JP6019981B2 - Power generation device and sensing system - Google Patents

Power generation device and sensing system Download PDF

Info

Publication number
JP6019981B2
JP6019981B2 JP2012204271A JP2012204271A JP6019981B2 JP 6019981 B2 JP6019981 B2 JP 6019981B2 JP 2012204271 A JP2012204271 A JP 2012204271A JP 2012204271 A JP2012204271 A JP 2012204271A JP 6019981 B2 JP6019981 B2 JP 6019981B2
Authority
JP
Japan
Prior art keywords
heat
power generation
generation device
layer
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012204271A
Other languages
Japanese (ja)
Other versions
JP2014060257A (en
Inventor
山中 一典
一典 山中
栗原 和明
和明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012204271A priority Critical patent/JP6019981B2/en
Publication of JP2014060257A publication Critical patent/JP2014060257A/en
Application granted granted Critical
Publication of JP6019981B2 publication Critical patent/JP6019981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機械的振動を用いる発電デバイス及びセンシングシステムに関するものである。   The present invention relates to a power generation device and a sensing system using mechanical vibration.

近年、繰り返し利用可能な範囲で自然環境からエネルギーを取り出す太陽光発電、風力発電、地熱発電や波浪発電等のいわゆる再生可能エネルギー源の開発が注目されている。   In recent years, the development of so-called renewable energy sources such as solar power generation, wind power generation, geothermal power generation, and wave power generation that extract energy from the natural environment within a range that can be repeatedly used has attracted attention.

それと同時に、自然界のさまざまな微小なエネルギーを電気に変えて利用する環境発電(エネルギーハーベスティング)技術が注目を集めている。この環境発電とは、自然界や他の仕事で使われているエネルギーの廃棄分や未利用分を、電気エネルギーとして「収穫」のように回収する技術である(例えば、特許文献1或いは特許文献2参照)。   At the same time, energy harvesting technology that uses various minute energy in nature for electricity is attracting attention. This energy harvesting is a technology that collects waste or unused energy used in nature or other work as electric energy, such as “harvest” (for example, Patent Document 1 or Patent Document 2). reference).

このような環境発電としては、熱電変換素子を利用して廃熱を電気に変換する技術や、橋梁振動等の環境における機械的な振動を電気エネルギーに変換する技術が知られている。機械的な振動を電気エネルギーに変換する発電デバイスとしては、電磁力、即ち相対的に可動の磁性体とコイル等のインダクタンスの組合せや、圧電素子や、静電力(MEMS,エレクトレット)などを利用したものが挙げられる。   As such energy harvesting, a technique for converting waste heat into electricity using a thermoelectric conversion element and a technique for converting mechanical vibration in an environment such as bridge vibration into electric energy are known. As a power generation device that converts mechanical vibrations into electrical energy, electromagnetic force, that is, a combination of a relatively movable magnetic body and an inductance such as a coil, a piezoelectric element, an electrostatic force (MEMS, electret), or the like is used. Things.

従来、これらのうち多くの種類の振動型発電デバイスでは、振動片を持ち、この振動片とこの自重ないし付加した錘により共振周波数が支配される。この構造においては、振動共振周波数で錘が最大振幅を示し、電気的出力が増大する仕組みとなっている。これらの発電デバイスを用いて、各種の振動数の機械振動源を有する対象物から電気エネルギーを取り出すことが期待されている。   Conventionally, many of these types of vibration power generation devices have a resonator element, and the resonance frequency is governed by the resonator element and its own weight or added weight. In this structure, the weight exhibits the maximum amplitude at the vibration resonance frequency, and the electrical output increases. Using these power generation devices, it is expected to extract electric energy from an object having mechanical vibration sources with various frequencies.

特開2012−097673号公報JP 2012-097673 A 特開2011−097661号公報JP 2011-097661 A

しかし、従来の振動型発電デバイスにおいて、振動源が発電デバイスの共振振動数から外れていくと、振動による出力は低下するという問題がある。一方、共振周波数ごとに振動型発電デバイスを設計すると汎用性を失うため低コスト化が困難になるという問題がある。   However, in the conventional vibration type power generation device, there is a problem that the output due to vibration decreases when the vibration source deviates from the resonance frequency of the power generation device. On the other hand, when a vibration type power generation device is designed for each resonance frequency, there is a problem that it is difficult to reduce the cost because the versatility is lost.

したがって、機械的振動エネルギーを電気エネルギーに変換する発電デバイスにおいて、不定振動数の機械振動源から発電デバイスの固有振動周波数に依存しない電気エネルギーを取り出すことを目的とする。   Therefore, in a power generation device that converts mechanical vibration energy into electrical energy, an object is to extract electrical energy that does not depend on the natural vibration frequency of the power generation device from a mechanical vibration source having an indefinite frequency.

開示する一観点からは、剛体と、前記剛体を可動な状態で収容する閉鎖容器とを備え、前記閉鎖容器は、前記剛体の剛性率より剛性率が低く前記剛体の衝突エネルギーを熱に変換する熱変換層と、前記熱変換層の外側の表面を覆う蓄熱層と、前記蓄熱層の外側の表面を覆うとともに開口部を有する断熱層と前記開口部に設けられて前記蓄熱層に当接する熱電変換素子とを備えることを特徴とする発電デバイスが提供される。   From one aspect to be disclosed, a rigid body and a closed container that accommodates the rigid body in a movable state are provided, and the closed container has a rigidity lower than that of the rigid body and converts collision energy of the rigid body into heat. A heat conversion layer; a heat storage layer covering an outer surface of the heat conversion layer; a heat insulating layer covering an outer surface of the heat storage layer and having an opening; and a thermoelectric provided in contact with the heat storage layer. A power generation device comprising a conversion element is provided.

また、開示する別の観点からは、振動源と、前記振動源に固定された上述の発電デバイスと、前記発電デバイスを電源とするセンサ素子とを備えたことを特徴とするセンシングシステムが提供される。   From another viewpoint to be disclosed, there is provided a sensing system comprising a vibration source, the above-described power generation device fixed to the vibration source, and a sensor element using the power generation device as a power source. The

開示の発電デバイス及びセンシングシステムによれば、不定振動数の機械振動源から発電デバイスの固有振動周波数に依存しない電気エネルギーを取り出すことが可能になる。   According to the disclosed power generation device and sensing system, it is possible to extract electrical energy that does not depend on the natural vibration frequency of the power generation device from a mechanical vibration source having an indefinite frequency.

