosphate;

本発明に係る植物成長促進剤のバチルス属窒素固定細菌の含有量は、特に限定されないが、107〜108cfu/mlとすることができる。 The content of the Bacillus genus nitrogen-fixing bacterium of the plant growth promoter according to the present invention is not particularly limited, but can be 10 7 to 10 8 cfu / ml.

一方、上述のように構成された植物生育促進剤は、各種植物の根圏に供給されることで植物の生育を促進する。対象となる植物としては、特に限定されないが、例えば、双子葉植物、単子葉植物、例えばアブラナ科、イネ科、ナス科、マメ科、ヤナギ科等に属する植物(下記参照)が挙げられるが、これらの植物に限定されるものではない。
アブラナ科:シロイヌナズナ(Arabidopsis thaliana)、アブラナ(Brassica rapa、Brassica napus、Brassica campestris)、キャベツ(Brassica oleracea var. capitata)、ハクサイ(Brassica rapa var. pekinensis)、チンゲンサイ(Brassica rapa var. chinensis)、カブ(Brassica rapa var. rapa)、ノザワナ(Brassica rapa var. hakabura)、ミズナ(Brassica rapa var. lancinifolia)、コマツナ(Brassica rapa var. peruviridis)、パクチョイ(Brassica rapa var. chinensis)、ダイコン(Raphanus sativus)、ワサビ(Wasabia japonica)など。
ナス科:タバコ(Nicotiana tabacum)、ナス(Solanum melongena)、ジャガイモ(Solaneum tuberosum)、トマト(Lycopersicon lycopersicum)、トウガラシ(Capsicum annuum)、ペチュニア(Petunia)など。
マメ科:ダイズ(Glycine max)、エンドウ(Pisum sativum)、ソラマメ(Vicia faba)、フジ(Wisteria floribunda)、ラッカセイ(Arachis hypogaea)、ミヤコグサ(Lotus corniculatus var. japonicus)、インゲンマメ(Phaseolus vulgaris)、アズキ(Vigna angularis)、アカシア(Acacia)など。
キク科:キク(Chrysanthemum morifolium)、ヒマワリ(Helianthus annuus)など。
ヤシ科:アブラヤシ(Elaeis guineensis、Elaeis oleifera)、ココヤシ(Cocos nucifera)、ナツメヤシ(Phoenix dactylifera)、ロウヤシ(Copernicia)など。
ウルシ科:ハゼノキ(Rhus succedanea)、カシューナットノキ(Anacardium occidentale)、ウルシ(Toxicodendron vernicifluum)、マンゴー(Mangifera indica)、ピスタチオ(Pistacia vera)など。
ウリ科:カボチャ(Cucurbita maxima、Cucurbita moschata、Cucurbita pepo)、キュウリ(Cucumis sativus)、カラスウリ(Trichosanthes cucumeroides)、ヒョウタン(Lagenaria siceraria var. gourda)など。
バラ科:アーモンド(Amygdalus communis)、バラ(Rosa)、イチゴ(Fragaria)、サクラ(Prunus)、リンゴ(Malus pumila var. domestica)など。
ナデシコ科:カーネーション(Dianthus caryophyllus)など。
ヤナギ科:ポプラ(Populus trichocarpa、Populus nigra、Populus tremula) など。
イネ科:トウモロコシ(Zea mays)、イネ(Oryza sativa)、オオムギ(Hordeum vulgare)、コムギ(Triticum aestivum)、タケ(Phyllostachys)、サトウキビ(Saccharum officinarum)、ネピアグラス(Pennisetum pupureum)、エリアンサス(Erianthus ravenae)、ミスキャンタス(ススキ)(Miscanthus virgatum)、ソルガム(Sorghum)スイッチグラス(Panicum)など。
ユリ科:チューリップ(Tulipa)、ユリ(Lilium)など。
On the other hand, the plant growth promoter configured as described above promotes the growth of plants by being supplied to the rhizosphere of various plants. The target plant is not particularly limited, and examples thereof include dicotyledonous plants, monocotyledonous plants such as Brassicaceae, Gramineae, Eggplant, Legume, Willowaceae and the like (see below), It is not limited to these plants.
Brassicaceae: Arabidopsis thaliana, Brassica rapa, Brassica napus, Brassica campestris, cabbage (Brassica oleracea var. Capitata), Chinese cabbage (Brassica rapa var. Pekinensis), Chingensai (Brassica rapa var, chin) Brassica rapa var. Rapa), Nozawana (Brassica rapa var. Lancinifolia), Komatsuna (Brassica rapa var. Peruviridis), Pakchoi (Brassica rapa var. Chinensis), Japanese radish (Raphanus sativus) (Wasabia japonica).
Eggplant family: tobacco (Nicotiana tabacum), eggplant (Solanum melongena), potato (Solaneum tuberosum), tomato (Lycopersicon lycopersicum), red pepper (Capsicum annuum), petunia (Petunia) and the like.
Legumes: Soybean (Glycine max), pea (Pisum sativum), broad bean (Vicia faba), wisteria (Wisteria floribunda), groundnut (Arachis hypogaea), Lotus corniculatus var. Japonicus, common bean (Phaseolus vulgaris), azuki bean (Phaseolus vulgaris) Vigna angularis), Acacia, etc.
Asteraceae: Chrysanthemum morifolium, sunflower (Helianthus annuus), etc.
Palms: oil palm (Elaeis guineensis, Elaeis oleifera), coconut (Cocos nucifera), date palm (Phoenix dactylifera), wax palm (Copernicia), etc.
Ursiaceae: Rhis succedanea, Cashew nutcrest (Anacardium occidentale), Urushi (Toxicodendron vernicifluum), mango (Mangifera indica), pistachio (Pistacia vera), etc.
Cucurbitaceae: Pumpkin (Cucurbita maxima, Cucurbita moschata, Cucurbita pepo), cucumber (Cucumis sativus), crow cucumber (Trichosanthes cucumeroides), gourd (Lagenaria siceraria var. Gourda), etc.
Rosaceae: Almond (Amygdalus communis), Rose (Rosa), Strawberry (Fragaria), Sakura (Prunus), Apple (Malus pumila var. Domestica), etc.
Dianthus: Carnation (Dianthus caryophyllus).
Willow family: Poplar (Populus trichocarpa, Populus nigra, Populus tremula) etc.
Gramineae: corn (Zea mays), rice (Oryza sativa), barley (Hordeum vulgare), wheat (Triticum aestivum), bamboo (Phyllostachys), sugar cane (Saccharum officinarum), napiergrass (Pennisetum pupureum), elian raven (Erian) ), Miscanthus virgatum, Sorghum switch glass (Panicum), etc.
Lily family: Tulip (Tulipa), Lily (Lilium), etc.

