JP6015994B2 - Optical element and manufacturing method thereof - Google Patents

Optical element and manufacturing method thereof Download PDF

Info

Publication number
JP6015994B2
JP6015994B2 JP2015521328A JP2015521328A JP6015994B2 JP 6015994 B2 JP6015994 B2 JP 6015994B2 JP 2015521328 A JP2015521328 A JP 2015521328A JP 2015521328 A JP2015521328 A JP 2015521328A JP 6015994 B2 JP6015994 B2 JP 6015994B2
Authority
JP
Japan
Prior art keywords
layer
alkali metal
metal
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015521328A
Other languages
Japanese (ja)
Other versions
JPWO2014196256A1 (en
Inventor
由紀子 上川
由紀子 上川
仁木 栄
栄 仁木
柴田 肇
肇 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Application granted granted Critical
Publication of JP6015994B2 publication Critical patent/JP6015994B2/en
Publication of JPWO2014196256A1 publication Critical patent/JPWO2014196256A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Description

本発明は光学素子及びその製造方法に係り、特にカルコゲン化物(カルコパイライト、ケステライト等を含む)系材料を光吸収層又は発光層として用いた光学素子及びその製造方法に関する。   The present invention relates to an optical element and a manufacturing method thereof, and more particularly to an optical element using a chalcogenide (including chalcopyrite, kesterite, etc.)-Based material as a light absorbing layer or a light emitting layer and a manufacturing method thereof.

カルコゲン化物(カルコパイライト、ケステライト等を含む)系材料を光吸収層又は発光層として用いた光学素子(太陽電池、光センサ、発光素子、受光素子等)は、高効率で費用効率が高い光学素子として注目を集めている。カルコゲン化物系材料のうち特にカルコパイライト系材料を光吸収層として用いた光学素子に対してはアルカリ金属の微量な添加が特性の改善に有用であることが報告されている(例えば、非特許文献1参照)。   Optical elements (solar cells, light sensors, light emitting elements, light receiving elements, etc.) using chalcogenide (including chalcopyrite, kesterite, etc.) materials as light absorbing layers or light emitting layers are highly efficient and cost effective optical elements. Has attracted attention as. It has been reported that the addition of a small amount of an alkali metal is useful for improving the characteristics particularly for optical elements using a chalcopyrite material as a light absorption layer among chalcogenide materials (for example, non-patent literature). 1).

一般的に基板として用いられるソーダライムガラス(SLG)は、ナトリウム(Na)、カリウム(K)等のアルカリ金属を含有している。そのため、SLG基板上に金属裏面電極、カルコゲン化物系材料を用いた光吸収層(又は発光層)を積層した光学素子の場合、SLG基板のアルカリ金属が自然拡散により金属裏面電極を通過し、光吸収(発光)層に供給される。この方法を用いて、カルコゲン化物系材料を用いた光吸収層又は発光層に非常に容易にアルカリ金属添加が行え、特性を改善できる。   Soda lime glass (SLG) generally used as a substrate contains alkali metals such as sodium (Na) and potassium (K). Therefore, in the case of an optical element in which a metal back electrode and a light absorption layer (or light emitting layer) using a chalcogenide-based material are laminated on the SLG substrate, the alkali metal of the SLG substrate passes through the metal back electrode by natural diffusion, and light Supplied to the absorption (light emission) layer. By using this method, the alkali metal can be added to the light absorption layer or the light emitting layer using the chalcogenide-based material very easily, and the characteristics can be improved.

ところが、近年、光学素子の裏面構造の多機能化(反射鏡やテクスチャ形成等)の目的で、透明導電膜などの酸化物層(酸化ケイ素:SiO2、酸化チタン:TiO2、酸化亜鉛:ZnO、アルミナ:Al23、酸化スズ:SnO2等)をSLG基板とカルコゲン化物系材料を用いた光吸収層(又は発光層)との間に挿入形成することが行われるようになった。しかしながら、この構造の場合は、上記酸化物層がアルカリバリアとして働き、SLG基板から自然拡散により供給されるアルカリ金属が上記酸化物層を十分に通過することができず、カルコゲン化物系材料を用いた光吸収層(又は発光層)へのアルカリ金属の供給が阻害されてしまう。なお、酸化物層がアルカリバリアとしての機能を有することは公知である(例えば、特許文献1参照)。However, in recent years, oxide layers (silicon oxide: SiO 2 , titanium oxide: TiO 2 , zinc oxide: ZnO, etc.) such as a transparent conductive film have been developed for the purpose of multifunctionalization of the back surface structure of optical elements (reflection mirrors, texture formation, etc.). Alumina: Al 2 O 3 , tin oxide: SnO 2, etc.) are inserted between the SLG substrate and the light absorption layer (or light emitting layer) using a chalcogenide-based material. However, in the case of this structure, the oxide layer functions as an alkali barrier, and the alkali metal supplied by natural diffusion from the SLG substrate cannot sufficiently pass through the oxide layer, and a chalcogenide-based material is used. The supply of alkali metal to the light absorbing layer (or light emitting layer) was hindered. It is known that the oxide layer has a function as an alkali barrier (see, for example, Patent Document 1).

そこで、上記の問題を解決するために、主として以下の2つの対策方法のいずれかが用いられている。第1の対策方法は、図14の素子断面図に示すように、基板1とカルコゲン化物系材料を用いた光吸収層(又は発光層)3との間に酸化物層(単層若しくは複層構造:3次元構造を含む)2を挿入した構造を製造する際に、カルコゲン化物系材料を用いた光吸収層(又は発光層)3の形成中にアルカリ金属であるナトリウム(Na)を、黒丸で模式的に示すようにフッ化ナトリウム(NaF)等の形態で添加する方法である(例えば、非特許文献2参照)。なお、カルコゲン化物系材料を用いた光吸収層(又は発光層)3の形成工程の前後の工程にてナトリウム(Na)をフッ化ナトリウム(NaF)等の形態で添加するようにしてもよい。   Therefore, in order to solve the above problem, one of the following two countermeasure methods is mainly used. As shown in the element cross-sectional view of FIG. 14, the first countermeasure method is an oxide layer (single layer or multilayer) between the substrate 1 and the light absorption layer (or light emitting layer) 3 using a chalcogenide-based material. When manufacturing a structure in which 2 is inserted (including a three-dimensional structure), an alkali metal sodium (Na) is added to the black circle during the formation of the light absorbing layer (or light emitting layer) 3 using a chalcogenide-based material. In the form of sodium fluoride (NaF) or the like (see, for example, Non-Patent Document 2). It should be noted that sodium (Na) may be added in the form of sodium fluoride (NaF) or the like in steps before and after the step of forming the light absorption layer (or light emitting layer) 3 using a chalcogenide-based material.

また、第2の対策方法は、図15の素子断面図に示すように、基板1とカルコゲン化物系材料を用いた光吸収層(又は発光層)5との間に酸化物層(単層若しくは複層構造:3次元構造を含む)2を挿入した構造における光吸収層(又は発光層)5の直下にアルカリ金属供給層4を形成する方法である(例えば、非特許文献3参照)。すなわち、この場合、基板1の上に、酸化物層2、アルカリ金属供給層4、カルコゲン化物系材料を用いた光吸収層(又は発光層)5の順で積層された構造が得られる。アルカリ金属供給層4としては、ケイ酸塩ガラス薄膜、アルカリ金属を添加したモリブデン(Mo)が用いられる。この第2の対策方法によれば、アルカリ金属供給層4からのアルカリ金属がカルコゲン化物系材料を用いた光吸収層(又は発光層)5に添加される。
なお、アルカリ金属供給層4とカルコゲン化物系材料を用いた光吸収層(又は発光層)5との間にアルカリ金属の拡散を妨げない層(金属膜等)を挿入する場合もある。
Further, as shown in the device cross-sectional view of FIG. 15, the second countermeasure method is an oxide layer (single layer or single layer) between the substrate 1 and the light absorption layer (or light emitting layer) 5 using a chalcogenide-based material. This is a method of forming an alkali metal supply layer 4 immediately below the light absorption layer (or light emitting layer) 5 in a structure in which a multilayer structure (including a three-dimensional structure) 2 is inserted (for example, see Non-Patent Document 3). That is, in this case, a structure is obtained in which the oxide layer 2, the alkali metal supply layer 4, and the light absorption layer (or light emitting layer) 5 using a chalcogenide-based material are stacked on the substrate 1 in this order. As the alkali metal supply layer 4, a silicate glass thin film and molybdenum (Mo) to which an alkali metal is added are used. According to the second countermeasure method, the alkali metal from the alkali metal supply layer 4 is added to the light absorption layer (or light emitting layer) 5 using the chalcogenide material.
In some cases, a layer (metal film or the like) that does not prevent the diffusion of alkali metal is inserted between the alkali metal supply layer 4 and the light absorption layer (or light emitting layer) 5 using the chalcogenide-based material.

特開平8−53760号公報JP-A-8-53760

M.A.Contreras,et al.,“On the role of Na and Modifications to Cu(In,Ga)Se2 absorber materials using thin MF(M=Na,K,Cs)precursor layers”,Proceedings of the 26th IEEE Photovoltaic Specialists Conference,Anaheim(IEEE,New York,1997),p.359.MAContreras, et al., “On the role of Na and Modifications to Cu (In, Ga) Se2 absorber materials using thin MF (M = Na, K, Cs) precursor layers”, Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim (IEEE, New York, 1997), p.359. D.Rudmann,et al.,“Na incorporation into Cu(In,Ga)Se2 for high efficiency flexible solar cells on polymer foiles”,J.Appl.Phys 97,(2005)084903.D. Rudmann, et al., “Na incorporation into Cu (In, Ga) Se2 for high efficiency flexible solar cells on polymer foiles”, J. Appl. Phys 97, (2005) 084903. Shogo Ishizuka,et al.,“Na-induced variations in the structural,optical,and electrical properties of Cu(In,Ga)Se2 thin films”,J.Appl.Phys,106(2009)034908.Shogo Ishizuka, et al., “Na-induced variations in the structural, optical, and electrical properties of Cu (In, Ga) Se2 thin films”, J. Appl. Phys, 106 (2009) 034908.

しかしながら、上記の第1の対策方法は、アルカリ金属であるNaの供給タイミング、供給量の細かい最適化が必要となり、従来用いられていた光吸収層(又は発光層)の製膜方法(3段階法、セレン化法等)をそのまま利用できず、改良を加えなければならないという課題がある。   However, the above first countermeasure method requires a fine optimization of the supply timing and supply amount of Na, which is an alkali metal, and a conventionally used light absorption layer (or light emitting layer) film forming method (three steps). Method, selenization method, etc.) cannot be used as they are, and there is a problem that improvements must be made.

また、上記の第2の対策方法では、酸化物層2が透明導電膜で、アルカリ金属供給層4がケイ酸塩ガラス薄膜等の絶縁体の場合は、透明導電膜の導電性を損なってしまうという課題がある。また、酸化物層2が透明導電膜で、アルカリ金属供給層4がアルカリ金属添加Mo等のアルカリ金属を供給する材料からなる場合は、透明導電膜の透明性を損なってしまうという課題がある。   In the second countermeasure method, when the oxide layer 2 is a transparent conductive film and the alkali metal supply layer 4 is an insulator such as a silicate glass thin film, the conductivity of the transparent conductive film is impaired. There is a problem. Moreover, when the oxide layer 2 is a transparent conductive film and the alkali metal supply layer 4 is made of a material that supplies an alkali metal such as an alkali metal-added Mo, there is a problem that the transparency of the transparent conductive film is impaired.