本発明の実施の形態の発電デバイスの概略的断面図である。1 is a schematic cross-sectional view of a power generation device according to an embodiment of the present invention. 本発明の実施例1の振動型発電デバイスの概略的断面図である。It is a schematic sectional drawing of the vibration type electric power generation device of Example 1 of this invention. 本発明の実施例1の振動型発電デバイスに搭載する熱電変換モジュールの説明図である。It is explanatory drawing of the thermoelectric conversion module mounted in the vibration type electric power generating device of Example 1 of this invention. 本発明の実施例2の振動型発電デバイスの概略的断面図である。It is a schematic sectional drawing of the vibration type electric power generating device of Example 2 of this invention. 本発明の実施例3の振動型発電デバイスの概略的断面図である。It is a schematic sectional drawing of the vibration type electric power generation device of Example 3 of this invention. 本発明の実施例4のセンシングシステムの概念的構成図である。It is a notional block diagram of the sensing system of Example 4 of this invention.

ここで、図1を参照して、本発明の実施の形態の発電デバイスを説明する。図1は、本発明の実施の形態の発電デバイスの概念的断面図であり、発電デバイス10は、剛体16と、剛体16を可動な状態で収容する閉鎖容器11と熱電変換素子20を備える。閉鎖容器11は、剛体16の衝突エネルギーを熱に変換する熱変換層12と、熱変換層12の外周を覆う蓄熱層13と、蓄熱層13の外周を覆うとともに開口部15を有する断熱層14を有する。   Here, with reference to FIG. 1, the electric power generation device of embodiment of this invention is demonstrated. FIG. 1 is a conceptual cross-sectional view of a power generation device according to an embodiment of the present invention. The power generation device 10 includes a rigid body 16, a closed container 11 that accommodates the rigid body 16 in a movable state, and a thermoelectric conversion element 20. The closed container 11 includes a heat conversion layer 12 that converts the collision energy of the rigid body 16 into heat, a heat storage layer 13 that covers the outer periphery of the heat conversion layer 12, and a heat insulating layer 14 that covers the outer periphery of the heat storage layer 13 and has an opening 15. Have

開口部15には蓄熱層13に当接する熱電変換素子20を設け、必要に応じて熱電変換素子20の蓄熱層13に当接する面と反対の面に放熱部材21を設け、変換した電気エネルギーは一対の電気出力線22,22から取り出される。 The opening 15 is provided with a thermoelectric conversion element 20 in contact with the heat storage layer 13, and if necessary, a heat radiating member 21 is provided on the surface opposite to the surface in contact with the heat storage layer 13 of the thermoelectric conversion element 20. It is taken out from the pair of electrical output lines 22 1 and 22 2 .

熱変換層12の内壁により形成される可動空間の形状は任意であるが、典型的には円筒状とし、内部に剛体16を挿入するために2つの部材から形成する。例えば、円筒の縦割りにした2つの部材としても良いし、円筒を横割にした2つの部材としても良いし、或いは、空缶状部と蓋部との組み合わせ部材でも良い。   The shape of the movable space formed by the inner wall of the heat conversion layer 12 is arbitrary, but is typically cylindrical, and is formed of two members for inserting the rigid body 16 therein. For example, two members obtained by dividing a cylinder vertically may be used, two members obtained by dividing a cylinder horizontally, or a combination member of an empty can-like portion and a lid portion.

熱変換層12としては、弾性部材、例えば、ゴム弾性体等のエラストマーや、粘弾性を有する高分子化合物を用い、剛体16が振動により移動して熱変換層12に衝突する際に、剛体16の有する運動エネルギーの一部を吸収して、熱に変換する。この熱変換層12も円筒の縦割りにした2つの部材としても良いし、円筒を横割にした2つの部材としても良いし、或いは、空缶状部と蓋部との組み合わせ部材でも良い。   As the heat conversion layer 12, an elastic member, for example, an elastomer such as a rubber elastic body or a polymer compound having viscoelasticity is used. When the rigid body 16 is moved by vibration and collides with the heat conversion layer 12, the rigid body 16. It absorbs a part of the kinetic energy of and converts it into heat. The heat conversion layer 12 may also be two members that are vertically divided into cylinders, may be two members that are horizontally divided into cylinders, or may be a combination member of an empty can-like portion and a lid portion.

蓄熱層13としては、発電中にさらされる温度環境下で(外部温度が20〜40℃で、振動に起因した発熱により0〜20℃の範囲で温度上昇する場合、蓄熱層の使用温度範囲は20〜60℃となる)、比熱の大きな材料を用いることが望ましく、比熱が大きいほど単位体積当たりの蓄熱量が多くなり、室温付近の使用ではCu或いはCuより比熱の大きな金属材料を用いることが望ましい。300K付近では、Cuの比熱は0.39J/(g・K)であるので、0.88J/(g・K)のAl、0.44J/(g・K)のFe、或いは、0.55J/(g・K)のTi等が好適であるが、コスト及び加工容易性の観点からCu或いはAlがより好適である。この蓄熱層13も円筒の縦割りにした2つの部材としても良いし、円筒を横割にした2つの部材としても良いし、或いは、空缶状部と蓋部との組み合わせ部材でも良い。   As the heat storage layer 13, under the temperature environment exposed during power generation (when the external temperature is 20 to 40 ° C. and the temperature rises in the range of 0 to 20 ° C. due to heat generated by vibration, the operating temperature range of the heat storage layer is It is desirable to use a material with a large specific heat), and the larger the specific heat, the larger the amount of heat stored per unit volume. When used near room temperature, it is preferable to use Cu or a metal material having a larger specific heat than Cu. desirable. In the vicinity of 300 K, the specific heat of Cu is 0.39 J / (g · K), so 0.88 J / (g · K) Al, 0.44 J / (g · K) Fe, or 0.55 J / (G · K) Ti or the like is preferable, but Cu or Al is more preferable from the viewpoint of cost and workability. The heat storage layer 13 may also be two members that are vertically divided into cylinders, may be two members that are horizontally divided into cylinders, or may be a combination member of an empty can-like portion and a lid portion.

断熱層14としては、発泡材料、スーパインシュレーション、真空断熱やこれらの組合せを用いる。断熱層14には少なくとも一箇所に開口部15を設け、この開口部に熱電変換素子20を挿入して、熱電変換素子20と蓄熱層13が接するように設ける。この断熱層12も円筒の縦割りにした2つの部材としても良いし、円筒を横割にした2つの部材としても良いし、或いは、空缶状部と蓋部との組み合わせ部材でも良い。   As the heat insulating layer 14, a foam material, super insulation, vacuum heat insulating, or a combination thereof is used. The heat insulating layer 14 is provided with an opening 15 in at least one place, and the thermoelectric conversion element 20 is inserted into the opening so that the thermoelectric conversion element 20 and the heat storage layer 13 are in contact with each other. The heat insulating layer 12 may also be two members that are vertically divided into cylinders, may be two members that are horizontally divided into cylinders, or may be a combination member of an empty can-like portion and a lid portion.

