JP6016655B2 - Gas turbine tail tube seal and gas turbine - Google Patents

Gas turbine tail tube seal and gas turbine Download PDF

Info

Publication number
JP6016655B2
JP6016655B2 JP2013019615A JP2013019615A JP6016655B2 JP 6016655 B2 JP6016655 B2 JP 6016655B2 JP 2013019615 A JP2013019615 A JP 2013019615A JP 2013019615 A JP2013019615 A JP 2013019615A JP 6016655 B2 JP6016655 B2 JP 6016655B2
Authority
JP
Japan
Prior art keywords
flow path
gas turbine
combustion gas
tail cylinder
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013019615A
Other languages
Japanese (ja)
Other versions
JP2014148964A (en
Inventor
剣太郎 ▲徳▼山
剣太郎 ▲徳▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013019615A priority Critical patent/JP6016655B2/en
Publication of JP2014148964A publication Critical patent/JP2014148964A/en
Application granted granted Critical
Publication of JP6016655B2 publication Critical patent/JP6016655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃焼器の尾筒とタービンの燃焼ガス流路との間をシールするガスタービン尾筒シール、及びこれを用いたガスタービンに関する。   The present invention relates to a gas turbine tail cylinder seal that seals between a combustor tail cylinder and a combustion gas flow path of a turbine, and a gas turbine using the same.

ガスタービンは、圧縮機と燃焼器とタービンとを備えて構成される(図示略)。このガスタービンによれば、前記圧縮機で圧縮された圧縮空気が、前記燃焼器に供給され、別途供給される燃料と混合して燃焼される。この燃焼によって生成した燃焼ガスは、前記タービンへと供給され、該タービンに回転駆動力を発生させる。   The gas turbine includes a compressor, a combustor, and a turbine (not shown). According to this gas turbine, the compressed air compressed by the compressor is supplied to the combustor and is mixed and burned with fuel supplied separately. Combustion gas generated by this combustion is supplied to the turbine, and a rotational driving force is generated in the turbine.

図6に、前記燃焼器の一般的な構成を示す。同図において、符号20は燃焼器であり、車室32の内部に固定される。符号21aはパイロット燃料ノズルであり、パイロット燃料が供給される。符号20bはメイン燃料ノズルであり、パイロット燃料ノズル21aを中心として、円周状に複数本(例えば8本)が配列される。符号22は尾筒であり、高温の燃焼ガスGを尾筒出口22aに導く。符号27はバイパス管、符号28はバイパス弁であり、負荷変動により燃焼用空気が不足状態となるとバイパス弁28が開き、車室32内の空気を燃焼器20内に導く。符号180はガスタービン尾筒シール(以下、単に尾筒シールということがある。)であり、尾筒出口22aの端部に設けられ、前記タービンの燃焼ガス流路(ガスパス)Pgと尾筒22との接続部をシールする。燃焼器20は、車室32内でロータ(図示せず)の周囲に複数配置され、これらからの高温の燃焼ガスGがタービン内で膨張することにより、前記ロータを回転させる。   FIG. 6 shows a general configuration of the combustor. In the figure, reference numeral 20 denotes a combustor, which is fixed inside a passenger compartment 32. Reference numeral 21a denotes a pilot fuel nozzle, which is supplied with pilot fuel. Reference numeral 20b denotes a main fuel nozzle, and a plurality (for example, eight) are arranged circumferentially around the pilot fuel nozzle 21a. Reference numeral 22 denotes a transition piece that guides the high-temperature combustion gas G to the transition piece outlet 22a. Reference numeral 27 is a bypass pipe, and reference numeral 28 is a bypass valve. When the combustion air becomes insufficient due to load fluctuation, the bypass valve 28 is opened, and the air in the passenger compartment 32 is guided into the combustor 20. Reference numeral 180 denotes a gas turbine tail cylinder seal (hereinafter sometimes simply referred to as a tail cylinder seal), which is provided at the end of the tail cylinder outlet 22a, and the combustion gas flow path (gas path) Pg of the turbine and the tail cylinder 22 are provided. And seal the connection. A plurality of combustors 20 are arranged around a rotor (not shown) in the passenger compartment 32, and hot combustion gas G from these expands in the turbine, thereby rotating the rotor.

上記構成の燃焼器20において、メイン燃料ノズル21bからの燃料は、車室32から吸込んだ空気と混合し、パイロット燃料ノズル21aからのパイロット燃料の火炎によって点火され、燃焼室内で燃焼して燃焼ガスGとなり、尾筒22を通って尾筒出口22aから燃焼ガス流路Pgに供給される。燃焼器20の尾筒22の壁面は、絶えず高温の燃焼ガスGに接しているので、壁内部に設けた冷却用通路に冷却空気を流して冷却される。尾筒出口22aは、尾筒シール180を介して燃焼ガス流路Pgの入口に接続され、この尾筒シール180も冷却空気によって冷却される。   In the combustor 20 having the above-described configuration, the fuel from the main fuel nozzle 21b is mixed with the air sucked from the passenger compartment 32, ignited by the flame of the pilot fuel from the pilot fuel nozzle 21a, and combusted in the combustion chamber. G is supplied to the combustion gas flow path Pg through the transition piece 22 from the transition piece outlet 22a. Since the wall surface of the tail cylinder 22 of the combustor 20 is constantly in contact with the high-temperature combustion gas G, it is cooled by flowing cooling air through a cooling passage provided inside the wall. The transition piece outlet 22a is connected to the inlet of the combustion gas flow path Pg via the transition piece seal 180, and the transition piece seal 180 is also cooled by the cooling air.

図7は、図6のA部拡大図であり、従来の尾筒シールの構造を示す。同図に示すように、尾筒出口22aの周囲には、出口フランジ23が形成される。尾筒出口22aは、燃焼ガス流路Pgに対して、尾筒シール180を介して接続される。尾筒シール180の尾筒22側には、尾筒出口22aの内周側に開放する断面U字形状のフランジ溝81が形成され、このフランジ溝81に尾筒出口22aの出口フランジ23が嵌入される。尾筒シール180の燃焼ガス流路Pg側には、燃焼ガス流路Pgの流れ方向(燃焼ガスの流れ方向)の下流側に開放する断面U字形状の係合溝82が形成され、この係合溝82に燃焼ガス流路Pg内の第一静翼段40aの外側シュラウド43及び内側シュラウド45の各上流側端部がそれぞれ嵌入される。   FIG. 7 is an enlarged view of a portion A in FIG. 6 and shows a structure of a conventional tail tube seal. As shown in the figure, an outlet flange 23 is formed around the transition piece outlet 22a. The transition piece outlet 22a is connected to the combustion gas flow path Pg via a transition piece seal 180. A flange groove 81 having a U-shaped cross section that opens to the inner peripheral side of the transition piece outlet 22a is formed on the transition piece 22 side of the transition piece seal 180, and the outlet flange 23 of the transition piece outlet 22a is fitted into the flange groove 81. Is done. An engagement groove 82 having a U-shaped cross section that opens to the downstream side in the flow direction of the combustion gas flow path Pg (flow direction of the combustion gas) is formed on the combustion gas flow path Pg side of the transition piece seal 180. The upstream end portions of the outer shroud 43 and the inner shroud 45 of the first stationary blade stage 40a in the combustion gas flow path Pg are fitted into the joint groove 82, respectively.