本発明は以上の点に鑑みなされたもので、カルコゲン化物系材料を用いた光吸収層(又は発光層)の公知の製膜方法をそのまま利用でき、また、酸化物層(透明導電膜等)とカルコゲン化物系材料を用いた光吸収層(又は発光層)との境界部分での導電性、透明性に影響を与えることのない光学素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and can use a known film-forming method of a light-absorbing layer (or light-emitting layer) using a chalcogenide-based material as it is, and an oxide layer (such as a transparent conductive film). It is an object of the present invention to provide an optical element that does not affect the conductivity and transparency at the boundary between the light-absorbing layer (or light-emitting layer) using a chalcogenide-based material and a method for manufacturing the same.

上記の目的を達成するため、本発明の光学素子は、アルカリ金属を供給する基板の上方に、単層若しくは複層構造若しくは3次元構造の酸化物層、及びアルカリ金属の添加を必要とするカルコゲン化物系材料からなる光吸収層又は発光層の順で積層された光学素子において、アルカリ金属を供給する基板と酸化物層との間にアルカリ金属拡散促進層としての機能を有する金属膜を挿入した構造であり、金属膜によりアルカリ金属を供給する基板からのアルカリ金属の酸化物層中での拡散を促進させ、そのアルカリ金属を光吸収層又は発光層へ供給する構造であることを特徴とする。
ここで、上記アルカリ金属を供給する基板は、アルカリ金属含有基板そのもの、又は基体の基板上にアルカリ金属含有膜を形成した構造の基板である。また、上記アルカリ金属を供給する基板と上記金属膜とは、アルカリ金属を含有した金属基板そのもの、又は基体の基板上にアルカリ金属を含有した金属層を形成した構造の、金属膜兼用基板でもよい。
In order to achieve the above object, the optical element of the present invention includes a chalcogen that requires addition of an oxide layer having a single layer, a multilayer structure, or a three-dimensional structure, and an alkali metal above a substrate that supplies the alkali metal. In an optical element laminated in the order of a light-absorbing layer or a light-emitting layer made of a fluoride-based material, a metal film having a function as an alkali metal diffusion promoting layer is inserted between an alkali metal substrate and an oxide layer. The structure is characterized in that the metal film promotes diffusion in the oxide layer of the alkali metal from the substrate supplying the alkali metal and supplies the alkali metal to the light absorption layer or the light emitting layer. .
Here, the substrate for supplying the alkali metal is an alkali metal-containing substrate itself or a substrate having a structure in which an alkali metal-containing film is formed on a base substrate. Further, the substrate for supplying the alkali metal and the metal film may be a metal film-containing substrate having a structure in which a metal substrate itself containing an alkali metal or a metal layer containing an alkali metal is formed on a base substrate. .

また、上記の目的を達成するため、本発明の光学素子の製造方法は、アルカリ金属を供給する基板の上に、金属膜を製膜する製膜工程と、製膜された前記金属膜の上に、単層若しくは複層構造若しくは3次元構造の酸化物層を形成する酸化物層形成工程と、形成された酸化物層の上に、アルカリ金属の添加を必要とするカルコゲン化物系材料からなる光吸収層又は発光層を形成する層形成工程とを含み、基板と酸化物層との間に形成された金属膜を、基板からのアルカリ金属の酸化物層中での拡散を促進させるアルカリ金属拡散促進層として機能させ、基板からのアルカリ金属を酸化物層を通して光吸収層又は発光層へ供給する構造の光学素子を製造することを特徴とする。
ここで、上記製膜工程及び上記酸化物層形成工程は、アルカリ金属を含有した金属基板そのもの、又は基体の基板上にアルカリ金属を含有した金属層を形成した構造の、上記アルカリ金属を供給する基板と上記金属膜とを兼ね備えた金属膜兼用基板の上に、上記酸化物層を形成するようにしてもよい。
In order to achieve the above object, the optical element manufacturing method of the present invention includes a film forming step of forming a metal film on a substrate to which an alkali metal is supplied, and an upper surface of the formed metal film. And an oxide layer forming step for forming an oxide layer having a single layer, a multilayer structure, or a three-dimensional structure, and a chalcogenide-based material that requires addition of an alkali metal on the formed oxide layer. A layer forming step for forming a light absorbing layer or a light emitting layer, and a metal film formed between the substrate and the oxide layer is used to promote diffusion of alkali metal from the substrate into the oxide layer. An optical element having a structure that functions as a diffusion promoting layer and supplies an alkali metal from a substrate to an optical absorption layer or an emission layer through an oxide layer is manufactured.
Here, the film forming step and the oxide layer forming step supply the alkali metal having a structure in which a metal substrate itself containing an alkali metal or a metal layer containing an alkali metal is formed on a base substrate. The oxide layer may be formed on a metal film combined substrate having both the substrate and the metal film.

本発明によれば、酸化物層をアルカリ金属含有層とカルコゲン化物系光吸収層(又は発光層)との間に導入した構造の光学素子においても、カルコゲン化物系光吸収層(又は発光層)にアルカリ金属を十分に供給でき、光吸収層又は発光層の公知の製膜方法(3段階法、セレン化法等)をそのまま利用できる。また、本発明によれば、酸化物層(透明導電膜等)と光吸収層又は発光層との境界部分での導電性、透明性を劣化させることのない光学素子を製造できる。   According to the present invention, even in an optical element having a structure in which an oxide layer is introduced between an alkali metal-containing layer and a chalcogenide-based light absorption layer (or light-emitting layer), the chalcogenide-based light absorption layer (or light-emitting layer) Alkali metal can be sufficiently supplied to the substrate, and a known film forming method (three-stage method, selenization method, etc.) of the light absorption layer or the light emitting layer can be used as it is. Further, according to the present invention, it is possible to manufacture an optical element that does not deteriorate the conductivity and transparency at the boundary between the oxide layer (transparent conductive film or the like) and the light absorbing layer or the light emitting layer.

本発明に係る光学素子の第1の実施形態の概略断面図である。1 is a schematic cross-sectional view of a first embodiment of an optical element according to the present invention. 本発明に係る光学素子の第2の実施形態の概略断面図である。It is a schematic sectional drawing of 2nd Embodiment of the optical element which concerns on this invention. 本発明に係る光学素子の第3の実施形態の概略断面図である。It is a schematic sectional drawing of 3rd Embodiment of the optical element which concerns on this invention. 本発明に係る光学素子の第4の実施形態の概略断面図である。It is a schematic sectional drawing of 4th Embodiment of the optical element which concerns on this invention. 本発明に係る光学素子の第5の実施形態の概略断面図である。It is a schematic sectional drawing of 5th Embodiment of the optical element which concerns on this invention. 本発明に係る光学素子の第6の実施形態の概略断面図である。It is a schematic sectional drawing of 6th Embodiment of the optical element which concerns on this invention. 本発明に係る光学素子の製造方法の一実施形態の各工程における素子断面図である。It is element sectional drawing in each process of one Embodiment of the manufacturing method of the optical element which concerns on this invention. 本発明に係る光学素子の実施例1の断面図と、一般的な透明導電膜利用CIGS太陽電池の一例の断面図である。It is sectional drawing of Example 1 of the optical element which concerns on this invention, and sectional drawing of an example of a common transparent conductive film utilization CIGS solar cell. 二次イオン質量分析法(SIMS)による一般的な構造の太陽電池のCIGS層中のNa濃度分布を示す図である。It is a figure which shows Na concentration distribution in the CIGS layer of the solar cell of the general structure by secondary ion mass spectrometry (SIMS). 二次イオン質量分析法(SIMS)による一般的な透明導電膜導入構造の太陽電池のCIGS層中のNa濃度分布を示す図である。It is a figure which shows Na density distribution in the CIGS layer of the solar cell of the general transparent conductive film introduction | transduction structure by secondary ion mass spectrometry (SIMS). 二次イオン質量分析法(SIMS)による本発明の光学素子による太陽電池のCIGS層中のNa濃度分布を示す図である。It is a figure which shows Na density distribution in the CIGS layer of the solar cell by the optical element of this invention by secondary ion mass spectrometry (SIMS). 電子線マイクロアナライザ(EPMA)により評価したCIGS層中のNa濃度分布を示す図である。It is a figure which shows Na density | concentration distribution in the CIGS layer evaluated with the electron beam microanalyzer (EPMA). 本実施例の太陽電池の電流-電圧特性を、一般的な太陽電池の電流-電圧特性と対比して示す図である。It is a figure which shows the current-voltage characteristic of the solar cell of a present Example contrasted with the current-voltage characteristic of a general solar cell. 従来の第1の対策方法の説明用素子断面図である。It is element | device sectional drawing for description of the conventional 1st countermeasure method. 従来の第2の対策方法の説明用素子断面図である。It is element sectional drawing for description of the conventional 2nd countermeasure method.

(第1の実施形態)
図1は、本発明に係る光学素子の第1の実施形態の概略断面図を示す。同図において、光学素子10は、SLG基板等のアルカリ金属含有層11の上に金属膜12、酸化物層13、及びカルコゲン化物系光吸収(発光)層14の順に積層された構造である。金属膜12はモリブデン(Mo)やタングステン(W)等の金属からなる薄膜である。酸化物層13は、アルカリ金属の拡散がしにくい膜の一例であり、例えば透明導電膜である。酸化物層13には、酸化ケイ素(SiO2)、酸化チタン(TiO2)、酸化亜鉛(ZnO)、アルミナ(Al23)、酸化スズ(SnO2)、酸化インジウムスズ(ITO)等が用いられる。なお、図1では酸化物層13は単層としているが、後述するように複層構造あるいは3次元構造でもよい。
(First embodiment)
FIG. 1 shows a schematic cross-sectional view of a first embodiment of an optical element according to the present invention. In the figure, an optical element 10 has a structure in which a metal film 12, an oxide layer 13, and a chalcogenide-based light absorption (light emission) layer 14 are laminated in this order on an alkali metal-containing layer 11 such as an SLG substrate. The metal film 12 is a thin film made of a metal such as molybdenum (Mo) or tungsten (W). The oxide layer 13 is an example of a film that hardly diffuses alkali metal, and is, for example, a transparent conductive film. The oxide layer 13 includes silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), indium tin oxide (ITO), and the like. Used. In FIG. 1, the oxide layer 13 is a single layer, but may be a multilayer structure or a three-dimensional structure as will be described later.

カルコゲン化物系光吸収層(又は発光層)14は、アルカリ金属の添加を必要とするカルコゲン化物系材料を用いた光吸収層(又は発光層)で、光学素子10が太陽電池、光センサ、受光素子等として用いられる場合は光吸収層として用いられ、発光素子として用いられるときは発光層として用いられる。なお、本明細書において、以下、「光吸収層(又は発光層)」を簡単のため「光吸収(発光)層」と表記するものとする。   The chalcogenide-based light absorption layer (or light-emitting layer) 14 is a light-absorption layer (or light-emitting layer) using a chalcogenide-based material that requires the addition of an alkali metal, and the optical element 10 is a solar cell, a photosensor, a light-receiving layer. When used as an element or the like, it is used as a light absorbing layer, and when used as a light emitting element, it is used as a light emitting layer. In the present specification, the “light absorption layer (or light emitting layer)” is hereinafter referred to as “light absorption (light emitting) layer” for the sake of simplicity.

