JP6024939B2 - Drug metabolism function measurement method - Google Patents

Drug metabolism function measurement method Download PDF

Info

Publication number
JP6024939B2
JP6024939B2 JP2011224666A JP2011224666A JP6024939B2 JP 6024939 B2 JP6024939 B2 JP 6024939B2 JP 2011224666 A JP2011224666 A JP 2011224666A JP 2011224666 A JP2011224666 A JP 2011224666A JP 6024939 B2 JP6024939 B2 JP 6024939B2
Authority
JP
Japan
Prior art keywords
imp
acid
radioactive
drug
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011224666A
Other languages
Japanese (ja)
Other versions
JP2013081430A (en
Inventor
恵一 川井
恵一 川井
藤田 健一
健一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2011224666A priority Critical patent/JP6024939B2/en
Publication of JP2013081430A publication Critical patent/JP2013081430A/en
Application granted granted Critical
Publication of JP6024939B2 publication Critical patent/JP6024939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

薬物等の代謝物を利用した薬物代謝機能測定方法に関する。   The present invention relates to a method for measuring drug metabolism function using a metabolite such as a drug.

シトクロムP450は、細菌から植物、哺乳動物に至るまでのほとんどすべての生物に存在する、分子量約45000から60000の酸化酵素で、異物(薬物)代謝においては主要な第一相反応の酵素である。還元状態で一酸化炭素と結合して450nmに吸収極大を示す色素という意味でシトクロムP450(P450)と命名された。シトクロムP450は、水酸化酵素ファミリーの総称であり、略してCYP(シップ)と呼ばれることが多い。様々な基質を水酸化するので、多くの役割を果たす。肝臓において解毒を行う酵素として知られているが、ステロイドホルモンの生合成、脂肪酸の代謝や植物の二次代謝など、生物の正常活動に必要な反応にも関与している。シトクロムP450は、NADPHなどの電子供与体と酸素を用いて基質を水酸化することも共通である。シトクロムP450は細胞内の小胞体に多く、一部はミトコンドリアに存在する。動物では肝臓に多く、特によく研究されている。   Cytochrome P450 is an oxidase having a molecular weight of about 45,000 to 60,000, which is present in almost all living organisms from bacteria to plants and mammals, and is a major first-phase reaction enzyme in foreign body (drug) metabolism. It was named cytochrome P450 (P450) in the meaning of a dye that binds to carbon monoxide in a reduced state and exhibits an absorption maximum at 450 nm. Cytochrome P450 is a general term for the hydroxylase family and is often referred to as CYP (ship) for short. It plays many roles because it hydroxylates various substrates. Although known as an enzyme that detoxifies in the liver, it is also involved in reactions necessary for normal activities of organisms, such as biosynthesis of steroid hormones, fatty acid metabolism, and plant secondary metabolism. It is common for cytochrome P450 to hydroxylate a substrate using an electron donor such as NADPH and oxygen. Cytochrome P450 is abundant in the endoplasmic reticulum in the cell, and a part thereof is present in the mitochondria. In animals it is often found in the liver and is particularly well studied.

シトクロムP450の代謝能が低い人では、通常の用法・用量にて服用すると、血中濃度が上昇し、治療域を超えるリスクがあり、一方、代謝能の高い人では、血中濃度が治療域に達せず、治療効果が得られないリスクがある。シトクロムP450の代謝能が低い人が、通常の代謝能の人と同じ量を継続的に服用すると、薬物が蓄積し、血中濃度がより上昇するリスクがある。   In people with low cytochrome P450 metabolic capacity, the blood concentration increases and exceeds the therapeutic range when taken in the usual dosage regimen, whereas in people with high metabolic capacity, the blood concentration is in the therapeutic range. There is a risk that the therapeutic effect will not be obtained. If a person with low metabolic capacity of cytochrome P450 continuously takes the same amount as a person with normal metabolic capacity, there is a risk that the drug accumulates and the blood concentration rises.

薬物の適正投与量を決定したり、患者の代謝異常を検査する上で、シトクロムP450による薬物代謝機能を測定することは非常に重要である。   In determining an appropriate dose of a drug or examining a patient's metabolic abnormality, it is very important to measure a drug metabolic function by cytochrome P450.

特許文献1には、シトクロムP450等の薬物代謝酵素を作用させた後、生じた生成物(代謝物)を免疫化学的手法により測定する薬物代謝酵素活性の測定方法が開示されている。   Patent Document 1 discloses a method for measuring drug metabolizing enzyme activity in which a drug metabolizing enzyme such as cytochrome P450 is allowed to act and then the resulting product (metabolite) is measured by an immunochemical technique.

しかしながら、特許文献1に記載の方法では、各代謝物の抗体を調製する必要があり、また代謝物が不明の場合には、抗体を調製することは困難である。   However, in the method described in Patent Document 1, it is necessary to prepare an antibody for each metabolite, and when the metabolite is unknown, it is difficult to prepare an antibody.

特許文献2には、呼気分析によって、13C標識シトクロムP450 2C19アイソザイム(CYP2C19)基質化合物の静脈内投与又は経口投与後に被験体が吐き出した13COの相対量を求めることにより、CYP2C19関連代謝能を測定する方法が開示されている。 Patent Document 2 discloses CYP2C19-related metabolic ability by determining the relative amount of 13 CO 2 exhaled by a subject after intravenous or oral administration of a 13 C-labeled cytochrome P450 2C19 isozyme (CYP2C19) substrate compound by breath analysis. A method of measuring is disclosed.

しかしながら、特許文献2に記載の方法は、脱アルキル反応(脱O−メチル反応)によるもので、代謝を受けるO−メチル基にラベルをして、呼気中の13Cを測定することが必要であり、適用範囲が限られる。 However, the method described in Patent Document 2 is based on a dealkylation reaction (de-O-methyl reaction), and it is necessary to label 13- C in the breath by labeling the O-methyl group that undergoes metabolism. Yes, the scope of application is limited.

また、生体内に投与する放射性化合物としては、種々の放射性医薬品が知られているが、従来生体内に投与されていた放射性医薬品は、その作用・効果を奏するためには、代謝されないことが前提であり、これまで、放射性代謝物を分析することは行われていなかった。   In addition, various radiopharmaceuticals are known as radioactive compounds to be administered in vivo. However, radiopharmaceuticals conventionally administered in vivo are premised on not being metabolized in order to exert their actions and effects. So far, analysis of radioactive metabolites has not been performed.

特開2004−69491号公報JP 2004-69491 A 特表2010−502194号公報Special table 2010-502194 gazette

本発明の課題は、代謝物の構造等が不明であっても適用でき、かつ適用範囲が広い薬物代謝機能測定方法を提供することである。   An object of the present invention is to provide a method for measuring a function of drug metabolism that can be applied even if the structure of the metabolite is unknown and has a wide application range.

本発明の要旨は以下のとおりである。
(1)放射性化合物を投与した被検者の試料に含まれる前記放射性化合物の放射性代謝物を分析することを含む薬物代謝機能の測定方法。
(2)薬物代謝機能がシトクロムP450による薬物代謝機能である前記(1)に記載の方法。
(3)放射性化合物が放射性アミノ酸である前記(1)に記載の方法。
(4)放射性アミノ酸が天然アミノ酸及び/又は非天然アミノ酸の放射性標識体である前記(3)に記載の方法。
(5)薬物の適正投与量を決定するために行う前記(1)〜(4)のいずれかに記載の方法。
(6)被検者の代謝異常を検査するために行う前記(1)〜(4)のいずれかに記載の方法。
(7)被検者の試料が血液、血清又は血漿から得られる試料である前記(1)〜(6)のいずれかに記載の方法。
(8)N−イソプロピル−p−ヨードアンフェタミンもしくはその塩、又はこれらの標識体を含有するシトクロムP450による薬物代謝機能を測定するための検査薬。
The gist of the present invention is as follows.
(1) A method for measuring a drug metabolic function, comprising analyzing a radioactive metabolite of the radioactive compound contained in a sample of a subject who has been administered a radioactive compound.
(2) The method according to (1) above, wherein the drug metabolism function is a drug metabolism function by cytochrome P450.
(3) The method according to (1) above, wherein the radioactive compound is a radioactive amino acid.
(4) The method according to (3) above, wherein the radioactive amino acid is a radioactive label of a natural amino acid and / or an unnatural amino acid.
(5) The method according to any one of (1) to (4), which is performed to determine an appropriate dose of a drug.
(6) The method according to any one of (1) to (4), which is performed to examine a metabolic abnormality of a subject.
(7) The method according to any one of (1) to (6), wherein the subject's sample is a sample obtained from blood, serum or plasma.
(8) A test agent for measuring a drug metabolic function by cytochrome P450 containing N-isopropyl-p-iodoamphetamine or a salt thereof, or a labeled form thereof.