尾筒シール180には、冷却流路185が複数穿設される。冷却流路185は、車室32内の圧縮空気の一部を冷却空気Aとして流し、尾筒シール180自身の冷却と、第一静翼段40aの外側シュラウド43及び内側シュラウド45のフィルム冷却とを行う。冷却流路185は、尾筒シール180における車室32に面する外面から、尾筒シール180の壁部83の燃焼ガス流路Pgに面する壁面84に沿って下流側に延び、下流側端に開口する。この冷却流路185に車室32内の高圧空気が冷却空気Aとして流入し、該冷却空気Aが壁部83内を下流側に流れて尾筒シール180の壁面84を冷却する。冷却流路185内の冷却空気Aは、壁部83の下流側端から燃焼ガス流路Pgの上流側端に吐出し、外側シュラウド43の内周面と内側シュラウド45の外周面とをフィルム冷却する。この種の尾筒シールの冷却構造については、例えば下記特許文献1に開示されている。   A plurality of cooling channels 185 are formed in the tail tube seal 180. The cooling flow path 185 allows a part of the compressed air in the passenger compartment 32 to flow as cooling air A, cooling the tail cylinder seal 180 itself, and film cooling of the outer shroud 43 and the inner shroud 45 of the first stationary blade stage 40a. I do. The cooling flow path 185 extends from the outer surface of the transition piece seal 180 facing the vehicle compartment 32 to the downstream side along the wall surface 84 facing the combustion gas flow path Pg of the wall portion 83 of the transition piece seal 180, and reaches the downstream end. Open to. High-pressure air in the passenger compartment 32 flows into the cooling flow path 185 as cooling air A, and the cooling air A flows through the wall portion 83 downstream to cool the wall surface 84 of the tail cylinder seal 180. The cooling air A in the cooling flow path 185 is discharged from the downstream end of the wall portion 83 to the upstream end of the combustion gas flow path Pg, and the inner peripheral surface of the outer shroud 43 and the outer peripheral surface of the inner shroud 45 are film cooled. To do. A cooling structure for this type of transition piece seal is disclosed in, for example, Patent Document 1 below.

特許第4288147号公報Japanese Patent No. 4288147

ところで、上記のようなガスタービン尾筒シールにおいて、より少ない冷却空気で尾筒シール自身を冷却できる構造が要望されている。
すなわち、前記尾筒シール180の壁部83は、その上流側端と尾筒22との間の隙間から漏れ出した車室32内の空気により冷却されるが、下流側ほど高温になる傾向にある。上記従来の尾筒シール180の構成では、壁部83の下流側端に冷却流路185の出口が開口するため、この出口周辺に破損が生じ易くなる。
By the way, in the gas turbine tail cylinder seal as described above, there is a demand for a structure that can cool the tail cylinder seal itself with less cooling air.
That is, the wall portion 83 of the transition piece seal 180 is cooled by the air in the passenger compartment 32 leaking from the gap between the upstream end thereof and the transition piece 22, but tends to become higher at the downstream side. is there. In the configuration of the above-described conventional transition piece seal 180, the outlet of the cooling flow path 185 is opened at the downstream end of the wall portion 83, so that the periphery of the outlet is easily damaged.

そこで本発明は、ガスタービン尾筒シール及びガスタービンにおいて、冷却流路の出口周辺の損傷を抑え、かつ冷却空気量の低減を図ることを目的とする。   Accordingly, an object of the present invention is to suppress damage around the outlet of the cooling flow path and reduce the amount of cooling air in the gas turbine tail cylinder seal and the gas turbine.

上記課題の解決手段として、本発明に係るガスタービン尾筒シールは、燃焼器の尾筒と、該尾筒よりも燃焼ガスの流れ方向の下流側の第一静翼段の内側シュラウド及び外側シュラウドと、の間をシールするガスタービン尾筒シールにおいて、燃焼ガス流路に沿う壁部内で、前記燃焼ガス流路に面する壁面に沿うように形成され、前記燃焼ガス流路外方の車室内から流入した空気を前記壁部内で前記下流側に流す第一流路と、前記壁部内で、前記燃焼ガスの流れ方向と直交すると共に前記壁面に沿う周方向で、前記第一流路に隣接するように形成され、前記第一流路を流れた空気を前記壁部内で前記燃焼ガスの流れ方向の上流側に流す第二流路と、前記壁部内に形成され、前記第一流路及び第二流路の前記下流側を接続してこれらを折り返すように連通させる接続流路と、を含む冷却流路を備え、前記第一流路は、前記壁部の前記上流側で前記車室に連通する入口開口部を有し、前記第二流路は、前記壁部の前記壁面で前記燃焼ガス流路に連通する出口開口部を有することを特徴とする。   As a means for solving the above problems, a gas turbine tail cylinder seal according to the present invention includes a combustor tail cylinder, an inner shroud and an outer shroud of a first stationary blade stage downstream of the tail cylinder in the flow direction of the combustion gas. And a gas turbine tail tube seal that seals between the inner and outer walls of the combustion gas flow path, and a wall that faces the combustion gas flow path. A first flow path for flowing air flowing in from the downstream side in the wall, and adjacent to the first flow path in the circumferential direction along the wall surface and perpendicular to the flow direction of the combustion gas in the wall. Formed in the wall, and flows in the upstream of the flow direction of the combustion gas in the wall, and formed in the wall, the first flow path and the second flow path Connect the downstream side of the A cooling flow path including a connection flow path communicating with the first flow path, the first flow path having an inlet opening communicating with the vehicle compartment on the upstream side of the wall, and the second flow path, An outlet opening that communicates with the combustion gas flow path at the wall surface of the wall portion is provided.

この構成によれば、第一流路を通じて下流側に流れた空気が、接続流路を通じて第二流路に至り、第二流路を通じて再度上流側に流れることで、冷却空気が下流側に向けた一方向のみに流れる場合と比べて、冷却流路の長さが増加して、冷却空気による冷却面積を増加させる。これにより、燃焼ガス流路に面する壁面近傍をより少ない冷却空気で効率よく冷却することができる。
また、冷却通路の出口となる第二流路の出口開口部が、壁部の壁面に配置されることで、壁部の下流側端部から開口を無くすことができ、冷却空気の出口周辺の損傷を抑えることができる。
According to this configuration, the air that has flowed downstream through the first flow path reaches the second flow path through the connection flow path, and flows to the upstream side again through the second flow path, so that the cooling air is directed downstream. Compared with the case of flowing in only one direction, the length of the cooling flow path is increased, and the cooling area by the cooling air is increased. Thereby, the wall surface vicinity which faces a combustion gas flow path can be efficiently cooled with less cooling air.
Further, the outlet opening portion of the second flow path serving as the outlet of the cooling passage is disposed on the wall surface of the wall portion, so that the opening can be eliminated from the downstream end portion of the wall portion. Damage can be suppressed.

本発明に係るガスタービン尾筒シールは、前記出口開口部は、前記入口開口部よりも前記下流側で、隣接する二つの前記第一流路の間に配置されていてもよい。
この構成によれば、両側に配置された第一流路を流れる冷却空気により、冷却されるので、出口開口部の周辺の温度が高温になることがさらに抑制され、出口開口部の損傷を回避することができる。
In the gas turbine tail cylinder seal according to the present invention, the outlet opening may be disposed between the two adjacent first flow paths on the downstream side of the inlet opening.
According to this configuration, since the cooling is performed by the cooling air flowing through the first flow paths disposed on both sides, the temperature around the outlet opening is further suppressed from being high, and the outlet opening is prevented from being damaged. be able to.

本発明に係るガスタービン尾筒シールは、前記出口開口部は、前記入口開口部よりも下流側で該入口開口部に近接して配置されていてもよい。
この構成によれば、出口開口部から吐出する空気が、入口開口部から流入したばかりの空気によって冷却されると共に、第二流路の流路長も十分確保することができる。したがって、出口開口部周辺が冷却されることで、出口開口部周辺の損傷を抑えることができると共に、冷却空気量の低減も図ることができる。
In the gas turbine tail tube seal according to the present invention, the outlet opening may be disposed in the vicinity of the inlet opening on the downstream side of the inlet opening.
According to this configuration, the air discharged from the outlet opening is cooled by the air just flowing in from the inlet opening, and the flow path length of the second flow path can be sufficiently secured. Therefore, by cooling the periphery of the outlet opening, it is possible to suppress damage around the outlet opening and to reduce the amount of cooling air.