光学素子10は、アルカリ金属含有層11とカルコゲン化物系光吸収(発光)層14との間に酸化物層13を挿入した構造において、アルカリ金属含有層11と酸化物層13との間に金属膜12が挿入された構造に特徴がある。金属膜12はアルカリ金属含有層11から自然拡散により供給されるアルカリ金属(例えばNa)の、酸化物層13中の拡散を促進するアルカリ金属拡散促進層としての機能を有する。これにより、酸化物層13がアルカリ金属の拡散がしにくい材料であっても、図1に黒丸で模式的に示すアルカリ金属が、矢印で示すように、アルカリ金属含有層11から金属膜12、酸化物層13を通過してカルコゲン化物系光吸収(発光)層14に十分な量で供給される。なお、金属膜12により酸化物層13中のアルカリ金属が促進されることについての検証実験結果については後述する。   The optical element 10 has a structure in which an oxide layer 13 is inserted between an alkali metal-containing layer 11 and a chalcogenide-based light absorption (light emitting) layer 14, and a metal is interposed between the alkali metal-containing layer 11 and the oxide layer 13. The structure in which the membrane 12 is inserted is characteristic. The metal film 12 functions as an alkali metal diffusion promoting layer that promotes diffusion of alkali metal (for example, Na) supplied from the alkali metal-containing layer 11 by natural diffusion in the oxide layer 13. Thereby, even if the oxide layer 13 is a material in which the alkali metal is difficult to diffuse, the alkali metal schematically shown by a black circle in FIG. A sufficient amount is supplied to the chalcogenide-based light absorption (light emission) layer 14 through the oxide layer 13. In addition, the verification experiment result about the alkali metal in the oxide layer 13 being accelerated | stimulated by the metal film 12 is mentioned later.

本実施形態の光学素子10によれば、多機能化のために酸化物層13をアルカリ金属含有層11とカルコゲン化物系光吸収(発光)層14との間に導入した構造でも、金属膜12が酸化物層13中のアルカリ金属の拡散を促進するアルカリ金属拡散促進層としての機能を有することから、カルコゲン化物系光吸収(発光)層14にアルカリ金属を供給できるので、既存のアルカリ金属供給方法(ソーダライムガラス基板からの自然拡散によるアルカリ金属供給方法)をそのまま利用できる。そのため、本実施形態の光学素子10によれば、公知のカルコゲン化物系光吸収(発光)層の製膜方法(3段階法、セレン化法等)をそのまま利用できる。また、透明導電膜等の酸化物層13の下に金属膜12を形成するため、金属膜12がカルコゲン化物系光吸収(発光)層14と酸化物層13との境界部分での導電性、透明性を劣化させるような影響を与えることはない。   According to the optical element 10 of the present embodiment, the metal film 12 has a structure in which the oxide layer 13 is introduced between the alkali metal-containing layer 11 and the chalcogenide-based light absorption (light emission) layer 14 for multifunctional purposes. Has a function as an alkali metal diffusion accelerating layer that promotes diffusion of alkali metal in the oxide layer 13, so that the alkali metal can be supplied to the chalcogenide-based light absorption (light emitting) layer 14. The method (alkali metal supply method by natural diffusion from a soda-lime glass substrate) can be used as it is. Therefore, according to the optical element 10 of this embodiment, a known chalcogenide-based light absorption (light emission) layer forming method (three-stage method, selenization method, etc.) can be used as it is. In addition, since the metal film 12 is formed under the oxide layer 13 such as a transparent conductive film, the metal film 12 has conductivity at the boundary between the chalcogenide-based light absorption (light emission) layer 14 and the oxide layer 13. There is no effect that would degrade transparency.

なお、光学素子10において、カルコゲン化物系光吸収(発光)層14と酸化物層13との間に、オーミック特性改善のために薄い金属層(電極)を形成する場合もある。この構造の光学素子では、上記の電極の一部又はすべてを酸化物層13に置き換えることにより、電極形成にかかるコストを低減することが可能となる。また、上記の電極として一般に用いられている電極材料Moに比べ、亜鉛(Zn)の地殻存在度は高い。そこで、Moからなる電極の一部若しくはすべてを酸化亜鉛(ZnO)に置き換えて形成した場合は、原料価格を抑えることができる。   In the optical element 10, a thin metal layer (electrode) may be formed between the chalcogenide-based light absorption (light emission) layer 14 and the oxide layer 13 in order to improve ohmic characteristics. In the optical element having this structure, it is possible to reduce the cost for electrode formation by replacing part or all of the electrodes with the oxide layer 13. Moreover, the crustal abundance of zinc (Zn) is higher than the electrode material Mo generally used as the electrode. Therefore, when part or all of the electrode made of Mo is replaced with zinc oxide (ZnO), the raw material price can be reduced.

なお、上記の電極の一部を酸化物層に代替する構造の光学素子は、酸化物層は電極であるMoの一部もしくはすべてを酸化亜鉛(ZnO)以外の他の導電性を有する酸化物(例えば、酸化スズ(SnO2)、酸化インジウムスズ(ITO)等)で置き換えてもよい。このような構造の光学素子においても、金属膜12が酸化物層中のアルカリ金属の拡散を促進するアルカリ金属拡散促進層としての機能を有することから、アルカリ金属がアルカリ金属含有層11から金属膜12、酸化物層及び電極(又は電極機能を有する酸化物層)を通過してカルコゲン化物系光吸収(発光)層14に十分な量で供給される。
(第2の実施形態)
The optical element having a structure in which a part of the electrode is replaced with an oxide layer is an oxide having a conductivity other than zinc oxide (ZnO) in which the oxide layer is a part or all of Mo as an electrode. (For example, tin oxide (SnO 2 ), indium tin oxide (ITO), etc.) may be substituted. Also in the optical element having such a structure, since the metal film 12 has a function as an alkali metal diffusion promoting layer that promotes diffusion of alkali metal in the oxide layer, the alkali metal is converted from the alkali metal-containing layer 11 to the metal film. 12, a sufficient amount is supplied to the chalcogenide-based light absorption (light emission) layer 14 through the oxide layer and the electrode (or the oxide layer having an electrode function).
(Second Embodiment)

図2は、本発明に係る光学素子の第2の実施形態の概略断面図を示す。同図中、図1と同一構造部分には同一符号を付してある。ところで、有効光路長を増大するためにカルコゲン化物系光吸収(発光)層の下層(上層でもよい)に直接反射鏡や散乱層(アルミニウム(Al)、銀(Ag)等:ナノ粒子を含む)を形成すると、カルコゲン化物系光吸収(発光)層の形成元素(特にセレン(Se)や硫黄(S))と反射鏡や散乱層材料とが反応して反射鏡や散乱層材料の変質が発生する。そこで、カルコゲン化物系光吸収(発光)層と反射鏡や散乱層との間に透明膜等の酸化物層を挿入して、反射鏡や散乱層の反射・散乱特性を保ちながら、上記の変質を防止することが行われる。   FIG. 2 shows a schematic cross-sectional view of a second embodiment of the optical element according to the invention. In the figure, the same reference numerals are given to the same structural portions as those in FIG. By the way, in order to increase the effective optical path length, a direct reflecting mirror or scattering layer (aluminum (Al), silver (Ag), etc .: including nanoparticles) is directly under the chalcogenide-based light absorption (light emission) layer (may be an upper layer). When the element is formed, the elements forming the chalcogenide-based light absorption (emission) layer (especially selenium (Se) or sulfur (S)) react with the reflecting mirror or scattering layer material to cause alteration of the reflecting mirror or scattering layer material. To do. Therefore, an oxide layer such as a transparent film is inserted between the chalcogenide-based light absorption (emission) layer and the reflecting mirror or scattering layer to maintain the above-mentioned alteration while maintaining the reflecting / scattering characteristics of the reflecting mirror and scattering layer. It is done to prevent.

しかしながら、この構造の場合は前述したように、透明膜等の酸化物層がアルカリバリアとして働き、アルカリ金属含有層から供給されるアルカリ金属が上記酸化物層を十分に通過することができず、カルコゲン化物系光吸収(発光)層へのアルカリ金属の供給が阻害されてしまう。   However, in the case of this structure, as described above, the oxide layer such as a transparent film functions as an alkali barrier, and the alkali metal supplied from the alkali metal-containing layer cannot sufficiently pass through the oxide layer. Supply of the alkali metal to the chalcogenide-based light absorption (light emission) layer is hindered.

そこで、本実施形態の光学素子20は、図2に示すように、カルコゲン化物系光吸収(発光)層14と反射鏡若しくは散乱層(Al、Ag等:ナノ粒子を含む)22との間に透明膜23を挿入した光学素子において、SLG基板等のアルカリ金属含有層11と反射鏡もしくは散乱層(Al、Ag等:ナノ粒子を含む)22との間にMoやW等の金属からなる金属膜21を介在させた構造としている。この光学素子20は、酸化物層が反射鏡若しくは散乱層22と透明膜23との複層構造である。   Therefore, as shown in FIG. 2, the optical element 20 of the present embodiment is provided between a chalcogenide-based light absorption (light emission) layer 14 and a reflecting mirror or scattering layer (Al, Ag, etc .: including nanoparticles) 22. In an optical element in which a transparent film 23 is inserted, a metal made of a metal such as Mo or W between an alkali metal-containing layer 11 such as an SLG substrate and a reflecting mirror or scattering layer (including Al, Ag, etc .: including nanoparticles) 22 The film 21 is interposed. In this optical element 20, the oxide layer has a multilayer structure of a reflecting mirror or scattering layer 22 and a transparent film 23.

前述した金属膜12と同様に、金属膜21はアルカリ金属拡散促進層としての機能を有し、供給されるアルカリ金属の、反射鏡若しくは散乱層22と透明膜23との複層構造の酸化物層中の拡散を促進する。このため、光学素子20では、図2に黒丸で模式的に示すアルカリ金属が矢印で示すように、アルカリ金属含有層11から金属膜21、反射鏡若しくは散乱層22、透明膜23を通過してカルコゲン化物系光吸収(発光)層14に十分な量で供給される。   Similar to the metal film 12 described above, the metal film 21 has a function as an alkali metal diffusion promoting layer, and a supplied alkali metal oxide having a multilayer structure of a reflecting mirror or scattering layer 22 and a transparent film 23. Promotes diffusion in the layer. For this reason, in the optical element 20, the alkali metal schematically shown by a black circle in FIG. 2 passes through the metal film 21, the reflecting mirror or scattering layer 22, and the transparent film 23 from the alkali metal-containing layer 11 as indicated by an arrow. A sufficient amount is supplied to the chalcogenide-based light absorption (light emission) layer 14.

従って、光学素子20の製造に際しては、従来から行われているアルカリ金属含有層11からカルコゲン化物系光吸収(発光)層14への自然拡散によるアルカリ金属の供給方法をそのまま用いることができる。そのため、本実施形態の光学素子20によれば、公知のカルコゲン化物系光吸収(発光)層の製膜方法(3段階法、セレン化法等)をそのまま利用できる。また、透明膜23の下方に金属膜21を形成するため、金属膜21がカルコゲン化物系光吸収(発光)層14と透明膜23との境界部分での導電性、透明性を劣化させる影響を与えることはない。   Therefore, when the optical element 20 is manufactured, a conventional alkali metal supply method by natural diffusion from the alkali metal-containing layer 11 to the chalcogenide-based light absorption (light emission) layer 14 can be used as it is. Therefore, according to the optical element 20 of the present embodiment, a known chalcogenide-based light absorption (light emission) layer forming method (three-stage method, selenization method, etc.) can be used as it is. Further, since the metal film 21 is formed below the transparent film 23, the metal film 21 has an effect of deteriorating the conductivity and transparency at the boundary portion between the chalcogenide-based light absorption (light emission) layer 14 and the transparent film 23. Never give.