本発明の薬物代謝機能測定方法は、代謝物の構造等が不明であっても適用でき、かつ適用範囲が広い。   The method for measuring drug metabolism function of the present invention can be applied even if the structure of the metabolite is unknown, and has a wide range of applications.

図1はヒト肝ミクロゾーム及びNADPHの存在下におけるN−イソプロピル−p−ヨードアンフェタミン塩酸塩(IMP)の濃度の反応時間依存的減少を示す。FIG. 1 shows a reaction time dependent decrease in the concentration of N-isopropyl-p-iodoamphetamine hydrochloride (IMP) in the presence of human liver microsomes and NADPH. 図2は12種の組み換えヒトCYPによるIMPの消失反応の結果を示す。FIG. 2 shows the results of the IMP elimination reaction with 12 types of recombinant human CYPs. 図3AはCYP2C19によるIMPの消失反応の結果を示す。FIG. 3A shows the result of the disappearance reaction of IMP by CYP2C19. 図3BはCYP1A1によるIMPの消失反応の結果を示す。FIG. 3B shows the result of the disappearance reaction of IMP by CYP1A1. 図4はCYP2C192/2のIMPの消失に対する効果を示す。FIG. 4 shows the effect of CYP2C19 * 2 / * 2 on the disappearance of IMP. 図5は125I−N−イソプロピル−p−ヨードアンフェタミン塩酸塩(125I−IMP)由来放射性代謝物の液体クロマトグラフィーにおけるピーク面積の経時変化を示す。FIG. 5 shows the time course of peak area in liquid chromatography of 125 I-N-isopropyl-p-iodoamphetamine hydrochloride ( 125 I-IMP) -derived radiometabolite. 図6はマウス膵臓、肝臓、腎臓における14C−L−Met及び14C−/H−D−Metのタンパクへの組み込み率を示す。FIG. 6 shows the rate of incorporation of 14 C-L-Met and 14 C- / 3 HD-Met into proteins in mouse pancreas, liver, and kidney. 図7は肝臓、腎臓における14C−L−Met及び14C−D−Metの組織内放射性代謝物の存在比を示す。FIG. 7 shows the abundance ratios of 14 C-L-Met and 14 C-D-Met in the tissue of the liver and kidney.

本発明の薬物代謝機能の測定方法に用いる放射性化合物としては、生体内で代謝され、放射性代謝物を生じるものであれば、特に制限はなく、例えば、シトクロムP450により代謝され、放射性代謝物を生じるもの、天然アミノ酸及び/又は非天然アミノ酸の放射性標識体が挙げられる。   The radioactive compound used in the method for measuring a drug metabolic function of the present invention is not particularly limited as long as it is metabolized in vivo to produce a radioactive metabolite. For example, it is metabolized by cytochrome P450 to produce a radioactive metabolite. And radioactive labels of natural amino acids and / or unnatural amino acids.

前記シトクロムP450により代謝され、放射性代謝物を生じる放射性化合物としては、例えば、脳血流診断薬として市販されている123I−N−イソプロピル−p−ヨードアンフェタミン(123I−IMP)又はその塩、例えば塩酸塩が挙げられる。 Examples of the radioactive compound that is metabolized by cytochrome P450 to produce a radioactive metabolite include, for example, 123 IN-isopropyl-p-iodoamphetamine ( 123 I-IMP) or a salt thereof commercially available as a cerebral blood flow diagnostic agent, For example, hydrochloride is mentioned.

また、シトクロムP450(CYP)の各分子種について、基質となりうる化合物が知られているので、これらの化合物に対応する放射性化合物を常法により合成して用いることができる。   In addition, since compounds that can serve as substrates are known for each molecular species of cytochrome P450 (CYP), radioactive compounds corresponding to these compounds can be synthesized and used by conventional methods.