本発明に係るガスタービン尾筒シールは、前記第一流路は、前記壁面に沿う第一流路本体と、前記入口開口部から前記燃焼ガス流路側へ延びて前記壁面の近傍で前記第一流路本体に接続される入口流路と、を含み、前記入口流路と前記出口開口部とが近接してもよい。
この構成によれば、入口流路に流入したばかりの空気によって、出口開口部から吐出する空気及び出口開口部周辺を良好に冷却できる。
In the gas turbine tail tube seal according to the present invention, the first flow path includes a first flow path main body extending along the wall surface, and the first flow path main body in the vicinity of the wall surface extending from the inlet opening to the combustion gas flow path side. An inlet channel connected to the outlet channel, and the inlet channel and the outlet opening may be close to each other.
According to this structure, the air discharged from the outlet opening and the vicinity of the outlet opening can be satisfactorily cooled by the air that has just flowed into the inlet channel.

本発明に係るガスタービン尾筒シールは、前記冷却流路は、前記周方向で並ぶように複数形成されてもよい。
この構成によれば、冷却流路を前記上下流方向及び周方向で壁部の全体に渡って配置でき、壁面近傍をより一層良好に冷却できる。
In the gas turbine tail cylinder seal according to the present invention, a plurality of the cooling flow paths may be formed so as to be aligned in the circumferential direction.
According to this structure, a cooling flow path can be arrange | positioned over the whole wall part in the said upstream / downstream direction and the circumferential direction, and the wall surface vicinity can be cooled much more favorably.

本発明に係るガスタービン尾筒シールは、前記接続流路は、前記周方向に延びて複数の前記冷却流路の第一流路及び第二流路を連通してもよい。
この構成によれば、複数の冷却流路の接続流路を、周方向で壁部を貫通する流路で形成することが可能となり、複数の冷却流路の形成を容易にできる。
In the gas turbine tail cylinder seal according to the present invention, the connection flow path may extend in the circumferential direction to communicate the first flow path and the second flow path of the plurality of cooling flow paths.
According to this configuration, the connection flow paths of the plurality of cooling flow paths can be formed by the flow paths that penetrate the wall portion in the circumferential direction, and the formation of the plurality of cooling flow paths can be facilitated.

本発明に係るガスタービン尾筒シールは、前記出口開口部は、前記壁面の上流側端部に開口し、前記壁面のフィルム冷却孔として機能してもよい。
この構成によれば、壁面をその上流側端部から良好にフィルム冷却できる。
In the gas turbine tail cylinder seal according to the present invention, the outlet opening may open at an upstream end of the wall surface and function as a film cooling hole for the wall surface.
According to this configuration, the wall surface can be satisfactorily cooled from the upstream end thereof.

本発明に係るガスタービン尾筒シールは、前記接続流路は、前記第一流路を流れる空気の衝突によって内壁面を冷却するインピンジメント冷却がなされていてもよい。
この構成によれば、第一流路から第二流路に折り返す際の空気流の衝突により、接続流路周辺を良好にインピンジメント冷却でき、壁部の下流側端部の冷却ができる。
In the gas turbine tail cylinder seal according to the present invention, the connection flow path may be impingement cooled to cool an inner wall surface by collision of air flowing through the first flow path.
According to this configuration, the impingement cooling around the connection flow path can be satisfactorily performed by the collision of the air flow when turning back from the first flow path to the second flow path, and the downstream end of the wall portion can be cooled.

本発明に係るガスタービンは、請求項1から7の何れか一項に記載のガスタービン尾筒シールと、前記尾筒を含む燃焼器と、前記燃焼器が発生した燃焼ガスで駆動するタービンと、を備えることを特徴とするガスタービンを提供する。   A gas turbine according to the present invention includes a gas turbine tail cylinder seal according to any one of claims 1 to 7, a combustor including the tail cylinder, and a turbine driven by combustion gas generated by the combustor. A gas turbine is provided.

本発明によれば、ガスタービン尾筒シールにおける冷却空気の出口周辺の損傷を抑え、かつ冷却空気量の低減を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the damage around the exit of the cooling air in a gas turbine tail pipe seal can be suppressed, and the amount of cooling air can be reduced.

本発明の実施形態におけるガスタービンの一部断面を含む側面図である。It is a side view including a partial section of a gas turbine in an embodiment of the present invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 上記ガスタービンの尾筒シール周辺の周方向に直交する断面図である。It is sectional drawing orthogonal to the circumferential direction around the transition piece seal of the said gas turbine. 図3のIV部拡大図である。It is the IV section enlarged view of FIG. 図4のV矢視図である。FIG. 5 is a view taken in the direction of arrow V in FIG. 従来のガスタービン尾筒シール及び燃焼器の説明図である。It is explanatory drawing of the conventional gas turbine tail pipe seal and a combustor. 図6のVII部拡大図である。It is the VII part enlarged view of FIG.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

「ガスタービン」
まず、図1及び図2を用いて、本実施形態のガスタービンの基本構成について説明する。
図1に示すように、ガスタービン1は、外気を圧縮して圧縮空気を生成する圧縮機10と、燃料供給源からの燃料を前記圧縮空気に混合して燃焼させて燃焼ガスを生成する複数の燃焼器20と、前記燃焼ガスにより駆動するタービン30と、を備える。
"gas turbine"
First, the basic configuration of the gas turbine according to the present embodiment will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, a gas turbine 1 includes a compressor 10 that compresses outside air to generate compressed air, and a plurality of fuels that generate combustion gas by mixing fuel from a fuel supply source with the compressed air and burning it. Combustor 20 and a turbine 30 driven by the combustion gas.

タービン30は、ケーシング31と、このケーシング31内でロータ軸(ロータ軸心)Arを中心として回転するタービンロータ33とを備える。タービンロータ33は、例えばタービンロータ33の回転で発電する不図示の発電機に接続される。
圧縮機10は、タービン30に対して、ロータ軸Arの軸方向Daの一方側に配置される。タービン30のケーシング31は、ロータ軸Arを中心とした円筒状をなしている。
The turbine 30 includes a casing 31 and a turbine rotor 33 that rotates around the rotor shaft (rotor axis) Ar in the casing 31. The turbine rotor 33 is connected to a generator (not shown) that generates power by rotating the turbine rotor 33, for example.
The compressor 10 is arranged on one side of the axial direction Da of the rotor shaft Ar with respect to the turbine 30. The casing 31 of the turbine 30 has a cylindrical shape centered on the rotor axis Ar.

複数の燃焼器20は、ロータ軸Arを中心とした周方向Dcで互いに間隔を空けて配列され、これら複数の燃焼器20がケーシング31に取り付けられる。
以下、軸方向Daで圧縮機10が配置されている側を上流側、その反対側を下流側とする。また、ロータ軸Arを中心とした径方向Drで、ロータ軸Arから遠ざかる側を径方向外側、ロータ軸Arに近づく側を径方向内側とする。また、燃焼ガスの流れ方向に関して、燃焼器20が配置されている側を上流側、その反対側のタービン30が配置されている側を下流側とする。
The plurality of combustors 20 are arranged at intervals in the circumferential direction Dc around the rotor axis Ar, and the plurality of combustors 20 are attached to the casing 31.
Hereinafter, the side where the compressor 10 is arranged in the axial direction Da is the upstream side, and the opposite side is the downstream side. Further, in the radial direction Dr with the rotor axis Ar as the center, a side away from the rotor axis Ar is a radially outer side, and a side approaching the rotor axis Ar is a radially inner side. Moreover, regarding the flow direction of the combustion gas, the side on which the combustor 20 is disposed is the upstream side, and the side on which the opposite turbine 30 is disposed is the downstream side.

