JP6019417B2 - Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell - Google Patents

Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell Download PDF

Info

Publication number
JP6019417B2
JP6019417B2 JP2015085535A JP2015085535A JP6019417B2 JP 6019417 B2 JP6019417 B2 JP 6019417B2 JP 2015085535 A JP2015085535 A JP 2015085535A JP 2015085535 A JP2015085535 A JP 2015085535A JP 6019417 B2 JP6019417 B2 JP 6019417B2
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor substrate
cleaving
dividing groove
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015085535A
Other languages
Japanese (ja)
Other versions
JP2015159317A (en
Inventor
裕幸 神納
裕幸 神納
島 正樹
正樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015085535A priority Critical patent/JP6019417B2/en
Publication of JP2015159317A publication Critical patent/JP2015159317A/en
Application granted granted Critical
Publication of JP6019417B2 publication Critical patent/JP6019417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、半導体基板を折り曲げることにより割断する半導体基板の割断方法及び太陽電池の割断方法並びに太陽電池に関する。   The present invention relates to a semiconductor substrate cleaving method, a solar cell cleaving method, and a solar cell, which are cleaved by bending the semiconductor substrate.

従来、太陽電池に用いられる半導体基板として、インゴット状単結晶シリコンを薄く切断した単結晶シリコン基板が用いられている。インゴット状単結晶シリコンは、チョクラルスキー法(CZ法)や浮遊帯域融解法(FZ法)により作製され、種子結晶と同じ結晶方位を有する。   Conventionally, a single crystal silicon substrate obtained by thinly cutting ingot-shaped single crystal silicon has been used as a semiconductor substrate used for solar cells. Ingot-like single crystal silicon is produced by the Czochralski method (CZ method) or the floating zone melting method (FZ method), and has the same crystal orientation as the seed crystal.

単結晶シリコン基板を太陽電池の半導体基板として使用する場合には、太陽電池モジュールの受光面積を大きくするために、円板形の単結晶シリコン基板を多角形に分割して使用する(例えば、特許文献1)。具体的には、レーザーまたはダイシングソーなどにより単結晶シリコン基板に複数の分割溝を形成した後に、分割溝に沿って折り曲げることにより、単結晶シリコン基板を割断する方法が採用されている。   When a single crystal silicon substrate is used as a semiconductor substrate of a solar cell, the disk-shaped single crystal silicon substrate is divided into polygons to increase the light receiving area of the solar cell module (for example, patents) Reference 1). Specifically, a method of cleaving the single crystal silicon substrate by forming a plurality of divided grooves in the single crystal silicon substrate with a laser or a dicing saw and then bending the divided grooves along the divided grooves is employed.

特開平9−148601号公報JP-A-9-148601

ここで、シリコンはダイヤモンド結晶構造を有するため、例えば(100)面を有する単結晶シリコン基板は、(011)面と(0−1−1)面との2つの劈開面を有する。単結晶シリコン基板は、劈開面と平行な面に沿って割れやすい性質を有する。従って、分割溝に沿って折り曲げることにより割断する場合、劈開面と平行に形成された分割溝を割断するために必要な力は、劈開面と平行に形成されていない分割溝を割断するために必要な力よりも小さい。即ち、一部の分割溝が劈開面と平行に形成されている場合には、全ての分割溝に均一な力をかけることができない。   Here, since silicon has a diamond crystal structure, for example, a single crystal silicon substrate having a (100) plane has two cleavage planes, a (011) plane and a (0-1-1) plane. The single crystal silicon substrate has a property of being easily broken along a plane parallel to the cleavage plane. Therefore, when cleaving by bending along the dividing groove, the force necessary to cleave the dividing groove formed in parallel with the cleavage plane is to break the dividing groove not formed in parallel with the cleavage surface. Less than required force. That is, when some of the dividing grooves are formed in parallel with the cleavage plane, it is impossible to apply a uniform force to all of the dividing grooves.

このような不均一な力が単結晶シリコン基板にかかると、単結晶シリコン基板の一部に応力が集中し、単結晶シリコン基板に割れが生じるという問題があった。また、このような問題は、単結晶シリコン基板に限らず、GaAsなどの閃亜鉛鉱型構造を有するIII-V族化合物半導体基板においても同様であった。   When such a non-uniform force is applied to the single crystal silicon substrate, there is a problem that stress concentrates on a part of the single crystal silicon substrate and the single crystal silicon substrate is cracked. Such a problem is not limited to a single crystal silicon substrate, but also applies to a III-V group compound semiconductor substrate having a zinc blende type structure such as GaAs.

そこで、本発明は、上述した課題に鑑みなされたものであり、半導体基板を割断する際に、全ての分割溝に均一な力を加える半導体基板の割断方法及び太陽電池の割断方法並びに太陽電池を提供することを目的とする。   Then, this invention is made | formed in view of the subject mentioned above, and when cleaving a semiconductor substrate, the cleaving method of a semiconductor substrate which applies a uniform force to all the dividing grooves, the cleaving method of a solar cell, and a solar cell The purpose is to provide.

本発明の第1の特徴に係る半導体基板の割断方法は、半導体基板上に、所定の深さを有する分割溝を形成する工程と、前記分割溝に沿って前記半導体基板を折り曲げることにより、前記分割溝に沿って前記半導体基板を割断する工程とを備え、前記分割溝は、前記半導体基板の劈開面と平行ではないことを要旨とする。   According to a first aspect of the present invention, there is provided a method for cleaving a semiconductor substrate, comprising: forming a division groove having a predetermined depth on a semiconductor substrate; and bending the semiconductor substrate along the division groove. A step of cleaving the semiconductor substrate along the dividing groove, and the dividing groove is not parallel to the cleavage plane of the semiconductor substrate.