熱電変換素子20としては、典型的にはゼーベック効果素子を用い、熱電変換素子20の蓄熱層13と接する面と反対側の面に放熱部材21を設けることが望ましく、この放熱部材21により外気への放熱を行うようにする。放熱部材21としては、CuやAlを主成分とした金属フィンを用いることが望ましい。   As the thermoelectric conversion element 20, a Seebeck effect element is typically used, and it is desirable to provide a heat dissipation member 21 on the surface opposite to the surface in contact with the heat storage layer 13 of the thermoelectric conversion element 20. Heat dissipation. As the heat radiating member 21, it is desirable to use a metal fin mainly composed of Cu or Al.

剛体16としては、剛性率の大きな硬質の材料が望ましく、例えば、炭素鋼やYSZ(イットリア安定化ジルコニア)等を用いる。形状は球状が典型的なものであるが、球状に限られるものではなく、また、密閉容器11内に収容する剛体16の数は1個でも複数でも良い。   The rigid body 16 is preferably a hard material having a large rigidity, such as carbon steel or YSZ (yttria stabilized zirconia). The shape is typically spherical, but is not limited to a spherical shape, and the number of rigid bodies 16 accommodated in the sealed container 11 may be one or plural.

複数の剛体16を収容した場合には、剛体16の剛性率が大きいほど、剛体同士の衝突は弾性衝突に近くなるので、運動エネルギーをロスすることがほとんどない。したがって、熱変換層12に衝突した時に振動に伴う剛体16の運動エネルギーが熱変換層12において効率良く熱に変換される。   When a plurality of rigid bodies 16 are accommodated, the larger the rigidity factor of the rigid bodies 16 is, the closer the collision between the rigid bodies is to an elastic collision, so that the kinetic energy is hardly lost. Therefore, the kinetic energy of the rigid body 16 due to vibration when it collides with the heat conversion layer 12 is efficiently converted into heat in the heat conversion layer 12.

熱変換層12で変換された熱は、蓄熱層13に伝達されて蓄熱され、蓄熱層13に蓄積された熱は熱電変換素子20との接触部まで伝達されて電気エネルギーに変換されて、電気出力線22,22から取り出される。 The heat converted in the heat conversion layer 12 is transmitted to the heat storage layer 13 to be stored, and the heat stored in the heat storage layer 13 is transferred to the contact portion with the thermoelectric conversion element 20 and converted into electric energy to be It is taken out from the output lines 22 1 and 22 2 .

このように、本発明の発電デバイス10に機械的振動を与えることにより、内部に収容された剛体16が熱変換層12に衝突を繰り返し、熱を発生、蓄熱し、密閉容器11の内外の温度差により発電する。   In this way, by applying mechanical vibration to the power generation device 10 of the present invention, the rigid body 16 accommodated therein repeatedly collides with the heat conversion layer 12 to generate and store heat, and the temperature inside and outside the sealed container 11. Power is generated by the difference.

この場合、剛体16は、その3次元運動において自身の共振をもたず運動できるため、発電デバイス10の発電効率が、外力によって生じる機械的振動の振動周波数の影響を抑制できる。   In this case, since the rigid body 16 can move without its own resonance in the three-dimensional motion, the power generation efficiency of the power generation device 10 can suppress the influence of the vibration frequency of the mechanical vibration caused by the external force.

ここで、本発明の実施の形態の発電デバイスの性能を各種の前提条件のもとで評価する。
(1)外力により与えられた最大の相対速度を1.0m/s、振動周波数が50Hzの定常振動で衝突が100回/s、剛体の質量10g、密閉容器11の内寸、即ち、熱変換層12の内寸が1辺4cmの立方体、断熱層14の厚さが5cm、断熱層14の熱伝導率が
0.0010〜0.0013Wm−1−1(金属シートを外壁とした断熱層の内部にグラスファイバー繊維を断熱部材の外形形状を保持するように配置して真空引きした構造の断熱部材)、また、熱電変換素子20の性能指数ZT=1とする。この様な条件で、室温付近で動作させる場合、時間当たりに熱に変換されるエネルギーは約1W、断熱層14の内表面と外表面との温度差が約0.43℃の時、断熱層14を経由して散逸する熱エネルギーは約1Wと計算でき、温度平衡状態になる。なお、簡易的には熱伝導率が0.01〜0.001Wm−1−1範囲のVacuum Insulation Panel(VIP)と呼ばれる市販の断熱材パネルを用いることができる。
Here, the performance of the power generation device according to the embodiment of the present invention is evaluated under various preconditions.
(1) The maximum relative speed given by the external force is 1.0 m / s, the vibration frequency is 50 Hz, the collision is 100 times / s, the mass of the rigid body is 10 g, the inner dimension of the sealed container 11, that is, the heat conversion. Cubic whose inner dimensions are 4 cm on a side, the thickness of the heat insulating layer 14 is 5 cm, and the heat conductivity of the heat insulating layer 14 is 0.0010 to 0.0013 Wm −1 K −1 (a heat insulating layer using a metal sheet as an outer wall) In this case, the glass fiber fibers are arranged so as to hold the outer shape of the heat insulating member and evacuated, and the figure of merit ZT = 1 of the thermoelectric conversion element 20 is set. When operating near room temperature under such conditions, when the energy converted into heat per hour is about 1 W and the temperature difference between the inner surface and the outer surface of the heat insulation layer 14 is about 0.43 ° C., the heat insulation layer The heat energy dissipated via 14 can be calculated to be about 1 W, and a temperature equilibrium state is reached. Note that the simple may be commercially available insulation panels the thermal conductivity called 0.01~0.001Wm -1 K -1 range of Vacuum Insulation Panel (VIP).

(2)上記の(1)の前提条件のうち、断熱層の厚さを2.5cmとし、周波数を上げ300Hzの定常振動数で衝突が600回に変更した場合、時間当たりに熱に変換されるエネルギーは約6Wになる。断熱層14の内表面と外表面との温度差が約1.3℃の時、断熱層14を経由して散逸する熱エネルギーは約6Wと計算でき、温度平衡状態になる。 (2) Among the preconditions of (1) above, when the thickness of the heat insulation layer is 2.5 cm, the frequency is increased and the collision is changed to 600 times at a steady frequency of 300 Hz, the heat is converted into heat per time. The energy is about 6W. When the temperature difference between the inner surface and the outer surface of the heat insulating layer 14 is about 1.3 ° C., the heat energy dissipated through the heat insulating layer 14 can be calculated as about 6 W, and a temperature equilibrium state is obtained.