図2に示すように、タービンロータ33は、ロータ軸Arを中心として軸方向Daに延びるロータ本体34と、軸方向Daに並んでロータ本体34に取り付けられる複数の動翼段35と、を有する。各動翼段35は、ロータ軸Arを中心として周方向Dcに並ぶ複数の動翼36を有する。各動翼36は、径方向Drに延びる動翼本体37と、動翼本体37の径方向内側に設けられるプラットホーム38と、プラットホーム38の径方向内側に設けられる翼根39と、を有する。各動翼36は、翼根39がロータ本体34に埋め込まれることでロータ本体34に固定される。   As shown in FIG. 2, the turbine rotor 33 includes a rotor body 34 that extends in the axial direction Da around the rotor axis Ar, and a plurality of blade stages 35 that are attached to the rotor body 34 side by side in the axial direction Da. . Each blade stage 35 has a plurality of blades 36 arranged in the circumferential direction Dc around the rotor axis Ar. Each rotor blade 36 includes a rotor blade body 37 extending in the radial direction Dr, a platform 38 provided on the radially inner side of the rotor blade body 37, and a blade root 39 provided on the radially inner side of the platform 38. Each rotor blade 36 is fixed to the rotor body 34 by having a blade root 39 embedded in the rotor body 34.

各動翼段35の上流側には、それぞれ静翼段40が配置される。各静翼段40は、ロータ軸Arを中心として周方向Dcに並ぶ複数の静翼41を有する。各静翼41は、径方向Drに延びる静翼本体42と、静翼本体42の径方向外側に設けられる外側シュラウド43と、静翼本体42の径方向内側に設けられる内側シュラウド45と、を有する。   A stationary blade stage 40 is disposed on the upstream side of each blade stage 35. Each stationary blade stage 40 has a plurality of stationary blades 41 arranged in the circumferential direction Dc around the rotor axis Ar. Each stationary blade 41 includes a stationary blade body 42 extending in the radial direction Dr, an outer shroud 43 provided on the radially outer side of the stationary blade body 42, and an inner shroud 45 provided on the radially inner side of the stationary blade body 42. Have.

動翼段35及び静翼段40の径方向外側であってケーシング31の径方向内側には、ロータ軸Arを中心とした円筒状をなしてケーシング31に固定された翼環50が配置される。翼環50と静翼41の外側シュラウド43とは、遮熱環52により連結される。   A blade ring 50 having a cylindrical shape around the rotor axis Ar and fixed to the casing 31 is disposed radially outside the moving blade stage 35 and the stationary blade stage 40 and inside the casing 31 in the radial direction. . The blade ring 50 and the outer shroud 43 of the stationary blade 41 are connected by a heat shield ring 52.

軸方向Daで隣接する静翼段40の外側シュラウド43の間には、ロータ軸Arを中心として周方向Dcに並ぶ複数の分割環61が配置される。複数の分割環61は環状に並び、その径方向内側に動翼段35が配置される。複数の分割環61は、それぞれ遮熱環52により翼環50に連結される。   Between the outer shrouds 43 of the stationary blade stages 40 adjacent in the axial direction Da, a plurality of split rings 61 arranged in the circumferential direction Dc around the rotor axis Ar are arranged. The plurality of split rings 61 are arranged in a ring shape, and the rotor blade stage 35 is disposed on the radially inner side. The plurality of split rings 61 are each connected to the blade ring 50 by a heat shield ring 52.

燃焼器20は、高温高圧の燃焼ガスGをタービン30に送る尾筒22と、尾筒22内に燃料及び圧縮空気を供給する燃料ノズル21と、を備える。尾筒22の下流側のフランジ、つまり出口フランジ23には、最上流側の第一静翼段40aを構成する第一静翼41aの内側シュラウド45及び外側シュラウド43の各上流側端部が接続される。   The combustor 20 includes a tail cylinder 22 that sends high-temperature and high-pressure combustion gas G to a turbine 30, and a fuel nozzle 21 that supplies fuel and compressed air into the tail cylinder 22. The upstream end of each of the inner shroud 45 and the outer shroud 43 of the first stator blade 41a constituting the most upstream first stator blade stage 40a is connected to the downstream flange of the transition piece 22, that is, the outlet flange 23. Is done.

圧縮機10が生成した圧縮空気は、ケーシング31の上流側の内部(以下、車室32という。)に入り、燃焼器20の外周から燃料ノズル21内に流れ込む。燃料ノズル21は、圧縮空気と共に外部からの燃料を尾筒22内に噴霧する。尾筒22内では、燃料が燃焼して燃焼ガスGが生成される。この燃焼ガスGは、静翼段40を構成する複数の静翼41の内側シュラウド45と外側シュラウド43との間、及びその下流側の動翼段35を構成する複数の動翼36のプラットホーム38とこの動翼36の径方向外側に配置された分割環61との間、を通る過程で動翼本体37に接し、タービンロータ33をロータ軸Ar中心で回転させる。   The compressed air generated by the compressor 10 enters the upstream side of the casing 31 (hereinafter, referred to as the vehicle compartment 32) and flows into the fuel nozzle 21 from the outer periphery of the combustor 20. The fuel nozzle 21 sprays fuel from the outside together with the compressed air into the tail cylinder 22. In the transition piece 22, the fuel is burned and combustion gas G is generated. This combustion gas G is a platform 38 of a plurality of blades 36 constituting the blade stage 35 between the inner shroud 45 and the outer shroud 43 of the plurality of stator blades 41 constituting the stationary blade stage 40 and downstream thereof. And the blade ring 37 in the process of passing between the rotor blade 36 and the split ring 61 disposed on the radially outer side of the rotor blade 36, and the turbine rotor 33 is rotated about the rotor axis Ar.

すなわち、タービン30における燃焼ガスGが流れる燃焼ガス流路(ガスパス)Pgは、尾筒22よりも下流側において、静翼41の内側シュラウド45及び外側シュラウド43、並びに動翼36のプラットホーム38及びこれに対向する分割環61で画定される。   That is, the combustion gas flow path (gas path) Pg through which the combustion gas G in the turbine 30 flows is downstream of the tail cylinder 22, and the inner shroud 45 and outer shroud 43 of the stationary blade 41 and the platform 38 of the moving blade 36 and the same. Is defined by a split ring 61 opposite to.

「ガスタービン尾筒シール」
次に、図3及び図4を用いて、本実施形態のガスタービン尾筒シール(以下、単に尾筒シールということがある。)について説明する。
図3に示すように、尾筒シール80は、燃焼器20の尾筒22の出口フランジ23と、第一静翼段40aの第一静翼41aの内側シュラウド45及び外側シュラウド43の各上流側端部と、の間をシールするシール部材である。
"Gas Turbine Seal"
Next, with reference to FIGS. 3 and 4, the gas turbine tail cylinder seal (hereinafter sometimes simply referred to as a tail cylinder seal) of the present embodiment will be described.
As shown in FIG. 3, the transition piece seal 80 is provided on the upstream side of the outlet flange 23 of the transition piece 22 of the combustor 20 and the inner shroud 45 and the outer shroud 43 of the first stationary blade 41a of the first stationary blade stage 40a. It is a sealing member which seals between the end portions.