CYPの各分子種と基質となりうる化合物との具体例を以下に示す。
(CYP1A2)
amitriptyline, caffeine, clomipramine, clozapine, cyclobenzaprine, estradiol, fluvoxamine, haloperidol, imipramine, mexiletine, naproxen, olanzapine, ondansetron, acetaminophen, propranolol, riluzole, ropivacaine, tacrine, theophylline, tizanidine, verapamil, R-warfarin, zileuton, zolmitriptan
(CYP2B6)
bupropion, cyclophosphamide, efavirenz, ifosphamide, methadone, sorafenib
(CYP2C8)
amodiaquine, cerivastatin, paclitaxel, repaglinide, sorafenib, torsemide
(CYP2C9)
非ステロイド性抗炎症薬:diclofenac, ibuprofen, lornoxicam, meloxicam, S-naproxen, piroxicam, suprofen
経口血糖降下剤:tolbutamide, glipizide
アンジオテンシンII阻害薬:losartan, irbesartan
スルホニル尿素系薬剤:glyburide, glibenclamide, glipizide, glimepiride, tolbutamide
その他:amitriptyline, celecoxib, fluoxetine, fluvastatin, glyburide, nateglinide, phenytoin-4-OH2, rosiglitazone, tamoxifen, torsemide, S-warfarin
(CYP2C19)
プロトンポンプ阻害薬:lansoprazole, omeprazole, pantoprazole, rabeprazole
抗てんかん剤:diazepam, phenytoin, S-mephenytoin, phenobarbitone
その他:amitriptyline, carisoprodol, citalopram, chloramphenicol, clomipramine, clopidogrel, cyclophosphamide, hexobarbital, imipramine, indomethacin, R-mephobarbital, moclobemide, nelfinavir, nilutamide, primidone, progesterone, proguanil, propranolol, teniposide, R-warfarin
(CYP2D6)
tamoxifen
β遮断薬:carvedilol, S-metoprolol, propafenone, timolol
抗うつ薬:amitriptyline, clomipramine, desipramine, fluoxetine, imipramine, paroxetine
抗精神病薬:haloperidol, perphenazine, risperidone, thioridazine, zuclopenthixol
その他:alprenolol, amphetamine, aripiprazole, atomoxetine, bufuralol, chlorphenimipramine, chlorpromazine, codeine, debrisoquine, dexfenfluramine, dextromethorphan, donepezil, duloxetine, encainide, flecainide, fluvoxamine, lidocaine, metoclopramide, methoxyamphetamine, mexiletine, minaprine, nebivolol, nortriptyline, ondansetron, oxycodone, perhexiline, phenacetin, phenformin, promethazine, propranolol, sparteine, tramadol, venlafaxine
(CYP2E1)
麻酔薬:enflurane, halothane, isoflurane, methoxyflurane, sevoflurane
その他:acetaminophen, aniline, benzene, chlorzoxazone, ethanol, N,N-dimethylformamide, theophylline
(CYP3A4,5,7)
マクロライド系抗生物質:clarithromycin, erythromycin (not 3A5)
抗不整脈薬:quinidine (not 3A5)
ベンゾジアゼピン系薬物:alprazolam, diazepam, midazolam, triazolam
免疫調節剤:cyclosporine, tacrolimus (FK506)
抗HIV薬:indinavir, nelfinavir, ritonavir, saquinavir
消化管運動改善薬:cisapride
抗ヒスタミン薬:astemizole, chlorpheniramine, terfenadine
カルシウム拮抗薬:amlodipine, diltiazem, felodipine, lercanidipine, nifedipine, nisoldipine, nitrendipine, verapamil
HMG−CoA還元酵素阻害薬:atorvastatin, cerivastatin, lovastatin, simvastatin
ステロイド類:estradiol, hydrocortisone, progesterone, testosterone
その他:alfentanil, aprepitant, aripiprazole, boceprevir, buspirone, caffeine, cilostazol, cocaine, dapsone, dexamethasone, dextromethorphan, docetaxel, domperidone, eplerenone, fentanyl, finasteride, gleevec, haloperidol, imipramine, irinotecan, LAAM, lidocaine, methadone, nateglinide, ondansetron, pimozide, propranolol, quetiapine, quinine, risperidone, salmeterol, sildenafil, sirolimus, sorafenib, sunitinib, tamoxifen, taxol, telaprevir, terfenadine, torisel, trazodone, vincristine, zaleplon, ziprasidone, zolpidem
Specific examples of CYP molecular species and compounds that can be substrates are shown below.
(CYP1A2)
amitriptyline, caffeine, clomipramine, clozapine, cyclobenzaprine, estradiol, fluvoxamine, haloperidol, imipramine, mexiletine, naproxen, olanzapine, ondansetron, acetaminophen, propranolol, riluzole, ropivacaine, tacrine, theophylline veruine miton
(CYP2B6)
bupropion, cyclophosphamide, efavirenz, ifosphamide, methadone, sorafenib
(CYP2C8)
amodiaquine, cerivastatin, paclitaxel, repaglinide, sorafenib, torsemide
(CYP2C9)
Non-steroidal anti-inflammatory drugs: diclofenac, ibuprofen, lornoxicam, meloxicam, S-naproxen, piroxicam, suprofen
Oral hypoglycemic agent: tolbutamide, glipizide
Angiotensin II inhibitor: losartan, irbesartan
Sulfonylurea drugs: glyburide, glibenclamide, glipizide, glimepiride, tolbutamide
Others: amitriptyline, celecoxib, fluoxetine, fluvastatin, glyburide, nateglinide, phenytoin-4-OH2, rosiglitazone, tamoxifen, torsemide, S-warfarin
(CYP2C19)
Proton pump inhibitors: lansoprazole, omeprazole, pantoprazole, rabeprazole
Antiepileptic drugs: diazepam, phenytoin, S-mephenytoin, phenobarbitone
Others: amitriptyline, carisoprodol, citalopram, chloramphenicol, clomipramine, clopidogrel, cyclophosphamide, hexobarbital, imipramine, indomethacin, R-mephobarbital, moclobemide, nelfinavir, nilutamide, primidone, progesterone, proguanil, farporineol, proguanil, propranolol
(CYP2D6)
tamoxifen
β-blockers: carvedilol, S-metoprolol, propafenone, timolol
Antidepressants: amitriptyline, clomipramine, desipramine, fluoxetine, imipramine, paroxetine
Antipsychotics: haloperidol, perphenazine, risperidone, thioridazine, zuclopenthixol
Others: alprenolol, amphetamine, aripiprazole, atomoxetine, bufuralol, chlorphenimipramine, chlorpromazine, codeine, debrisoquine, dexfenfluramine, dextromethorphan, donepezil, duloxetine, encainide, flecainide, fluvoxamine, lidocaine, metoclopr oxycodone, perhexiline, phenacetin, phenformin, promethazine, propranolol, sparteine, tramadol, venlafaxine
(CYP2E1)
Anesthetics: enflurane, halothane, isoflurane, methoxyflurane, sevoflurane
Others: acetaminophen, aniline, benzene, chlorzoxazone, ethanol, N, N-dimethylformamide, theophylline
(CYP3A4, 5, 7)
Macrolide antibiotics: clarithromycin, erythromycin (not 3A5)
Antiarrhythmic drug: quinidine (not 3A5)
Benzodiazepines: alprazolam, diazepam, midazolam, triazolam
Immunomodulator: cyclosporine, tacrolimus (FK506)
Anti-HIV drugs: indinavir, nelfinavir, ritonavir, saquinavir
Gastrointestinal motility improver: cisapride
Antihistamines: astemizole, chlorpheniramine, terfenadine
Calcium antagonists: amlodipine, diltiazem, felodipine, lercanidipine, nifedipine, nisoldipine, nitrendipine, verapamil
HMG-CoA reductase inhibitors: atorvastatin, cerivastatin, lovastatin, simvastatin
Steroids: estradiol, hydrocortisone, progesterone, testosterone
Others: alfentanil, aprepitant, aripiprazole, boceprevir, buspirone, caffeine, cilostazol, cocaine, dapsone, dexamethasone, dextromethorphan, docetaxel, domperidone, eplerenone, fentanyl, finasteride, gleevec, haloperidol, iriperamine, haloperidol, note ondansetron, pimozide, propranolol, quetiapine, quinine, risperidone, salmeterol, sildenafil, sirolimus, sorafenib, sunitinib, tamoxifen, taxol, telaprevir, terfenadine, torisel, trazodone, vincristine, zaleplon, olpi

天然アミノ酸は代謝されやすく、非天然アミノ酸は代謝を受けにくい。したがって、天然アミノ酸及び/又は非天然アミノ酸の放射性標識体を投与した被検者の試料に含まれる放射性代謝物を分析することにより、薬物代謝機能を測定することができ、薬物の適正投与量を決定したり、被検者の代謝異常を検査することができる。   Natural amino acids are easily metabolized, and unnatural amino acids are not easily metabolized. Therefore, by analyzing a radiometabolite contained in a sample of a subject who has been administered a radioactive label of a natural amino acid and / or a non-natural amino acid, a drug metabolic function can be measured, and an appropriate dose of the drug can be determined. It can be determined or examined for metabolic abnormalities in the subject.

本発明の薬物代謝機能の測定方法においては、目的に応じて、基質となる放射性化合物を1種又は2種以上を用いる。   In the method for measuring a drug metabolic function of the present invention, one or more radioactive compounds serving as substrates are used depending on the purpose.

分析対象物である放射性代謝物の形態としては、有機物、無機物、イオンのいずれでもよいが、分析の容易性の点で有機物が好ましい。本発明における放射性アミノ酸の代謝物には、当該放射性アミノ酸が組み込まれたタンパクも包含される。   The form of the radioactive metabolite that is the analysis target may be any of an organic substance, an inorganic substance, and an ion, but an organic substance is preferable in terms of ease of analysis. The metabolite of a radioactive amino acid in the present invention includes a protein in which the radioactive amino acid is incorporated.

本発明の測定方法に用いる放射性化合物を合成するために用いる放射性核種としては、例えばトリチウム(H)、11−炭素(11C)、14−炭素(14C)、15−酸素(15O)、18−フッ素(18F)、32−リン(32P)、59−鉄(59Fe)、67−銅(67Cu)、67−ガリウム(67Ga)、81m−クリプトン(81mKr)、81−ルビジウム(81Rb)、89−ストロンチム(89Sr)、90−イットリウム(90Y)、99m−テクネチウム(99mTc)、111−インジウム(111In)、123−ヨード(123I)、125−ヨード(125I)、131−ヨード(131I)、133−キセノン(133Xe)、117m−スズ(117mSn)、153−サマリウム(153Sm)、186−レニウム(186Re)、188−レニウム(188Re)、201−タリウム(201Tl)、212−ビスマス(212Bi)、213−ビスマス(213Bi)及び211−アスタチン(211At)が挙げられる。 Examples of the radionuclide used for synthesizing the radioactive compound used in the measurement method of the present invention include tritium ( 3 H), 11-carbon ( 11 C), 14-carbon ( 14 C), and 15-oxygen ( 15 O). 18- fluorine (18 F), 32- phosphorus (32 P), 59-iron (59 Fe), 67- copper (67 Cu), 67- gallium (67 Ga), 81m- krypton (81m Kr), 81 - rubidium (81 Rb), 89- Sutoronchimu (89 Sr), 90- yttrium (90 Y), 99m- technetium (99m Tc), 111- indium (111 In), 123- iodine (123 I), 125- iodine (125 I), 131- iodine (131 I), 133- xenon (133 Xe), 117m- tin (117m Sn), 153- Samarium ( 153 Sm), 186- rhenium ( 186 Re), 188- rhenium ( 188 Re), 201-thallium ( 201 Tl), 212- bismuth ( 212 Bi), 213-bismuth ( 213 Bi) and 211-astatin ( 211 At).

本発明における放射性化合物の投与経路としては、静脈内、皮内、皮下、経口、経粘膜、及び直腸投与などが挙げられる。被検者の試料としては、例えば血液、血清、血漿、尿、唾液又はその他体液、好ましくは血液、血清、血漿が挙げられる。   Examples of the administration route of the radioactive compound in the present invention include intravenous, intradermal, subcutaneous, oral, transmucosal, and rectal administration. Examples of the subject's sample include blood, serum, plasma, urine, saliva or other body fluid, preferably blood, serum, plasma.