(3)放熱側が外気温度と同じで理想的な状態で、1.3℃が熱電変換素子20の吸熱側と放熱側の温度差T−Tに等しい場合、ZT〜1.0の熱電変換素子20の変換効率は約0.728%と換算されるので、面積が3cmの熱電変換素子の場合、出力は約270μWと計算される。 (3) If the heat radiation side is in an ideal state the same as outside air temperature, 1.3 ° C. is equal to the temperature difference T h -T c of the heat absorption side and the heat radiating side of the thermoelectric conversion element 20, a thermoelectric of ZT~1.0 Since the conversion efficiency of the conversion element 20 is converted to about 0.728%, in the case of a thermoelectric conversion element having an area of 3 cm 2 , the output is calculated to be about 270 μW.

(4)上記(3)の前提条件のうち、放熱効率が理想的でなく、放熱部材21による放熱の結果、吸熱側と放熱側の温度差が1.3℃の半分になる場合は、出力は約67.5μWとなる。 (4) Among the preconditions of (3) above, if the heat dissipation efficiency is not ideal and the temperature difference between the heat absorption side and the heat dissipation side is half of 1.3 ° C. Is about 67.5 μW.

(5)上記(3)の前提条件のうち、断熱層14の厚さを0.5cmとして閉鎖容器11を真空断熱、断熱壁面の熱放射率をアルミなどの金属表面の鏡面仕上げにより、0.1とすることで、温度差を1.0℃とした場合、真空断熱層の熱伝導は約1.8μW/mと見積もられる。0.0010〜0.0013Wm−1−1の断熱層(0.2mm厚のステンレス鋼SUS304等の金属シートを外壁とした断熱層の内部にグラスファイバー繊維を断熱部材の外形形状を保持するように配置して真空引きした構造の断熱部材、 同様熱伝導率の市販品例:U−Vacua(熱伝導率0.0012Wm−1−1、パナソニック株式会社 アプライアンス社製))の熱伝導は2.5cm厚のとき0.048W/mであるため、設計の最適化で断熱材の厚さを低減することができる。 (5) Among the preconditions of the above (3), the thickness of the heat insulation layer 14 is 0.5 cm, the closed container 11 is vacuum insulated, and the heat emissivity of the heat insulation wall surface is set to 0. 0 by mirror finishing of a metal surface such as aluminum. If the temperature difference is 1.0 ° C., the heat conduction of the vacuum heat insulating layer is estimated to be about 1.8 μW / m 2 . 0.0010 to 0.0013 Wm −1 K −1 heat insulation layer (to keep the outer shape of the heat insulation member with glass fiber fibers inside the heat insulation layer with a metal sheet such as 0.2 mm thick stainless steel SUS304 as the outer wall The heat conduction member of the heat-insulating member having a structure that is vacuum-evacuated by placing it in the same manner, and a commercially available example of the same thermal conductivity: U-Vacua (thermal conductivity 0.0012 Wm −1 K −1 , manufactured by Panasonic Corporation) is 2 Since the thickness is 0.048 W / m 2 when the thickness is 0.5 cm, the thickness of the heat insulating material can be reduced by optimizing the design.

なお、このような発電デバイスを温度センサ、湿度センサ或いは振動センサ等のセンサ及び送信器と組み合わせ、発電デバイスの出力をセンサ及び送信機の電源とすることによって、外部電源や電池を必要としないセンシングシステムを構築することができる。   Such a power generation device is combined with a sensor and transmitter such as a temperature sensor, a humidity sensor, or a vibration sensor, and the output of the power generation device is used as a power source for the sensor and the transmitter, so that no external power source or battery is required. A system can be constructed.

次に、図2及び図3を参照して、本発明の実施例1の振動型発電デバイスを説明する。図2は本発明の実施例1の振動型発電デバイスの概略的断面図であり、振動型発電デバイス30は、密閉容器31と、密閉容器31内に収容された一個のYSZ球36と、熱電変換モジュール40を備えている。熱電変換モジュール40の放熱側には放熱効率を高めるためにAl放熱フィン46を設ける。   Next, with reference to FIG.2 and FIG.3, the vibration type electric power generation device of Example 1 of this invention is demonstrated. FIG. 2 is a schematic cross-sectional view of the vibration power generation device according to the first embodiment of the present invention. The vibration power generation device 30 includes a sealed container 31, a YSZ sphere 36 accommodated in the sealed container 31, a thermoelectric device. A conversion module 40 is provided. On the heat radiation side of the thermoelectric conversion module 40, Al heat radiation fins 46 are provided in order to increase the heat radiation efficiency.

密閉容器31は、熱変換層となるエラストマー層32と、Al蓄熱層33と開口部35を設けた断熱層筐体34を備えており、開口部35において、熱電変換モジュール40の吸熱側をAl蓄熱層33に接触するように設ける。なお、エラストマー層32及びAl蓄熱層33は横2つ割の部材で形成し、また、断熱層筐体34はお茶缶のように端部が差し込み構造となった横2つ割の部材で形成している。   The sealed container 31 includes an elastomer layer 32 serving as a heat conversion layer, a heat insulating layer housing 34 provided with an Al heat storage layer 33 and an opening 35, and in the opening 35, the heat absorption side of the thermoelectric conversion module 40 is made of Al. Provided in contact with the heat storage layer 33. In addition, the elastomer layer 32 and the Al heat storage layer 33 are formed by a member divided into two horizontal parts, and the heat insulating layer casing 34 is formed by a member divided into two horizontal parts having an insertion structure at the end like a tea can. doing.

エラストマー層32の内寸は、直径45mmで高さが45mmであり、厚さは25mmである。Al蓄熱層33は、厚さが2mmであり、また、断熱層筐体34の厚さは30mmである。また、開口部35のサイズは3mm×3mmである。また、閉鎖空間内に収容するYSZ球36の直径は15mmである。   The inner dimensions of the elastomer layer 32 are 45 mm in diameter, 45 mm in height, and 25 mm in thickness. The Al heat storage layer 33 has a thickness of 2 mm, and the heat insulation layer housing 34 has a thickness of 30 mm. The size of the opening 35 is 3 mm × 3 mm. The diameter of the YSZ sphere 36 accommodated in the closed space is 15 mm.