本発明の第1の特徴に係る半導体基板の割断方法によれば、半導体基板の劈開面と平行にならないように分割溝を形成し、分割溝に沿って半導体基板を折り曲げることにより、
分割溝に沿って半導体基板を割断する。従って、分割溝が半導体基板の劈開面と平行ではないため、半導体基板を割断する際に、全ての分割溝に均一な力を加えることができる。即ち、半導体基板を割断する際に、半導体基板の一部に応力が集中しない。その結果、半導体基板は割れを生じることなく割断されるため、半導体基板の分割工程における歩留まりを向上することができる。
According to the method for cleaving a semiconductor substrate according to the first aspect of the present invention, by forming a dividing groove so as not to be parallel to the cleavage plane of the semiconductor substrate, and bending the semiconductor substrate along the dividing groove,
The semiconductor substrate is cleaved along the dividing groove. Therefore, since the dividing grooves are not parallel to the cleavage plane of the semiconductor substrate, a uniform force can be applied to all the dividing grooves when the semiconductor substrate is cleaved. That is, when the semiconductor substrate is cleaved, stress is not concentrated on a part of the semiconductor substrate. As a result, since the semiconductor substrate is cleaved without causing cracks, the yield in the semiconductor substrate dividing step can be improved.

本発明の第2の特徴に係る太陽電池の割断方法は、半導体基板を用いた半導体pn接合又は半導体pin接合を有する光電変換部を形成する工程と、前記光電変換部上に所定のパターンで集電電極を形成する工程と、前記光電変換部上に、所定の深さを有する分割溝を、前記所定のパターンに応じて形成する工程と、前記分割溝に沿って前記光電変換部を折り曲げることにより、前記分割溝に沿って前記光電変換部を割断する工程とを備え、前記分割溝は、前記半導体基板の劈開面と平行ではないことを要旨とする。   A method for cleaving a solar cell according to a second feature of the present invention includes a step of forming a photoelectric conversion part having a semiconductor pn junction or a semiconductor pin junction using a semiconductor substrate, and a predetermined pattern on the photoelectric conversion part. Forming a conductive electrode; forming a dividing groove having a predetermined depth on the photoelectric conversion unit according to the predetermined pattern; and bending the photoelectric conversion unit along the dividing groove. And the step of cleaving the photoelectric conversion unit along the dividing groove, and the dividing groove is not parallel to the cleavage plane of the semiconductor substrate.

本発明の第3の特徴に係る太陽電池は、半導体基板を用いた半導体pn接合又は半導体pin接合を有する光電変換部と、前記光電変換部上に所定のパターンで形成された集電電極とを備え、前記光電変換部の側面は、折り曲げることにより割断された割断面を含んでおり、前記割断面は、前記半導体基板の劈開面と平行ではないことを要旨とする。   A solar cell according to a third aspect of the present invention includes a photoelectric conversion unit having a semiconductor pn junction or a semiconductor pin junction using a semiconductor substrate, and a collector electrode formed in a predetermined pattern on the photoelectric conversion unit. And the side surface of the photoelectric conversion part includes a cleaved surface that is cleaved by bending, and the gist is that the cleaved surface is not parallel to the cleavage plane of the semiconductor substrate.

本発明によれば、半導体基板を割断する際に、全ての分割溝に均一な力を加える半導体基板の割断方法及び太陽電池の割断方法並びに太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when cleaving a semiconductor substrate, the cleaving method of the semiconductor substrate which applies uniform force to all the division | segmentation grooves, the cleaving method of a solar cell, and a solar cell can be provided.

次に、図面を用いて、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
〈太陽電池モジュールの構成〉
Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
<Configuration of solar cell module>

図1及び図2を用いて本実施形態に係る太陽電池モジュール100の構成について説明する。図1は、本実施形態に係る太陽電池モジュール100の断面図である。図2は、本実施形態に係る太陽電池101の拡大断面図である。なお、図2においては、下方面を太陽電池101の受光面として示している。   A configuration of the solar cell module 100 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of a solar cell module 100 according to the present embodiment. FIG. 2 is an enlarged cross-sectional view of the solar cell 101 according to the present embodiment. In FIG. 2, the lower surface is shown as the light receiving surface of the solar cell 101.

太陽電池モジュール100は、太陽電池101、配線材102、封止材103、受光面側保護材104、及び裏面側保護材105を備える。   The solar cell module 100 includes a solar cell 101, a wiring material 102, a sealing material 103, a light receiving surface side protective material 104, and a back surface side protective material 105.

太陽電池101は、図2に示すように、光電変換部10、受光面側集電電極6及び裏面側集電電極7とを備える。   As shown in FIG. 2, the solar cell 101 includes a photoelectric conversion unit 10, a light receiving surface side collector electrode 6, and a back surface side collector electrode 7.