なかでも、本発明に係る植物生育促進剤は、イネ(Oryza sativa)に代表されるイネ科植物を対象とすることが好ましい。特に、本発明に係る植物生育促進剤は水稲栽培において有効に利用される。   Among these, the plant growth promoter according to the present invention is preferably intended for gramineous plants represented by rice (Oryza sativa). In particular, the plant growth promoter according to the present invention is effectively used in paddy rice cultivation.

以下、実施例を用いて本発明を更に詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
〔実施例1〕<Bacillus pumilus TUAT-1株の単離>
東京都府中市東京農工大学畑圃場の土壌からNFb無窒素反流動培地を用いて単離し、流動培地表面から約5mm下に菌体の塊を形成する特徴を有し、希釈平板法で単コロニー化し、イネへの発根促進効果を確認した。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, the technical scope of this invention is not limited to a following example.
[Example 1] <Isolation of Bacillus pumilus TUAT-1 strain>
It is isolated from the soil of the field of Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, using an NFb-nitrogen-free anti-fluid culture medium. It has the characteristic of forming a cell mass about 5 mm below the surface of the fluid culture medium. And confirmed rooting promotion effect on rice.

以上のように単離した窒素固定能を有する微生物についてDNAを抽出し16s-rRNA遺伝子領域をPCR法で増幅し、DNAアナライザーを用いてDNA塩基配列を決定し、公的なDNA情報保存機関が有している塩基配列と比較し分類を試みた。16s-rRNA遺伝子領域の塩基配列を配列番号1に示した。配列番号1の塩基配列について、日本DNAデータバンク(DDBJ)でのBlast検索の結果、Bacillus pumilusに分類されることが明らかとなった。   DNA extracted from microorganisms with nitrogen-fixing ability isolated as described above, 16s-rRNA gene region amplified by PCR method, DNA base sequence determined using DNA analyzer, official DNA information storage agency Classification was attempted by comparison with the nucleotide sequence. The base sequence of the 16s-rRNA gene region is shown in SEQ ID NO: 1. As a result of the Blast search in the Japan DNA Data Bank (DDBJ), the nucleotide sequence of SEQ ID NO: 1 was categorized as Bacillus pumilus.

本実施例で単離したBacillus pumilusは、窒素固定能、インドール酢酸生産能、及び特に水稲を中心にイネ科作物に強い発根促進を有している点で公知のBacillus pumilus(例えば、Bacillus pumiluis SYBC-W株(laccase生産株)、Bacillus pumilus AUCAB16株(珊瑚に生息している株))とは異なっており、公知株とは異なる新規株である判定した。本実施例で単離したBacillus pumilusは、Bacillus pumiluis TUAT1株と命名し、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NITE特許微生物寄託センター:〒292-0818千葉県木更津市かずさ鎌足2-5-8)に2012年5月10日付けで受託番号NITE BP-1356として国際寄託した。   Bacillus pumilus isolated in the present example is known for Bacillus pumilus (for example, Bacillus pumiluis, for example, in that it has a nitrogen fixing ability, an indole acetic acid producing ability, and a strong rooting promotion particularly in rice plants, particularly paddy rice. The SYBC-W strain (laccase production strain) and the Bacillus pumilus AUCAB16 strain (strain that lives in the cocoon)) were judged to be new strains different from the known strains. The Bacillus pumilus isolated in the present example was named Bacillus pumiluis TUAT1 strain, and was incorporated by the National Institute of Technology and Evaluation Technology Patent Microorganism Depositary Center (NITE Patent Microorganism Depositary Center: 2 Kazusa Kamashizu, Kisarazu City, Chiba Prefecture 292-0818) -5-8) was deposited internationally on May 10, 2012 as accession number NITE BP-1356.

〔実施例2〕
本実施例では、実施例1で単離・同定したBacillus pumiluis TUAT1株(受託番号NITE BP-1356)における窒素固定能及びこれに基づく植物生育促進作用を検証した。
[Example 2]
In this example, the nitrogen fixing ability and the plant growth promoting action based on the Bacillus pumiluis TUAT1 strain (Accession No. NITE BP-1356) isolated and identified in Example 1 were verified.