図3は、本発明の実施例1の振動型発電デバイスに搭載する熱電変換モジュールの説明図であり、図3(a)は発電ユニットの斜視図であり、図3(b)は熱変換モジュールの透視斜視図である。図3(a)に示すように、発電ユニットは、100μm×100μm×高さ200μmのBiTeからなるp型熱電変換材料部材41と100μm×100μm×高さ200μmのBi0.3Sb1.7Teからなるn型熱電変換材料部材42を真空EB蒸着により0.5μm厚さで形成したNi膜またはNi-Cu合金膜をインタフェース金属層として介在させ、インタフェース金属層とCu膜からなる電極43を融点200°以下のはんだ材料で加熱接合して形成する。このCu膜は、この接合前に予めアルミナ等の板厚0.25mmのセラミック板44,44上にスクリーン印刷法で配線パターンを形成して、還元雰囲気で焼成して形成しておく。なお、図3(a)部分はp型部材,n型部材を各1個ずつから成る1対の熱電素子を示す。 FIG. 3 is an explanatory diagram of a thermoelectric conversion module mounted on the vibration power generation device according to the first embodiment of the present invention, FIG. 3A is a perspective view of the power generation unit, and FIG. 3B is a heat conversion module. FIG. As shown in FIG. 3A, the power generation unit includes a p-type thermoelectric conversion material member 41 made of Bi 2 Te 3 having a size of 100 μm × 100 μm × height 200 μm and Bi 0.3 Sb 1 having a size of 100 μm × 100 μm × height 200 μm. .7 Te 3 n-type thermoelectric conversion material member 42 formed by vacuum EB deposition to a thickness of 0.5 .mu.m, Ni film or Ni-Cu alloy film intervenes as an interface metal layer, and consists of an interface metal layer and a Cu film. The electrode 43 is formed by heat bonding with a solder material having a melting point of 200 ° or less. The Cu film, this forms a wiring pattern by screen printing on the pre-ceramic plate 44 1 of the plate thickness 0.25mm, such as alumina, 44 2 prior to bonding, previously formed by firing in a reducing atmosphere. 3A shows a pair of thermoelectric elements each including one p-type member and one n-type member.

図3(b)に示すように、このような発電ユニットをp型熱電変換部材41とn型熱電変換部材42が交互に隣接するように配置して電極43により直列接続させ、その上下にセラミック板44,44を設ける。また、出力部となる最終端部の電極43に電気出力線45,45を接続し、熱電変換素子のモジュールとする。図3(b)では、図示の簡潔化のため、8対の場合を示しているが、例えば200対とすることで、0.07〜0.08V/℃を得ることができる。20mV以上あれば、電圧をDC/DC昇圧コンバータで通常の電子回路の所要の駆動電圧に応じ、例えば1〜4Vに昇圧、定電圧出力を行う。 As shown in FIG. 3 (b), such a power generation unit is arranged so that p-type thermoelectric conversion members 41 and n-type thermoelectric conversion members 42 are alternately adjacent to each other and connected in series by electrodes 43, and ceramics are formed above and below them. Plates 44 1 and 44 2 are provided. In addition, the electric output lines 45 1 and 45 2 are connected to the electrode 43 at the final end serving as the output unit to form a thermoelectric conversion element module. In FIG. 3B, for simplicity of illustration, the case of 8 pairs is shown, but 0.07 to 0.08 V / ° C. can be obtained by using 200 pairs, for example. If it is 20 mV or more, the voltage is boosted to, for example, 1 to 4 V and a constant voltage is output according to a required drive voltage of a normal electronic circuit by a DC / DC boost converter.

このように、本発明の実施例1においては、機械振動を閉鎖空間に収容したYSZ球36の衝突運動に変換し、この運動エネネルギーをエラストマー層32との衝突で熱に変換している。したがって、どのような振動周期で振動している振動源に接触させてもその振動周期の影響を受けずに効率良く電気エネルギーに変換することができる。   As described above, in the first embodiment of the present invention, the mechanical vibration is converted into the collision motion of the YSZ sphere 36 accommodated in the closed space, and this motion energy is converted into heat by the collision with the elastomer layer 32. Therefore, even if it contacts with the vibration source which vibrates with what kind of vibration period, it can convert into electric energy efficiently, without being influenced by the vibration period.

なお、この実施例1においては、閉鎖空間を常圧の大気としているが、気体による振動状態への影響を低減でき、気体と剛体間の運動干渉が低減でき、剛体形状と気体による共振の発生を抑制できるので、真空状態にしたり、或いは、希ガス等の空気に比べて粘性の少ない気体を封入しても良い。   In the first embodiment, the closed space is the atmospheric pressure, but the influence of the gas on the vibration state can be reduced, the motion interference between the gas and the rigid body can be reduced, and the resonance of the rigid body shape and the gas is generated. Therefore, a vacuum state or a gas having less viscosity than air such as a rare gas may be sealed.

次に、図4を参照して、本発明の実施例2の振動型発電デバイスを説明するが、この実施例2の振動型発電デバイスは、上記の実施例1の振動型発電デバイスと基本構造は同一であり、閉鎖空間内に収容する剛体の材料と個数が異なる。   Next, the vibration type power generation device of Example 2 of the present invention will be described with reference to FIG. 4. The vibration type power generation device of Example 2 is the same as the vibration type power generation device of Example 1 described above. Are the same and differ in the number of rigid materials contained in the enclosed space.

図4は、本発明の実施例2の振動型発電デバイスの概略的断面図であり、実施例1と同様に、振動型発電デバイス30は、エラストマー層32、Al蓄熱層33及び断熱層筐体34を備えた密閉容器31と、断熱層筐体34に設けた開口部35に配置した熱電変換モジュール40を備えている。熱電変換モジュール40の放熱側には放熱効率を高めるためにAl放熱フィン46を設ける。但し、この実施例2においては、閉鎖空間内に直径が7.14mm(インチ呼び径9/32)の炭素鋼球37を複数個収容する。ここでは、収容する炭素鋼球37の個数は7個とするが、炭素鋼球37のサイズ及び個数は密閉容器31の内部を可動できる範囲であれば良く、7.14mm及び7個に限定されない。   FIG. 4 is a schematic cross-sectional view of the vibration power generation device according to the second embodiment of the present invention. Like the first embodiment, the vibration power generation device 30 includes an elastomer layer 32, an Al heat storage layer 33, and a heat insulation layer casing. The thermoelectric conversion module 40 arrange | positioned in the airtight container 31 provided with 34 and the opening part 35 provided in the heat insulation layer housing | casing 34 is provided. On the heat radiation side of the thermoelectric conversion module 40, Al heat radiation fins 46 are provided in order to increase the heat radiation efficiency. However, in Example 2, a plurality of carbon steel balls 37 having a diameter of 7.14 mm (inch nominal diameter 9/32) are accommodated in the closed space. Here, the number of carbon steel balls 37 to be accommodated is seven, but the size and number of the carbon steel balls 37 are not limited to 7.14 mm and seven as long as the inside of the closed container 31 can be moved. .