なお、光学素子20において、カルコゲン化物系光吸収(発光)層14と透明膜23との間に、オーミック特性改善のために薄い金属層(電極)を形成する場合もあるが、この構造の場合も、上記と同様の効果が得られる。また、上記の電極の一部又は全部を透明膜23に導電性をもたせて代替することも可能である。
(第3の実施形態)
In the optical element 20, a thin metal layer (electrode) may be formed between the chalcogenide-based light absorption (light emission) layer 14 and the transparent film 23 to improve ohmic characteristics. The same effect as above can be obtained. It is also possible to replace some or all of the above electrodes by making the transparent film 23 conductive.
(Third embodiment)

図3は、本発明に係る光学素子の第3の実施形態の概略断面図を示す。同図中、図1と同一構造部分には同一符号を付してある。ところで、SnO2、In23、ZnO等の酸化物層は、化学エッチングや製膜条件の最適化などの形成方法により容易にテクスチャ構造を形成することができることが公知文献(O.Kluth,et al.,“Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells”,Thin Solid Films 351(1999)247±253)に開示されている。このテクスチャ構造の酸化物層を透明導電膜としてカルコゲン化物系光吸収(発光)層とアルカリ金属含有層との間に挿入することで、カルコゲン化物系光吸収(発光)層中の有効光路長の増大が図れ、その結果カルコゲン化物系光吸収(発光)層の光吸収率(発光率)を向上させることができる。FIG. 3 shows a schematic cross-sectional view of a third embodiment of the optical element according to the invention. In the figure, the same reference numerals are given to the same structural portions as those in FIG. By the way, it is known that an oxide layer of SnO 2 , In 2 O 3 , ZnO or the like can easily form a texture structure by a forming method such as chemical etching or optimization of film forming conditions (O. Kluth, et al., “Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells”, Thin Solid Films 351 (1999) 247 ± 253). By inserting this textured oxide layer as a transparent conductive film between the chalcogenide-based light absorption (emission) layer and the alkali metal-containing layer, the effective optical path length in the chalcogenide-based light absorption (emission) layer can be reduced. As a result, the light absorption rate (light emission rate) of the chalcogenide-based light absorption (light emission) layer can be improved.

図3に示す光学素子30は、カルコゲン化物系光吸収(発光)層33の直下に、テクスチャ構造を有する酸化物層32を設けてカルコゲン化物系光吸収(発光)層33の光路長を長くした構造において、テクスチャ構造を有する酸化物層32とアルカリ金属含有層11との間にMoやW等の金属からなる金属膜31を介在させた構造としている。酸化物層32はテクスチャ構造を有する3次元構造の酸化物層で、例えば透明導電膜である。   In the optical element 30 shown in FIG. 3, an oxide layer 32 having a texture structure is provided immediately below the chalcogenide light absorption (light emission) layer 33 to increase the optical path length of the chalcogenide light absorption (light emission) layer 33. In the structure, a metal film 31 made of a metal such as Mo or W is interposed between the oxide layer 32 having a texture structure and the alkali metal-containing layer 11. The oxide layer 32 is a three-dimensional structure oxide layer having a texture structure, for example, a transparent conductive film.

前述した金属膜12、21と同様に、金属膜31はアルカリ金属拡散促進層としての機能を有し、アルカリ金属含有層11から供給されるアルカリ金属のテクスチャ構造を有する酸化物層32中の拡散を促進する。このため、光学素子30では、図3に黒丸で模式的に示すアルカリ金属が矢印で示すように、アルカリ金属含有層11から金属膜31、テクスチャ構造を有する酸化物層32を通過してカルコゲン化物系光吸収(発光)層33に十分な量で供給される。   Similar to the metal films 12 and 21 described above, the metal film 31 functions as an alkali metal diffusion promoting layer and is diffused in the oxide layer 32 having an alkali metal texture structure supplied from the alkali metal-containing layer 11. Promote. For this reason, in the optical element 30, the alkali metal schematically shown by a black circle in FIG. 3 passes through the metal film 31 and the oxide layer 32 having the texture structure from the alkali metal-containing layer 11 to the chalcogenide, as indicated by arrows. A sufficient amount is supplied to the system light absorption (light emission) layer 33.

従って、光学素子30では、従来から行われているアルカリ金属含有層11からカルコゲン化物系光吸収(発光)層33への自然拡散によるアルカリ金属の供給方法を用いることができる。そのため、本実施形態の光学素子30によれば、公知のカルコゲン化物系光吸収(発光)層の製膜方法(3段階法、セレン化法等)をそのまま利用できる。また、透明導電膜等の酸化物層32の直下に金属膜31を形成するため、金属膜31がカルコパイライト系光吸収層33と酸化物層32との境界部分での導電性、透明性を劣化させるような影響を与えることはない。   Therefore, in the optical element 30, a conventional method for supplying alkali metal by natural diffusion from the alkali metal-containing layer 11 to the chalcogenide-based light absorption (light emission) layer 33 can be used. Therefore, according to the optical element 30 of this embodiment, a known chalcogenide-based light absorption (light emission) layer forming method (three-stage method, selenization method, etc.) can be used as it is. Further, since the metal film 31 is formed immediately below the oxide layer 32 such as a transparent conductive film, the metal film 31 has conductivity and transparency at the boundary portion between the chalcopyrite light absorption layer 33 and the oxide layer 32. There is no detrimental effect.

なお、光学素子30において、テクスチャ構造を有する酸化物層32とカルコゲン化物系光吸収(発光)層33との間に、オーミック特性改善のために薄い金属層(電極)を形成する場合もあるが、この構造の場合も、上記と同様の効果が得られる。また、上記の電極の一部又は全部を酸化物層32に導電性を与えて代替することも可能である。   In the optical element 30, a thin metal layer (electrode) may be formed between the oxide layer 32 having a texture structure and the chalcogenide-based light absorption (light emission) layer 33 in order to improve ohmic characteristics. In the case of this structure, the same effect as described above can be obtained. It is also possible to replace part or all of the electrodes by giving conductivity to the oxide layer 32.

また、光学素子30の変形例として、テクスチャ構造を有する酸化物層32とカルコゲン化物系光吸収(発光)層33との間に、テクスチャ表面での反射率を向上させる目的で、透明膜/反射膜(Al,Ag等)からなる反射鏡を形成する構造がある。この構造の場合も、テクスチャ構造を有する酸化物層32とアルカリ金属含有層11との間にMoやW等の金属からなる金属膜31を介在させた構造とすることにより、第3の実施形態と同様の効果が得られる。   As a modification of the optical element 30, a transparent film / reflection film is used between the oxide layer 32 having a texture structure and the chalcogenide-based light absorption (light emission) layer 33 in order to improve the reflectance on the texture surface. There is a structure for forming a reflecting mirror made of a film (Al, Ag, etc.). In the case of this structure as well, the third embodiment is achieved by providing a metal film 31 made of a metal such as Mo or W between the oxide layer 32 having a texture structure and the alkali metal-containing layer 11. The same effect can be obtained.

なお、この変形例においても、透明膜/反射膜(Al,Ag等)からなる反射鏡の上部にオーミック特性改善のために薄い金属層(電極)を形成する場合もあるが、この構造の場合も、上記と同様の効果が得られる。また、上記の電極の一部又は全部を酸化物層32に導電性を与えて代替することも可能である。
(第4の実施形態)
In this modified example, a thin metal layer (electrode) may be formed on the upper part of the reflector made of a transparent film / reflective film (Al, Ag, etc.) to improve ohmic characteristics. The same effect as above can be obtained. It is also possible to replace part or all of the electrodes by giving conductivity to the oxide layer 32.
(Fourth embodiment)

図4は、本発明に係る光学素子の第4の実施形態の概略断面図を示す。同図中、図1と同一構造部分には同一符号を付してある。ところで、シリコン系太陽電池において、透明導電膜中に金属粒子(Agナノ粒子等)を埋め込んだ構造を作製することにより、光閉じ込め効果により太陽電池の光吸収特性が改善することが非特許文献(Hidenori Mizuno,et al.,“Light Trapping by Ag Nanoparticles Chemically Assembled inside Thin-Film Hydrogenated Microcrystalline Si Solar Celles”,Japanese Journal of Applied Physics 51(2012)042302.)にて報告されている。カルコゲン化物系材料においても、透明導電膜中に金属粒子(Agナノ粒子等)を埋め込んだ構造を作製することにより同様の効果が期待できる。   FIG. 4 shows a schematic sectional view of a fourth embodiment of an optical element according to the invention. In the figure, the same reference numerals are given to the same structural portions as those in FIG. By the way, in silicon-based solar cells, it is known that the light absorption characteristics of solar cells are improved by the light confinement effect by producing a structure in which metal particles (Ag nanoparticles, etc.) are embedded in a transparent conductive film. Hidenori Mizuno, et al., “Light Trapping by Ag Nanoparticles Chemically Assembled inside Thin-Film Hydrogenated Microcrystalline Si Solar Celles”, Japanese Journal of Applied Physics 51 (2012) 042302.). In the chalcogenide-based material, a similar effect can be expected by producing a structure in which metal particles (Ag nanoparticles, etc.) are embedded in a transparent conductive film.

そこで、本実施形態の光学素子40は、図4に示すように、カルコゲン化物系光吸収(発光)層14の直下に、金属粒子(Ag,Al等)43を導入した散乱鏡構造の酸化物層42を設けて光吸収(発光)特性を改善した光学素子において、SLG基板等のアルカリ金属含有層11と散乱鏡構造の酸化物層42との間にMoやW等の金属からなる金属膜41を介在させた構造としている。散乱鏡構造の酸化物層42は複層構造の酸化物層で、例えば透明導電膜である。   Therefore, as shown in FIG. 4, the optical element 40 of the present embodiment is an oxide having a scattering mirror structure in which metal particles (Ag, Al, etc.) 43 are introduced directly under the chalcogenide-based light absorption (light emission) layer 14. In the optical element in which the light absorption (light emission) characteristics are improved by providing the layer 42, a metal film made of a metal such as Mo or W between the alkali metal-containing layer 11 such as an SLG substrate and the oxide layer 42 having a scattering mirror structure. 41 is interposed. The oxide layer 42 having a scattering mirror structure is an oxide layer having a multilayer structure, for example, a transparent conductive film.

前述した金属膜12、21、31と同様に、金属膜41はアルカリ金属拡散促進層としての機能を有し、供給されるアルカリ金属の、散乱鏡構造の酸化物層42中の拡散を促進する。このため、光学素子40では、図4に黒丸で模式的に示すアルカリ金属が矢印で示すように、アルカリ金属含有層11から金属膜41、散乱鏡構造の酸化物層42を通過してカルコゲン化物系光吸収(発光)層14に十分な量で供給される。   Similar to the metal films 12, 21, and 31 described above, the metal film 41 has a function as an alkali metal diffusion promoting layer, and promotes diffusion of supplied alkali metal in the oxide layer 42 having a scattering mirror structure. . For this reason, in the optical element 40, the alkali metal schematically shown by a black circle in FIG. 4 passes through the metal film 41 and the oxide layer 42 of the scattering mirror structure from the alkali metal-containing layer 11 through the chalcogenide, as indicated by arrows. A sufficient amount is supplied to the system light absorption (light emission) layer 14.

従って、光学素子40の製造に際しては、従来から行われているアルカリ金属含有層11からカルコゲン化物系光吸収(発光)層14への自然拡散によるアルカリ金属の供給方法をそのまま用いることができる。そのため、本実施形態の光学素子40によれば、公知のカルコゲン化物系光吸収(発光)層の製膜方法(3段階法、セレン化法等)をそのまま利用できる。また、散乱鏡構造の酸化物層42の下に金属膜41を形成するため、金属膜41がカルコゲン化物系光吸収(発光)層14と散乱鏡構造の酸化物層42との境界部分での導電性、透明性を劣化させるような影響を与えることはない。   Therefore, when the optical element 40 is manufactured, a conventional alkali metal supply method by natural diffusion from the alkali metal-containing layer 11 to the chalcogenide-based light absorption (light emission) layer 14 can be used as it is. Therefore, according to the optical element 40 of the present embodiment, a known chalcogenide-based light absorption (light emission) layer forming method (three-stage method, selenization method, etc.) can be used as it is. Further, since the metal film 41 is formed under the oxide layer 42 having the scattering mirror structure, the metal film 41 is formed at the boundary between the chalcogenide-based light absorption (light emission) layer 14 and the oxide layer 42 having the scattering mirror structure. There is no effect of deteriorating conductivity and transparency.