放射性化合物の投与形態としては、投与経路に適した剤形であれば、注射剤、液剤、錠剤等から適宜選択すればよく、本発明の作用及び効果を損なわない限り、薬学的に許容される担体、又は剤形によって当該技術分野において一般的に使用される添加剤を更に含んでもよい。添加剤として、例えば、着色剤、保存剤、風味剤、香り改善剤、呈味改善剤、甘味剤、又は安定剤、その他薬学的に許容される添加剤を含有することができる。   The administration form of the radioactive compound may be appropriately selected from injections, solutions, tablets and the like as long as it is a dosage form suitable for the administration route, and is pharmaceutically acceptable as long as the action and effect of the present invention are not impaired. It may further comprise additives commonly used in the art depending on the carrier or dosage form. As an additive, for example, a colorant, a preservative, a flavoring agent, an aroma improving agent, a taste improving agent, a sweetening agent, a stabilizer, and other pharmaceutically acceptable additives can be contained.

放射性化合物の投与量は、投与方法、投与する化合物ならびに患者の年齢、性別及び体重によって、適宜決定すればよい。   The dose of the radioactive compound may be appropriately determined depending on the administration method, the compound to be administered, the age, sex and body weight of the patient.

本発明の測定方法においては、放射性化合物を投与した被検者の試料に含まれる前記放射性化合物の放射性代謝物を分析する。前記放射性代謝物の分析は、例えば、親化合物(未変化体)の放射性化合物と前記放射性代謝物とを分離して、前記放射性代謝物の放射能を測定することにより行うことができる。   In the measurement method of the present invention, the radioactive metabolite of the radioactive compound contained in the sample of the subject administered with the radioactive compound is analyzed. The analysis of the radiometabolite can be performed, for example, by separating the radio compound of the parent compound (unmodified) and the radio metabolite and measuring the radioactivity of the radio metabolite.

脂溶性の放射性化合物は、代謝されることにより水溶性の放射性代謝物を生じることが多く、このような場合には、例えばオクタノール抽出法により親化合物(未変化体)の放射性化合物と前記放射性代謝物とを分離することができる。また、薄層クロマトグラフィー、ペーパークロマトグラフィー等によっても、親化合物(未変化体)の放射性化合物と前記放射性代謝物とを分離することができる。   A fat-soluble radioactive compound is often metabolized to produce a water-soluble radioactive metabolite. In such a case, for example, by octanol extraction method, the radioactive compound of the parent compound (unmodified) and the radioactive metabolism are obtained. Things can be separated. In addition, the radioactive compound of the parent compound (unchanged) and the radioactive metabolite can also be separated by thin layer chromatography, paper chromatography, or the like.

本発明の測定方法によれば、一般的な放射性診断薬においては夾雑物されている放射性代謝物を解析することにより、各種代謝異常、例えばCYPの異常を見つけることができ、また、代謝物を見ることにより、CYP分子種ごとの遺伝子を調べることなく、CYPファミリー全体として代謝プロファイルができ、また薬物の適正投与量を決定できる。   According to the measurement method of the present invention, various metabolic abnormalities such as CYP abnormalities can be found by analyzing radioactive metabolites contaminated in general radiodiagnostic drugs. By seeing, without examining genes for each CYP molecular species, a metabolic profile can be obtained for the CYP family as a whole, and an appropriate dose of the drug can be determined.

本発明の測定方法は、放射性代謝物を分析するので、非標識代謝物を分析する場合に比較して、非常に低い投与量でも十分な効果を発揮することができ、更に、内因性の代謝物と容易に区別することもできる。   Since the measurement method of the present invention analyzes a radiometabolite, it can exert a sufficient effect even at a very low dose as compared with the case of analyzing an unlabeled metabolite. It can also be easily distinguished from things.

N−イソプロピル−p−ヨードアンフェタミン(IMP)はCYP2C19により選択的に代謝される。したがって、IMPもしくはその塩、又はこれらの標識体は、CYP、特にCYP2C19による薬物代謝機能を測定するための検査薬として用いることができる。前記したように低い投与量で十分な効果が得られ、また脳血流診断薬として市販されているように、安全性が確認されている点から、123I−N−イソプロピル−p−ヨードアンフェタミン(123I−IMP)又はその塩を用いることが好ましい。 N-isopropyl-p-iodoamphetamine (IMP) is selectively metabolized by CYP2C19. Therefore, IMP or a salt thereof, or a labeled form thereof can be used as a test agent for measuring a drug metabolic function by CYP, particularly CYP2C19. As described above, 123 I-N-isopropyl-p-iodoamphetamine is obtained from the point that a sufficient effect can be obtained at a low dose, and safety has been confirmed so as to be marketed as a diagnostic agent for cerebral blood flow. It is preferable to use ( 123 I-IMP) or a salt thereof.

IMP又は123I−IMPの塩としては、薬学的に許容される塩が好ましく、例えば、塩酸、硫酸、リン酸、臭化水素酸、ヨウ化水素酸、硝酸、ピロ硫酸、メタリン酸等の無機酸、又はクエン酸、安息香酸、酢酸、プロピオン酸、フマル酸、マレイン酸、スルホン酸(例えば、メタンスルホン酸、p−トルエンスルホン酸、ナフタレンスルホン酸)等の有機酸との塩が挙げられる。 As a salt of IMP or 123 I-IMP, a pharmaceutically acceptable salt is preferable. For example, inorganic salts such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, nitric acid, pyrosulfuric acid, and metaphosphoric acid. Examples thereof include salts with acids or organic acids such as citric acid, benzoic acid, acetic acid, propionic acid, fumaric acid, maleic acid, and sulfonic acid (for example, methanesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid).

IMPの標識体に用いる標識としては、例えば、前記の放射性核種による標識の他、同位体、蛍光等による標識が挙げられる。   Examples of the label used for the IMP label include, in addition to the above-described radionuclide labeling, isotope labeling and fluorescence labeling.

以下、実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, the scope of the present invention is not limited to these Examples.

(実施例1)N−イソプロピル−p−ヨードアンフェタミン塩酸塩のCYP2C19による代謝物の分析
(目的)
123I−N−イソプロピル−p−ヨードアンフェタミン塩酸塩(123I−IMP)は、臨床において単光子放射断層撮影(SPECT)による脳血流の診断に用いられている。123I−IMPはヒトの体内で代謝を受ける希な診断薬である。代謝の第1段階は123I−p−ヨードアンフェタミンの生成であること、また引き続いて123I−p−ヨード安息香酸、更に123I−p−ヨード馬尿酸へと代謝されることが報告されている。しかしながらこれまでにこれらの代謝反応に関与する薬物代謝酵素についての知見はない。そこで本実験ではIMPの代謝におけるチトクロームP450(CYP)の関与を調べた。
(Example 1) Analysis of metabolites of N-isopropyl-p-iodoamphetamine hydrochloride by CYP2C19 (Purpose)
123 I-N-isopropyl-p-iodoamphetamine hydrochloride ( 123 I-IMP) is clinically used for diagnosis of cerebral blood flow by single photon emission tomography (SPECT). 123 I-IMP is a rare diagnostic agent that undergoes metabolism in the human body. The first stage of metabolism 123 I-p-iodo be amphetamines is the generation of, also subsequently 123 I-p-iodobenzoic acid, is reported to be metabolized to more 123 I-p-iodo-hippuric acid Yes. However, there is no knowledge of drug metabolizing enzymes involved in these metabolic reactions so far. Therefore, in this experiment, the involvement of cytochrome P450 (CYP) in IMP metabolism was examined.