本発明の実施例2においては、複数の炭素鋼球37を収容しているが、炭素鋼球37同士の衝突は弾性衝突に近くなるので、運動エネルギーが球同士の衝突により熱エネルギーへ変化する割合は、エラストマー層32に衝突する場合に比べ少ない。一方、エラストマー層32に衝突した時に炭素鋼球37の運動エネルギーはエラストマー層32において、相対的に効率良く熱に変換される。また、炭素鋼球37が1個の場合に比べ、容器を動かし、炭素鋼球37が容器内壁に衝突したときの反力の方向や衝突タイミングを分散しやすい。なお、炭素鋼球37に代え、セラミックス材料のうち高破壊靱性(約5.0MPam1/2)、高曲げ強度(1.0GPa以上)が得られるYSZの球も用いることができる。 In Example 2 of the present invention, a plurality of carbon steel balls 37 are accommodated, but the collision between the carbon steel balls 37 is close to an elastic collision, so that the kinetic energy changes to thermal energy due to the collision between the balls. The ratio is smaller than that in the case of colliding with the elastomer layer 32. On the other hand, the kinetic energy of the carbon steel ball 37 is converted into heat relatively efficiently in the elastomer layer 32 when it collides with the elastomer layer 32. Moreover, compared with the case where the number of the carbon steel balls 37 is one, the direction of the reaction force and the collision timing when the container is moved and the carbon steel balls 37 collide with the inner wall of the container are easily dispersed. In place of the carbon steel balls 37, YSZ spheres that can obtain high fracture toughness (about 5.0 MPam 1/2 ) and high bending strength (1.0 GPa or more) among ceramic materials can also be used.

次に、図5を参照して、本発明の実施例3の振動型発電デバイスを説明するが、基本的構成は上記の実施例1の振動型発電デバイスと同様であり、断熱層筐体の底部に粘着層を設けたものである。   Next, the vibration type power generation device according to the third embodiment of the present invention will be described with reference to FIG. 5, but the basic configuration is the same as that of the vibration type power generation device according to the first embodiment described above. An adhesive layer is provided at the bottom.

図5は、本発明の実施例3の振動型発電デバイスの概略的断面図であり、実施例1と同様に、振動型発電デバイス30は、エラストマー層32、Al蓄熱層33及び断熱層筐体34を備えた密閉容器31と、断熱層筐体34に設けた開口部35に配置した熱電変換モジュール40を備えている。熱電変換モジュール40の放熱側には放熱効率を高めるためにAl放熱フィン46を設ける。   FIG. 5 is a schematic cross-sectional view of the vibration power generation device according to the third embodiment of the present invention. Like the first embodiment, the vibration power generation device 30 includes an elastomer layer 32, an Al heat storage layer 33, and a heat insulation layer casing. The thermoelectric conversion module 40 arrange | positioned in the airtight container 31 provided with 34 and the opening part 35 provided in the heat insulation layer housing | casing 34 is provided. On the heat radiation side of the thermoelectric conversion module 40, Al heat radiation fins 46 are provided in order to increase the heat radiation efficiency.

但し、この実施例3においては、断熱層筐体34の底部に粘着層38を設け、この粘着層38を保護するように剥離シート39を設けたものである。使用時には、剥離シート39を剥離して、露出した粘着層38により振動型発電デバイス30を振動源に粘着すれば良い。   However, in Example 3, an adhesive layer 38 is provided at the bottom of the heat insulating layer casing 34, and a release sheet 39 is provided so as to protect the adhesive layer 38. In use, the release sheet 39 is peeled off, and the vibration power generation device 30 may be attached to the vibration source by the exposed adhesive layer 38.

本発明の実施例3においては、予め粘着層38を設けているので、振動型発電デバイスを橋梁やモーター等の振動源に固定するときに、締め付け部材等の固定器具が不要になり、ワンタッチで装着することができる。   In Example 3 of the present invention, since the adhesive layer 38 is provided in advance, when the vibration power generation device is fixed to a vibration source such as a bridge or a motor, a fixing device such as a fastening member is not required, and one-touch. Can be installed.

次に、図6を参照して、本発明の実施例4のセンシングシステムを説明する。図6は、本発明の実施例4のセンシングシステムの概念的構成図であり、振動源50に対して振動型発電デバイス30を固定するとともに、センサ61及び送信機62を備えた警報モジュール60を固定する。また、このモジュール60は、DC−DC昇圧コンバータと電圧レギュレータと2次蓄電池ないし電気2重層キャパシタを実装した電源部、マイクロコントーラを搭載した制御回路部を備える。警報モジュール60には電気出力線45,45を介して振動型発電デバイス30から電力を供給する。なお、ここでは、振動型発電デバイスとして、実施例3に示した振動型発電デバイス30を用いて、粘着層38を利用して振動源50に固定する。 Next, with reference to FIG. 6, the sensing system of Example 4 of this invention is demonstrated. FIG. 6 is a conceptual configuration diagram of the sensing system according to the fourth embodiment of the present invention, in which the vibration power generation device 30 is fixed to the vibration source 50 and the alarm module 60 including the sensor 61 and the transmitter 62 is provided. Fix it. The module 60 also includes a power supply unit on which a DC-DC boost converter, a voltage regulator, a secondary storage battery or an electric double layer capacitor are mounted, and a control circuit unit on which a microcontroller is mounted. Electric power is supplied to the alarm module 60 from the vibration power generation device 30 via the electric output lines 45 1 and 45 2 . Here, the vibration type power generation device 30 shown in Example 3 is used as the vibration type power generation device, and the adhesive layer 38 is used to fix the vibration type power generation device 30 to the vibration source 50.

例えば、橋梁等の振動源50に振動型発電デバイス30を固定し、その振動を電気エネルギーに変換する。センサ61として、振動センサを用いた場合、振動源の振動とは異なる地震による重力加速度の変動を検知し、その検出結果を地震情報として、送信機62により橋を走行している車両に報知することができる。   For example, the vibration power generation device 30 is fixed to a vibration source 50 such as a bridge, and the vibration is converted into electric energy. When a vibration sensor is used as the sensor 61, a change in gravitational acceleration due to an earthquake different from the vibration of the vibration source is detected, and the detection result is notified as earthquake information to the vehicle traveling on the bridge by the transmitter 62. be able to.

このように、本発明の実施例4においては、センシングシステムの電源として振動型発電デバイスを用いているので、警報モジュール60に対して外部電源を用意する必要はなく且つそのために配線を設ける必要もなくなる。   As described above, in the fourth embodiment of the present invention, the vibration type power generation device is used as the power source of the sensing system. Disappear.