光電変換部10は、受光によりキャリアを生成する。キャリアとは、光が光電変換部10に吸収されることにより生成される一対の正孔と電子をいう。本実施形態に係る光電変換部10は、半導体pin接合を基本構造として有する。具体的には、光電変換部10は、n型単結晶シリコン基板1、i型非晶質シリコン層2i、p型非晶質シリコン層2p、透明導電膜3、i型非晶質シリコン層4i、n型非晶質シリコン層4n及び透明導電膜5を備える。n型単結晶シリコン基板1の受光面(下方面)側には、i型非晶質シリコン層2iと、p型非晶質シリコン層2pと、透明導電膜3とが順次積層されている。また、n型単結晶シリコン基板1の裏面(上方面)側では、i型非晶質シリコン層4iと、n型非晶質シリコン層4nと、透明導電膜5とが順次積層されている。   The photoelectric conversion unit 10 generates carriers by receiving light. The carrier refers to a pair of holes and electrons generated when light is absorbed by the photoelectric conversion unit 10. The photoelectric conversion unit 10 according to the present embodiment has a semiconductor pin junction as a basic structure. Specifically, the photoelectric conversion unit 10 includes an n-type single crystal silicon substrate 1, an i-type amorphous silicon layer 2i, a p-type amorphous silicon layer 2p, a transparent conductive film 3, and an i-type amorphous silicon layer 4i. The n-type amorphous silicon layer 4n and the transparent conductive film 5 are provided. On the light-receiving surface (lower surface) side of the n-type single crystal silicon substrate 1, an i-type amorphous silicon layer 2i, a p-type amorphous silicon layer 2p, and a transparent conductive film 3 are sequentially stacked. On the back surface (upper surface) side of the n-type single crystal silicon substrate 1, an i-type amorphous silicon layer 4i, an n-type amorphous silicon layer 4n, and a transparent conductive film 5 are sequentially stacked.

ここで、本実施形態に係る光電変換部10の側面は、折り曲げることにより割断された割断面を含んでおり、割断面は、n型単結晶シリコン基板1の劈開面と平行ではない。このような割断面は、本発明の特徴的部分に係るため、割断面を形成するための割断方法について後に詳述する。   Here, the side surface of the photoelectric conversion unit 10 according to the present embodiment includes a fractured surface that is cleaved by bending, and the fractured surface is not parallel to the cleavage plane of the n-type single crystal silicon substrate 1. Since such a fractured surface relates to a characteristic part of the present invention, a cleavage method for forming the fractured surface will be described in detail later.

受光面側集電電極6は、透明導電膜3の受光面上に、櫛形状に形成されている。裏面側集電電極7は、透明導電膜5の裏面上に、櫛形状に形成されている。受光面側集電電極6及び裏面側集電電極7は、光電変換部10が受光により生成する光生成キャリアを収集する。   The light receiving surface side collecting electrode 6 is formed in a comb shape on the light receiving surface of the transparent conductive film 3. The back surface side collecting electrode 7 is formed in a comb shape on the back surface of the transparent conductive film 5. The light-receiving surface side collecting electrode 6 and the back surface side collecting electrode 7 collect light-generated carriers that the photoelectric conversion unit 10 generates by receiving light.

以上のような構成の太陽電池101を備える太陽電池モジュール100は、HIT型太陽電池モジュールと呼ばれる。太陽電池101は、配線材102によって互いに電気的に接続されている。   The solar cell module 100 including the solar cell 101 configured as described above is called a HIT type solar cell module. The solar cells 101 are electrically connected to each other by the wiring material 102.

封止材103は、配線材102によって互いに電気的に接続された複数の太陽電池101を封止している。封止材103は、EVA(エチレン・ビニル・アセチレート)やPVB(ポリ・ビニル・ブチラール)などの樹脂材料を用いて形成することができる。   The sealing material 103 seals a plurality of solar cells 101 that are electrically connected to each other by the wiring material 102. The sealing material 103 can be formed using a resin material such as EVA (ethylene / vinyl / acetylate) or PVB (poly / vinyl / butyral).

受光面側保護材104は、太陽電池101が吸収できる波長の光の大半を透過させる部材を用いて構成される。受光面側保護材104として、ガラスやプラスチック等を用いることができる。   The light-receiving surface side protective material 104 is configured using a member that transmits most of light having a wavelength that can be absorbed by the solar cell 101. As the light receiving surface side protective material 104, glass, plastic, or the like can be used.

裏面側保護材105は、PET(ポリエチレンテレフタラート)等の樹脂フィルム、アルミナ等の金属酸化物の蒸着膜が形成された樹脂フィルム、アルミ箔等の金属フィルム、もしくは、これらを積層したフィルムである。
〈太陽電池モジュール100の製造方法〉
The back surface side protective material 105 is a resin film such as PET (polyethylene terephthalate), a resin film on which a metal oxide vapor deposition film such as alumina is formed, a metal film such as aluminum foil, or a film in which these are laminated. .
<Method for Manufacturing Solar Cell Module 100>

本実施形態に係る太陽電池モジュール100の製造方法について説明する。まず、インゴット状n型単結晶シリコンを薄く切断した円板形の(100)面を有するn型単結晶シリコン基板1を準備する。ここで、n型単結晶シリコン基板1は、図3に示すように、基準線αにより示されている第1劈開面((011)面)と、基準線βにより示されている第2劈開面((0−1−1)面)とを有する。また、基準線αと基準線βとは直交する。   A method for manufacturing the solar cell module 100 according to the present embodiment will be described. First, an n-type single crystal silicon substrate 1 having a disk-shaped (100) plane obtained by thinly cutting an ingot-shaped n-type single crystal silicon is prepared. Here, as shown in FIG. 3, the n-type single crystal silicon substrate 1 includes a first cleavage plane ((011) plane) indicated by a reference line α and a second cleavage plane indicated by a reference line β. Surface ((0-1-1) surface). Further, the reference line α and the reference line β are orthogonal to each other.

次に、n型単結晶シリコン基板1をアルカリ水溶液で異方性エッチング加工することにより、表面に微細な凹凸を形成する。また、n型単結晶シリコン基板1の表面を洗浄して、不純物を除去する。   Next, the n-type single crystal silicon substrate 1 is anisotropically etched with an alkaline aqueous solution to form fine irregularities on the surface. Further, the surface of the n-type single crystal silicon substrate 1 is washed to remove impurities.