尾筒22の尾筒出口22aは、燃焼ガス流路Pgの流れ方向(燃焼ガスGの流れ方向)と直交する平面に沿うように形成される。尾筒出口22aは、燃焼ガス流路Pgの流れ方向から見てほぼ四角形状をなし、その周囲には、出口フランジ23が四角環状に形成される。
出口フランジ23は、尾筒出口22aの開口を挟んで、径方向Drに配置される一対の径方向フランジ部と周方向Dcに配置される一対の周方向フランジ部とを有する。尾筒シール80は、一対の周方向フランジ部に沿って配置される。
The transition piece outlet 22a of the transition piece 22 is formed along a plane orthogonal to the flow direction of the combustion gas flow path Pg (flow direction of the combustion gas G). The transition piece outlet 22a has a substantially quadrangular shape when viewed from the flow direction of the combustion gas flow path Pg, and an outlet flange 23 is formed in a square ring around the periphery.
The outlet flange 23 has a pair of radial flange portions disposed in the radial direction Dr and a pair of circumferential flange portions disposed in the circumferential direction Dc across the opening of the transition piece outlet 22a. The transition piece seal 80 is disposed along a pair of circumferential flange portions.

なお、出口フランジ23における一対の径方向フランジ部には、周方向Dcで隣接する他の尾筒22の出口フランジ23における径方向フランジ部との間をシールする他のシール部材(不図示)が配置される。   The pair of radial flange portions in the outlet flange 23 has other seal members (not shown) for sealing between the radial flange portions in the outlet flange 23 of the other tail tube 22 adjacent in the circumferential direction Dc. Be placed.

出口フランジ23の径方向外側の周方向フランジ部に配置される尾筒シール80は、前記径方向外側の周方向フランジ部に係合すると共に、第一静翼41aの外側シュラウド43の上流側端部に係合する。出口フランジ23の径方向内側の周方向フランジ部に配置される尾筒シール80は、前記径方向内側の周方向フランジ部に係合すると共に、第一静翼41aの内側シュラウド45の上流側端部に係合する。第一静翼41aの外側シュラウド43及び内側シュラウド45の各上流側端部には、上流側に突出して尾筒シール80を係合させる係合凸部44がそれぞれ形成される。   The transition piece seal 80 disposed on the circumferential flange portion on the radially outer side of the outlet flange 23 engages with the circumferential flange portion on the radially outer side, and at the upstream end of the outer shroud 43 of the first stationary blade 41a. Engage with the part. The transition piece seal 80 disposed in the circumferential flange portion on the radially inner side of the outlet flange 23 engages with the circumferential flange portion on the radially inner side and at the upstream end of the inner shroud 45 of the first stationary blade 41a. Engage with the part. Engagement projections 44 are formed at the upstream end portions of the outer shroud 43 and the inner shroud 45 of the first stationary blade 41a so as to protrude upstream and engage the tail cylinder seal 80, respectively.

尾筒22の尾筒出口22aにおける周方向Dcと直交する断面(図3に相当)において、径方向内側の尾筒シール80と径方向外側の尾筒シール80とは、尾筒22の尾筒出口22aにおけるロータ軸Arに関して対称な構成を有する。以下、図4を参照して径方向内側の尾筒シール80について説明し、径方向外側の尾筒シール80は対称な構成を有するものとしてその説明を省略する。   In a cross section (corresponding to FIG. 3) orthogonal to the circumferential direction Dc at the tail tube outlet 22 a of the tail tube 22, the radially inner tail tube seal 80 and the radially outer tail tube seal 80 are the tail tube of the tail tube 22. The outlet 22a has a symmetrical configuration with respect to the rotor axis Ar. Hereinafter, the radially inner transition piece seal 80 will be described with reference to FIG. 4, and the radially outer transition piece seal 80 has a symmetric configuration and description thereof is omitted.

尾筒シール80の上流側部分には、径方向内側に向かって凹むフランジ溝81が、周方向Dcに延びるように形成される。フランジ溝81には、尾筒22の出口フランジ23(周方向フランジ部)が嵌入される。
尾筒シール80の下流側部分には、燃焼ガス流路Pgの流れ方向で上流側に向かって凹む係合溝82が、周方向Dcに延びるように形成される。係合溝82には、第一静翼41aの内側シュラウド45の係合凸部44が嵌入される。
A flange groove 81 that is recessed radially inward is formed in the upstream portion of the transition piece seal 80 so as to extend in the circumferential direction Dc. In the flange groove 81, the outlet flange 23 (circumferential flange portion) of the tail cylinder 22 is fitted.
An engagement groove 82 that is recessed toward the upstream side in the flow direction of the combustion gas flow path Pg is formed in the downstream portion of the transition piece seal 80 so as to extend in the circumferential direction Dc. In the engaging groove 82, the engaging convex portion 44 of the inner shroud 45 of the first stationary blade 41a is fitted.

以下、尾筒シール80における燃焼ガス流路Pgに沿う壁部を符号83で示し、壁部83における燃焼ガス流路Pgに面する壁面を符号84で示す。
尾筒シール80の壁部83には、壁面84周辺を冷却するための冷却流路85が形成される。
Hereinafter, a wall portion along the combustion gas flow path Pg in the transition piece seal 80 is denoted by reference numeral 83, and a wall surface facing the combustion gas flow path Pg in the wall section 83 is denoted by reference numeral 84.
A cooling channel 85 for cooling the periphery of the wall surface 84 is formed in the wall 83 of the tail cylinder seal 80.

冷却流路85は、壁部83内で壁面84に沿うように形成され、第一流路86、第二流路87及び接続流路88で形成される。第一流路86は、燃焼ガス流路Pg外周に配置された車室32内から流入した圧縮空気の一部である冷却空気Aを、壁部83内で燃焼ガスGの流れ方向の下流側に流す流路である。第二流路87は、壁部83内で、壁面84の燃焼ガスGの流れ方向に沿い、かつ周方向Dcで第一流路86に隣接するように形成され、第一流路86を流れた冷却空気Aを壁部83内で燃焼ガスGの流れ方向の上流側に流す流路である。接続流路88は、壁部83内の下流側端部内に形成され、第一流路86及び第二流路87の下流側端部を相互に接続してこれらを折り返すように連通させる流路である。   The cooling flow path 85 is formed along the wall surface 84 in the wall portion 83, and is formed by the first flow path 86, the second flow path 87, and the connection flow path 88. The first flow path 86 allows the cooling air A, which is a part of the compressed air flowing from the inside of the vehicle compartment 32 disposed on the outer periphery of the combustion gas flow path Pg, to flow downstream in the flow direction of the combustion gas G in the wall 83. This is a flow channel. The second flow path 87 is formed in the wall portion 83 along the flow direction of the combustion gas G on the wall surface 84 and adjacent to the first flow path 86 in the circumferential direction Dc, and has cooled through the first flow path 86. This is a flow path for flowing air A in the wall 83 to the upstream side in the flow direction of the combustion gas G. The connection flow path 88 is a flow path that is formed in the downstream end portion in the wall portion 83 and connects the downstream end portions of the first flow path 86 and the second flow path 87 to each other so as to be folded back. is there.

冷却流路85は、周方向Dcで並ぶように複数形成され、壁面84のほぼ全域を冷却可能とする。各冷却流路85の接続流路88は相互に連通し、尾筒シール80を周方向Dcに沿って貫通する貫通流路88Aとして形成される。これにより、複数の冷却流路85の接続流路88が、尾筒シール80を周方向Dcで貫通する加工具等によってまとめて形成することが可能となる。貫通流路88Aの周方向Dcの両側の末端部はプラグpにより閉塞される。   A plurality of cooling flow paths 85 are formed so as to be aligned in the circumferential direction Dc, and substantially the entire wall surface 84 can be cooled. The connection flow path 88 of each cooling flow path 85 communicates with each other, and is formed as a through flow path 88A that penetrates the transition piece seal 80 along the circumferential direction Dc. Thereby, the connection flow paths 88 of the plurality of cooling flow paths 85 can be formed together by a processing tool or the like that penetrates the transition piece seal 80 in the circumferential direction Dc. The end portions on both sides in the circumferential direction Dc of the through channel 88A are closed by the plug p.