なお、上記の実施例4においては、橋梁に設ける地震警報システムの電源として説明しているが、振動源はモーターや工作機械等でも良く、また、センサとして温度センサ或いは湿度センサを用いても良い。この場合には、モーターや工作機械の局所的な箇所に振動型発電デバイスと警報モジュールを固定することによって、局所的な温度管理や湿度管理を簡便に行うことができる。   In the fourth embodiment, the power source of the earthquake warning system provided on the bridge is described. However, the vibration source may be a motor, a machine tool, or the like, and a temperature sensor or a humidity sensor may be used as the sensor. . In this case, local temperature management and humidity management can be easily performed by fixing the vibration power generation device and the alarm module at a local location of the motor or machine tool.

ここで、実施例1乃至実施例4を含む本発明の実施の形態に関して、以下の付記を付す。
(付記1)剛体と、前記剛体を可動な状態で収容する閉鎖容器とを備え、前記閉鎖容器は、前記剛体の剛性率より剛性率が低く前記剛体の衝突エネルギーを熱に変換する熱変換層と、前記熱変換層の外側の表面を覆う蓄熱層と、前記蓄熱層の外側の表面を覆うとともに開口部を有する断熱層と前記開口部に設けられて前記蓄熱層に当接する熱電変換素子とを備えることを特徴とする発電デバイス。
(付記2)前記剛体を複数収容することを特徴とする付記1に記載の発電デバイス。
(付記3)前記熱変換層が、エストラマーまたは粘弾性を有する高分子化合物からなることを特徴とする付記1または付記2に記載の発電デバイス。
(付記4)前記蓄熱層が、Cuと同じまたはCuより比熱の大きな金属または合金からなることを特徴とする付記1乃至付記3のいずれか1に記載の発電デバイス。
(付記5)前記剛体が、炭素鋼またはイットリア安定化ジルコニアからなることを特徴とする付記1乃至付記4のいずれか1に記載の発電デバイス。
(付記6)前記断熱層の外側の少なくとも一部に設けられた粘着層と、前記粘着層の表面に設けられた剥離シートとを有することを特徴とする付記1乃至付記5のいずれか1に記載の発電デバイス。
(付記7)振動源と、前記振動源に固定された付記1乃至付記のいずれか1に記載の発電デバイスと、前記発電デバイスを電源とするセンサ素子とを備えたことを特徴とするセンシングシステム。
(付記8)振動源と、前記振動源に前記剥離シートを剥離した状態で前記粘着層により固定された付記6に記載の発電デバイスと、前記発電デバイスを電源とするセンサ素子とを備えたことを特徴とするセンシングシステム。
(付記)前記センサ素子の検出結果を送信する送信機を備えており、前記送信機は前記発電デバイスを電源としていることを特徴とする付記に記載のセンシングシステム。
Here, the following supplementary notes are attached to the embodiments of the present invention including Examples 1 to 4.
(Additional remark 1) It is provided with the rigid body and the closed container which accommodates the said rigid body in a movable state, and the said closed container has a rigidity rate lower than the rigid modulus of the said rigid body, and converts the collision energy of the said rigid body into heat | fever A heat storage layer covering the outer surface of the heat conversion layer, a heat insulating layer covering the outer surface of the heat storage layer and having an opening, and a thermoelectric conversion element provided in the opening and contacting the heat storage layer A power generation device comprising:
(Supplementary note 2) The power generation device according to supplementary note 1, wherein a plurality of the rigid bodies are accommodated.
(Additional remark 3) The said heat conversion layer consists of a high molecular compound which has an elastomer or a viscoelasticity, The electric power generating device of Additional remark 1 or Additional remark 2 characterized by the above-mentioned.
(Supplementary note 4) The power generation device according to any one of supplementary notes 1 to 3, wherein the heat storage layer is made of a metal or an alloy having the same specific heat as Cu or a specific heat larger than Cu.
(Supplementary note 5) The power generation device according to any one of supplementary notes 1 to 4, wherein the rigid body is made of carbon steel or yttria-stabilized zirconia.
(Supplementary note 6) In any one of Supplementary notes 1 to 5, wherein the adhesive layer includes an adhesive layer provided on at least a part of the outside of the heat insulating layer, and a release sheet provided on the surface of the adhesive layer. The described power generation device.
(Supplementary note 7) Sensing comprising: a vibration source; the power generation device according to any one of supplementary notes 1 to 5 fixed to the vibration source; and a sensor element using the power generation device as a power source. system.
(Supplementary note 8) A vibration source, the power generation device according to supplementary note 6 fixed by the adhesive layer in a state where the release sheet is peeled off from the vibration source, and a sensor element using the power generation device as a power source. Sensing system characterized by
(Supplementary note 9 ) The sensing system according to supplementary note 8 , further comprising a transmitter that transmits a detection result of the sensor element, wherein the transmitter uses the power generation device as a power source.

10 発電デバイス
11 閉鎖容器
12 熱変換層
13 蓄熱槽
14 断熱層
15 開口部
16 剛体
20 熱電変換素子
21 放熱部材
22,22 電気出力線
30 振動型発電デバイス
31 密閉容器
32 エラストマー層
33 Al蓄熱層
34 断熱層筐体
35 開口部
36 YSZ球
37 炭素鋼球
38 粘着層
39 剥離シート
40 熱電変換モジュール
41 p型熱電変換部材
42 n型熱電変換部材
43 電極
44,44 セラミック板
45,45 電気出力線
46 Al放熱フィン
50 振動源
60 警報器
61 センサ
62 送信機
10 harvesting device 11 enclosure 12 heat conversion layer 13 heat storage tank 14 thermal insulation layer 15 openings 16 rigid 20 thermoelectric conversion element 21 radiating member 22 1, 22 2 electrical output lines 30 vibratory generator device 31 sealed container 32 the elastomeric layer 33 Al heat storage Layer 34 heat insulation layer housing 35 opening 36 YSZ sphere 37 carbon steel ball 38 adhesive layer 39 release sheet 40 thermoelectric conversion module 41 p-type thermoelectric conversion member 42 n-type thermoelectric conversion member 43 electrodes 44 1 , 44 2 ceramic plate 45 1 , 45 2 Electric output line 46 Al heat radiating fin 50 Vibration source 60 Alarm 61 Sensor 62 Transmitter

Claims (6)