次に、RFプラズマCVD法等の気相成長法を用いて、n型単結晶シリコン基板1の受光面上に、i型非晶質シリコン層2i、p型非晶質シリコン層2pを順次積層する。同様に、n型単結晶シリコン基板1の裏面上に、i型非晶質シリコン層4i、n型非晶質シリコン層4nを順次積層する。   Next, an i-type amorphous silicon layer 2i and a p-type amorphous silicon layer 2p are sequentially stacked on the light-receiving surface of the n-type single crystal silicon substrate 1 using a vapor phase growth method such as an RF plasma CVD method. To do. Similarly, an i-type amorphous silicon layer 4 i and an n-type amorphous silicon layer 4 n are sequentially stacked on the back surface of the n-type single crystal silicon substrate 1.

次に、マグネトロンスパッタ法を用いて、p型非晶質シリコン層2pの受光面上に、ITO膜(透明導電膜3)を形成する。同様に、n型非晶質シリコン層4nの裏面上に、ITO膜(透明導電膜5)を形成する。以上により、円板形のn型単結晶シリコン基板1を用いたpin接合を有する円板形の光電変換部10が形成される。   Next, an ITO film (transparent conductive film 3) is formed on the light receiving surface of the p-type amorphous silicon layer 2p by using a magnetron sputtering method. Similarly, an ITO film (transparent conductive film 5) is formed on the back surface of the n-type amorphous silicon layer 4n. Thus, the disk-shaped photoelectric conversion unit 10 having a pin junction using the disk-shaped n-type single crystal silicon substrate 1 is formed.

次に、スクリーン印刷法、オフセット印刷法等の印刷法を用いて、エポキシ系熱硬化型の銀ペーストを、ITO膜(透明導電膜3)の受光面上において、櫛形状に形成する。こ
れにより、光電変換部10の受光面上に、受光面側集電電極6が形成される。同様に、エポキシ系熱硬化型の銀ペーストを、ITO膜(透明導電膜3)の裏面上において、櫛形状に形成する。これにより、光電変換部10の裏面上に、裏面側集電電極7が形成される。図3に示すように、裏面側集電電極7は、基準線α及び基準線βと平行ではないように形成されている。図3は、光電変換部10の裏面に形成された裏面側集電電極7を示している。なお、受光面側集電電極6は、光電変換部10の受光面上に、裏面側集電電極7と略対称的に形成されている(不図示)。
Next, an epoxy thermosetting silver paste is formed in a comb shape on the light receiving surface of the ITO film (transparent conductive film 3) using a printing method such as a screen printing method or an offset printing method. As a result, the light receiving surface side collecting electrode 6 is formed on the light receiving surface of the photoelectric conversion unit 10. Similarly, an epoxy thermosetting silver paste is formed in a comb shape on the back surface of the ITO film (transparent conductive film 3). Thereby, the back surface side collector electrode 7 is formed on the back surface of the photoelectric conversion unit 10. As shown in FIG. 3, the back surface side collecting electrode 7 is formed so as not to be parallel to the reference line α and the reference line β. FIG. 3 shows the back surface side collecting electrode 7 formed on the back surface of the photoelectric conversion unit 10. The light receiving surface side collecting electrode 6 is formed on the light receiving surface of the photoelectric conversion unit 10 substantially symmetrically with the back surface side collecting electrode 7 (not shown).

次に、銀ペーストを所定条件で加熱して溶剤を揮発させた後、さらに加熱して本乾燥する。以上により、円板形の太陽電池101が製造される。   Next, the silver paste is heated under predetermined conditions to volatilize the solvent, and then further heated to perform main drying. Thus, the disk-shaped solar cell 101 is manufactured.

次に、裏面側集電電極7が形成された櫛形状のパターンに応じて、光電変換部10の裏面側に分割溝を形成し、分割溝に沿って光電変換部10を割断する。本実施形態では、裏面側集電電極7が形成された櫛形状のパターンに応じて、光電変換部10を割断することにより4分割する。なお、割断方法は、本発明の特徴的部分に係るため後に詳述する。   Next, according to the comb-shaped pattern in which the back surface side collecting electrode 7 is formed, a dividing groove is formed on the back surface side of the photoelectric conversion unit 10, and the photoelectric conversion unit 10 is cut along the dividing groove. In the present embodiment, the photoelectric conversion unit 10 is divided into four parts by cleaving according to the comb-shaped pattern in which the back-side collecting electrode 7 is formed. The cleaving method is described later in detail because it relates to a characteristic part of the present invention.

次に、一の太陽電池101の受光面上に形成された受光面側集電電極6と、隣接する他の太陽電池101の裏面上に形成された裏面側集電電極7とを、タブ(配線材102)により電気的に接続する。   Next, a light receiving surface side collector electrode 6 formed on the light receiving surface of one solar cell 101 and a back surface side collector electrode 7 formed on the back surface of another adjacent solar cell 101 are tabbed ( The wiring member 102) is electrically connected.

次に、ガラス基板(受光面側保護材104)上に、EVAシート(封止材103)、タブにより接続された複数の太陽電池101、EVAシート(封止材103)及びPETフィルム(裏面側保護材105)を順次積層して積層体とする。   Next, an EVA sheet (sealing material 103), a plurality of solar cells 101 connected by tabs, an EVA sheet (sealing material 103), and a PET film (back side) on a glass substrate (light-receiving surface side protective material 104) The protective material 105) is sequentially laminated to form a laminated body.