なお、光学素子40において、散乱鏡構造の酸化物層42とカルコゲン化物系光吸収(発光)層14との間に、オーミック特性改善のために薄い金属層(電極)を形成する場合もあるが、この構造の場合も、上記と同様の効果が得られる。また、散乱鏡構造の酸化物層42が導電性を有する場合、上記の電極の一部又は全部を導電性を有する散乱鏡構造の酸化物層42で代替することも可能である。
(第5の実施形態)
In the optical element 40, a thin metal layer (electrode) may be formed between the oxide layer 42 having a scattering mirror structure and the chalcogenide-based light absorption (light emission) layer 14 in order to improve ohmic characteristics. In the case of this structure, the same effect as described above can be obtained. In addition, when the oxide layer 42 having a scattering mirror structure has conductivity, it is also possible to replace part or all of the electrodes with the oxide layer 42 having a scattering mirror structure having conductivity.
(Fifth embodiment)

図5は、本発明に係る光学素子の第5の実施形態の概略断面図を示す。同図中、図1と同一構造部分には同一符号を付してある。図5に示す光学素子50は、アルカリ金属含有層11の上に金属膜51、酸化物から成る光吸収(発光)層52の順で積層された構造であり、カルコゲン化物系光吸収(発光)層は存在しない。金属膜51はMoやW等の金属材料で形成された薄膜である。また、酸化物から成る光吸収(発光)層52は、単層あるいは複層構造、あるいは3次元構造の酸化物層である。   FIG. 5 shows a schematic cross-sectional view of a fifth embodiment of the optical element according to the invention. In the figure, the same reference numerals are given to the same structural portions as those in FIG. The optical element 50 shown in FIG. 5 has a structure in which a metal film 51 and a light absorption (light emission) layer 52 made of an oxide are stacked in this order on the alkali metal-containing layer 11, and a chalcogenide light absorption (light emission). There is no layer. The metal film 51 is a thin film formed of a metal material such as Mo or W. Further, the light absorption (light emission) layer 52 made of an oxide is an oxide layer having a single layer structure, a multilayer structure, or a three-dimensional structure.

金属膜51は、前述した金属膜12、21、31と同様に、アルカリ金属拡散促進層としての機能を有し、供給されるアルカリ金属の酸化物から成る光吸収(発光)層52中の拡散を促進する。このため、光学素子50では、図5に黒丸で模式的に示すアルカリ金属が矢印で示すように、アルカリ金属含有層11から金属膜51を通して酸化物から成る光吸収(発光)層52に供給され、酸化物から成る光吸収(発光)層52内で横方向にも拡散される。この光学素子50は、酸化物層そのものが、光吸収(発光)層として用いられる。酸化物から成る光吸収(発光)層52自体の発光(紫外線等)を使用する場合、アルカリ金属ドープによるキャリア寿命の低下により光応答が速くなる可能性がある。この光学素子50では、金属膜51によるアルカリ金属拡散機能により、アルカリ金属含有層11から酸化物から成る光吸収(発光)層52への自然拡散によるアルカリ金属の供給方法を用いることができる。
(第6の実施形態)
Similar to the metal films 12, 21, and 31 described above, the metal film 51 functions as an alkali metal diffusion promoting layer and diffuses in the light absorption (light emission) layer 52 made of supplied alkali metal oxide. Promote. For this reason, in the optical element 50, the alkali metal schematically shown by the black circles in FIG. 5 is supplied from the alkali metal-containing layer 11 to the light absorption (light emission) layer 52 made of oxide through the metal film 51, as indicated by the arrows. In the light absorption (light emission) layer 52 made of oxide, the light is also diffused in the lateral direction. In this optical element 50, the oxide layer itself is used as a light absorption (light emission) layer. When using light emission (ultraviolet light or the like) of the light absorption (light emission) layer 52 itself made of an oxide, there is a possibility that the optical response is accelerated due to a decrease in carrier lifetime due to alkali metal doping. In this optical element 50, an alkali metal supply function by natural diffusion from the alkali metal-containing layer 11 to the light absorption (light emission) layer 52 made of an oxide can be used by the alkali metal diffusion function of the metal film 51.
(Sixth embodiment)

図6は、本発明に係る光学素子の第6の実施形態の概略断面図を示す。同図中、図1と同一構造部分には同一符号を付してある。以上の第1〜第5の実施形態の光学素子では、アルカリ金属含有層11の上に金属膜12、21、41、あるいは51を製膜していたが、図6に示す本実施形態の光学素子55は、金属膜がアルカリ金属含有層を兼ねる金属膜兼用基板56を用いる点に特徴がある。   FIG. 6 shows a schematic cross-sectional view of a sixth embodiment of the optical element according to the invention. In the figure, the same reference numerals are given to the same structural portions as those in FIG. In the optical elements of the first to fifth embodiments described above, the metal film 12, 21, 41, or 51 is formed on the alkali metal-containing layer 11, but the optical element of the present embodiment shown in FIG. The element 55 is characterized in that a metal film combined substrate 56 in which the metal film also serves as an alkali metal-containing layer is used.

具体的には、金属膜兼用基板56は、アルカリ金属を含有した金属基板、または基体の基板上にアルカリ金属を含有した金属層を形成した構造の基板で、例えばMo、W、Al、Ag、ステンレス、あるいは鋼板からなる。上記のアルカリ金属含有金属基板や、アルカリ金属を含有した金属層は、前述した金属膜12,21,41,51と同様に、アルカリ金属拡散促進層として働くと同時に、アルカリ金属供給層としても働く。このため、光学素子55では、図6に黒丸で模式的に示すアルカリ金属が矢印で示すように、金属膜兼用基板56から酸化物層13を通過してカルコゲン化物系光吸収(発光)層14に十分な量で供給される。   Specifically, the metal film combined substrate 56 is a metal substrate containing an alkali metal or a substrate having a structure in which a metal layer containing an alkali metal is formed on a substrate of a base. For example, Mo, W, Al, Ag, Made of stainless steel or steel plate. The alkali metal-containing metal substrate or the metal layer containing the alkali metal functions as an alkali metal diffusion promoting layer and at the same time as an alkali metal supply layer, similarly to the metal films 12, 21, 41, and 51 described above. . For this reason, in the optical element 55, as indicated by the arrows in FIG. 6, the alkali metal schematically shown by the black circle passes through the oxide layer 13 from the metal film combined substrate 56 and passes through the chalcogenide-based light absorption (light emission) layer 14. Supplied in sufficient quantity.

従って、光学素子55の製造に際しては、従来から行われているアルカリ金属含有層からカルコゲン化物系光吸収(発光)層14への自然拡散によるアルカリ金属の供給方法をそのまま用いることができる。そのため、本実施形態の光学素子55によれば、公知のカルコゲン化物系光吸収(発光)層の製膜方法(3段階法、セレン化法等)をそのまま利用できる。また、散乱鏡構造の酸化物層13の下に金属膜兼用基板56を形成するため、金属膜兼用基板56がカルコゲン化物系光吸収(発光)層14と酸化物層13との境界部分での導電性、透明性を劣化させるような影響を与えることはない。   Therefore, when the optical element 55 is manufactured, a conventional alkali metal supply method by natural diffusion from the alkali metal-containing layer to the chalcogenide-based light absorption (light emission) layer 14 can be used as it is. Therefore, according to the optical element 55 of this embodiment, a known chalcogenide-based light absorption (light emission) layer forming method (three-stage method, selenization method, etc.) can be used as it is. In addition, since the metal film combined substrate 56 is formed under the oxide layer 13 having the scattering mirror structure, the metal film combined substrate 56 is formed at the boundary portion between the chalcogenide-based light absorbing (emitting) layer 14 and the oxide layer 13. There is no effect of deteriorating conductivity and transparency.

なお、光学素子55においても、酸化物層13とカルコゲン化物系光吸収(発光)層14との間に、オーミック特性改善のために薄い金属層(電極)を形成する場合もあるが、この構造の場合も、上記と同様の効果が得られる。また、酸化物層13が導電性を有する場合、上記の電極の一部又は全部を導電性を有する酸化物層13で代替することも可能である。   In the optical element 55, a thin metal layer (electrode) may be formed between the oxide layer 13 and the chalcogenide-based light absorption (light emission) layer 14 to improve ohmic characteristics. In this case, the same effect as described above can be obtained. In addition, when the oxide layer 13 has conductivity, part or all of the electrodes can be replaced with the oxide layer 13 having conductivity.

次に、本発明に係る光学素子の製造方法の一実施形態について説明する。
図7は、本発明に係る光学素子の製造方法の一実施形態の各工程における素子断面図を示す。本実施形態では、まず、図7(A)に示すように、基板61上に金属膜62を製膜する。ここで、基板61は、アルカリ金属含有基板(ソーダライムガラス等)そのものか、あるいは基体の基板上にアルカリ金属含有膜(アルカリ金属化合物(NaF、KF等)、ケイ酸塩ガラス薄膜等)を形成した構造の基板である。基板61は、前述したアルカリ金属含有層11に相当する。金属膜62はMoやW等の金属材料で形成された薄膜であり、前述した金属膜12等に相当する。基板61にはポリイミド箔や、金属箔のようにフレキシブル製を有するフィルムである場合も含む。なお、前述した金属膜兼用基板56を用いる場合は、金属膜62の製膜は不要である。
Next, an embodiment of a method for manufacturing an optical element according to the present invention will be described.
FIG. 7: shows element sectional drawing in each process of one Embodiment of the manufacturing method of the optical element which concerns on this invention. In the present embodiment, first, a metal film 62 is formed on a substrate 61 as shown in FIG. Here, the substrate 61 is an alkali metal-containing substrate (soda lime glass, etc.) itself, or an alkali metal-containing film (alkali metal compound (NaF, KF, etc.), silicate glass thin film, etc.) is formed on the base substrate. This is a substrate having the above structure. The substrate 61 corresponds to the alkali metal-containing layer 11 described above. The metal film 62 is a thin film formed of a metal material such as Mo or W, and corresponds to the above-described metal film 12 or the like. The substrate 61 includes a case of a film made of flexible material such as polyimide foil or metal foil. In addition, when using the metal film combined substrate 56 described above, the metal film 62 is not required to be formed.

基板61上に金属膜62を製膜する方法としては、スパッタ法、特開2008−255389号公報に開示されているミラートロン法、反応性プラズマ蒸着(RPD)法、蒸着法、電子ビーム(EB)蒸着法、イオンプレーティング法、めっき法、レーザーアブレーション法、水溶液析出法などがある。なお、金属膜62の透明度を高めるために、酸化、セレン化、硫化処理を金属膜62に対して行う場合もある。   As a method for forming the metal film 62 on the substrate 61, a sputtering method, a mirrortron method disclosed in JP-A-2008-255389, a reactive plasma deposition (RPD) method, a deposition method, an electron beam (EB) There are evaporation methods, ion plating methods, plating methods, laser ablation methods, aqueous solution precipitation methods and the like. In order to increase the transparency of the metal film 62, oxidation, selenization, and sulfidation may be performed on the metal film 62.