第一流路86は、壁部83の上流側端部で車室32に開放する入口開口部86aと、入口開口部86aから燃焼ガス流路Pg側へ径方向Drに沿って延びる入口流路86bと、入口流路86bの壁面84側の端部から壁面84に沿って下流側へ延びる第一流路本体86cと、を有する。
第二流路87は、壁部83の上流側端部で燃焼ガス流路Pgに開放する出口開口部87aと、出口開口部87aから車室32側へ径方向Drに沿って延びる出口流路87bと、出口流路87bの先端側から壁面84に沿って燃焼ガスGの流れ方向の下流側へ延びる第二流路本体87cと、を有する。
The first flow path 86 includes an inlet opening 86a that opens to the vehicle compartment 32 at the upstream end of the wall 83, and an inlet flow path 86b that extends from the inlet opening 86a toward the combustion gas flow path Pg along the radial direction Dr. And a first flow path body 86c extending from the end of the inlet flow path 86b on the wall surface 84 side to the downstream side along the wall surface 84.
The second flow path 87 includes an outlet opening 87a that opens to the combustion gas flow path Pg at the upstream end of the wall 83, and an outlet flow path that extends along the radial direction Dr from the outlet opening 87a to the vehicle compartment 32 side. 87b and a second flow path body 87c extending from the front end side of the outlet flow path 87b along the wall surface 84 to the downstream side in the flow direction of the combustion gas G.

第一流路86及び第二流路87は、壁部83の厚さ方向(径方向Dr)で壁面84寄りに形成される。壁面84から第二流路本体87cに至る出口流路87bは、壁部83における径方向Drで壁面84と反対側の外面から第一流路本体86cに至る入口流路86bよりも短くされる。   The first flow path 86 and the second flow path 87 are formed closer to the wall surface 84 in the thickness direction (radial direction Dr) of the wall portion 83. The outlet flow path 87b extending from the wall surface 84 to the second flow path body 87c is shorter than the inlet flow path 86b extending from the outer surface opposite to the wall surface 84 in the radial direction Dr in the wall portion 83 to the first flow path body 86c.

圧縮機10から車室32内に供給された圧縮空気の一部である冷却空気Aは、出口フランジ23と尾筒シール80との間の隙間、及び尾筒シール80と第一静翼41aの内側シュラウド45との間の隙間から漏れ出して、燃焼ガス流路Pg内に流れ込む。この漏れ出した冷却空気Aにより、尾筒シール80の上流側端部が冷却される。   The cooling air A, which is a part of the compressed air supplied from the compressor 10 into the passenger compartment 32, is a gap between the outlet flange 23 and the tail cylinder seal 80, and between the tail cylinder seal 80 and the first stationary blade 41a. It leaks from the gap between the inner shroud 45 and flows into the combustion gas flow path Pg. The leaked cooling air A cools the upstream end portion of the transition piece seal 80.

車室32内の冷却空気Aの一部は、複数の入口開口部86aから複数の冷却流路85内に流入する。複数の冷却流路85は、尾筒シール80の壁部83内の燃焼ガス流路Pg寄りに形成されることから、これら複数の冷却流路85を流れる冷却空気Aによって、壁部83における燃焼ガス流路Pgを流れる燃焼ガスGからの熱を受け易い壁面84側が良好に冷却される。   A part of the cooling air A in the passenger compartment 32 flows into the plurality of cooling channels 85 from the plurality of inlet openings 86a. Since the plurality of cooling channels 85 are formed near the combustion gas channel Pg in the wall 83 of the transition piece seal 80, the cooling air A flowing through the plurality of cooling channels 85 causes combustion in the wall 83. The wall surface 84 side that is susceptible to heat from the combustion gas G flowing through the gas flow path Pg is cooled well.

各冷却流路85は、流入した冷却空気Aを第一流路86により下流側に流した後、この冷却空気Aを接続流路88により上流側に折り返し、第二流路87により再度上流側に流すことで、冷却空気Aを燃焼ガスGの流れ方向の一方向のみに流す場合と比べて流路長を倍増させる。これにより、同一の空気流量でも尾筒シール80の冷却性を高めることができる。複数の冷却流路85が貫通流路88Aにより相互に連通する場合には、空気流量のバラつきを抑えて冷却の均等化に寄与する。   Each cooling flow path 85 flows the cooling air A that has flowed downstream through the first flow path 86, then turns this cooling air A back upstream through the connection flow path 88, and then again flows upstream through the second flow path 87. By flowing, the flow path length is doubled as compared with the case where the cooling air A is flowed only in one direction of the flow direction of the combustion gas G. Thereby, the cooling performance of the tail tube seal 80 can be enhanced even with the same air flow rate. When the plurality of cooling flow paths 85 communicate with each other through the through flow path 88A, variation in the air flow rate is suppressed, contributing to equalization of cooling.

冷却流路85内の冷却空気Aは、出口開口部87aより燃焼ガス流路Pg内に流出する。出口開口部87aは、尾筒シール80の上流側端部に形成されることが望ましい。出口開口部87aから燃焼ガス流路Pg内に流出した冷却空気Aは、尾筒シール80の壁面84をその上流側端部から燃焼ガスGの流れ方向の下流側に向けて広範囲にフィルム冷却する。すなわち、出口開口部87aは、壁面84のフィルム冷却孔として機能する。   The cooling air A in the cooling channel 85 flows out into the combustion gas channel Pg from the outlet opening 87a. The outlet opening 87 a is desirably formed at the upstream end of the transition piece seal 80. The cooling air A that has flowed into the combustion gas flow path Pg from the outlet opening 87a cools the wall surface 84 of the tail tube seal 80 over a wide range from the upstream end to the downstream side in the flow direction of the combustion gas G. . That is, the outlet opening 87 a functions as a film cooling hole for the wall surface 84.

出口開口部87aは、入口開口部86aよりも下流側(第一流路本体86c側)で、入口開口部86aに近接して開口する。なお、「入口開口部86aに近接する」とは、燃焼ガス流路Pg側から径方向外側又は径方向内側に向かって尾筒シール80の壁面84を断面視した場合(図5に相当)、少なくとも出口開口部87aは、入口開口部86aよりも燃焼ガスGの流れ方向の下流側で、周方向Dcの両側に近接配置された第一流路86の間に挟まれて配置する必要がある。また、燃焼ガスGの流れ方向に対しては、出口開口部87aとその周方向Dcの両側の第一流路86の二つの入口開口部86aとの間で、二等辺三角形が形成されるような配置(最上流位置)とすることが最も望ましい。   The outlet opening 87a opens closer to the inlet opening 86a on the downstream side (first flow path body 86c side) than the inlet opening 86a. Note that “close to the inlet opening 86a” is a cross-sectional view of the wall surface 84 of the transition piece seal 80 from the combustion gas flow path Pg side toward the radially outer side or radially inner side (corresponding to FIG. 5). At least the outlet opening 87a needs to be disposed between the first flow paths 86 disposed closer to both sides of the circumferential direction Dc on the downstream side in the flow direction of the combustion gas G than the inlet opening 86a. Further, with respect to the flow direction of the combustion gas G, an isosceles triangle is formed between the outlet opening 87a and the two inlet openings 86a of the first flow path 86 on both sides in the circumferential direction Dc. It is most desirable to have the arrangement (the most upstream position).

上述の出口開口部87aの配置により、出口開口部87aは、出口流路87bが短いことから、入口流路86bの径方向Drの下流側端部(壁面84側の端部)とも近接する。これにより、出口開口部87a周辺が良好に冷却され、出口開口部87a周辺の損傷が抑えられる。また、第二流路87の流れ方向の流路長も十分に確保されるので、冷却空気量の低減にも効果がある。   Due to the arrangement of the outlet opening 87a described above, the outlet opening 87a is close to the downstream end (end on the wall surface 84) in the radial direction Dr of the inlet passage 86b because the outlet passage 87b is short. Thereby, the periphery of the outlet opening 87a is cooled well, and damage around the outlet opening 87a is suppressed. In addition, since the flow path length in the flow direction of the second flow path 87 is sufficiently secured, there is an effect in reducing the amount of cooling air.