剛体と、
前記剛体を可動な状態で収容する閉鎖容器と
を備え、
前記閉鎖容器は、前記剛体の剛性率より剛性率が低く前記剛体の衝突エネルギーを熱に変換する熱変換層と、
前記熱変換層の外側の表面を覆う蓄熱層と、
前記蓄熱層の外側の表面を覆うとともに開口部を有する断熱層と
前記開口部に設けられて前記蓄熱層に当接する熱電変換素子と
を備えることを特徴とする発電デバイス。
A rigid body,
A closed container for accommodating the rigid body in a movable state;
The closed container has a heat conversion layer that converts the collision energy of the rigid body into heat, the rigidity of which is lower than the rigidity of the rigid body,
A heat storage layer covering the outer surface of the heat conversion layer;
A power generation device comprising: a heat insulating layer that covers an outer surface of the heat storage layer and has an opening; and a thermoelectric conversion element that is provided in the opening and contacts the heat storage layer.
前記剛体を複数収容したことを特徴とする請求項1に記載の発電デバイス。   The power generation device according to claim 1, wherein a plurality of the rigid bodies are accommodated. 前記蓄熱層が、Cuと同じまたはCuより比熱の大きな金属または合金からなることを特徴とする請求項1または請求項2に記載の発電デバイス。   The power generation device according to claim 1, wherein the heat storage layer is made of a metal or alloy that is the same as Cu or has a specific heat larger than Cu. 前記断熱層の外側の少なくとも一部に設けられた粘着層と、
前記粘着層の表面に設けられた剥離シートと
を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の発電デバイス。
An adhesive layer provided on at least a part of the outside of the heat insulating layer;
It has a peeling sheet provided in the surface of the said adhesion layer, The power generation device of any one of Claim 1 thru | or 3 characterized by the above-mentioned.
振動源と、
前記振動源に固定された請求項1乃至請求項のいずれか1項に記載の発電デバイスと、
前記発電デバイスを電源とするセンサ素子と
を備えたことを特徴とするセンシングシステム。
A vibration source;
The power generation device according to any one of claims 1 to 3 , which is fixed to the vibration source,
A sensing system comprising a sensor element that uses the power generation device as a power source.
振動源と、A vibration source;
前記振動源に前記剥離シートを剥離した状態で前記粘着層により固定された請求項4に記載の発電デバイスと、The power generation device according to claim 4 fixed by the adhesive layer in a state where the release sheet is peeled off to the vibration source,
前記発電デバイスを電源とするセンサ素子とA sensor element using the power generation device as a power source;
を備えたことを特徴とするセンシングシステム。Sensing system characterized by comprising
JP2012204271A 2012-09-18 2012-09-18 Power generation device and sensing system Active JP6019981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204271A JP6019981B2 (en) 2012-09-18 2012-09-18 Power generation device and sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204271A JP6019981B2 (en) 2012-09-18 2012-09-18 Power generation device and sensing system

Publications (2)

Publication Number Publication Date
JP2014060257A JP2014060257A (en) 2014-04-03
JP6019981B2 true JP6019981B2 (en) 2016-11-02

Family

ID=50616477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204271A Active JP6019981B2 (en) 2012-09-18 2012-09-18 Power generation device and sensing system

Country Status (1)

Country Link
JP (1) JP6019981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566274B2 (en) 2008-12-15 2017-02-14 Banner Life Sciences Llc Methods for enhancing the release and absorption of water insoluble active agents

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226997A (en) * 2015-10-03 2016-01-06 淄博夸克医药技术有限公司 A kind of renewable new forms of energy are converted into the device of electric energy
CN105508487B (en) * 2016-01-24 2017-09-29 中国地质大学(武汉) Double dampings and double compound damping devices that generate electricity
CN105584921B (en) * 2016-02-29 2017-12-22 广州广日电梯工业有限公司 A kind of energy saving system of elevator
CN107342709B (en) * 2017-06-23 2019-10-18 北京科技大学 A kind of compound energy system being collected simultaneously gas mechanical energy and thermal energy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128127A (en) * 1984-11-28 1986-06-16 Fuji Photo Film Co Ltd Supersonic wave pressure intensity measurement and apparatus therefor
JP2000012916A (en) * 1998-06-19 2000-01-14 Seiko Instruments Inc Thermo-element and power-generating device
US20070074752A1 (en) * 2005-09-05 2007-04-05 Shau Albert Y Electrical power generators
JP2009113559A (en) * 2007-11-02 2009-05-28 Toyota Motor Corp Energy regeneration apparatus for vehicle
JP2009125890A (en) * 2007-11-27 2009-06-11 Yokogawa Electric Corp Planar motor
JP2011057124A (en) * 2009-09-11 2011-03-24 Toyota Motor Corp Braking device for vehicle
WO2011104772A1 (en) * 2010-02-26 2011-09-01 富士通株式会社 Power generation device, power generation method, and process for production of power generation device
EP2641282A4 (en) * 2010-11-16 2014-07-02 Eletron Holding Llc Systems, methods and/or apparatus for thermoelectric energy generation
US20120192908A1 (en) * 2011-02-01 2012-08-02 Simmonds Precision Products, Inc. Sinkless thermoelectric energy generator
JP5880578B2 (en) * 2012-01-05 2016-03-09 富士通株式会社 Power generator
JP5783634B2 (en) * 2012-03-05 2015-09-24 カヤバ工業株式会社 Shock absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566274B2 (en) 2008-12-15 2017-02-14 Banner Life Sciences Llc Methods for enhancing the release and absorption of water insoluble active agents

Also Published As

Publication number Publication date
JP2014060257A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP6019981B2 (en) Power generation device and sensing system
Ahmad et al. Review of vibration‐based electromagnetic–piezoelectric hybrid energy harvesters
Kim et al. A review of piezoelectric energy harvesting based on vibration
Bouendeu et al. A low-cost electromagnetic generator for vibration energy harvesting
US20080252174A1 (en) Energy harvesting from multiple piezoelectric sources
Liao et al. Structural effects and energy conversion efficiency of power harvesting
WO2006085915A2 (en) Method and system using liquid dielectric for electrostatic power generation
WO2011056524A2 (en) Nonlinear oscillator for vibration energy harvesting
CN109150007A (en) A kind of magnetic suspension vibrating prisoner energy battery
Rodrigues et al. Hybridizing Triboelectric and Thermomagnetic Effects: A Novel Low‐Grade Thermal Energy Harvesting Technology
JP2009165212A (en) Power generation element using piezoelectric material, and generating set using the power generation element
JP5760561B2 (en) Piezoelectric power generator and electronic device including the piezoelectric power generator
JP2011066970A (en) Piezoelectric generator
KR20140073063A (en) Piezoelectric generator
De Pasquale Energy harvesters for powering wireless systems
KR101500359B1 (en) Piezoelectric power generator
JP2013077646A (en) Dielectric thin film device for electrostatic induction type power generation device
JPWO2013103009A1 (en) Power generator
JP6239897B2 (en) Sensor device
Li et al. High-performance low-frequency MEMS energy harvester via partially covering PZT thick film
KR101332006B1 (en) Omnidirectional vibration based energy harvester
JP5906586B2 (en) Vibration isolator of loom
KR20140108145A (en) System for cooling devices
KR101338392B1 (en) Hybrid generator having piezoelectric element
Xiangjian et al. Energy conversion efficiency of rainbow shape piezoelectric transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150