続いて、図7(B)に示すように、金属膜62上に酸化物層63を製膜する。酸化物層63は、酸化ケイ素(SiO2)、酸化チタン(TiO2)、酸化亜鉛(ZnO)、アルミナ(Al23)、酸化スズ(SnO2)等の、単層あるいは複層構造、あるいは3次元構造である。複層構造の例としては、金属膜/透明導電膜の構造、あるいは透明導電膜中に金属粒子を埋め込んだ構造などがある。3次元構造の例としてはテクスチャ構造がある。金属膜62上に酸化物層63を製膜する方法としては、スパッタ法、ミラートロン法、反応性プラズマ蒸着(RPD)法、ゾルゲル法、化学気相成長法、真空蒸着法、イオンプレーティング法、レーザーアブレーション法、水溶液析出法などがある。なお、酸化物層63は一部に金属等の非酸化膜を含んでいてもよい。Subsequently, as illustrated in FIG. 7B, an oxide layer 63 is formed over the metal film 62. The oxide layer 63 has a single-layer or multi-layer structure such as silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), alumina (Al 2 O 3 ), tin oxide (SnO 2 ), Or it is a three-dimensional structure. Examples of the multilayer structure include a metal film / transparent conductive film structure or a structure in which metal particles are embedded in a transparent conductive film. An example of a three-dimensional structure is a texture structure. As a method for forming the oxide layer 63 on the metal film 62, a sputtering method, a mirrortron method, a reactive plasma deposition (RPD) method, a sol-gel method, a chemical vapor deposition method, a vacuum deposition method, and an ion plating method are used. , Laser ablation, and aqueous solution deposition. Note that the oxide layer 63 may partially include a non-oxide film such as a metal.

最後に、図7(C)に示すように、酸化物層63の表面にカルコゲン化物系光吸収(発光)層64を製膜して光学素子の製造が完成する。アルカリ金属の添加を必要とする光吸収(発光)層であるカルコゲン化物系光吸収(発光)層の製膜方法としては、多元蒸着法(3段階法等)、セレン化法、硫化法、原子層堆積(ALD)法、湿式製膜法、分子線エピタキシー法、気相成長法(CVD、MOCVD法等)、真空蒸着法、スピンコート法、塗布法などがある。製造された光学素子は前述した光学素子10に相当する。   Finally, as shown in FIG. 7C, a chalcogenide-based light absorption (light emission) layer 64 is formed on the surface of the oxide layer 63 to complete the manufacture of the optical element. As a method for forming a chalcogenide-based light absorption (light emission) layer, which is a light absorption (light emission) layer that requires the addition of an alkali metal, a multi-source deposition method (such as a three-stage method), a selenization method, a sulfurization method, an atom There are a layer deposition (ALD) method, a wet film forming method, a molecular beam epitaxy method, a vapor phase growth method (CVD, MOCVD method, etc.), a vacuum deposition method, a spin coating method, and a coating method. The manufactured optical element corresponds to the optical element 10 described above.

本実施形態の光学素子の製造方法では、アルカリ金属拡散層としての機能を有する金属膜62を基板61と酸化物層63との間に形成しているため、基板61からカルコゲン化物系光吸収(発光)層64へのアルカリ金属の供給方法として、従来の自然拡散によるアルカリ金属の供給方法をそのまま用いることができるため、公知のカルコゲン化物系光吸収(発光)層の製膜方法(3段階法、セレン化法等)をそのまま利用できる。
なお、酸化物形成工程により形成された酸化物層63の上にオーミック特性改善のために薄い金属層(電極)を形成する工程を挟み、その後に金属層(電極)の上にカルコゲン化物系光吸収(発光)層64を製膜するようにしてもよい。
In the manufacturing method of the optical element of the present embodiment, the metal film 62 having a function as an alkali metal diffusion layer is formed between the substrate 61 and the oxide layer 63, so that the chalcogenide-based light absorption ( Since the conventional alkali metal supply method by natural diffusion can be used as it is as the alkali metal supply method to the (light emission) layer 64, a known chalcogenide-based light absorption (light emission) layer forming method (three-stage method) , Selenization method, etc.) can be used as they are.
In addition, a step of forming a thin metal layer (electrode) for improving ohmic characteristics is sandwiched on the oxide layer 63 formed by the oxide formation step, and then a chalcogenide-based light is formed on the metal layer (electrode). The absorption (light emission) layer 64 may be formed.

次に、本発明の光学素子の実施例1と、その検証実験の結果について説明する。
図8(a)は、本発明に係る光学素子の実施例1の断面図、同図(b)は、一般的な透明導電膜利用CIGS太陽電池の一例の断面図を示す。図8(a)、(b)中、同一構造部分には同一符号を付してある。図8(a)の断面図に示す本発明に係る光学素子の実施例1は、CIGS太陽電池100で、アルカリ金属含有基板であるソーダライムガラス(SLG)基板101上に、Moからなる金属膜102を形成し、更に金属膜102の上に透明導電膜(ZnO:Ga)103、Moからなる裏面電極(正極)104、カルコパイライト[Cu(In,Ga)Se2(=CIGS)]からなる光吸収層(CIGS層)105、硫化カドミウム(CdS)からなるバッファ層106、i−ZnO層(半絶縁層)107、透明導電膜(ZnO:Al)108、Alからなる表面電極(負極)109が順次積層された構造である。
Next, Example 1 of the optical element of the present invention and the result of the verification experiment will be described.
FIG. 8A is a cross-sectional view of Example 1 of the optical element according to the present invention, and FIG. 8B is a cross-sectional view of an example of a general transparent conductive film utilizing CIGS solar cell. In FIGS. 8A and 8B, the same reference numerals are given to the same structural portions. Example 1 of the optical element according to the present invention shown in the sectional view of FIG. 8A is a CIGS solar cell 100, and a metal film made of Mo on a soda lime glass (SLG) substrate 101 which is an alkali metal-containing substrate. 102, and further, a transparent conductive film (ZnO: Ga) 103, a back electrode (positive electrode) 104 made of Mo, and chalcopyrite [Cu (In, Ga) Se 2 (= CIGS)] on the metal film 102. Light absorbing layer (CIGS layer) 105, buffer layer 106 made of cadmium sulfide (CdS), i-ZnO layer (semi-insulating layer) 107, transparent conductive film (ZnO: Al) 108, surface electrode (negative electrode) 109 made of Al Are sequentially stacked.

SLG基板101は前述した光学素子の実施形態におけるアルカリ金属含有層11に相当する。金属膜102は前述した光学素子の実施形態におけるアルカリ金属拡散促進層としての機能を有する金属膜12に相当する。また、透明導電膜(ZnO:Ga)103は前述した光学素子の実施形態における酸化物層13に相当する。更に、CIGS層105は前述した実施形態におけるカルコゲン化物系光吸収(発光)層14の一例であり、カルコパイライト系材料からなる光吸収層である。更に、前述した図1等の光学素子の実施形態では図示を省略したが、本実施例では、オーミック特性改善のための電極104が透明導電膜(ZnO:Ga)103とCIGS層105との間に形成されている。   The SLG substrate 101 corresponds to the alkali metal-containing layer 11 in the optical element embodiment described above. The metal film 102 corresponds to the metal film 12 having a function as an alkali metal diffusion promoting layer in the embodiment of the optical element described above. The transparent conductive film (ZnO: Ga) 103 corresponds to the oxide layer 13 in the above-described optical element embodiment. Furthermore, the CIGS layer 105 is an example of the chalcogenide light absorption (light emission) layer 14 in the above-described embodiment, and is a light absorption layer made of a chalcopyrite material. Further, although not shown in the embodiment of the optical element shown in FIG. 1 and the like described above, in this embodiment, the electrode 104 for improving the ohmic characteristics is provided between the transparent conductive film (ZnO: Ga) 103 and the CIGS layer 105. Is formed.

SLG基板101上に、Moからなる金属膜102と透明導電膜(ZnO:Ga)103と裏面電極104とが、それぞれ高周波マグネトロンスパッタリングおよび反応性プラズマ堆積法により積層されている。CIGS層105は、裏面電極104上に例えば3段階法により堆積されている。3段階法自体は公知であり、また本発明の要旨ではないので、その詳細な説明は省略するが、インジウム(In)、ガリウム(Ga)及びセレン(Se)を同時蒸着する第1段階と、続いて銅(Cu)及びSeを同時蒸着する第2段階と、最後にIn、Ga及びSeを同時蒸着する第3段階を経る蒸着方法である。また、バッファ層106、i−ZnO層107、透明導電膜108は、それぞれ化学浴析出法及び高周波マグネトロンスパッタリングにより形成されている。更に、表面電極109は、真空蒸着法により透明導電膜108上に形成されている。   On the SLG substrate 101, a metal film 102 made of Mo, a transparent conductive film (ZnO: Ga) 103, and a back electrode 104 are laminated by high-frequency magnetron sputtering and reactive plasma deposition, respectively. The CIGS layer 105 is deposited on the back electrode 104 by, for example, a three-step method. Since the three-step method itself is known and is not the gist of the present invention, a detailed description thereof is omitted, but the first step of co-evaporating indium (In), gallium (Ga) and selenium (Se), Subsequently, the vapor deposition method includes a second stage in which copper (Cu) and Se are vapor-deposited simultaneously and finally a third stage in which In, Ga and Se are vapor-deposited at the same time. Further, the buffer layer 106, the i-ZnO layer 107, and the transparent conductive film 108 are formed by chemical bath deposition and high-frequency magnetron sputtering, respectively. Further, the surface electrode 109 is formed on the transparent conductive film 108 by a vacuum deposition method.

ここで、一例として、SLG基板101は0.7mmの厚さであり、金属膜102の膜厚は0.07μm、透明導電膜(ZnO:Ga)103の膜厚は0.4〜0.7μm、Moからなる裏面電極104の厚さは0.03μm、カルコパイライト系光吸収層(CIGS層)105の厚さは1.8μmである。また、バッファ層106は0.06μm、i−ZnO層107は0.07μm、透明導電膜108は0.5μmの厚さである。また、各セルの有効面積は0.48cm2とした。Here, as an example, the SLG substrate 101 has a thickness of 0.7 mm, the metal film 102 has a thickness of 0.07 μm, and the transparent conductive film (ZnO: Ga) 103 has a thickness of 0.4 to 0.7 μm. The thickness of the back electrode 104 made of Mo is 0.03 μm, and the thickness of the chalcopyrite light absorption layer (CIGS layer) 105 is 1.8 μm. The buffer layer 106 has a thickness of 0.06 μm, the i-ZnO layer 107 has a thickness of 0.07 μm, and the transparent conductive film 108 has a thickness of 0.5 μm. The effective area of each cell was 0.48 cm 2 .

図8(b)に示す断面構造のCIGS太陽電池150は、カルコパイライト(CIGS)を光吸収層として用いる、高い変換効率が得られる薄膜太陽電池として一般的に知られている代表的な太陽電池である。本実施例のCIGS太陽電池100は、図8(b)に示す一般的なCIGS太陽電池150と比較すると、SLG基板101と透明導電膜103との間に、Mo膜である金属膜102が挿入された構造である点に特徴がある。なお、光は、表面電極109の上方から入射する。   A CIGS solar cell 150 having a cross-sectional structure shown in FIG. 8B is a typical solar cell generally known as a thin film solar cell using chalcopyrite (CIGS) as a light absorption layer and having high conversion efficiency. It is. Compared with the general CIGS solar cell 150 shown in FIG. 8B, the CIGS solar cell 100 of this example includes a metal film 102 that is a Mo film inserted between the SLG substrate 101 and the transparent conductive film 103. It is characterized in that it is a structured. Light enters from above the surface electrode 109.

次に、本実施例のCIGS太陽電池100におけるCIGS層105へのアルカリ金属(Na)の拡散の程度について、一般的なCIGS太陽電池150などと比較した検証実験結果について説明する。   Next, a description will be given of the results of verification experiments comparing the degree of diffusion of alkali metal (Na) into the CIGS layer 105 in the CIGS solar cell 100 of this example compared with a general CIGS solar cell 150 and the like.