次に、積層体を、真空雰囲気において加熱圧着することにより仮圧着した後、所定条件で加熱することによりEVAを完全に硬化させる。   Next, the laminated body is temporarily pressure-bonded by thermocompression bonding in a vacuum atmosphere, and then the EVA is completely cured by heating under a predetermined condition.

以上により、太陽電池モジュール100が製造される。なお、太陽電池モジュール100には、端子ボックスやAlフレーム等を取り付けることができる。
〈太陽電池101の割断方法〉
Thus, the solar cell module 100 is manufactured. Note that a terminal box, an Al frame, or the like can be attached to the solar cell module 100.
<Cleaving method of solar cell 101>

次に、図面を用いて、太陽電池101の割断方法について詳細に説明する。図4は、太陽電池101の裏面に形成された分割溝8を示す。図5は、図4のA−A部分拡大図である。図6は、図4のB−B断面の拡大図である。   Next, the cutting method of the solar cell 101 will be described in detail with reference to the drawings. FIG. 4 shows the dividing grooves 8 formed on the back surface of the solar cell 101. FIG. 5 is an enlarged view of a portion AA in FIG. 6 is an enlarged view of the BB cross section of FIG.

まず、太陽電池101の裏面側から、YAGレーザー等を用いてレーザー光を照射することにより分割溝8を形成する。YAGレーザーの照射条件としては、第2高調波の波長が400nm以上、周波数1kHz〜50kHz、光径20〜200μm、出力1〜25Wとすることができる。このような照射条件を用いることにより、レーザー光の光径と略同等の幅を有する分割溝8が形成される。   First, the dividing grooves 8 are formed by irradiating laser light from the back side of the solar cell 101 using a YAG laser or the like. As the irradiation conditions of the YAG laser, the wavelength of the second harmonic is 400 nm or more, the frequency is 1 kHz to 50 kHz, the light diameter is 20 to 200 μm, and the output is 1 to 25 W. By using such irradiation conditions, the dividing grooves 8 having a width substantially equal to the light diameter of the laser light are formed.

ここで、本実施形態に係る分割溝8は、図4に示すように、基準線α及び基準線βと平行にならないように形成されされている。即ち、分割溝8は、n型単結晶シリコン基板1の第1劈開面((011)面)及び第2劈開面((0−1−1)面)と平行ではない。   Here, as shown in FIG. 4, the dividing groove 8 according to the present embodiment is formed so as not to be parallel to the reference line α and the reference line β. That is, the dividing groove 8 is not parallel to the first cleavage plane ((011) plane) and the second cleavage plane ((0-1-1) plane) of the n-type single crystal silicon substrate 1.

具体的に、分割溝8aは、図5に示すように、基準線αの平行線である基準線α´に対して角度γ(15度)の傾きを有し、基準線βに対して角度δ(75度)の傾きを有する。また、分割溝8bは、基準線α´に対して角度φ(15度)の傾きを有し、基準線βに対して角度ε(75度)の傾きを有する。このように、全ての分割溝8が、基準線α及び基準線βに対して傾きを有している。なお、基準線α及び基準線βに対する分割溝8の傾
きの大きさは、任意に設定することができる。また、分割溝8は、基準線α及び基準線βに対して任意の大きさの傾きを有していればよく、光電変換部10上に形成された裏面側集電電極7のパターンに応じて任意の位置に形成することができる。
Specifically, as shown in FIG. 5, the dividing groove 8 a has an inclination of an angle γ (15 degrees) with respect to a reference line α ′ that is a parallel line of the reference line α, and an angle with respect to the reference line β. It has a slope of δ (75 degrees). The dividing groove 8b has an inclination of an angle φ (15 degrees) with respect to the reference line α ′ and an inclination of an angle ε (75 degrees) with respect to the reference line β. Thus, all the dividing grooves 8 have an inclination with respect to the reference line α and the reference line β. In addition, the magnitude | size of the inclination of the division | segmentation groove | channel 8 with respect to the reference line (alpha) and the reference line (beta) can be set arbitrarily. Moreover, the division | segmentation groove | channel 8 should just have inclination of arbitrary magnitude | size with respect to the reference line (alpha) and the reference line (beta), and according to the pattern of the back surface side collector electrode 7 formed on the photoelectric conversion part 10. FIG. And can be formed at any position.

本実施形態に係る分割溝8は、図6に示すように、光電変換部10の厚みT(140μm〜190μm)に対して、裏面側からの深さd(60μm〜80μm)を有する。分割溝8の深さdは、これに限らず任意に設定することができるが、p型非晶質シリコン層2pにまで達しないことが好ましい。   As shown in FIG. 6, the dividing groove 8 according to this embodiment has a depth d (60 μm to 80 μm) from the back surface side with respect to the thickness T (140 μm to 190 μm) of the photoelectric conversion unit 10. The depth d of the dividing groove 8 is not limited to this and can be arbitrarily set, but it is preferable that the depth d does not reach the p-type amorphous silicon layer 2p.

次に、分割溝8に沿って光電変換部10を折り曲げることにより、分割溝8に沿って光電変換部10を割断する。   Next, the photoelectric conversion unit 10 is cut along the dividing groove 8 by bending the photoelectric conversion unit 10 along the dividing groove 8.