(方法)
N−イソプロピル−p−ヨードアンフェタミン塩酸塩(IMP)及びp−ヨード安息香酸の非標識体を使用した。ヒト肝ミクロゾームを酵素源とし、IMPからp−ヨード安息香酸への代謝がNADPH依存的に起こるか否かを調べた。このときIMPの消失の有無及びその程度も調べた。組み換えヒトCYP1A1、1A2、1B1、2A6、2B6、2C8、2C9、2C19、2D6、2E1、3A4及び3A5を用いて、IMPの代謝における各CYP分子種の寄与を調べた。
I.試薬
リン酸水素二ナトリウム・12水(和光純薬)
リン酸二水素カリウム(和光純薬)
EDTA・2Na(和光純薬)
Glucose-6-phosphate(和光純薬)
β−NADP(和光純薬)
Glucose-6-phosphate dehydrogenase(和光純薬)
MgCl・6HO(和光純薬)
過塩素酸(60%)(和光純薬)
p−クロロ安息香酸(和光純薬)
アセトニトリル(和光純薬)
ジブチルアミンフォスフェート溶液(D4試薬)(Waters)
BDウルトラプール150ドナープールドヒト肝ミクロゾーム(日本ベクトン・ディッキンソン)
特級グリセリン(和光純薬)
(Method)
N-isopropyl-p-iodoamphetamine hydrochloride (IMP) and unlabeled p-iodobenzoic acid were used. Using human liver microsomes as an enzyme source, it was examined whether or not the metabolism of IMP to p-iodobenzoic acid occurred in an NADPH-dependent manner. At this time, the presence or absence of IMP and the degree thereof were also examined. Recombinant human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5 were used to examine the contribution of each CYP molecular species in IMP metabolism.
I. Reagent disodium hydrogen phosphate, 12 water (Wako Pure Chemical Industries)
Potassium dihydrogen phosphate (Wako Pure Chemical Industries)
EDTA · 2Na (Wako Pure Chemical Industries)
Glucose-6-phosphate (Wako Pure Chemical Industries)
β-NADP + (Wako Pure Chemical Industries)
Glucose-6-phosphate dehydrogenase
MgCl 2 · 6H 2 O (Wako Pure Chemical Industries, Ltd.)
Perchloric acid (60%) (Wako Pure Chemical Industries)
p-Chlorobenzoic acid (Wako Pure Chemical Industries)
Acetonitrile (Wako Pure Chemical Industries)
Dibutylamine phosphate solution (D4 reagent) (Waters)
BD Ultrapool 150 Donor Pooled Human Liver Microsome (Nippon Becton Dickinson)
Special grade glycerin (Wako Pure Chemical Industries)

II.試薬調製
1.ミクロゾーム
納品時にミクロゾームは250mMスクロースに懸濁され、蛋白濃度は20mg/mLである。一度融解してミクロゾーム500μLに対しグリセリンを125μL添加した(蛋白濃度は16mg/mLとなる)。エッペンに分注して−80℃に保存し、反応時に必要量を融解して使用した。
II. Reagent preparation Microsomes Upon delivery, the microsomes are suspended in 250 mM sucrose and the protein concentration is 20 mg / mL. Once melted, 125 μL of glycerol was added to 500 μL of microsome (protein concentration was 16 mg / mL). The solution was dispensed into Eppenes and stored at -80 ° C, and the required amount was melted during the reaction.

2.0.167mM EDTA/0.33M NaKリン酸緩衝液(pH7.4)
(1)0.5Mリン酸水素二ナトリウム水溶液(MW:358.14、179.07g/1000mL)に0.5Mリン酸二水素カリウム水溶液(MW136.09、34.02g/500mL)を加え、0.5M NaKリン酸緩衝液(pH7.4)を調製した。
(2)0.5mM EDTA水溶液を調製した(MW372.24、37.22mg/200mL)。
(3)0.5mM EDTA水溶液:0.5M NaKリン酸緩衝液(pH7.4)=1:2の割合で混合し、0.167mM EDTA/0.33M NaKリン酸緩衝液(pH7.4)とした。
2.0.167 mM EDTA / 0.33 M NaK phosphate buffer (pH 7.4)
(1) A 0.5 M potassium dihydrogen phosphate aqueous solution (MW 136.09, 34.02 g / 500 mL) was added to a 0.5 M disodium hydrogen phosphate aqueous solution (MW: 358.14, 177.07 g / 1000 mL). A 5M NaK phosphate buffer (pH 7.4) was prepared.
(2) A 0.5 mM EDTA aqueous solution was prepared (MW 372.24, 37.22 mg / 200 mL).
(3) 0.5 mM EDTA aqueous solution: 0.5 M NaK phosphate buffer (pH 7.4) = 1: 2 mixed, 0.167 mM EDTA / 0.33 M NaK phosphate buffer (pH 7.4) It was.

3.NADPH生成系(用時調製)
(1)1M MgCl水溶液を調製(MW:203.30、10.17g/50mL)した。
(2)Glucose-6-phosphate 18.2mgを精製水536μLに溶解した。
(3)β−NADP4.5mgを精製水482.4μLに溶解した。
(4)(2)の溶解したGlucose-6-phosphateと(3)のβ−NADPを混合し、(1)の1M MgCl水溶液53.6μL及びGlucose-6-phosphate dehydrogenase(1000U/1mL)10.72μLを添加しNADPH生成系とした。
3. NADPH production system (prepared when used)
(1) A 1M MgCl 2 aqueous solution was prepared (MW: 203.30, 10.17 g / 50 mL).
(2) 18.2 mg of Glucose-6-phosphate was dissolved in 536 μL of purified water.
(3) 4.5 mg of β-NADP + was dissolved in 482.4 μL of purified water.
(4) Glucose-6-phosphate dissolved in (2) and β-NADP + in (3) are mixed, and 53.6 μL of 1M MgCl 2 aqueous solution and (1) Uglucose-6-phosphate dehydrogenase (1000 U / 1 mL) 10.72 μL was added to obtain an NADPH generation system.

III.実験方法
1.親化合物(IMP)減少を指標とした方法
反応溶液は0.05mM EDTA、100mM NaKリン酸緩衝液(pH7.4)、0.64mg/mL蛋白相当のグリセリン添加ヒト肝ミクロゾーム、NADPH生成系(0.5mM β−NADP、5mM Glucose-6-phosphate、1U/mL Glucose-6-phosphate dehydrogenase、5mM MgCl)及び0.5μM IMPを混合し250μLとなるようにした(i)。対照は、NADPH生成系を精製水に置き換え行ったもの(ii)、ミクロゾーム及びNADPH生成系を精製水に置き換え行ったもの(iii)を実施した。IMP添加で反応を開始し37℃で反応後、50μL過塩素酸水溶液を加え反応を停止させた。反応時間を10、20、60分間とした。反応停止後、内部標準物質の20μM p−クロロ安息香酸水溶液を30μL添加し15000rpm、20℃で5分間遠心した。その上清100μLを液体クロマトグラフィーにて分析した。
1検体あたりの組成及び操作を表1に示す。
III. Experimental method 1. Method using index of decrease in parent compound (IMP) Reaction solution was 0.05 mM EDTA, 100 mM NaK phosphate buffer (pH 7.4), glycerin-added human liver microsome corresponding to 0.64 mg / mL protein, NADPH production system (0 .5 mM β-NADP + , 5 mM Glucose-6-phosphate, 1 U / mL Glucose-6-phosphate dehydrogenase, 5 mM MgCl 2 ) and 0.5 μM IMP were mixed to give 250 μL (i). As controls, the NADPH generation system was replaced with purified water (ii), and the microsomes and NADPH generation system were replaced with purified water (iii). The reaction was started by the addition of IMP, and after the reaction at 37 ° C., 50 μL perchloric acid aqueous solution was added to stop the reaction. The reaction time was 10, 20, and 60 minutes. After stopping the reaction, 30 μL of 20 μM p-chlorobenzoic acid aqueous solution as an internal standard substance was added and centrifuged at 15000 rpm and 20 ° C. for 5 minutes. 100 μL of the supernatant was analyzed by liquid chromatography.
Table 1 shows the composition and operation per specimen.

Figure 0006024939
Figure 0006024939

分析条件を以下に示す。
カラム:CAPCELL PAK C18 SG120,4.6×250mm(資生堂製)
カラム温度:40℃
移動相Aはアセトニトリル330mL、水670mLを混ぜ、ジブチルアミンフォスフェート溶液(D4試薬)10mLを加えた。
移動相Bはアセトニトリル900mL、水100mLを混ぜ、ジブチルアミンフォスフェート溶液(D4試薬)10mLを加えた。
溶離条件:移動相A:移動相B=100:0→78:22(0min.→16min.)グラディエント、その後移動相A:移動相B=100:0で9分平衡化した。
流量:0.8mL/min.
検出(UV):IMPは232nm、代謝物p−ヨード安息香酸は248nm、内部標準物質p−クロロ安息香酸は235nmで検出した。
*本条件で約6.3分にIMP、約15.6分に代謝物p−ヨード安息香酸、約12.6分に内部標準物質p−クロロ安息香酸が検出された。
The analysis conditions are shown below.
Column: CAPCELL PAK C18 SG120, 4.6 x 250 mm (manufactured by Shiseido)
Column temperature: 40 ° C
In mobile phase A, 330 mL of acetonitrile and 670 mL of water were mixed, and 10 mL of dibutylamine phosphate solution (D4 reagent) was added.
In mobile phase B, 900 mL of acetonitrile and 100 mL of water were mixed, and 10 mL of dibutylamine phosphate solution (D4 reagent) was added.
Elution conditions: mobile phase A: mobile phase B = 100: 0 → 78: 22 (0 min. → 16 min.) Gradient, then equilibrated with mobile phase A: mobile phase B = 100: 0 for 9 minutes.
Flow rate: 0.8 mL / min.
Detection (UV): IMP was detected at 232 nm, metabolite p-iodobenzoic acid was detected at 248 nm, and internal standard substance p-chlorobenzoic acid was detected at 235 nm.
* IMP was detected at about 6.3 minutes, metabolite p-iodobenzoic acid at about 15.6 minutes, and internal standard substance p-chlorobenzoic acid at about 12.6 minutes under these conditions.