なお、出口開口部87aの燃焼ガスGの流れ方向の位置は、隣接する第一流路86の間に配置されていれば、上述の最上流位置より下流側であってもよい。このような場合、できるだけ第二流路87の流路長を確保する観点では若干不利ではあるが、出口開口部87aが第一流路86に挟まれているため、出口開口部87aの周辺は第一流路86を流れる冷却空気Aにより冷却され、出口開口部87aが高温により損傷を受ける虞はない。   Note that the position of the outlet opening 87a in the flow direction of the combustion gas G may be on the downstream side of the most upstream position as long as it is disposed between the adjacent first flow paths 86. In such a case, although it is slightly disadvantageous from the viewpoint of securing the flow path length of the second flow path 87 as much as possible, since the outlet opening 87a is sandwiched between the first flow paths 86, the periphery of the outlet opening 87a is the first. It is cooled by the cooling air A flowing through one flow path 86, and there is no possibility that the outlet opening 87a is damaged by high temperature.

また、第一流路86を下流側に流れた冷却空気Aは、接続流路88の下流側内面に衝突して上流側に折り返すが、この冷却空気Aの衝突によって、接続流路88の内壁面がインピンジメント冷却される。これにより、比較的高温になり易い尾筒シール80の下流側の冷却効果が高まり、尾筒シール80の下流側端部の破損が抑えられる。尾筒シール80の下流側端部には冷却流路85が開口せず、この点でも尾筒シール80の下流側端部の破損が抑えられる。   In addition, the cooling air A that has flowed downstream through the first flow path 86 collides with the downstream inner surface of the connection flow path 88 and turns back upstream, but the inner wall surface of the connection flow path 88 is caused by the collision of the cooling air A. Is impingement cooled. Thereby, the cooling effect on the downstream side of the transition piece seal 80 that tends to be relatively high is enhanced, and the downstream end portion of the transition piece seal 80 is prevented from being damaged. The cooling flow path 85 does not open at the downstream end portion of the transition piece seal 80, and the downstream end portion of the transition piece seal 80 is also prevented from being damaged in this respect.

以上説明したように、本実施形態のガスタービン尾筒シール80によれば、燃焼ガス流路Pgに面する壁部83内で燃焼ガス流路Pgに面する壁面84に沿うように形成されると共に壁部83の下流側端部で折り返す冷却流路85を複数備え、これらの第一流路86が壁部83の上流側で車室32に連通する入口開口部86aを有すると共に、第二流路87が壁部83の上流側かつ入口開口部86aの近傍で燃焼ガス流路Pgに連通する出口開口部87aを有することで、冷却空気Aが下流側に向けた一方向のみに流れる場合と比べて、より少ない冷却空気Aで効率よく壁面84近傍を冷却することができる。また、冷却流路85の出口となる第二流路87の出口開口部87aが、壁部83の上流側で隣接する第一流路86の間に配置されることで、壁部83の下流側の高温部分から開口を無くすことができ、冷却空気Aの出口周辺の損傷を抑えることができる。   As described above, according to the gas turbine tail cylinder seal 80 of the present embodiment, it is formed along the wall surface 84 facing the combustion gas flow path Pg in the wall portion 83 facing the combustion gas flow path Pg. In addition, a plurality of cooling flow paths 85 that are folded back at the downstream end of the wall 83 are provided, and the first flow path 86 has an inlet opening 86 a that communicates with the vehicle compartment 32 on the upstream side of the wall 83, and the second flow When the passage 87 has the outlet opening 87a communicating with the combustion gas flow path Pg on the upstream side of the wall 83 and in the vicinity of the inlet opening 86a, the cooling air A flows in only one direction toward the downstream side. In comparison, the vicinity of the wall surface 84 can be efficiently cooled with less cooling air A. Further, the outlet opening 87a of the second flow path 87 serving as the outlet of the cooling flow path 85 is disposed between the adjacent first flow paths 86 on the upstream side of the wall 83, so that the downstream of the wall 83. It is possible to eliminate the opening from the high-temperature portion, and it is possible to suppress damage around the outlet of the cooling air A.

なお、本発明は上記実施形態に限られるものではなく、例えば、複数の接続流路88が互いに連通せず、互いに独立した複数の冷却流路85を形成してもよい。
冷却流路85の出口流路87bを、燃焼ガス流路Pg側ほど下流側に位置するように傾斜させ、この出口流路87bから流出した冷却空気Aが壁面84に沿って流れ易くしてもよい。
そして、上記実施形態における構成は本発明の一例であり、当該発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above-described embodiment. For example, the plurality of connection channels 88 may not communicate with each other, and a plurality of cooling channels 85 independent from each other may be formed.
Even if the outlet passage 87b of the cooling passage 85 is inclined so as to be located on the downstream side toward the combustion gas passage Pg, the cooling air A flowing out from the outlet passage 87b can easily flow along the wall surface 84. Good.
And the structure in the said embodiment is an example of this invention, A various change is possible in the range which does not deviate from the summary of the said invention.

1 ガスタービン
20 燃焼器
22 尾筒
30 タービン
32 車室
A 冷却空気(空気)
40a 第一静翼段
43 外側シュラウド
45 内側シュラウド
80 ガスタービン尾筒シール
Pg 燃焼ガス流路
83 壁部
84 壁面
Dc 周方向
85 冷却流路
86 第一流路
86a 入口開口部
86b 入口流路
86c 第一流路本体
87 第二流路
87a 出口開口部
88 接続流路
DESCRIPTION OF SYMBOLS 1 Gas turbine 20 Combustor 22 Tail tube 30 Turbine 32 Car compartment A Cooling air (air)
40a First stationary blade stage 43 Outer shroud 45 Inner shroud 80 Gas turbine tail cylinder seal Pg Combustion gas flow path 83 Wall portion 84 Wall surface Dc Circumferential direction 85 Cooling flow path 86 First flow path 86a Inlet opening 86b Inlet flow path 86c First flow Road body 87 Second flow path 87a Outlet opening 88 Connection flow path

Claims (9)