<試験方法>
<供試菌株および接種剤の調整>
Bacillus pumilus TUAT-1株を1g/Lの塩化アンモニウムを含む5LのNFb液体培地で一週間、25℃で振とう培養し、4℃、6000rpm、30分の遠心分離で集菌した。次に、2mmのふるいを通過させた東京農工大学付属農場の黒ボク土壌1kgを121℃、40分のオートクレーブで滅菌し、100mLの滅菌蒸留水に上記集菌菌体を混和し、28℃、最大圃場容水量下で1週間静置し、熟成させた。また、接種材の菌密度は希釈平板法により測定し、107〜108CFU/gに調整した。
<Test method>
<Adjustment of test strain and inoculum>
Bacillus pumilus TUAT-1 strain was cultured with shaking in 5 L NFb liquid medium containing 1 g / L ammonium chloride for 1 week at 25 ° C., and collected by centrifugation at 4 ° C., 6000 rpm for 30 minutes. Next, sterilize 1 kg of black soil from the farm attached to Tokyo University of Agriculture and Technology, passed through a 2 mm sieve, in an autoclave at 121 ° C for 40 minutes, mix the collected cells in 100 mL of sterilized distilled water, 28 ° C, It was left to stand for 1 week under the maximum field capacity and matured. The bacterial density of the inoculum was measured by a dilution plate method and adjusted to 10 7 to 10 8 CFU / g.

<接種法>
TUAT-1株の「リーフスター」等への接種は、ポット試験での場合、苗移植時に上記接種剤200gで苗の根部を包むようにして接種した。また圃場試験においては、接種材100gをバット上で水に懸濁させ懸濁液とし、そこに移植苗の根を1時間浸すことで接種した。
<Inoculation method>
In the case of a pot test, the TUAT-1 strain, such as “Leaf Star”, was inoculated so that the seedling root was wrapped with 200 g of the inoculum at the time of seedling transplantation. In the field test, 100 g of the inoculum was suspended in water on a vat to form a suspension, and the seedlings were inoculated by immersing the roots of the transplanted seedling for 1 hour.

接種法の検討で、イネの場合は、播種時に上記接種剤を接種し、その後複数回同様な接種を行うと、安定的な効果が得られることが分かった。また、移植時の接種は、移植苗をオバーナイトで接種剤に浸漬することで安定的な接種は確立される。   Examination of the inoculation method revealed that in the case of rice, a stable effect can be obtained by inoculating the above inoculum at the time of sowing and then inoculating the same multiple times. In addition, stable inoculation can be established by immersing the transplanted seedlings in the inoculum with amberite.

なお、「リーフスター」は、大川らが新規に長桿でバイオマス生産量が高く、稲わら中のデンプン含量が高い品種として育種されたものである(Biomass production and lodging resistance in 'Leaf Star', a new long-culm rice forage cultivar, Ookawa, T., K. Yasuda, M. Seto, K. Sunaga, H. Kato, M. Sakai, T. Motobayashi, S. Tojo and T. Hirasawa, Plant Production Sceince, 13(1):56-64 2010)。   “Leaf Star” was bred by Okawa et al. As a cultivar that was newly produced in Nagatoro, with high biomass production and high starch content in rice straw (Biomass production and lodging resistance in 'Leaf Star', a new long-culm rice forage cultivar, Ookawa, T., K. Yasuda, M. Seto, K. Sunaga, H. Kato, M. Sakai, T. Motobayashi, S. Tojo and T. Hirasawa, Plant Production Sceince, 13 (1): 56-64 2010).

<ポット試験>
1/5000aの磁製ポットに篩別した東京農工大学農学部付属広域都市圏フィールドサイエンス教育研究センターFM本町水田の灰色低地土に肥料を混和して充填し、20日育苗したリーフスター苗を移植した。ポットは3つの施肥段階を設けた。すなわち、慣行区(5kg/10a)、慣行の60%の窒素減肥をした減肥区(2kg/10a)、無施肥区(0kg/10a)である。さらにそれぞれの菌接種区・非接種区を設け、計6処理区とした。リン酸およびカリウムについては慣行区および減肥区で5kg/10aとなるように施用し、無施肥区にはどちらも与えなかった。ポットは東京農工大学農学部ガラス室内にて、各処理区3連で室内に無作為に配置し、自然光下で栽培した。栽培を開始して106日後に植物体を根ごと採取し、穂、茎葉部および根部の部位別に分けた。通風乾燥機内で48時間、70℃で乾燥後、乾物重を測定した。また化学分析項目として、乾燥植物体を以下に記すように植物体養分分析、15N自然存在比の測定に供した。
<Pot test>
1 / 5000a porcelain pot sieved to Tokyo University of Agriculture and Technology, Faculty of Agriculture, Metropolitan Field Science Education and Research Center FM Honmachi paddy field, filled with fertilizer and filled with leaf star seedlings grown for 20 days . The pot has three fertilization stages. That is, the customary zone (5kg / 10a), the reduced fertilizer zone (2kg / 10a) with 60% reduction of nitrogen, and the non-fertilized zone (0kg / 10a). Furthermore, each bacterial inoculation zone and non-inoculation zone were set up for a total of 6 treatment zones. Phosphoric acid and potassium were applied at 5kg / 10a in the conventional and reduced fertilizers, and neither was given to the non-fertilizers. The pots were placed in the glass room of Tokyo University of Agriculture and Technology at random in three treatment zones and cultivated under natural light. 106 days after the start of cultivation, the plant body was collected together with the roots and divided according to the parts of the ears, foliage and roots. After drying at 70 ° C. for 48 hours in a ventilation dryer, the dry weight was measured. As chemical analysis items, dried plants were subjected to plant nutrient analysis and 15N natural abundance measurement as described below.