2.代謝物(p−ヨード安息香酸)の増加を指標とした方法
反応溶液は0.05mM EDTA、100mM NaKリン酸緩衝液(pH7.4)、0.64mg/mL蛋白相当のグリセリン添加ヒト肝ミクロゾーム、NADPH生成系(0.5mM NADP、5mM Glucose-6-phosphate、1U/mL Glucose-6-phosphate dehydrogenase、5mM MgCl)及び1000μM IMPを混合し250μLとなるようにした。対照は、実験方法1.と同様に行った。IMP添加で反応を開始し37℃で反応後、50μL過塩素酸水溶液を加え反応を停止させた。反応時間を10、60、120分間とした。反応停止以降の操作、分析方法は、実験方法1.と同じである。
1検体あたりの組成は、実験方法1.の5μM IMPを10mM IMPとし、他は同様に行った。
2. Method using increase in metabolite (p-iodobenzoic acid) as an indicator The reaction solution was 0.05 mM EDTA, 100 mM NaK phosphate buffer (pH 7.4), glycerin-added human liver microsome corresponding to 0.64 mg / mL protein, A NADPH production system (0.5 mM NADP + , 5 mM Glucose-6-phosphate, 1 U / mL Glucose-6-phosphate dehydrogenase, 5 mM MgCl 2 ) and 1000 μM IMP were mixed to give 250 μL. Controls were experimental method 1. As well as. The reaction was started by the addition of IMP, and after the reaction at 37 ° C., 50 μL perchloric acid aqueous solution was added to stop the reaction. The reaction time was 10, 60, 120 minutes. For the operation and analysis method after the reaction stop, the experimental method 1. Is the same.
The composition per specimen is determined according to the experimental method 1. 5 μM IMP was changed to 10 mM IMP, and the others were performed in the same manner.

(結果・考察)
IMP(0.5又は1μM)をヒト肝ミクロゾーム及びNADPHの存在下においてインキュベートしたところ、p−ヨード安息香酸の生成は認められなかった。IMPの濃度は、NADPHの存在下において反応時間依存的に減少し(図1)、IMPがヒト肝ミクロゾーム中の酵素によりNADPH依存的に代謝されることを明らかにした。組み換えヒトCYPを用いた実験により、IMPはCYP2C19により独占的に代謝されることを見いだした(図2及び3)。CYP2C19によるIMPの消失反応のKmは8.6μM、Vmaxは9.7nmol/min/nmol CYPであった。CYP2C19を欠損するヒト肝ミクロゾーム(CYP2C192/2)を用いた場合、IMPの消失速度は野生型のCYP2C19を発現するヒト肝ミクロゾームを用いた場合の約50%であり(図4)、IMPの代謝がCYP2C19の遺伝子多型に依存することを明らかにした。IMPがCYP2C19によって代謝された結果、未知ピークがHPLCクロマトグラムで検出された。ピーク面積はIMPピークの減少に比例して反応時間依存的に増加した。
(Results and discussion)
When IMP (0.5 or 1 μM) was incubated in the presence of human liver microsomes and NADPH, production of p-iodobenzoic acid was not observed. The concentration of IMP decreased in a reaction time-dependent manner in the presence of NADPH (FIG. 1), revealing that IMP was metabolized in an NADPH-dependent manner by enzymes in human liver microsomes. Experiments with recombinant human CYP found that IMP was metabolized exclusively by CYP2C19 (FIGS. 2 and 3). The Km of IMP disappearance reaction by CYP2C19 was 8.6 μM, and Vmax was 9.7 nmol / min / nmol CYP. When human liver microsomes lacking CYP2C19 (CYP2C19 * 2 / * 2) are used, the rate of disappearance of IMP is about 50% when using human liver microsomes expressing wild-type CYP2C19 (FIG. 4). It was clarified that the metabolism of IMP depends on the polymorphism of CYP2C19. As a result of IMP being metabolized by CYP2C19, an unknown peak was detected in the HPLC chromatogram. The peak area increased in proportion to the reaction time in proportion to the decrease of the IMP peak.

(結論)
以上、IMPはCYP2C19により代謝されることがわかった。したがって、IMP又はその標識体を用いることにより、シトクロムP450による薬物代謝機能を測定できることがわかった。
(Conclusion)
As described above, it was found that IMP is metabolized by CYP2C19. Therefore, it was found that the drug metabolic function by cytochrome P450 can be measured by using IMP or its label.

(実施例2)125I−N−イソプロピル−p−ヨードアンフェタミン塩酸塩のCYP2C19による代謝物の分析
N−イソプロピル−p−ヨードアンフェタミン塩酸塩(IMP)の代わりに125I−N−イソプロピル−p−ヨードアンフェタミン塩酸塩(125I−IMP)を用いた以外は実施例1と同様にして実験を行った。結果を表2及び図5に示す。
Example 2 Analysis of metabolites of 125 I-N-isopropyl-p-iodoamphetamine hydrochloride by CYP2C19 125 I-N-isopropyl-p- in place of N-isopropyl-p-iodoamphetamine hydrochloride (IMP) The experiment was conducted in the same manner as in Example 1 except that iodoamphetamine hydrochloride ( 125 I-IMP) was used. The results are shown in Table 2 and FIG.

Figure 0006024939
Figure 0006024939

125I−IMPもIMPと同様に、CYP2C19により代謝されることがわかった。したがって、125I−IMPを用いることにより、シトクロムP450による薬物代謝機能を測定できることがわかった。 125 I-IMP was also metabolized by CYP2C19 in the same manner as IMP. Therefore, it was found that the drug metabolic function by cytochrome P450 can be measured by using 125 I-IMP.

(実施例3)放射性ヨウ素標識アミノ酸の放射性代謝物の分析
(1)放射性ヨウ素標識チロシンの調製
125I−3−ヨード−D−チロシン(125I−D−MIT)及び125I−3−ヨード−L−チロシン(125I−L−MIT)を以下のようにして調製した。
125I−NaIは、Amersham社より購入した。125I−D−MIT及び125I−L−MITは、D−及びL−チロシンを原料としてchloramine−T法によりそれぞれ作製した。即ち、chloramine−T 2.0×10−8mole(Aldrich社)を溶解した0.05Mリン酸緩衝溶液(pH6.2)10μlを、標識原料のアミノ酸1.0×10−8moleと無担体125I−NaI(7,4〜37MBq)を食む35μlの0.4Mリン酸緩衝溶液(pH6.2)に加えた。反応液を2分間放置し、飽和ピロ亜硫酸ナトリウム水溶液の10倍希釈液を加え、反応を止めた。放射性ヨウ素標識MITの精製は、Sephadex LH−20(Pharmacia社)カラムクロマトグラフィー(10×200mm、溶出液;酢酸エチル:メタノール:2Nアンモニア水=40:10:4)により行なった。溶出した標識アミノ酸画分を集め、減圧下、溶媒を完全に留去した後、生理食塩水に溶解し、以下の実験に用いた。
Example 3 Analysis of Radioactive Metabolites of Radioiodine Labeled Amino Acids (1) Preparation of Radioiodine Labeled Tyrosine
125 I-3-iodo-D-tyrosine ( 125 ID-MIT) and 125 I-3-iodo-L-tyrosine ( 125 IL-MIT) were prepared as follows.
125 I-NaI was purchased from Amersham. 125 ID-MIT and 125 IL-MIT were produced by the chloramine-T method using D- and L-tyrosine as raw materials, respectively. That is, 10 μl of 0.05 M phosphate buffer solution (pH 6.2) in which chloramine-T 2.0 × 10 −8 mole (Aldrich) was dissolved was added to 1.0 × 10 −8 mole of the labeling raw material and no carrier. 125 I-NaI (7,4-37 MBq) was added to 35 μl of 0.4 M phosphate buffer solution (pH 6.2). The reaction solution was allowed to stand for 2 minutes, and a 10-fold diluted solution of a saturated aqueous sodium pyrosulfite solution was added to stop the reaction. Purification of radioiodine-labeled MIT was performed by Sephadex LH-20 (Pharmacia) column chromatography (10 × 200 mm, eluent; ethyl acetate: methanol: 2N aqueous ammonia = 40: 10: 4). The eluted labeled amino acid fractions were collected, the solvent was completely distilled off under reduced pressure, and the residue was dissolved in physiological saline and used in the following experiments.