燃焼器の尾筒と、該尾筒よりも燃焼ガスの流れ方向の下流側の第一静翼段の内側シュラウド及び外側シュラウドと、の間をシールするガスタービン尾筒シールにおいて、
燃焼ガス流路に沿う壁部内で、前記燃焼ガス流路に面する壁面に沿うように形成され、前記燃焼ガス流路外方の車室内から流入した空気を前記壁部内で前記下流側に流す第一流路と、
前記壁部内で、前記燃焼ガスの流れ方向と直交すると共に前記壁面に沿う周方向で、前記第一流路に隣接するように形成され、前記第一流路を流れた空気を前記壁部内で前記燃焼ガスの流れ方向の上流側に流す第二流路と、
前記壁部内に形成され、前記第一流路及び第二流路の前記下流側を接続してこれらを折り返すように連通させる接続流路と、を含む冷却流路を備え、
前記第一流路は、前記壁部の前記上流側で前記車室に連通する入口開口部を有し、
前記第二流路は、前記壁部の前記壁面で前記燃焼ガス流路に連通する出口開口部を有することを特徴とするガスタービン尾筒シール。
In the gas turbine tail cylinder seal that seals between the transition tube of the combustor and the inner shroud and the outer shroud of the first stationary blade stage downstream of the transition tube in the flow direction of the combustion gas,
In the wall portion along the combustion gas flow path, the air flow passage is formed along the wall surface facing the combustion gas flow path, and the air flowing in from the vehicle interior outside the combustion gas flow path flows to the downstream side in the wall portion. A first flow path;
In the wall portion, the air that is perpendicular to the flow direction of the combustion gas and that is adjacent to the first flow path in the circumferential direction along the wall surface, and the air that flows through the first flow path is burned in the wall section. A second flow path that flows upstream in the gas flow direction;
A cooling channel including a connection channel formed in the wall and connected to connect the downstream side of the first channel and the second channel so as to be folded back,
The first flow path has an inlet opening that communicates with the passenger compartment on the upstream side of the wall,
The gas turbine tail cylinder seal, wherein the second flow path has an outlet opening that communicates with the combustion gas flow path at the wall surface of the wall.
前記出口開口部は、前記入口開口部よりも前記下流側で、隣接する二つの前記第一流路の間に配置されることを特徴とする請求項1に記載のガスタービン尾筒シール。   2. The gas turbine tail cylinder seal according to claim 1, wherein the outlet opening is disposed between the two adjacent first flow paths on the downstream side of the inlet opening. 前記出口開口部は、前記入口開口部よりも前記下流側で、前記入口開口部に近接して配置されることを特徴とする請求項1又は2に記載のガスタービン尾筒シール。   3. The gas turbine tail cylinder seal according to claim 1, wherein the outlet opening is disposed on the downstream side of the inlet opening and in proximity to the inlet opening. 4. 前記第一流路は、前記壁面に沿う第一流路本体と、前記入口開口部から前記燃焼ガス流路側へ延びて前記壁面の近傍で前記第一流路本体に接続される入口流路と、を含み、
前記入口流路と前記出口開口部とが近接することを特徴とする請求項1から3の何れか一項に記載のガスタービン尾筒シール。
The first flow path includes a first flow path body that extends along the wall surface, and an inlet flow path that extends from the inlet opening to the combustion gas flow path side and is connected to the first flow path body in the vicinity of the wall surface. ,
The gas turbine tail cylinder seal according to any one of claims 1 to 3, wherein the inlet channel and the outlet opening are close to each other.
前記冷却流路は、前記周方向で並ぶように複数形成されることを特徴とする請求項1から4の何れか一項に記載のガスタービン尾筒シール。   The gas turbine tail cylinder seal according to any one of claims 1 to 4, wherein a plurality of the cooling flow paths are formed so as to be aligned in the circumferential direction. 前記接続流路は、前記周方向に延びて複数の前記冷却流路の第一流路及び第二流路を連通すること特徴とする請求項1から5の何れか一項に記載のガスタービン尾筒シール。   The gas turbine tail according to any one of claims 1 to 5, wherein the connection flow path extends in the circumferential direction and communicates the first flow path and the second flow path of the plurality of cooling flow paths. Tube seal. 前記出口開口部は、前記壁面の上流側端部に開口し、前記壁面のフィルム冷却孔として機能することを特徴とする請求項1から6の何れか一項に記載のガスタービン尾筒シール。   The gas turbine tail cylinder seal according to any one of claims 1 to 6, wherein the outlet opening portion opens at an upstream end portion of the wall surface and functions as a film cooling hole of the wall surface. 前記接続流路は、前記第一流路を流れる空気の衝突によって内壁面を冷却するインピンジメント冷却がなされることを特徴とする請求項1から7の何れか一項に記載のガスタービン尾筒シール。   The gas turbine tail cylinder seal according to any one of claims 1 to 7, wherein the connection flow path is impingement cooled to cool an inner wall surface by collision of air flowing through the first flow path. . 請求項1から8の何れか一項に記載のガスタービン尾筒シールと、前記尾筒を含む燃焼器と、前記燃焼器が発生した燃焼ガスで駆動するタービンと、を備えることを特徴とするガスタービン。   A gas turbine tail cylinder seal according to any one of claims 1 to 8, a combustor including the tail cylinder, and a turbine driven by combustion gas generated by the combustor. gas turbine.
JP2013019615A 2013-02-04 2013-02-04 Gas turbine tail tube seal and gas turbine Active JP6016655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019615A JP6016655B2 (en) 2013-02-04 2013-02-04 Gas turbine tail tube seal and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019615A JP6016655B2 (en) 2013-02-04 2013-02-04 Gas turbine tail tube seal and gas turbine

Publications (2)

Publication Number Publication Date
JP2014148964A JP2014148964A (en) 2014-08-21
JP6016655B2 true JP6016655B2 (en) 2016-10-26

Family

ID=51572124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019615A Active JP6016655B2 (en) 2013-02-04 2013-02-04 Gas turbine tail tube seal and gas turbine

Country Status (1)

Country Link
JP (1) JP6016655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366180B2 (en) * 2014-09-26 2018-08-01 三菱日立パワーシステムズ株式会社 Seal structure
JP6512573B2 (en) 2014-09-26 2019-05-15 三菱日立パワーシステムズ株式会社 Seal member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031590B2 (en) * 1999-03-08 2008-01-09 三菱重工業株式会社 Combustor transition structure and gas turbine using the structure
JP4240759B2 (en) * 2000-05-24 2009-03-18 三菱重工業株式会社 Combustor tail cooling structure
JP2005105817A (en) * 2002-04-25 2005-04-21 Mitsubishi Heavy Ind Ltd Combustor and gas turbine
US6860108B2 (en) * 2003-01-22 2005-03-01 Mitsubishi Heavy Industries, Ltd. Gas turbine tail tube seal and gas turbine using the same
JP4209448B2 (en) * 2007-01-31 2009-01-14 三菱重工業株式会社 Combustor tail cooling structure
JP5484707B2 (en) * 2008-10-10 2014-05-07 三菱重工業株式会社 Combustor and gas turbine
US8092159B2 (en) * 2009-03-31 2012-01-10 General Electric Company Feeding film cooling holes from seal slots
US8910465B2 (en) * 2009-12-31 2014-12-16 Rolls-Royce North American Technologies, Inc. Gas turbine engine and heat exchange system

Also Published As

Publication number Publication date
JP2014148964A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP6189455B2 (en) Purge and cooling air for the exhaust section of the gas turbine assembly
JP6176723B2 (en) Combustor cap assembly
CN107152700B (en) Bundled tube fuel nozzle with internal cooling
CA2890425C (en) Multiple ventilated rails for sealing of combustor heat shields
US9182122B2 (en) Combustor and method for supplying flow to a combustor
US9243506B2 (en) Methods and systems for cooling a transition nozzle
JP2004225688A (en) Gas turbine tail cylinder seal and gas turbine using this gas turbine tail cylinder seal
US9518478B2 (en) Microchannel exhaust for cooling and/or purging gas turbine segment gaps
JP5679883B2 (en) Combustor with flow sleeve
RU2604687C2 (en) Transition piece seal assembly for turbomachine
JP6602094B2 (en) Combustor cap assembly
JP2004003494A (en) Gas turbine and its bleeding method
US20130170983A1 (en) Turbine assembly and method for reducing fluid flow between turbine components
JP6110665B2 (en) Turbine assembly and method for controlling temperature of the assembly
JP7112342B2 (en) gas turbine combustor and gas turbine
JP2014009937A (en) Transition duct for gas turbine
JP6512573B2 (en) Seal member
US8813501B2 (en) Combustor assemblies for use in turbine engines and methods of assembling same
JP6599167B2 (en) Combustor cap assembly
JP2017089638A (en) Cooled combustor for gas turbine engine
KR101660679B1 (en) Gas turbine high-temperature component, gas turbine with same and method for producing gas turbine high-temperature component
JP6016655B2 (en) Gas turbine tail tube seal and gas turbine
WO2012132787A1 (en) Gas turbine
JP2016040510A (en) Nozzle having orifice plug for gas turbomachine
JP2016044680A (en) Combustor cap assembly

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151105

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R151 Written notification of patent or utility model registration

Ref document number: 6016655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350