図9〜図11は、二次イオン質量分析法(SIMS)によるCIGS層中のNa濃度分布を示す。図9〜図11中、横軸はCIGS層105からSLG基板101方向に進むほど大となる値の深さ(Depth)を示し、縦軸はNa濃度を示す。CIGS層105は図9〜図11において約0.8μm〜約2.0μmの範囲内に形成されている。なお、図9〜図11において「GZO」は透明導電膜(ZnO:Ga)を示す(後述の図12、図13も同様)。   9 to 11 show the Na concentration distribution in the CIGS layer by secondary ion mass spectrometry (SIMS). 9 to 11, the horizontal axis indicates the depth (Depth) that increases as it proceeds from the CIGS layer 105 toward the SLG substrate 101, and the vertical axis indicates the Na concentration. CIGS layer 105 is formed in the range of about 0.8 μm to about 2.0 μm in FIGS. 9 to 11. 9 to 11, “GZO” indicates a transparent conductive film (ZnO: Ga) (the same applies to FIGS. 12 and 13 described later).

図8(b)に示した一般的な透明導電膜利用CIGS太陽電池150の分布特性は、図10に示されるのに対し、図8(a)に示した本実施例の太陽電池100の分布特性は図11に示す如くになった。一般的な透明導電膜利用CIGS太陽電池150の場合は、図10に示すようにSLG基板101からCIGS層105へのNa拡散層は非常に少なく、拡散が透明導電膜103で阻害されていることが確認された。   The distribution characteristic of the general CIGS solar cell 150 using the transparent conductive film shown in FIG. 8B is shown in FIG. 10, whereas the distribution of the solar cell 100 of the present embodiment shown in FIG. The characteristics are as shown in FIG. In the case of a general CIGS solar cell 150 using a transparent conductive film, as shown in FIG. 10, the Na diffusion layer from the SLG substrate 101 to the CIGS layer 105 is very small, and the diffusion is inhibited by the transparent conductive film 103. Was confirmed.

これに対し、本実施例の太陽電池100では、図11に示すように、SLG基板101からCIGS層105へのNa拡散量が多く、金属膜102によりアルカリ金属(Na)の透明導電膜103での拡散が大きく促進されることが確認された。本実施例の太陽電池100におけるこのCIGS層中のNa拡散量は、SLG上に透明導電膜を設けずに直接、Moによる裏面電極、CIGS層の順で積層した一般的な構造の場合に得られる図9に示されるNa濃度分布特性と同程度であり、非常に多い。   On the other hand, in the solar cell 100 of this example, as shown in FIG. 11, the amount of Na diffusion from the SLG substrate 101 to the CIGS layer 105 is large, and the transparent conductive film 103 made of alkali metal (Na) is formed by the metal film 102. It was confirmed that the diffusion of is greatly promoted. The amount of Na diffusion in the CIGS layer in the solar cell 100 of the present example is obtained in the case of a general structure in which a back electrode made of Mo and a CIGS layer are laminated in this order without providing a transparent conductive film on the SLG. 9 is almost the same as the Na concentration distribution characteristic shown in FIG.

図12は、電子線マイクロプローブアナライザ(EPMA)により評価したCIGS層中のNa濃度分布を示す。図12の電子線マイクロプローブアナライザ(EPMA)によって(加速電圧5kV)評価されたNa濃度分布において、図8(b)に示した「Mo/GZO/SLG」や「GZO/SLG」のようにSLG基板と透明導電膜GZOとの間に金属膜を設けない構造では、CIGS層中にNaは観察されなかった。これに対し、図12に「GZO/Mo/SLG」、及び図8(a)に示した「Mo/GZO/Mo/SLG」のようにSLG基板と透明導電膜GZOとの間にMoからなる金属膜を挿入した構造では、CIGS層中にNa濃度が存在することが観察された。この結果、金属膜102によりSLG基板からのアルカリ金属(Na)の透明導電膜103での拡散が大きく促進されたことが確認された。なお、図12において、黒丸が複数個あるのは、複数回の評価を行い、各評価時に得られたNa濃度であることを示している。   FIG. 12 shows the Na concentration distribution in the CIGS layer evaluated by an electron beam microprobe analyzer (EPMA). In the Na concentration distribution evaluated by the electron microprobe analyzer (EPMA) in FIG. 12 (acceleration voltage 5 kV), SLG like “Mo / GZO / SLG” and “GZO / SLG” shown in FIG. In the structure in which the metal film is not provided between the substrate and the transparent conductive film GZO, Na was not observed in the CIGS layer. On the other hand, as shown in “GZO / Mo / SLG” in FIG. 12 and “Mo / GZO / Mo / SLG” shown in FIG. 8A, Mo is formed between the SLG substrate and the transparent conductive film GZO. In the structure in which the metal film was inserted, it was observed that Na concentration was present in the CIGS layer. As a result, it was confirmed that the diffusion of alkali metal (Na) from the SLG substrate in the transparent conductive film 103 was greatly promoted by the metal film 102. In FIG. 12, the presence of a plurality of black circles indicates that the Na concentration is obtained at each evaluation after multiple evaluations.

図9〜図12により、本実施例の太陽電池100では、Moによる金属膜102がSLG基板101に含有するアルカリ金属(Na)の透明導電膜103での拡散が促進する作用があることが示された。Na拡散のメカニズムとしては、(1)アルカリ金属(Na)と金属膜102のMoとが、Na2MoO4等の化合物を形成し、化合物の形態でスムーズに上部層のCIGS層へ拡散している可能性、もしくは(2)上部の透明導電膜103の膜質が変化して透明導電膜103中の拡散を促進していることが考えられる。9-12, in the solar cell 100 of a present Example, it has shown that the metal film 102 by Mo has the effect | action which promotes the spreading | diffusion in the transparent conductive film 103 of the alkali metal (Na) which the SLG board | substrate 101 contains. It was done. The mechanism of Na diffusion is as follows: (1) Alkali metal (Na) and Mo of the metal film 102 form a compound such as Na 2 MoO 4 and smoothly diffuse into the upper CIGS layer in the form of the compound. It is conceivable that (2) the film quality of the upper transparent conductive film 103 is changed and the diffusion in the transparent conductive film 103 is promoted.

次に、本実施例の太陽電池の電気特性及び効率を一般的な太陽電池の電気特性及び効率と対比して説明する。
図13は、本実施例の太陽電池の電流-電圧特性を、一般的な太陽電池の電流-電圧特性と対比して示す。図13の電流-電圧特性は、横軸が光照射時の太陽電池の電圧、縦軸が光照射時の太陽電池の電流を有効面積で除算した電流密度を示す。金属膜102を有しない一般的な透明導電膜利用CIGS太陽電池150の場合は、図13に点線Iで示すようにCIGS層のアルカリ金属供給量不足のときに見られる典型的な特性劣化(特に開放電圧の低下)が確認された。
Next, the electrical characteristics and efficiency of the solar cell of this example will be described in comparison with the electrical characteristics and efficiency of a general solar cell.
FIG. 13 shows the current-voltage characteristics of the solar cell of this example in comparison with the current-voltage characteristics of a general solar cell. In the current-voltage characteristics of FIG. 13, the horizontal axis represents the voltage of the solar cell during light irradiation, and the vertical axis represents the current density obtained by dividing the current of the solar cell during light irradiation by the effective area. In the case of a general CIGS solar cell 150 using a transparent conductive film that does not have the metal film 102, as shown by a dotted line I in FIG. A decrease in the open-circuit voltage) was confirmed.

一方、SLG基板上に透明導電膜を設けずに直接、裏面電極、CIGS層の順で積層した一般的な構造の太陽電池の電流-電圧特性は、CIGS層のアルカリ金属供給量が十分であり、図13に実線IIIで示されるように、開放電圧が上記の特性Iに比べて大きく改善される。また、本実施例の太陽電池100は、図13に破線IIで示すように、上記の一般的な構造の太陽電池の電流-電圧特性IIIに比べて遜色のない特性が得られた。   On the other hand, the current-voltage characteristics of a solar cell having a general structure in which the back electrode and the CIGS layer are directly stacked without providing a transparent conductive film on the SLG substrate are sufficient for supplying the alkali metal in the CIGS layer. As shown by a solid line III in FIG. 13, the open circuit voltage is greatly improved as compared with the above characteristic I. In addition, as shown by a broken line II in FIG. 13, the solar cell 100 of this example has characteristics comparable to the current-voltage characteristics III of the solar cell having the above general structure.

ここで、上記のSLG基板上に透明導電膜を設けずに直接、裏面電極、CIGS層の順で積層した一般的な構造の太陽電池(1)と、本発明利用構造の本実施例の太陽電池100(2)と、一般的な透明導電膜利用構造の太陽電池(3)のそれぞれについて、変換効率と、端子を開放した時の出力電圧である開放電圧と、短絡した時の電流である短絡電流を有効面積で除算した短絡電流密度と、開放電圧と短絡電流との積を最大電圧Vmaxと最大電流Imaxとの積で除算したパラメータである曲線因子とを、まとめると表1のようになった。   Here, a solar cell (1) having a general structure in which a back electrode and a CIGS layer are directly laminated in this order without providing a transparent conductive film on the above SLG substrate, and the solar cell of the present embodiment using the structure of the present invention. For each of the battery 100 (2) and a solar cell (3) having a general transparent conductive film utilization structure, the conversion efficiency, the open voltage that is the output voltage when the terminal is opened, and the current that is shorted Table 1 summarizes the short-circuit current density obtained by dividing the short-circuit current by the effective area and the curve factor that is a parameter obtained by dividing the product of the open-circuit voltage and the short-circuit current by the product of the maximum voltage Vmax and the maximum current Imax. became.

Figure 0006015994
Figure 0006015994

表1から分かるように、本実施例の太陽電池の特性(特に変換効率)は、SLG基板とCIGS層との間に透明導電膜を有しない一般的な構造の太陽電池の特性にほぼ匹敵し、一般的な透明導電膜利用構造の太陽電池に比べて特性が大幅に改善されていることが確認された。   As can be seen from Table 1, the characteristics (particularly the conversion efficiency) of the solar cell of this example are almost comparable to the characteristics of a solar cell having a general structure that does not have a transparent conductive film between the SLG substrate and the CIGS layer. As a result, it was confirmed that the characteristics were greatly improved as compared with a solar cell having a general structure using a transparent conductive film.

なお、以上の実施形態及び実施例において、単層若しくは複層構造若しくは3次元構造の酸化物層13等は、一部に金属等の非酸化物を含んでいてもよい。また、第2〜第5実施形態の光学素子20,30,40,50におけるアルカリ金属含有層11と金属膜21,31,41,51とからなる構造部分を、第6の実施形態の金属膜兼用基板56と同様の金属膜兼用基板に置き換えてもよい。   Note that in the above embodiments and examples, the oxide layer 13 or the like having a single layer structure, a multilayer structure, or a three-dimensional structure may partially include a non-oxide such as a metal. Moreover, the structural part which consists of the alkali metal containing layer 11 and the metal films 21, 31, 41, 51 in the optical elements 20, 30, 40, 50 of the second to fifth embodiments is used as the metal film of the sixth embodiment. A metal film combined substrate similar to the combined substrate 56 may be replaced.

本発明の光学素子は、裏面構造の多機能化と高光吸収率(又は高光発光率)とを実現した透明導電膜利用の太陽電池のほか、受光素子、光センサ、発光素子などに用いることができる。   The optical element of the present invention can be used for a light receiving element, a light sensor, a light emitting element, etc. in addition to a solar cell using a transparent conductive film that realizes a multifunctional back surface structure and a high light absorption rate (or high light emission rate). it can.