(2)マウス組織ホモジネートを用いた脱ヨウ素化反応
体重約25gのddY系雄性マウス2匹を屠殺解剖した後、即座に肝臓及び腎臓を摘出し、一定量の組織に水冷したKrebs−Ringerリン酸緩衝溶液(pH7.4)を加えてホモジナイズした。氷冷した各ホモジネート100μlに125I−D−MIT又は125I−L−MITを20μl(1.1×10−13mole、7.4kBq)加えて、37℃あるいは4℃にてインキュベートし、5分後、トリクロロ酢酸を最終濃度が5%になるように加えた。遠心分離した後、その上清をシリカゲル薄層クロマトグラフィー(Merck社Art.5553、展開溶媒;メタノール:酢酸=100:1,メタノール:10%酢酸アンモニア水=10:1)にて分析した。インキュベート5分後の結果を表3に示す。
(2) Deiodination reaction using mouse tissue homogenate After killing and dissecting two ddY male mice weighing about 25 g, Krebs-Ringer phosphoric acid was immediately removed from the liver and kidney and cooled to a certain amount of tissue with water. A buffer solution (pH 7.4) was added and homogenized. Add 20 μl (1.1 × 10 −13 mole, 7.4 kBq) of 125 I-D-MIT or 125 I-L-MIT to 100 μl of each ice-cold homogenate, and incubate at 37 ° C. or 4 ° C. After minutes, trichloroacetic acid was added to a final concentration of 5%. After centrifugation, the supernatant was analyzed by silica gel thin layer chromatography (Merck, Art. 5553, developing solvent; methanol: acetic acid = 100: 1, methanol: 10% aqueous ammonia acetate = 10: 1). The results after 5 minutes of incubation are shown in Table 3.

Figure 0006024939
Figure 0006024939

125I−D−MITは、37℃及び4℃のいずれの温度条件においてもほとんど脱ヨウ素化を受けなかった。一方、125I−L−MITは37℃でインキュベートすると、ほとんど脱ヨウ素化された。 125 I-D-MIT was hardly subjected to deiodination at both 37 ° C. and 4 ° C. temperature conditions. On the other hand, 125 IL-MIT was almost deiodinated when incubated at 37 ° C.

(3)マウス体内分布実験と代謝物の分析
125I−D−MIT及び125I−L−MITのそれぞれの生理食塩溶液0.1ml(1.6×10−13mole、11.1kBq)を体重約25gのddY系雄性マウス2匹に尾静脈より投与し、一定時間後にエーテル麻酔にて屠殺した。ヘパリン処理注射器を用いて心臓穿刺により採血した後、肝臓、腎臓を摘出した。
(3) Mouse biodistribution experiment and metabolite analysis
125 ml of 125 I-D-MIT and 125 IL-MIT physiological saline solutions (1.6 × 10 −13 mole, 11.1 kBq) were added to two ddY male mice weighing approximately 25 g in the tail vein. After certain time, it was sacrificed by ether anesthesia. Blood was collected by cardiac puncture using a heparinized syringe, and then the liver and kidney were removed.

各組織50mgを精秤し、重炭酸緩衝溶液450μlを加え、ホモジナイズした。この一定量を1.9mlに希釈し、100%トリクロロ酢酸溶液0.1mlを加え、混和した。遠心分離した後、その上清をシリカゲル薄層クロマトグラフィー(Merck社Art.5553、展開溶媒;メタノール:酢酸=100:1,メタノール:10%酢酸アンモニア水=10:1)にて分析した。インキュベート10分後の結果を表4に示す。   50 mg of each tissue was precisely weighed, 450 μl of a bicarbonate buffer solution was added, and homogenized. This fixed amount was diluted to 1.9 ml, and 0.1 ml of 100% trichloroacetic acid solution was added and mixed. After centrifugation, the supernatant was analyzed by silica gel thin layer chromatography (Merck, Art. 5553, developing solvent; methanol: acetic acid = 100: 1, methanol: 10% aqueous ammonia acetate = 10: 1). The results after 10 minutes of incubation are shown in Table 4.

Figure 0006024939
Figure 0006024939

いずれの組織においても、125I−D−MITに比較して、125I−L−MITは容易に代謝(酵素的脱ヨウ素化)され、放射性代謝物である遊離ヨウ素が多量に検出された。この傾向は尿中ではより顕著であった。 In any tissue, 125 I-L-MIT was easily metabolized (enzymatic deiodination), and a large amount of free iodine as a radiometabolite was detected, compared to 125 I-D-MIT. This tendency was more prominent in urine.

以上のように、125I−D−MIT及び125I−L−MITは代謝のしやすさが大きく異なり、これらの傾向を利用し、個体差、病態の変化による放射性代謝物の量の相違を測定することにより、薬物代謝機能を測定が可能であることがわかった。 As described above, 125 I-D-MIT and 125 I-L-MIT differ greatly in the ease of metabolism, and by utilizing these tendencies, differences in the amount of radioactive metabolites due to individual differences and pathological changes can be obtained. It was found that the drug metabolic function can be measured by measuring.

(実施例4)放射性天然/非天然アミノ酸の放射性代謝物の分析
5週齢ddY系雄性マウスに標識L−/D−メチオニン(Met)を尾静脈注し、10分後にマウスを屠殺した後、膵臓、肝臓、腎臓を摘出した。摘出臓器に重炭酸緩衝液を加えホモジナイズした。このホモジネートに最終濃度5%となるように100%トリクロロ酢酸(Nacalai tesque)を加え、混和した。この沈殿画分をグラスフィルター(GC−50、Toyo)に捕集し、氷冷5%トリクロロ酢酸で洗浄した後、150℃、1時間加熱処理することによりタンパクを固定し、その放射能を測定したものをタンパク画分への組み込み率として評価した。
Example 4 Analysis of Radioactive Metabolites of Radioactive Natural / Non-natural Amino Acids 5 weeks old ddY male mice were injected with labeled L- / D-methionine (Met) via tail vein and sacrificed 10 minutes later. The pancreas, liver and kidney were removed. The extracted organ was homogenized by adding a bicarbonate buffer. To this homogenate, 100% trichloroacetic acid (Nacalai tesque) was added to a final concentration of 5% and mixed. The precipitate fraction is collected on a glass filter (GC-50, Toyo), washed with ice-cold 5% trichloroacetic acid, and then heat treated at 150 ° C. for 1 hour to immobilize the protein and measure its radioactivity. This was evaluated as the rate of incorporation into the protein fraction.

また、前記のトリクロロ酢酸を加えたホモジネートを遠心分離し、上清を薄層クロマトグラフィーにスポット後、展開溶媒(ブタノール:酢酸:水=4:1:1)で展開し、イメージングプレート(BAS−SR2025,Fuji Film)に露光後、BAS5000(Fuji Film)を用いて解析したものを酸可溶性画分における未変化体残存率として評価した。   Further, the homogenate to which the above-mentioned trichloroacetic acid was added was centrifuged, the supernatant was spotted on a thin layer chromatography, developed with a developing solvent (butanol: acetic acid: water = 4: 1: 1), and an imaging plate (BAS- SR2025 (Fuji Film) was exposed and analyzed using BAS5000 (Fuji Film) and evaluated as the unchanged substance remaining rate in the acid-soluble fraction.