具体的には、まず、図7に示すように、太陽電池101を載置台20とプレス部材30との間に固定して、割断刃40を下方に移動させることにより、分割溝8(分割溝8d及び8eを除く)に沿って光電変換部10を割断する。即ち、光電変換部10の外周部分を下方向に折り曲げることにより、光電変換部10を割断する。なお、載置台20、プレス部材30及び割断刃40は、図8(a)乃至(c)に示すように、平面視において分割溝8(分割溝8d及び8eを除く)と同形状・略同寸法である。以上により、太陽電池101は外周部分が割断され、図9に示すような多角形状に形成される。   Specifically, as shown in FIG. 7, first, the solar cell 101 is fixed between the mounting table 20 and the press member 30, and the cleaving blade 40 is moved downward, whereby the divided groove 8 (divided groove). The photoelectric conversion unit 10 is cleaved along (except 8d and 8e). That is, the photoelectric conversion unit 10 is cleaved by bending the outer peripheral portion of the photoelectric conversion unit 10 downward. As shown in FIGS. 8A to 8C, the mounting table 20, the pressing member 30, and the cutting blade 40 have the same shape and substantially the same shape as the dividing grooves 8 (except for the dividing grooves 8d and 8e) in plan view. Dimensions. As described above, the outer peripheral portion of the solar cell 101 is cleaved and formed into a polygonal shape as shown in FIG.

続いて、光電変換部10を、分割溝8d及び8eに沿って折り曲げることにより、分割溝8d及び8eに沿って光電変換部10を割断する。分割溝8d及び8eに沿った光電変換部10の割断は、光電変換部10を折り曲げることにより行われ、折り曲げる順序に限定はない。例えば、分割溝8dに沿って割断することにより光電変換部10を2分割した後に、それぞれを分割溝8eに沿って割断する。その結果、太陽電池101は、図10に示すように4分割される。   Subsequently, the photoelectric conversion unit 10 is cut along the divided grooves 8d and 8e by bending the photoelectric conversion unit 10 along the divided grooves 8d and 8e. The cleaving of the photoelectric conversion unit 10 along the dividing grooves 8d and 8e is performed by bending the photoelectric conversion unit 10, and the bending order is not limited. For example, after the photoelectric conversion unit 10 is divided into two by cleaving along the dividing groove 8d, each is cleaved along the dividing groove 8e. As a result, the solar cell 101 is divided into four as shown in FIG.

このように形成された太陽電池101をタブにより電気的に接続して太陽電池モジュール100を製造する。   Solar cell module 100 is manufactured by electrically connecting solar cells 101 formed in this way with tabs.

〈作用及び効果〉
本実施形態に係る太陽電池の割断方法によれば、n型単結晶シリコン基板1の第1劈開面((011)面)及び第2劈開面((0−1−1)面)と平行にならないように分割溝8を形成する。また、分割溝8に沿って光電変換部10を折り曲げることにより、分割溝8に沿って光電変換部10を割断する。
<Action and effect>
According to the solar cell cleaving method according to the present embodiment, the n-type single crystal silicon substrate 1 is parallel to the first cleavage plane ((011) plane) and the second cleavage plane ((0-1-1) plane). The dividing groove 8 is formed so as not to become. Further, the photoelectric conversion unit 10 is cut along the dividing groove 8 by bending the photoelectric conversion unit 10 along the dividing groove 8.

このように、分割溝8がn型単結晶シリコン基板1の劈開面と平行ではないため、光電変換部10を割断する際に、全ての分割溝8に均一な力を加えることができる。即ち、光電変換部10を割断する際に、n型単結晶シリコン基板1の一部に応力が集中することはない。   Thus, since the dividing groove 8 is not parallel to the cleavage plane of the n-type single crystal silicon substrate 1, a uniform force can be applied to all the dividing grooves 8 when the photoelectric conversion unit 10 is cleaved. That is, when the photoelectric conversion unit 10 is cleaved, stress does not concentrate on a part of the n-type single crystal silicon substrate 1.

従って、n型単結晶シリコン基板1に割れを生じることなく光電変換部10を割断することができため、太陽電池101の分割工程における歩留まりを向上することができる。〈その他の実施形態〉
本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
Therefore, the photoelectric conversion unit 10 can be cleaved without causing cracks in the n-type single crystal silicon substrate 1, so that the yield in the dividing step of the solar cell 101 can be improved. <Other embodiments>
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、上記の実施形態では、n型単結晶シリコン基板1を用いたが、p型単結晶シリコン基板を用いることができる。この場合には、p型単結晶シリコン基板の受光面側にi
型非晶質シリコン層と、n型非晶質シリコン層とを順次積層し、p型単結晶シリコン基板の裏面側にi型非晶質シリコン層と、p型非晶質シリコン層とを順次積層すればよい。
For example, in the above embodiment, the n-type single crystal silicon substrate 1 is used, but a p-type single crystal silicon substrate can be used. In this case, i is formed on the light receiving surface side of the p-type single crystal silicon substrate.
An n-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially stacked, and an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially formed on the back side of the p-type single crystal silicon substrate. What is necessary is just to laminate.

また、上記の実施形態では、n型単結晶シリコン基板1を用いたが、化合物半導体基板を用いることができる。例えば、GaAs基板を用いる場合には、GaAs基板の第1劈開面((110)面)及び第2劈開面((1−10)面)と平行にならないように分割溝8を形成すればよい。   In the above embodiment, the n-type single crystal silicon substrate 1 is used, but a compound semiconductor substrate can be used. For example, when a GaAs substrate is used, the dividing groove 8 may be formed so as not to be parallel to the first cleavage plane ((110) plane) and the second cleavage plane ((1-10) plane) of the GaAs substrate. .