10、20、30、40、50、55 光学素子
11 アルカリ金属含有層
12、21、41、51、62 金属膜
13、63 酸化物層
14、33、64 カルコゲン化物系光吸収層(又は発光層)
22 反射鏡若しくは散乱層
23 透明膜
32 テクスチャ構造を有する酸化物層
42 散乱鏡構造の酸化物層
52 酸化物から成る光吸収(発光)層
56 金属膜兼用基板
61 基板
100 実施例1のCIGS太陽電池
101 SLG基板
102 Moからなる金属膜
103 透明導電膜(ZnO:Ga)
104 Moからなる裏面電極
105 カルコパイライト系光吸収層(CIGS層)
106 バッファ層(CdS)
107 i−ZnO層(半絶縁層)
108 透明導電膜(ZnO:Al)
109 Alからなる表面電極
150 一般的な透明導電膜利用CIGS太陽電池
10, 20, 30, 40, 50, 55 Optical element 11 Alkali metal-containing layer 12, 21, 41, 51, 62 Metal film 13, 63 Oxide layer 14, 33, 64 Chalcogenide-based light absorbing layer (or light emitting layer) )
DESCRIPTION OF SYMBOLS 22 Reflector or scattering layer 23 Transparent film 32 Oxide layer having texture structure 42 Oxide layer having scattering mirror structure 52 Light absorption (light emission) layer made of oxide 56 Metal film combined substrate 61 Substrate 100 CIGS sun of Example 1 Battery 101 SLG substrate 102 Metal film made of Mo 103 Transparent conductive film (ZnO: Ga)
104 Back electrode made of Mo 105 Chalcopyrite light absorption layer (CIGS layer)
106 Buffer layer (CdS)
107 i-ZnO layer (semi-insulating layer)
108 Transparent conductive film (ZnO: Al)
109 Surface electrode made of Al 150 Common CIGS solar cell using transparent conductive film

Claims (12)

アルカリ金属を供給する基板の上方に、単層若しくは複層構造若しくは3次元構造の酸化物層、及びアルカリ金属の添加を必要とするカルコゲン化物系材料からなる光吸収層又は発光層の順で積層された光学素子において、
前記アルカリ金属を供給する基板と前記酸化物層との間にアルカリ金属拡散促進層としての機能を有する金属膜を挿入した構造であり、前記金属膜により前記アルカリ金属を供給する基板からのアルカリ金属の前記酸化物層中での拡散を促進させ、そのアルカリ金属を前記光吸収層又は発光層へ供給する構造であることを特徴とする光学素子。
A light-absorbing layer or a light-emitting layer made of a chalcogenide-based material that requires addition of an alkali metal and a single layer, a multilayer structure, or a three-dimensional oxide layer, and a light-emitting layer are stacked in this order above the substrate that supplies the alkali metal. In the optical element,
An alkali metal from the substrate that supplies the alkali metal by the metal film, wherein a metal film having a function as an alkali metal diffusion promoting layer is inserted between the substrate that supplies the alkali metal and the oxide layer. An optical element having a structure in which diffusion in the oxide layer is promoted and the alkali metal is supplied to the light absorbing layer or the light emitting layer.
前記アルカリ金属を供給する基板は、アルカリ金属含有基板そのもの、又は基体の基板上にアルカリ金属含有膜を形成した構造の基板であることを特徴とする請求項1記載の光学素子。   2. The optical element according to claim 1, wherein the substrate for supplying the alkali metal is an alkali metal-containing substrate itself or a substrate having a structure in which an alkali metal-containing film is formed on a base substrate. 前記アルカリ金属を供給する基板と前記金属膜とは、アルカリ金属を含有した金属基板そのもの、又は基体の基板上にアルカリ金属を含有した金属層を形成した構造の、金属膜兼用基板を構成していることを特徴とする請求項1記載の光学素子。   The substrate for supplying an alkali metal and the metal film constitute a metal film combined substrate having a structure in which a metal substrate itself containing an alkali metal or a metal layer containing an alkali metal is formed on a base substrate. The optical element according to claim 1. 前記金属膜はモリブデン又はタングステンを材料とする薄膜であることを特徴とする請求項1又は2記載の光学素子。   3. The optical element according to claim 1, wherein the metal film is a thin film made of molybdenum or tungsten. 前記酸化物層は、前記光吸収層又は発光層の直下に形成された透明膜と、その透明膜の直下に形成された反射鏡若しくは散乱層とからなる複層構造であることを特徴とする請求項1乃至4のうちいずれか一項記載の光学素子。   The oxide layer has a multilayer structure including a transparent film formed immediately below the light absorption layer or the light emitting layer, and a reflecting mirror or a scattering layer formed immediately below the transparent film. The optical element as described in any one of Claims 1 thru | or 4. 前記酸化物層は、テクスチャ構造を有する3次元構造の透明導電膜であることを特徴とする請求項1乃至4のうちいずれか一項記載の光学素子。   The optical element according to any one of claims 1 to 4, wherein the oxide layer is a transparent conductive film having a three-dimensional structure having a texture structure. 前記酸化物層は、金属粒子が内部に埋め込まれた散乱鏡構造の透明導電膜であることを特徴とする請求項1乃至4のうちいずれか一項記載の光学素子。   The optical element according to any one of claims 1 to 4, wherein the oxide layer is a transparent conductive film having a scattering mirror structure in which metal particles are embedded. 前記酸化物層と前記光吸収層又は発光層との間に、オーミック特性改善のための電極が形成された構造であることを特徴する請求項1乃至7のうちいずれか一項記載の光学素子。   8. The optical element according to claim 1, wherein an electrode for improving ohmic characteristics is formed between the oxide layer and the light absorption layer or the light emitting layer. . 前記酸化物層は導電性を有し、前記電極は、その一部または全部が前記導電性を有する酸化物に置き換えられた構造であることを特徴とする請求項8記載の光学素子。   9. The optical element according to claim 8, wherein the oxide layer has conductivity, and the electrode has a structure in which a part or all of the electrode is replaced with the conductivity oxide. アルカリ金属を供給する基板の上に、金属膜を製膜する製膜工程と、
製膜された前記金属膜の上に、単層若しくは複層構造若しくは3次元構造の酸化物層を形成する酸化物層形成工程と、
形成された前記酸化物層の上に、アルカリ金属の添加を必要とするカルコゲン化物系材料からなる光吸収層又は発光層を形成する層形成工程と
を含み、前記基板と前記酸化物層との間に形成された前記金属膜を、前記基板からのアルカリ金属の前記酸化物層中での拡散を促進させるアルカリ金属拡散促進層として機能させ、前記基板からのアルカリ金属を前記酸化物層を通して前記光吸収層又は発光層へ供給する構造の光学素子を製造することを特徴とする光学素子の製造方法。
A film forming step of forming a metal film on a substrate for supplying an alkali metal;
An oxide layer forming step of forming an oxide layer having a single layer, a multilayer structure, or a three-dimensional structure on the metal film formed;
Forming a light-absorbing layer or a light-emitting layer made of a chalcogenide-based material that requires the addition of an alkali metal on the formed oxide layer, and including the substrate and the oxide layer. The metal film formed therebetween functions as an alkali metal diffusion promoting layer that promotes diffusion of alkali metal from the substrate in the oxide layer, and the alkali metal from the substrate passes through the oxide layer to A method for producing an optical element, comprising producing an optical element having a structure for supplying to a light absorbing layer or a light emitting layer.
前記製膜工程及び前記酸化物層形成工程は、アルカリ金属を含有した金属基板そのもの、又は基体の基板上にアルカリ金属を含有した金属層を形成した構造の、前記アルカリ金属を供給する基板と前記金属膜とを兼ね備えた金属膜兼用基板の上に、前記酸化物層を形成することを特徴とする請求項1記載の光学素子の製造方法。   In the film forming step and the oxide layer forming step, the substrate for supplying the alkali metal having a structure in which a metal substrate containing an alkali metal itself or a metal layer containing an alkali metal is formed on a base substrate, The method of manufacturing an optical element according to claim 1, wherein the oxide layer is formed on a metal film combined substrate having a metal film. 前記金属膜はモリブデン又はタングステンを材料とする薄膜であることを特徴とする請求項10記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 10, wherein the metal film is a thin film made of molybdenum or tungsten.
JP2015521328A 2013-06-03 2014-03-31 Optical element and manufacturing method thereof Active JP6015994B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013116942 2013-06-03
JP2013116942 2013-06-03
PCT/JP2014/059565 WO2014196256A1 (en) 2013-06-03 2014-03-31 Optical element and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP6015994B2 true JP6015994B2 (en) 2016-10-26
JPWO2014196256A1 JPWO2014196256A1 (en) 2017-02-23

Family

ID=52007911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015521328A Active JP6015994B2 (en) 2013-06-03 2014-03-31 Optical element and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6015994B2 (en)
WO (1) WO2014196256A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727374B2 (en) 2015-09-04 2020-07-28 Seoul Semiconductor Co., Ltd. Transparent conductive structure and formation thereof
US10981800B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Chamber enclosure and/or wafer holder for synthesis of zinc oxide
US10981801B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Fluid handling system for synthesis of zinc oxide
US10407315B2 (en) 2016-04-14 2019-09-10 Seoul Semiconductor Co., Ltd. Method and/or system for synthesis of zinc oxide (ZnO)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210424A (en) * 2005-01-25 2006-08-10 Honda Motor Co Ltd Method of manufacturing chalcopyrite thin-film solar cell
WO2009116626A1 (en) * 2008-03-21 2009-09-24 独立行政法人産業技術総合研究所 Solar cell and manufacturing method thereof
JP2011155146A (en) * 2010-01-27 2011-08-11 Fujifilm Corp Solar cell and method of manufacturing the same
WO2011158841A1 (en) * 2010-06-18 2011-12-22 旭硝子株式会社 Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
JP2013084921A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Photoelectric conversion element and solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210424A (en) * 2005-01-25 2006-08-10 Honda Motor Co Ltd Method of manufacturing chalcopyrite thin-film solar cell
WO2009116626A1 (en) * 2008-03-21 2009-09-24 独立行政法人産業技術総合研究所 Solar cell and manufacturing method thereof
JP2011155146A (en) * 2010-01-27 2011-08-11 Fujifilm Corp Solar cell and method of manufacturing the same
WO2011158841A1 (en) * 2010-06-18 2011-12-22 旭硝子株式会社 Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
JP2013084921A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Photoelectric conversion element and solar cell

Also Published As

Publication number Publication date
JPWO2014196256A1 (en) 2017-02-23
WO2014196256A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP2007528600A (en) Thin film solar cell and manufacturing method
EP2668666B1 (en) Solar cell apparatus
KR101230973B1 (en) Cis/cigs based-thin film solar cell having back side tco layer and method for manufacturing the same
US9941424B2 (en) Solar cell
US20130284252A1 (en) Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells
JP6015994B2 (en) Optical element and manufacturing method thereof
KR20090123645A (en) High-efficiency cigs solar cells and manufacturing method thereof
KR20170036596A (en) A solar cell comprising CZTS Thin film with a oxide buffer layer and a method of manufacturing the same
WO2014025176A1 (en) Flexible-substrate cigs solar cell having improved na supply method, and method for manufacturing same
JP6297038B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
US20140000673A1 (en) Photovoltaic device and method of making
JP2011023520A (en) P-type semiconductor film and solar cell
US20210135041A1 (en) Method of fabricating see-through thin film solar cell
JP6004460B2 (en) Solar cell manufacturing method and solar cell
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
KR101971398B1 (en) Bifacial CdS/CdTe thin film solar cell and method for the same
KR20170036606A (en) A CZTS based solar cell comprising a double light aborbing layer
JP2014504038A (en) Solar cell and manufacturing method thereof
JP5594949B2 (en) Photovoltaic element and manufacturing method thereof
US20150249171A1 (en) Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution
US20140060608A1 (en) Photovoltaic device and method of making
KR101315311B1 (en) Back contact and cis-based solar cell comprising the same
JP2004158556A (en) Solar cell
KR20120084203A (en) Solar cell and manufacturing method of the same
KR101480394B1 (en) Low-resistance metal layer including backcontact and solar cell using the same, and methods of manufacturing them

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6015994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250