D−Metについて、膵臓においては、体内分布実験の膵臓を分析したため、ダブルトレーサー用のH体を用いた。また、肝臓、腎臓に関しては酸可溶性画分における代謝安定性の評価に14C専用イメージングプレートを用いたために、[S−methyl−14C]−D−Met(14C−D−Met;American Radiolabeled Chemicals)を用いた。したがって、放射性代謝物分析におけるD−Metの表記は14C−/H−D−Metとする。 Regarding D-Met, in the pancreas, since the pancreas of the biodistribution experiment was analyzed, 3 H body for double tracer was used. Also, the liver, because of using 14 C-dedicated imaging plate for evaluation of the metabolic stability in acid-soluble fraction with respect to kidney, [S-methyl- 14 C] -D-Met (14 C-D-Met; American Radiolabeled Chemicals) was used. Therefore, the notation of D-Met in radiometabolite analysis is 14 C− / 3 H-D-Met.

トレーサー投与後10分のマウス膵臓、肝臓、腎臓における14C−L−Met及び14C−/H−D−Metのタンパクへの組み込み率を図6に示した。14C−L−Metは組織集積率の約25〜50%のタンパク組み込み率を示したのに対し、14C−/H−D−Metでは約3%と14C−L−Metと比較し顕著に低下した。 FIG. 6 shows the incorporation rate of 14 C-L-Met and 14 C- / 3 HD-Met into proteins in mouse pancreas, liver, and kidney 10 minutes after administration of the tracer. 14 C-L-Met showed a protein incorporation rate of about 25 to 50% of the tissue accumulation rate, whereas 14 C- / 3 HD-Met was about 3% compared with 14 C-L-Met. And it decreased significantly.

また、図7に代表的な代謝性組織である肝臓、腎臓の組織集積率を100%としたときの14C−L−Met及び14C−D−Metの組織内放射性代謝物の存在比を示す。14C−D−Metにおいては約80%が未変化体として存在していたのに対し、14C−L−Metにおいては未変化体は約40%以下しか存在しておらず、約25〜50%はタンパク画分に、約25〜50%は放射性代謝物として存在していることを確認した。 FIG. 7 shows the abundance ratios of 14 C-L-Met and 14 C-D-Met in the tissue when the tissue accumulation rate of liver and kidney, which are typical metabolic tissues, is 100%. Show. In 14 C-D-Met, about 80% was present as an unchanged form, whereas in 14 C-L-Met, no more than about 40% of the unchanged form was present. It was confirmed that 50% was present in the protein fraction and about 25-50% was present as a radiometabolite.

Claims (5)

天然アミノ酸の放射性標識体及び非天然アミノ酸の放射性標識体を投与された被検者の血液、血清、血漿、尿及び唾液から選ばれる試料に含まれる前記放射性標識体の放射性代謝物を、薬物の適正投与量を決定するために、又は被検者の代謝異常を検査するために、分析することを含む薬物代謝機能の測定方法。 A radioactive metabolite of the radioactive label contained in a sample selected from blood, serum, plasma, urine and saliva of a subject administered with a radioactive label of a natural amino acid and a radioactive label of an unnatural amino acid , A method for measuring a drug metabolic function, comprising analyzing in order to determine an appropriate dose or to examine a metabolic abnormality of a subject. 被検者の試料が尿から得られる試料である請求項に記載の方法。 The method according to claim 1 , wherein the subject's sample is a sample obtained from urine. 薬物の適正投与量を決定するために行う請求項1又は2に記載の方法。 The method according to claim 1 or 2 , wherein the method is carried out to determine an appropriate dose of the drug. 被検者の代謝異常を検査するために行う請求項1又は2に記載の方法。 The method of Claim 1 or 2 performed in order to test | inspect a subject's metabolic abnormality. 放射性核種で標識されたN−イソプロピル−p−ヨードアンフェタミンを投与された被検者の血液、血清、血漿、尿及び唾液から選ばれる試料に含まれる前記N−イソプロピル−p−ヨードアンフェタミンの放射性代謝物を、被検者のCYP2C19による代謝の異常を検査するために、分析することを含む薬物代謝機能の測定方法。 Radiometabolism of the N-isopropyl-p-iodoamphetamine contained in a sample selected from blood, serum, plasma, urine and saliva of a subject who has been administered N-isopropyl-p-iodoamphetamine labeled with a radionuclide A method for measuring a function of drug metabolism, comprising analyzing an object to examine abnormalities in metabolism by CYP2C19 in a subject .
JP2011224666A 2011-10-12 2011-10-12 Drug metabolism function measurement method Active JP6024939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224666A JP6024939B2 (en) 2011-10-12 2011-10-12 Drug metabolism function measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224666A JP6024939B2 (en) 2011-10-12 2011-10-12 Drug metabolism function measurement method

Publications (2)

Publication Number Publication Date
JP2013081430A JP2013081430A (en) 2013-05-09
JP6024939B2 true JP6024939B2 (en) 2016-11-16

Family

ID=48527331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224666A Active JP6024939B2 (en) 2011-10-12 2011-10-12 Drug metabolism function measurement method

Country Status (1)

Country Link
JP (1) JP6024939B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410351B2 (en) * 2014-09-29 2018-10-24 国立大学法人金沢大学 Test drugs for measuring drug metabolism function
JP7262747B2 (en) * 2018-02-14 2023-04-24 国立大学法人金沢大学 Radioactive diagnostic agent for bacterial infections
JP7224629B2 (en) * 2019-02-18 2023-02-20 国立大学法人金沢大学 Method for measuring drug metabolism function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003275037A1 (en) * 2002-09-16 2004-04-30 The Regents Of The University Of California Biochemical methods for measuring metabolic fitness of tissues or whole organisms
CN101163791A (en) * 2005-04-16 2008-04-16 大塚制药株式会社 Method and composition to evaluate cytochrome p450 2d6 isoenzyme activity using a breath test
US7833744B2 (en) * 2006-09-01 2010-11-16 Cambridge Isotope Laboratories, Inc. Methods to evaluate cytochrome P450 2C19 isoenzyme activity using a breath test
GB0803071D0 (en) * 2008-02-20 2008-03-26 Care Technologies Inc Cancer detection methods and techniques
JP2011106846A (en) * 2009-11-13 2011-06-02 Hamamatsu Univ School Of Medicine New nsaid ulcer risk determininig method

Also Published As

Publication number Publication date
JP2013081430A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
Tannergren et al. St John's wort decreases the bioavailability of R‐and S‐verapamil through induction of the first‐pass metabolism
Terlinden et al. Absorption, metabolism, and excretion of 14 C-labeled tapentadol HCl in healthy male subjects
von Moltke et al. Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects
Smith et al. Human cytochrome P450s: selectivity and measurement in vivo
Zhou et al. Drug bioactivation covalent binding to target proteins and toxicity relevance
US8759402B2 (en) Method to inhibit ischemia and reperfusion injury
Brøsen et al. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram
Lai et al. Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms
Baer et al. Benzylic oxidation of gemfibrozil-1-O-β-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition
Spigset et al. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms
Grech‐Belanger et al. Stereoselective disposition of mexiletine in man.
Amchin et al. Effect of venlafaxine versus fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe
JP6024939B2 (en) Drug metabolism function measurement method
Caccia N-dealkylation of arylpiperazine derivatives: disposition and metabolism of the 1-aryl-piperazines formed
CN102137671A (en) New low side effect pharmaceutical composition containing isoniazid
Echizen et al. Identification of CYP3A4 as the enzyme involved in the mono-N-dealkylation of disopyramide enantiomers in humans
PT1033979E (en) Combination of cyp2a enzyme inhibitors and nicotine and their therapeutic use
Prakash et al. Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, in healthy male subjects
Jensen et al. [11C]‐NS 4194 versus [11C]‐DASB for PET imaging of serotonin transporters in living porcine brain
Somogyi et al. CYP3A4 mediates dextropropoxyphene N-demethylation to nordextropropoxyphene: human in vitro and in vivo studies and lack of CYP2D6 involvement
Lill et al. Pharmacokinetics of diclofenac sodium in chronic active hepatitis and alcoholic cirrhosis
Kim et al. Synthesis and positron emission tomography studies of C-11-labeled isotopomers and metabolites of GTS-21, a partial α7 nicotinic cholinergic agonist drug
Satarug et al. Genetic and environmental influences on therapeutic and toxicity outcomes: studies with CYP2A6
Li Drug‐Metabolizing Enzymes and Drug Toxicity
Graham et al. Pharmacokinetics and metabolism of paracetamol (acetaminophen)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6024939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250