<圃場試験>
圃場における接種試験は、東京農工大学農学部付属広域都市圏フィールドサイエンス教育研究センターFM本町水田(多摩川沖積土壌)及び秋田県大潟村において行った。東京農工大学圃場では3つの施肥段階、すなわち慣行区(10kg/10a)、慣行の30%の窒素減肥をした減肥区(7kg/10a)、無施肥区(0kg/10a)とし、ポット試験と同様にそれぞれ菌接種区・非接種区を設け、計6処理区とした。リン酸およびカリウムについては慣行区および減肥区で10kg/10aとなるように施用し、無施肥区にはどちらも与えなかった。20日間育苗した水稲「リーフスター」苗を、栽植密度が22.2株/m2となるように、一株当たり3本で移植した。調査項目は1)生育調査項目として、各処理区の群落内から連続する5つの株を生育調査株として選び、1週間ごとに、草丈、茎数、葉色(SPAD値)の測定を行った。葉色の測定には、SPADメーター(MINOLTA, SPAD-502)を使用した。2)成長解析項目として、登熟期である移植後127日目に各処理区から2条8株(計16株)の地上部を採取し、地上部新鮮重を測定した。その内平均的な新鮮重をもつ4株を、穂、葉身(葉とする)、茎及び葉鞘及び枯死部(茎とする)の部位別に分け、乾物重を測定した。また3)また化学分析項目として、乾物を以下に記す植物体養分分析、15N自然存在比の測定に供した。
<Field test>
The field inoculation tests were conducted in FM Honmachi Mizuta (Tama River alluvial soil) and Ogata Village, Akita Prefecture, Tokyo Metropolitan University of Agriculture and Technology. At the Tokyo University of Agriculture and Technology, there are three fertilization stages: the conventional zone (10kg / 10a), the reduced fertilizer zone (7kg / 10a) with 30% nitrogen reduction, and the non-fertilized zone (0kg / 10a). Each of them had a fungus inoculation zone and a non-inoculation zone, for a total of 6 treatment zones. Phosphoric acid and potassium were applied at 10kg / 10a in the conventional and reduced fertilizers, and neither was given to the non-fertilizers. Paddy rice “Leafstar” seedlings grown for 20 days were transplanted at 3 per plant so that the planting density was 22.2 strains / m 2 . Survey items were 1) As growth survey items, five consecutive strains from within the community of each treatment area were selected as growth survey strains, and plant height, number of stems, and leaf color (SPAD value) were measured every week. A SPAD meter (MINOLTA, SPAD-502) was used to measure the leaf color. 2) As a growth analysis item, on the 127th day after transplantation, which is the ripening period, the above-ground part of 2 Articles 8 strains (16 strains in total) was collected from each treatment area, and the above-ground fresh weight was measured. Among them, 4 strains having an average fresh weight were classified according to the parts of ear, leaf blade (referred to as leaf), stem and leaf sheath, and dead part (referred to as stem), and dry weight was measured. 3) Also, as chemical analysis items, dry matter was subjected to plant nutrient analysis and 15 N natural abundance measurement as described below.

大潟村では、機械移植前に苗箱を接種剤を懸濁した溶液に浸漬し、その後移植機で移植した。測定項目は、草丈、茎数、葉色(SPAD)、及び収量構成要素とした。   In Ogata Village, the seedling box was immersed in a suspension of inoculum before machine transplantation, and then transplanted with a transplanter. Measurement items were plant height, number of stems, leaf color (SPAD), and yield components.

<植物体養分分析>
植物体の窒素、リン酸、カリウムの吸収について評価するために、植物体中のそれぞれの濃度、および集積量を求めた。まずポット試験及び圃場試験において得られた乾燥植物体を粉砕機で粉砕し、その植物粉を濃硫酸−過酸化水素法により湿式分解した。その後分解液中の窒素濃度をインドフェノール法、リン濃度をバナドモリブデン酸法によって比色し、分光光度計(Shimadzu,UV-160)を用いて定量した。またカリウム濃度は試料溶液を5倍または10倍に希釈し、炎光光度計(英弘精機産業,FLA型)を用いて測定した。これらから、植物体に含まれる窒素、リン、カリウムの濃度を求め、さらに乾物重の値を乗ずることにより、植物体中のこれらの要素の集積量を計算した。
<Plant nutrient analysis>
In order to evaluate the absorption of nitrogen, phosphoric acid, and potassium in the plant body, each concentration and accumulation amount in the plant body were determined. First, the dried plant bodies obtained in the pot test and the field test were pulverized with a pulverizer, and the plant powder was wet-decomposed by the concentrated sulfuric acid-hydrogen peroxide method. Thereafter, the nitrogen concentration in the decomposition solution was colorimetrically determined by the indophenol method and the phosphorus concentration by the vanadomolybdic acid method, and quantified using a spectrophotometer (Shimadzu, UV-160). The potassium concentration was measured by diluting the sample solution 5 times or 10 times and using a flame photometer (Hideko Seiki, FLA type). From these, the concentration of nitrogen, phosphorus, and potassium contained in the plant body was obtained, and the accumulated amount of these elements in the plant body was calculated by multiplying by the dry weight value.

15N自然存在比の測定>
接種菌が固定した窒素がリーフスターへと移行しているかを確かめるために、ポット試験及び圃場試験において得られた上記乾燥植物体粉末のさらに一部を超微細粉砕機によって処理し、15N自然存在比の測定に供した。測定はカリフォルニア大学デービス校安定同位体施設に依頼分析した。
<15 N measurement of natural abundance ratio>
In order to confirm whether the nitrogen fixed by the inoculum has transferred to the leaf star, a part of the dried plant powder obtained in the pot test and the field test was treated with an ultrafine grinder, and the natural presence of 15N The ratio was used for measurement. The measurements were requested and analyzed at the University of California Davis Stable Isotope Facility.

<結果>
<1/5000aポット試験>
<乾物重>
出穂期におけるリーフスターの部位別乾物重の測定値を表1に示した。
<Result>
<1 / 5000a pot test>
<Dry weight>
Table 1 shows the measured dry weight of each leaf star in the heading period.

Figure 0006024963
Figure 0006024963

表1に示すように、根部では、慣行区の無接種区を指数表示で100とすると接種区は205となり、接種により根量の乾物重が約2倍に増加していた。また、減肥区でも、慣行無接種区に比べて137の指数を示し、根乾物重が増加する傾向がみられ、TUAT1株の接種は根部の生育を促進することが分かった。また無施肥区では根部への影響は見られず、施肥段階と菌接種との間に危険率5%で交互作用の効果が認められたことから、根の生育に関して、施肥量により菌接種の効果がより発現することが示された。全乾物重の値は窒素の施肥量及び菌接種により有意な増加を示し(P=0.01)、コントロール区との比較では減肥区および慣行区で有意な乾物蓄積の増加が認められた。また減肥菌接種区の全乾物重の値は慣行非接種区のそれと類似し、減肥した窒素分を菌接種により補償できる可能性が示唆された。さらに図1に施肥段階と乾物重の相関を示した。図1に示すように、施肥段階と乾物重との間に高い相関が認められ、菌接種によって乾物蓄積量が上積みされるように増加することが明らかとなった。   As shown in Table 1, in the root part, when the non-inoculated section of the conventional section is set to 100 in terms of the index, the inoculated section is 205, and the dry weight of the root amount has increased about twice as much by the inoculation. Also, in the reduced fertilizer group, the index of 137 was shown compared to the conventional non-inoculated group, and there was a tendency for the root dry matter weight to increase, and it was found that inoculation with TUAT1 strain promoted root growth. In the non-fertilization zone, no effect on the roots was observed, and an interaction effect was observed between the fertilization stage and the inoculation with a risk rate of 5%. It was shown that the effect is more manifested. The value of total dry weight showed a significant increase due to the amount of nitrogen applied and bacterial inoculation (P = 0.01), and a significant increase in dry matter accumulation was observed in the reduced fertilizer and conventional plots compared to the control plot. In addition, the value of total dry weight in the inoculated area with reduced fertilizer was similar to that in the non-inoculated area, suggesting that the reduced nitrogen content could be compensated by inoculation. Fig. 1 shows the correlation between fertilization stage and dry weight. As shown in FIG. 1, a high correlation was observed between the fertilization stage and the dry matter weight, and it became clear that the dry matter accumulation amount increased as a result of inoculation with the bacteria.

<養分分析>
1ポットあたりのリーフスターへの窒素集積量に関して、分散分析の結果、施肥の段階および菌接種それぞれの効果において有意な差が認められ(P=0.05、P=0.01)、施肥および菌接種によって窒素吸収が促進されていることが示された(表1)。
<Nutrient analysis>
As a result of analysis of variance, there was a significant difference in the effect of fertilization stage and fungus inoculation (P = 0.05, P = 0.01) on the amount of nitrogen accumulation in leaf star per pot. Absorption was shown to be enhanced (Table 1).

また、リンおよびカリウム集積量に関しては窒素と同様に、施肥の段階および菌接種それぞれの効果において有意な差が認められ(表1)、施肥および菌接種によってリンおよびカリウムの吸収が促進されていることが示された。   In addition, regarding nitrogen and potassium accumulation, similar to nitrogen, significant differences were observed in the stage of fertilization and the effect of each inoculation of bacteria (Table 1), and absorption of phosphorus and potassium was promoted by fertilization and inoculation of bacteria. It was shown that.

<δ15N値に基づく蓄積窒素の由来>
表2にポット試験の根と茎葉部の接種及び非接種区のδ15N値を示した。
<Origin of accumulated nitrogen based on δ 15 N value>
Table 2 shows the values of δ 15 N in the inoculation and non-inoculation sections of the root and foliage in the pot test.

Figure 0006024963
Figure 0006024963

表2に示すように、化学肥料の接種が増えると、無施肥区に比べて非接種区ではδ15N値が減少し、窒素の原子量が軽くなっていることが分かった。これは、化学窒素肥料がδ15N値に直接的に影響していることを示している。一方、接種区では、無接種区に比べて、その値は若干増加する傾向を示していた。この結果から、TUAT1株を接種したイネは、発根により化学窒素肥料と共に、土壌中の窒素を、非接種区に比べて多く吸収していることが分かった。 As shown in Table 2, it was found that when chemical fertilizer inoculation increased, the δ 15 N value decreased in the non-inoculated group compared with the non-fertilized group, and the atomic weight of nitrogen became lighter. This indicates that chemical nitrogen fertilizer directly affects the δ 15 N value. On the other hand, in the inoculated area, the value tended to increase slightly compared to the non-inoculated area. From this result, it was found that rice inoculated with TUAT1 strain absorbed a lot of nitrogen in the soil together with chemical nitrogen fertilizer by rooting compared to non-inoculated area.

<圃場試験1(農工大水田圃場)>
<乾物重>
登熟期におけるリーフスターの地上部部位別乾物重の測定値を表3に示した。
<Field test 1 (Agricultural and industrial paddy field)>
<Dry weight>
Table 3 shows the measured values of dry weight of leaf stars above the ripening stage.

Figure 0006024963
Figure 0006024963

表3に示す分散分析の結果、地上部の全乾物重では施肥および菌接種それぞれの因子について有意差が認められた(P=0.01)。各施肥段階での比較では、慣行区および減肥区において、菌接種区がコントロール区を有意に上回り、接種効果が認められた。また無施肥区では菌接種の効果は認められなかった。また全体として施肥レベルと菌接種の両因子間に交互作用が認められ(P=0.05)、施肥段階が上がるにつれ接種効果が表れることが示唆された。地上部部位別にみると、慣行区ではすべての部位で、減肥区では葉と茎で乾物重の有意な増加が認められた。   As a result of analysis of variance shown in Table 3, a significant difference was observed for the factors of fertilization and inoculation with the total dry weight of the above-ground part (P = 0.01). In the comparison at each fertilization stage, the inoculation group significantly exceeded the control group in the conventional and reduced fertilization groups, and the inoculation effect was recognized. In the non-fertilized area, the effect of inoculation was not observed. In addition, an overall interaction was observed between both the fertilization level and the inoculation factor (P = 0.05), suggesting that the inoculation effect appears as the fertilization stage increases. In terms of the above-ground parts, a significant increase in dry matter weight was observed in all areas in the conventional area and in the leaves and stems in the reduced area.

6処理区のすべての間の多重比較では、減肥菌接種区と慣行非接種区との間に有意差は認められなかったことから、ポット試験と同様に窒素肥料の減肥が菌接種により保証できる可能性が示唆された。   In multiple comparisons between all 6 treatment groups, there was no significant difference between the reduced fertilizer-inoculated group and the conventional non-inoculated group. The possibility was suggested.

<養分分析>
また、表3には、登熟期のリーフスターの窒素、リンおよびカリウムの集積量の値を示している。この値から判るように、各栄養素において、施肥および菌接種両因子の有意な効果が、地上部全体および部位別で認められた(P<0.05)。さらに地上部全体では乾物重の値と同様に両因子間の交互作用が認められた。
<Nutrient analysis>
Table 3 also shows the values of nitrogen, phosphorus and potassium accumulation in leaf stars during the ripening period. As can be seen from this value, in each nutrient, significant effects of both fertilization and fungal inoculation factors were observed in the whole aerial part and by site (P <0.05). Furthermore, the interaction between the two factors was recognized in the whole aerial part as well as the dry weight value.

すべての施肥段階において、菌接種により地上部の窒素集積量が増加することが示され、その増加量は無施肥区では17%、減肥区では34%、慣行区では37%であった。ポット試験では、植物体中の窒素濃度に菌接種の影響は表れていなかったが、圃場試験では、窒素濃度に関して菌接種の明瞭な影響が認められ、さらに窒素濃度と施肥の段階には極めて高い相関(R2>0.99)がみられた。すなわち、ポット試験の結果とは異なり、圃場試験での菌接種による植物体中への窒素の集積の促進は、施肥の量にさらに上積みをする形で、植物体中の窒素濃度を高めることによって起こっていた。   In all fertilization stages, the inoculation of the nitrogen was shown to increase by inoculation with bacteria, and the increase was 17% in the non-fertilized area, 34% in the reduced fertilizer area, and 37% in the conventional area. In the pot test, there was no effect of inoculation on the nitrogen concentration in the plant, but in the field test, there was a clear effect of inoculation on the nitrogen concentration, and the nitrogen concentration and fertilization stage were extremely high A correlation (R2> 0.99) was observed. In other words, unlike the results of pot tests, the promotion of nitrogen accumulation in plants by inoculation with bacteria in field tests is achieved by increasing the nitrogen concentration in the plants by further adding to the amount of fertilization. It was happening.

また、リンおよびカリウムの集積に関して、窒素と同様に施肥量および菌接種により有意な効果が認められ、植物体全体では、リンでは減肥区と慣行区、カリウムでは慣行区において菌接種による有意な集積量の増加が認められた(表3)。植物体中のリンおよびカリウム濃度は窒素の施肥量と相関する傾向があり、窒素施肥量に伴ってリンやカリウムの吸収も促進されていた。   In addition, with respect to phosphorus and potassium accumulation, a significant effect was observed by fertilizer application and inoculation in the same manner as nitrogen, and in the whole plant, significant accumulation by inoculation in the reduced fertilizer and customary areas for phosphorus and in the conventional area for potassium. An increase in quantity was observed (Table 3). The phosphorus and potassium concentrations in the plants tended to correlate with the amount of nitrogen applied, and the absorption of phosphorus and potassium was promoted with the amount of nitrogen applied.