また、上記の実施形態では、光電変換部10が、n型単結晶シリコン基板1を用いた半導体pin接合を有する場合について説明したが、光電変換部10は、半導体基板を用いた半導体pn接合を有していてもよい。この場合、n型又はp型の結晶系半導体基板の表面に、p型又はn型のドーパントをドープすることによりpn接合を形成することができる。   In the above embodiment, the case where the photoelectric conversion unit 10 has a semiconductor pin junction using the n-type single crystal silicon substrate 1 has been described. However, the photoelectric conversion unit 10 has a semiconductor pn junction using a semiconductor substrate. You may have. In this case, a pn junction can be formed by doping a p-type or n-type dopant on the surface of an n-type or p-type crystalline semiconductor substrate.

また、上記の実施形態では、n型単結晶シリコン基板1を用いた太陽電池101の割断方法について説明したが、太陽電池以外の半導体基板にも適用することができる。
また、上記の実施形態では、受光面側集電電極6及び裏面側集電電極7を櫛形状に形成したが、これらの形成パターンは任意に設計することができる。
In the above embodiment, the method for cleaving the solar cell 101 using the n-type single crystal silicon substrate 1 has been described, but the present invention can also be applied to semiconductor substrates other than solar cells.
Further, in the above embodiment, the light receiving surface side collecting electrode 6 and the back surface side collecting electrode 7 are formed in a comb shape, but these formation patterns can be arbitrarily designed.

また、上記の実施形態では、円板形の太陽電池101を割断することにより4分割したが、割断後の太陽電池101の形状に限定はない。従って、分割溝8の形成パターンについても、上記の実施形態において説明したものには限られない。   Moreover, in said embodiment, although the disk-shaped solar cell 101 was divided into four by cleaving, the shape of the solar cell 101 after the cleaving is not limited. Therefore, the formation pattern of the dividing grooves 8 is not limited to that described in the above embodiment.

また、上記の実施形態では、割断装置を用いて円板形の太陽電池101の外周部分を一括して割断したが、必ずしも一括に割断しなくてもよく、例えば、平行に形成された分割溝同士を一組ずつ割断することができる。   Further, in the above embodiment, the outer peripheral portion of the disk-shaped solar cell 101 is collectively cut using the cleaving device. However, it is not always necessary to cleave all at once, for example, divided grooves formed in parallel. One set can be cleaved from each other.

実施形態に係る太陽電池を備える太陽電池モジュールの断面図である。It is sectional drawing of a solar cell module provided with the solar cell which concerns on embodiment. 実施形態に係る太陽電池の断面図である。It is sectional drawing of the solar cell which concerns on embodiment. 実施形態に係る太陽電池の平面図である。It is a top view of the solar cell which concerns on embodiment. 実施形態に係る太陽電池の割断方法を説明するための図である(その1)。It is a figure for demonstrating the cleaving method of the solar cell which concerns on embodiment (the 1). 図4のA−A部分拡大図である。It is an AA partial enlarged view of FIG. 図4のB−B拡大断面図である。It is BB expanded sectional drawing of FIG. 実施形態に係る太陽電池の割断に使用する割断装置を示す側面図である。It is a side view which shows the cleaving apparatus used for the cleaving of the solar cell which concerns on embodiment. 図7に示す割断装置の部品を示す図である。It is a figure which shows the components of the cleaving apparatus shown in FIG. 実施形態に係る太陽電池の割断方法を説明するための図である(その2)。It is a figure for demonstrating the cleaving method of the solar cell which concerns on embodiment (the 2). 実施形態に係る太陽電池の割断方法を説明するための図である(その3)。It is a figure for demonstrating the cleaving method of the solar cell which concerns on embodiment (the 3).

1…n型単結晶シリコン基板、2i…i型非晶質シリコン層、2p…p型非晶質シリコン層、3…透明導電膜、4i…i型非晶質シリコン層、4n…n型非晶質シリコン層、5…透明導電膜、6…受光面側集電電極、7…裏面側集電電極、8…分割溝、8a…分割溝、8b…分割溝、8c…分割溝、8d…分割溝、8e…分割溝、10…光電変換部、20…載置台、30…プレス部材、40…割断刃、100…太陽電池モジュール、101…太陽電池、102…配線材、103…封止材、104…受光面側保護材、105…裏面側保護材、α…基準線、β…基準線、γ…角度、δ…角度、ε…角度、φ…角度   1 ... n-type single crystal silicon substrate, 2i ... i-type amorphous silicon layer, 2p ... p-type amorphous silicon layer, 3 ... transparent conductive film, 4i ... i-type amorphous silicon layer, 4n ... n-type non-crystalline Crystalline silicon layer, 5 ... transparent conductive film, 6 ... light-receiving surface side collecting electrode, 7 ... back surface side collecting electrode, 8 ... divided groove, 8a ... divided groove, 8b ... divided groove, 8c ... divided groove, 8d ... Dividing groove, 8e ... dividing groove, 10 ... photoelectric conversion unit, 20 ... mounting table, 30 ... pressing member, 40 ... cleaving blade, 100 ... solar cell module, 101 ... solar cell, 102 ... wiring material, 103 ... sealing material , 104: light-receiving surface side protective material, 105 ... back surface side protective material, α ... reference line, β ... reference line, γ ... angle, δ ... angle, ε ... angle, φ ... angle

Claims (3)