<圃場試験2(秋田県大潟村水田圃場)>
秋田県大潟村で実施されている大規模な機械化水稲栽培に対して、TUAT1株の接種が適応可能か検証した。表4に、農家圃場における、生育状況を示した。
<Field test 2 (Ogata village paddy field in Akita Prefecture)>
We verified whether TUAT1 inoculation was applicable to large-scale mechanized rice cultivation in Ogata Village, Akita Prefecture. Table 4 shows the growth situation in the farmer's field.

Figure 0006024963
Figure 0006024963

表4に示すように、草丈に関しては、F及びT圃場の水稲に関して、非接種と接種に大きな違いは無かった。葉のSPAD値に関しては、T圃場が、F圃場より若干高めに推移し、T圃場の土壌中の窒素供給力がF圃場のそれより高いことを示していた。茎数に関しては、両圃場のイネ共、最高分けつ期(7月23日)に於いては、接種区の茎数が非接種区を上回り、8月14日の出穂期以降に於いても、茎数は接種区が非接種区を上回った。他の圃場試験でも(データは示さない)、同様な効果が示されていた。   As shown in Table 4, regarding plant height, there was no significant difference between non-inoculation and inoculation for paddy rice in F and T fields. Regarding the SPAD value of leaves, the T field was slightly higher than the F field, indicating that the nitrogen supply capacity in the soil of the T field was higher than that of the F field. Regarding the number of stems, in both rice fields, in the highest splitting period (July 23), the number of stems in the inoculated section exceeded the non-inoculated section, and even after the earliest sunrise on August 14, The number of stems in the inoculated group exceeded that in the non-inoculated group. Other field tests (data not shown) showed similar effects.

また、秋田県大潟村農家圃場におけるTUAT1株の接種が水稲品種「こまち」の収量および収量構成要素へ与えた効果を記載した。   In addition, the effect of the inoculation of TUAT1 strain in the farm field of Ogata Village in Akita Prefecture on the yield and yield components of the rice cultivar "Komachi" was described.

Figure 0006024963
Figure 0006024963

表5に示すように、F圃場では、TUAT1無接種及び接種間で、千粒重、登熟歩合に大きな違いは無く、一穂粒数はむしろ低下した。しかし、接種区の穂数が無接種区のそれより22,4%増加し、その結果、接種区の収量も32.8%増加した。また、T圃場では、千粒重、登熟歩合、一穂粒数は、無接種区と接種区間で大きな違いは無かったが、接種区の穂数が無接種区のそれに比べて14.6%増加し、その結果、接種区の収量が無接種区のそれに比べて17.9%増加した。   As shown in Table 5, in the F field, there was no significant difference in the thousand grain weight and ripening rate between the TUAT1 non-inoculation and the inoculation, and the number of spikelets decreased rather. However, the number of spikes in the inoculated area increased by 22.4% compared to that in the non-inoculated area, and as a result, the yield in the inoculated area increased by 32.8%. In addition, in the T field, there was no significant difference in the thousand grain weight, ripening rate, and number of spikelets in the non-inoculated section and the inoculated section, but the number of spikes in the inoculated section increased by 14.6% compared to that in the non-inoculated section. As a result, the yield in the inoculated area increased by 17.9% compared with that in the non-inoculated area.

このように、慣行施肥区にTUAT1株を接種すると、穂数の増加に伴い、水稲の子実収量も増加することが分かった。   Thus, it was found that the seed yield of rice increased as the number of ears increased when the TUAT1 strain was inoculated in the conventional fertilized area.

Claims (7)

窒素固定能を有し、受託番号NITE BP-1356で特定されるバチルス・プミルス(Bacillus pumilus)TUAT1株であるバチルス属窒素固定細菌。 A Bacillus genus nitrogen-fixing bacterium which is a Bacillus pumilus TUAT1 strain having a nitrogen-fixing ability and specified by the accession number NITE BP-1356 . 請求項記載のバチルス属窒素固定細菌を含む、発根促進効果を有する植物生育促進剤。 A plant growth promoter having a rooting promoting effect, comprising the Bacillus genus nitrogen-fixing bacterium according to claim 1 . 上記バチルス属窒素固定細菌は栄養細胞及び/又は胞子であることを特徴とする請求項記載の植物生育促進剤。 The plant growth promoter according to claim 2, wherein the Bacillus genus nitrogen-fixing bacteria are vegetative cells and / or spores. 請求項記載のバチルス属窒素固定細菌又は請求項2若しくは3記載の植物生育促進剤を対象の植物に作用させて発根を促進させる、植物の製造方法。 It reacted with claim 1, wherein the Bacillus nitrogen fixing bacteria or claim 2 or 3, wherein the plant growth promoting agent to the target plants Ru to promote rooting, method of manufacturing plants. 上記バチルス属窒素固定細菌又は上記植物生育促進剤を、上記植物の根圏に供給することを特徴とする請求項記載の植物の製造方法。 The method for producing a plant according to claim 4, wherein the Bacillus genus nitrogen-fixing bacterium or the plant growth promoter is supplied to the rhizosphere of the plant. 上記植物はイネ科植物であることを特徴とする請求項4又は5記載の植物の製造方法。 The method for producing a plant according to claim 4 or 5, wherein the plant is a gramineous plant. 上記イネ科植物はイネであり、水稲栽培であることを特徴とする請求項記載の植物の製造方法。 7. The method for producing a plant according to claim 6 , wherein the gramineous plant is rice and is cultivated in paddy rice.
JP2012249348A 2012-11-13 2012-11-13 Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method Active JP6024963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249348A JP6024963B2 (en) 2012-11-13 2012-11-13 Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249348A JP6024963B2 (en) 2012-11-13 2012-11-13 Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method

Publications (2)

Publication Number Publication Date
JP2014096996A JP2014096996A (en) 2014-05-29
JP6024963B2 true JP6024963B2 (en) 2016-11-16

Family

ID=50939624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249348A Active JP6024963B2 (en) 2012-11-13 2012-11-13 Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method

Country Status (1)

Country Link
JP (1) JP6024963B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
UY36334A (en) * 2014-12-29 2017-04-28 Fmc Corp COMPOSITIONS OF BACILLUS LICHENIFORMIS RT1184 AND USES METHODS TO BENEFIT THE GROWTH OF PLANTS
UY36332A (en) * 2014-12-29 2017-04-28 Fmc Corp COMPOSITIONS OF BACILLUS PUMILUS RT1279 AND METHODS OF USE TO BENEFIT THE GROWTH OF PLANTS
KR102461443B1 (en) 2015-07-13 2022-10-31 피벗 바이오, 인크. Methods and compositions for improving plant traits
EP3359664A4 (en) 2015-10-05 2019-03-20 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
CA3049258A1 (en) 2017-01-12 2018-07-19 Pivot Bio, Inc. Methods and compositions for improving plant traits
CN114736834B (en) * 2022-05-19 2023-06-06 宁夏安利森生物科技有限公司 Bacillus pumilus TS1 and application thereof
CN115141767A (en) * 2022-06-15 2022-10-04 甘肃农业大学 Special microbial agent for broccoli and preparation method thereof
CN115287227B (en) * 2022-07-26 2023-11-10 中国农业大学 Bacillus for promoting nitrogen nutrition and growth of plants and application thereof
CN115747122B (en) * 2022-12-15 2023-07-25 领先生物农业股份有限公司 Bacillus pumilus LX4400 and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296036B (en) * 2011-06-01 2012-12-26 中国农业科学院烟草研究所 Bacillus pumilus and application in disease prevention and growth promotion thereof

Also Published As

Publication number Publication date
JP2014096996A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP6024963B2 (en) Novel Bacillus genus nitrogen-fixing bacteria, plant growth promoter, and plant cultivation method
Arzanesh et al. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress
RU2628411C2 (en) Microbial inoculants and fertilisers composition containing them
Sivasakthi et al. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review
Lasudee et al. Actinobacteria associated with arbuscular mycorrhizal Funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: Evidence obtained from mung bean (Vigna radiata) and Thai jasmine rice (Oryza sativa)
KR101086367B1 (en) Bacillus aryabhattai LS9 promoting the growth of plants and use thereof
US8252720B2 (en) Use of Gluconacetobacter with reduced use of nitrogen fertilizer to improve beet crop production
CN102946713B (en) Novel fluorescent pseudomonad of the species pseudomonas azotoformans for enhancement of plant emergence and growth
CN107002025A (en) Increase the method that the biomass and gemma of the plant growth-promoting bacteria of bacillus are produced
US20120192605A1 (en) Fertilizer composition and method
Chilosi et al. Suppression of soil-borne plant pathogens in growing media amended with espresso spent coffee grounds as a carrier of Trichoderma spp.
Chaudhary et al. Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropane-1-carboxylic acid deaminase-containing Mesorhizobium strains
Yuan et al. Isolation and Screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from Paeonia lactiflora rhizosphere and enhancement of plant growth
Matteoli et al. Herbaspirillum
Piromyou et al. Indigenous microbial community structure in rhizosphere of Chinese kale as affected by plant growth-promoting rhizobacteria inoculation
Kim et al. Growth promotion of pepper plants by Pantoea ananatis B1-9 and its efficient endophytic colonization capacity in plant tissues
KR20110125551A (en) Alginate bead preparation of arbuscular mycorrhizal fungi
Paul et al. Inoculation with bacterial endophytes and the fungal root endophyte, Piriformospora indica improves plant growth and reduces foliar infection by Phytophthora capsici in black pepper
KR102508900B1 (en) Microorganism having plant growth promoting activities and ainst plant diseases and customized microorganism culture material using the same
KR101512663B1 (en) Novel strain of microbes and Ecofriendly fertilizer containing the same
Mutalib et al. Effect of nitrogen fertilizer on hydrolytic enzyme production, root colonisation, N metabolism, leaf physiology and growth of rice inoculated with'Bacillus' sp.(Sb42).
JP6236660B2 (en) Plant growth promoter
KR100690816B1 (en) -8 Novel Microbacterium aurum MA-8 and Method for Producing Seed Tuber in Yam Using the Same
CN105175195A (en) Composite growth promoter for promoting tobacco growth
KR101212047B1 (en) Bacterial strain Lactobacillus parakefiri NAAS-1 promoting plant growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6024963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250