結晶半導体基板に半導体pn接合または半導体pin接合を有する光電変換部を形成する第1の工程と、
前記第1の工程の後に、前記結晶半導体基板に所定の深さを有する分割溝を形成する第2の工程と、
前記第2の工程の後に、前記分割溝に沿って前記結晶半導体基板を折り曲げることにより、前記分割溝に沿って前記結晶半導体基板を割断する第3の工程と、
を備え、
前記第3の工程は、前記結晶半導体基板を載置するための載置台と、プレス部材と、割断刃を備えた割断装置を用いて前記結晶半導体基板を割断する工程を含み、
該工程は、前記結晶半導体基板を前記載置台と前記プレス部材との間に固定し、前記割断刃を移動させて前記結晶半導体基板の外周部を前記分割溝に沿って折り曲げて割断する工程であり、
前記分割溝の外周形状は平面視で多角形状であって、かつ、全ての前記分割溝は前記結晶半導体基板の劈開面と平行ではなく、
前記割断装置の前記載置台、前記プレス部材、前記割断刃は、平面視において前記分割溝と略同形状かつ略同寸法である、
太陽電池の製造方法。
Forming a photoelectric conversion portion having a semiconductor pn junction or a semiconductor pin junction on a crystalline semiconductor substrate;
A second step of forming a dividing groove having a predetermined depth in the crystalline semiconductor substrate after the first step;
After the second step, a third step of cleaving the crystalline semiconductor substrate along the dividing groove by bending the crystalline semiconductor substrate along the dividing groove;
With
The third step includes a step of cleaving the crystalline semiconductor substrate using a cleaving device including a mounting table for placing the crystalline semiconductor substrate, a press member, and a cleaving blade,
The step is a step of fixing the crystal semiconductor substrate between the mounting table and the press member, moving the cleaving blade, bending the outer peripheral portion of the crystal semiconductor substrate along the dividing groove, and cleaving the crystal semiconductor substrate. Yes,
The outer peripheral shape of the dividing groove is a polygonal shape in plan view, and all the dividing grooves are not parallel to the cleavage plane of the crystalline semiconductor substrate,
The mounting table, the pressing member, and the cutting blade of the cleaving device have substantially the same shape and the same size as the dividing groove in plan view.
A method for manufacturing a solar cell.
請求項1に記載の太陽電池の製造方法であって、
前記割断装置の前記載置台、前記プレス部材、前記割断刃は、平面視において前記分割溝の一部と略同形状かつ略同寸法である、
太陽電池の製造方法。
It is a manufacturing method of the solar cell of Claim 1, Comprising:
The mounting table, the press member, and the cutting blade of the cleaving device have substantially the same shape and dimensions as a part of the dividing groove in plan view.
A method for manufacturing a solar cell.
請求項1または2に記載の太陽電池の製造方法であって、
前記所定の深さの分割溝は、前記結晶半導体基板にレーザー光を照射することによって形成する、太陽電池の製造方法。
It is a manufacturing method of the solar cell of Claim 1 or 2 , Comprising:
The division groove having the predetermined depth is formed by irradiating the crystal semiconductor substrate with laser light.
JP2015085535A 2015-04-20 2015-04-20 Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell Expired - Fee Related JP6019417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085535A JP6019417B2 (en) 2015-04-20 2015-04-20 Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085535A JP6019417B2 (en) 2015-04-20 2015-04-20 Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012007900A Division JP2012084921A (en) 2012-01-18 2012-01-18 Method of dividing semiconductor substrate, method of dividing solar cell, and solar cell

Publications (2)

Publication Number Publication Date
JP2015159317A JP2015159317A (en) 2015-09-03
JP6019417B2 true JP6019417B2 (en) 2016-11-02

Family

ID=54183056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085535A Expired - Fee Related JP6019417B2 (en) 2015-04-20 2015-04-20 Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell

Country Status (1)

Country Link
JP (1) JP6019417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522707B2 (en) 2015-01-29 2019-12-31 Solaria Corporation Tiled solar cell laser process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474605A (en) * 1990-07-17 1992-03-10 Mitsubishi Kasei Polytec Co Punching method
JP4369259B2 (en) * 2004-02-19 2009-11-18 シャープ株式会社 Method for manufacturing solar battery cell
JP4439477B2 (en) * 2005-03-29 2010-03-24 三洋電機株式会社 Photovoltaic element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015159317A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP2008235521A (en) Method of fracturing semiconductor substrate, method of fracturing solar cell, and the solar cell
JP5142565B2 (en) Manufacturing method of solar cell
US11316057B2 (en) Shingled solar cells overlapping along non-linear edges
CN108039380B (en) Metallization of solar cells using metal foils
JP5288790B2 (en) Solar cell module and manufacturing method thereof
JP4948219B2 (en) Solar cell
KR102015591B1 (en) Active backplane for thin silicon solar cells
JP5089456B2 (en) Crimping apparatus and solar cell module manufacturing method
US9735308B2 (en) Foil-based metallization of solar cells using removable protection layer
WO2011093380A1 (en) Solar cell and solar cell module using said solar cell
JP6019417B2 (en) Semiconductor substrate cleaving method, solar cell cleaving method, and solar cell
US20140190547A1 (en) Solar cell module, and method for manufacturing solar cell module
US20140373897A1 (en) Solar cell module and solar cell module manufacturing method
JP2010118705A (en) Solar battery module
JP2011054660A (en) Solar-cell string and solar-cell module using the same
JP2009182260A (en) Solar battery
JP2012084921A (en) Method of dividing semiconductor substrate, method of dividing solar cell, and solar cell
KR102419880B1 (en) Solar Cell And Manufacturing Method Of Solar Cell Module With Designable Shingled String Structure
KR20210133195A (en) Method for dividing a solar cell for a shingled solar panel and a solar panel using the same
JP5909662B2 (en) Solar cell module
JP2015065285A (en) Photoelectric conversion element and solar cell module
JPWO2013114555A1 (en) Solar cell module and method for manufacturing solar cell module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6019417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees