JP6014709B2 - Automatic bidirectional expansion valve - Google Patents

Automatic bidirectional expansion valve Download PDF

Info

Publication number
JP6014709B2
JP6014709B2 JP2015078943A JP2015078943A JP6014709B2 JP 6014709 B2 JP6014709 B2 JP 6014709B2 JP 2015078943 A JP2015078943 A JP 2015078943A JP 2015078943 A JP2015078943 A JP 2015078943A JP 6014709 B2 JP6014709 B2 JP 6014709B2
Authority
JP
Japan
Prior art keywords
liquid passage
valve core
hole
valve
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015078943A
Other languages
Japanese (ja)
Other versions
JP2015232389A (en
Inventor
金耿
阮義兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenling Hengfa Aircondition Components Co ltd
Original Assignee
Wenling Hengfa Aircondition Components Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenling Hengfa Aircondition Components Co ltd filed Critical Wenling Hengfa Aircondition Components Co ltd
Publication of JP2015232389A publication Critical patent/JP2015232389A/en
Application granted granted Critical
Publication of JP6014709B2 publication Critical patent/JP6014709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves

Description

本発明は機械工程の技術分野に属する膨張弁に関し、特に自動双方向膨張弁に関する。
背景技術
The present invention relates to an expansion valve belonging to the technical field of mechanical processing, and more particularly to an automatic bidirectional expansion valve.
Background art

膨張弁は冷凍システムでの重要な部材であり、凝縮器と蒸発器の間に取付けられている。膨張弁は蒸発器により蒸発される気体を、圧縮機で高温高圧の液体冷媒に増圧・液化し、更にその絞り口によって低温低圧の噴霧状液態冷媒に絞り、その後、冷媒は蒸発器により熱量が吸収されることにより、冷凍効果に達している。膨張弁は蒸発器末端の過熱度変化を通じて弁の流量を制御するため、流量が非常に小さくなって蒸発器面積を充分に利用できなくなったり、及び流量が非常に大きくなって蒸発器面積の不足により、冷媒が完全に気化されず、圧縮機に吸引されて液態が生じることを防止している。 The expansion valve is an important member in the refrigeration system and is installed between the condenser and the evaporator. The expansion valve boosts and liquefies the gas evaporated by the evaporator into a high-temperature and high-pressure liquid refrigerant by the compressor, and further throttles it to a low-temperature and low-pressure spray-like liquid refrigerant by the throttle port. As a result of absorption, the refrigeration effect is reached. The expansion valve controls the flow rate of the valve through a change in superheat at the end of the evaporator, so the flow rate becomes very small and the evaporator area cannot be fully used, or the flow rate becomes very large and the evaporator area is insufficient. This prevents the refrigerant from being completely vaporized and sucked into the compressor to form a liquid state.

膨張弁に関する文献は多く、例えば、本出願の出願人は中国特許庁に出願の名称が膨張弁(出願番号が201210419218.1で、その公開番号がCN102878734Aである)である特許を出願している。該膨張弁における弁芯Iと弁芯IIの間は、円錐面によって密封されている。具体的は、弁芯Iは前絞り円錐部を有し、弁芯IIは前絞り円錐部に適切する前絞り円錐孔を有する。該構造は密封を実現することができるが、前絞り円錐孔と前絞り円錐部が高い加工精度を要求するため、実際の生産工程では、高精度のデバイスを必要とし、更に製品率が低い問題が存在する。これにより、部品の生産コストが高く、製品の市場での競争力が弱い問題が存在している。テストを通じて、前記膨張弁は流量の制御制度が低い問題も存在している。 There are many documents related to expansion valves. For example, the applicant of the present application has filed a patent application with the Chinese Patent Office whose application name is an expansion valve (application number 201210419218.1, publication number CN102878734A). The valve core I and the valve core II in the expansion valve are sealed by a conical surface. Specifically, the valve core I has a front throttle cone, and the valve core II has a front throttle cone suitable for the front throttle cone. Although this structure can realize sealing, the front drawing conical hole and the front drawing conical portion require high processing accuracy, so that a high precision device is required in the actual production process, and the product rate is low. Exists. As a result, there is a problem that the production cost of parts is high and the competitiveness in the product market is weak. Through the test, the expansion valve has a problem that the flow rate control system is low.

本発明の目的は従来技術に存在する上述の問題点に対して、弁芯Iと弁芯IIの生産コストを低減するための自動双方向膨張弁を提供している。 The object of the present invention is to provide an automatic bi-directional expansion valve for reducing the production cost of the valve core I and the valve core II against the above-mentioned problems existing in the prior art.

本発明の目的は下記の技術方法によって実現される。
本発明の自動双方向膨張弁は、ケースとケース内に位置する弁芯Iと弁芯IIと、を含む。前記弁芯IIは、直列する液体通過小孔と液体通過大孔を有し、前記弁芯Iの一端は液体通過大孔を貫通して液体通過小孔内に挿込まれており、弁芯Iの一端と液体通過小孔の側面の間は液体通過間隙を有しており、前記弁芯Iの一端は、液体通過小孔と液体通過大孔の間の角張りと当接する密閉円錐面を有することを特徴とする。
The object of the present invention is realized by the following technical method.
The automatic bidirectional expansion valve of the present invention includes a case, and a valve core I and a valve core II located in the case. The valve core II has a liquid passage small hole and a liquid passage large hole in series, and one end of the valve core I passes through the liquid passage large hole and is inserted into the liquid passage small hole. There is a liquid passage gap between one end of I and the side surface of the liquid passage small hole, and one end of the valve core I is a sealed conical surface that abuts against the angularity between the liquid passage small hole and the liquid passage large hole. It is characterized by having.

本発明の自動双方向膨張弁における弁芯IIの液体通過小孔と液体通過大孔はそれぞれ直孔で、かつ軸線が重なっている。液体通過小孔、液体通過大孔と密閉円錐面を加工するための要求が低く、かつ密閉円錐面と角張りが密封されて加工精度に対する要求を低くするため、効率的に製品の合格率を高め、更に部品の生産コストを低減することができる。好ましくは、液体通過小孔と液体通過大孔の間の角張り箇所で円弧状面取りを加工し、これにより、該円弧状面取りが液体通過小孔と液体通過大孔の間の角張りにおけるバリを除去し、更に角張りと密閉円錐面の接着度を高くし、更に弁芯Iと弁芯IIの間の密閉性を保証することができる。 The liquid passage small hole and the liquid passage large hole of the valve core II in the automatic bidirectional expansion valve of the present invention are straight holes, and the axes overlap each other. Low requirements for machining liquid passage small holes, liquid passage large holes and closed conical surfaces, and the sealed conical surface and squares are sealed to reduce the requirements for machining accuracy, so the product pass rate can be efficiently increased. The production cost of parts can be further reduced. Preferably, an arc-shaped chamfer is processed at a cornering portion between the liquid passage small hole and the liquid passage large hole so that the arc chamfer is a burring in the cornering between the liquid passage small hole and the liquid passage large hole. Can be removed, and the adhesion between the angular core and the sealing conical surface can be increased, and further, the sealing performance between the valve core I and the valve core II can be ensured.

前記自動双方向膨張弁において、前記弁芯Iの端部において、密閉円錐面から前記端部までの端面の間は、大円柱部と小円柱部である。弁芯Iまたは弁芯IIが移動する場合、もし、密閉円錐面が液体通過小孔と液体通過大孔の間の角張りから離れる場合、膨張弁流量の大きさは大円柱部と液体通過小孔の側面の間の液体通過間隙により制御されて、小流量の制御が実現されている。もし、大円柱部が完全に液体通過大孔内に進入すると、膨張弁流量の大きさは小円柱部と液体通過小孔の側面の間の液体通過間隙により制御されて、大流量の制御が実現されている。 In the automatic bidirectional expansion valve, at the end portion of the valve core I, the space between the end surface from the sealed conical surface to the end portion is a large cylindrical portion and a small cylindrical portion. When valve core I or valve core II moves, if the conical conical surface moves away from the squareness between the liquid passage small hole and the liquid passage large hole, the magnitude of the expansion valve flow rate is large cylinder portion and liquid passage small. Controlled by the liquid passage gap between the side surfaces of the holes, small flow rate control is realized. If the large cylindrical part completely enters the liquid passage large hole, the magnitude of the expansion valve flow rate is controlled by the liquid passage gap between the small cylindrical part and the side surface of the liquid passage small hole, and the large flow rate is controlled. It has been realized.

前記自動双方向膨張弁において、前記弁芯Iの端部において、密閉円錐面から前記端部までの端面の間は、大円柱部、流量緩慢変化部と小円柱部である。弁芯Iまたは弁芯IIは移動し、もし、密閉円錐面が液体通過小孔と液体通過大孔の間の角張りから離れる場合、膨張弁流量の大きさは大円柱部と液体通過小孔の側面の間の液体通過間隙により制御されて、小流量の制御が実現されている。もし、大円柱部が完全に液体通過大孔内に進入すると、流量の大きさは流量緩慢変化部と液体通過小孔の側面の間の液体通過間隙により制御されて、変量の制御が実現されている。もし、流量緩慢変化部が完全に液体通過大孔内に進入すると、流量の大きさは小円柱部と液体通過小孔の側面の間の液体通過間隙により制御されて、大流量の制御が実現される。 In the automatic bidirectional expansion valve, at the end portion of the valve core I, the space between the end surface from the sealing conical surface to the end portion is a large cylindrical portion, a flow rate slow change portion, and a small cylindrical portion. Valve core I or valve core II moves, and if the sealing conical surface is separated from the squareness between the liquid passage small hole and the liquid passage large hole, the magnitude of the expansion valve flow rate is the large cylindrical portion and the liquid passage small hole. Control of the small flow rate is realized by the liquid passage gap between the side surfaces of the two. If the large cylindrical part completely enters the liquid passage large hole, the magnitude of the flow rate is controlled by the liquid passage gap between the flow rate slow change part and the side surface of the liquid passage small hole, and the variable control is realized. ing. If the flow rate slow change part completely enters the large liquid passage hole, the flow rate is controlled by the liquid passage gap between the small cylindrical part and the side surface of the small liquid passage hole. Is done.

前記自動双方向膨張弁において、前記弁芯Iの外部には、ケースに固接する方向誘導弁座が設けられており、弁芯Iの他端には、第1液体通過孔が設けられ、弁芯Iの側壁には、第1液体通過孔に連通する複数の第2液体通過孔が設けられており、前記液体通過小孔は弁芯IIを貫通している。該構造は媒体に対して第2液体通過孔と第1液体通過孔を通過させるため、媒体がケースの周方向に沿って流れることができ、更に媒体がケーシングとケースの間及びケースの入口と出口を通過することによる構造が複雑になる問題を防ぐことができ、換言すると、前記構造はケーシングを無くしても良い。 In the automatic bidirectional expansion valve, a directional guide valve seat that is in solid contact with the case is provided outside the valve core I, and a first liquid passage hole is provided at the other end of the valve core I. A plurality of second liquid passage holes communicating with the first liquid passage hole are provided on the side wall of the wick I, and the small liquid passage hole penetrates the valve core II. Since the structure allows the medium to pass through the second liquid passage hole and the first liquid passage hole, the medium can flow along the circumferential direction of the case, and further, the medium is interposed between the casing and the case inlet. The problem that the structure due to passing through the outlet becomes complicated can be prevented, in other words, the structure may have no casing.

前記自動双方向膨張弁において、前記方向誘導弁座の端面と弁芯IIの端面の間には第1密閉ワッシャが設けられている。弁芯IIは第1密閉ワッシャを通じて方向誘導弁座に当接して、弁芯IIと方向誘導弁座の間のスリット、方向誘導弁座とケースの間のスリット、弁芯IIとケースの間のスリットにおける媒体の漏れまたは還流を防ぎ、更に流量の制御精度を高くする。 In the automatic bidirectional expansion valve, a first sealing washer is provided between the end face of the direction guide valve seat and the end face of the valve core II. The valve core II abuts the directional guide valve seat through the first sealing washer, and the slit between the valve core II and the directional guide valve seat, the slit between the directional guide valve seat and the case, and between the valve core II and the case. Prevents leakage or reflux of the medium in the slit, and further increases the control accuracy of the flow rate.

前記自動双方向膨張弁において、前記弁芯Iは密閉当接面を有し、方向誘導弁座の他の端面と弁芯Iの密閉当接面の間には第2密閉ワッシャが設けられている。弁芯Iの密閉当接面は第2密閉ワッシャを通じて方向誘導弁座に当接されるため、弁芯Iの密閉当接面と方向誘導弁座の間のスリット、方向誘導弁座とケースの間のスリット、弁芯Iとケースの間のスリットにおける媒体の漏れまたは還流を防ぎ、更に流量の制御精度を高くする。 In the automatic bidirectional expansion valve, the valve core I has a sealing contact surface, and a second sealing washer is provided between the other end surface of the direction guide valve seat and the sealing contact surface of the valve core I. Yes. Since the sealing contact surface of the valve core I is contacted to the direction guiding valve seat through the second sealing washer, the slit between the sealing contact surface of the valve core I and the direction guiding valve seat, the direction guiding valve seat and the case This prevents leakage or recirculation of the medium in the slit between the valve core I and the slit between the valve core I and the case, and further increases the control accuracy of the flow rate.

更にケースを保護するため、前記自動双方向膨張弁において、前記ケースの外部には保護カバーが設けられ、ケースの両端は接続管部であり、接続管部は保護カバーの外部に位置し、保護カバーはケースに固接されている。 Further, in order to protect the case, in the automatic bidirectional expansion valve, a protective cover is provided outside the case, both ends of the case are connecting pipe parts, and the connecting pipe parts are located outside the protective cover and are protected. The cover is fixed to the case.

前記自動双方向膨張弁において、前記弁芯Iと弁芯IIの外側面には少なくとも2つの密封溝が設けられ、各密封溝内にはケースの内壁に当接する第2リングシールが嵌め込まれている。複数のリングシールは密閉性を高くし、更に弁芯の運動の安定性を高めており、特に弁芯の揺動を防ぐことができる。 In the automatic bidirectional expansion valve, at least two sealing grooves are provided on the outer surfaces of the valve core I and the valve core II, and a second ring seal that contacts the inner wall of the case is fitted in each sealing groove. Yes. The plurality of ring seals enhance the sealing performance and further improve the stability of the movement of the valve core, and in particular, can prevent the valve core from swinging.

前記自動双方向膨張弁において、前記ケースの両端には当て柱が固定され、該当て柱の側壁には液体通過溝が設けられ、前記当て柱の内端面には径方向に貫通する補助液体通過溝が設けられている。弁芯と当て柱の内端面が当接する時、補助液体通過溝は油液の円滑な流れを保証し、弁芯の端面と当て柱の内端面の間で負圧が生じることによる弁芯の係止現象を防ぐことができる。 In the automatic bi-directional expansion valve, a support post is fixed to both ends of the case, a liquid passage groove is provided on the corresponding side wall, and an auxiliary liquid passage penetrating radially in the inner end surface of the support post is provided. Grooves are provided. When the valve core and the inner end surface of the contact column come into contact, the auxiliary liquid passage groove ensures a smooth flow of the oil liquid, and the valve core is prevented by a negative pressure generated between the end surface of the valve core and the inner end surface of the contact column. The locking phenomenon can be prevented.

従来技術に比べて、本発明の自動双方向膨張弁は弁芯Iと弁芯IIの間の密封構造を変更することで、弁芯Iと弁芯IIの生産コストを低減し、更に弁芯Iと弁芯IIの間の密閉性を保証することができる。本発明の自動双方向膨張弁は、弁芯Iの端部形状を変更し、更に第1密閉ワッシャと第2密閉ワッシャを増設して、効率的に流量の制御精度を高めている。 Compared to the prior art, the automatic bidirectional expansion valve of the present invention reduces the production cost of the valve core I and the valve core II by changing the sealing structure between the valve core I and the valve core II. Sealing between I and valve core II can be guaranteed. In the automatic bidirectional expansion valve of the present invention, the shape of the end of the valve core I is changed, and a first hermetic washer and a second hermetic washer are further added to efficiently increase the flow rate control accuracy.

図1は、本発明の自動双方向膨張弁の実施例1における断面構造を示す図である。FIG. 1 is a view showing a cross-sectional structure in Embodiment 1 of an automatic bidirectional expansion valve of the present invention. 図2は、図1のA箇所の一部構造を示す拡大図である。FIG. 2 is an enlarged view showing a partial structure of the portion A in FIG. 図3は、図1のB箇所の一部構造を示す拡大図である。FIG. 3 is an enlarged view showing a partial structure of a portion B in FIG. 図4は、自動双方向膨張弁の当て柱の内端部構造を示す図である。FIG. 4 is a view showing the inner end structure of the contact post of the automatic bidirectional expansion valve. 図5は、本発明の自動双方向膨張弁の実施例2における断面構造を示す図である。FIG. 5 is a view showing a cross-sectional structure in Embodiment 2 of the automatic bidirectional expansion valve of the present invention. 図6は、本発明の自動双方向膨張弁の実施例3における断面構造を示す図である。FIG. 6 is a view showing a cross-sectional structure in Embodiment 3 of the automatic bidirectional expansion valve of the present invention. 図7は、図1のC箇所の一部構造を示す拡大図である。FIG. 7 is an enlarged view showing a partial structure of a portion C in FIG. 図8は、図5のD箇所の一部構造を示す拡大図である。FIG. 8 is an enlarged view showing a partial structure of a portion D in FIG. 図9は、本発明の自動双方向膨張弁の実施例4における断面構造を示す図である。FIG. 9 is a view showing a cross-sectional structure in Embodiment 4 of the automatic bidirectional expansion valve of the present invention.

以下は本発明の具体的実施例と図面を用いて、本発明の技術手段に対して詳細に説明するが、本発明はこの実施例に制限されない。 The technical means of the present invention will be described in detail below with reference to specific embodiments and drawings of the present invention, but the present invention is not limited to these embodiments.

<実施例1>
図1に示されるように、自動双方向膨張弁は、ケース1、ケーシング2、弁芯I3、弁芯II4、当て柱5、方向誘導弁座6を含む。
<Example 1>
As shown in FIG. 1, the automatic bidirectional expansion valve includes a case 1, a casing 2, a valve core I3, a valve core II4, a contact post 5, and a direction guide valve seat 6.

ケース1は管状であり、弁芯I3、弁芯II4、当て柱5、バネ、方向誘導弁座6はケース1内に位置しており、ケーシング2はケース1の外部を套設され、ケーシング2の両端は接続管部を有する。 Case 1 is tubular, valve core I3, valve core II4, bearing post 5, spring, and direction guide valve seat 6 are located inside case 1, casing 2 is provided outside case 1 and casing 2 Both ends have connecting pipe portions.

当て柱5の数は2つであり、2つの当て柱5はそれぞれケース1の両端に固定され、当て柱5の側壁には液体通過溝5aが設けられている。弁芯I3と弁芯II4は2つの当て柱5の間に位置し、弁芯I3と弁芯II4の外側面には2つの密封溝が設けられており、各密封溝の内部にはケース1の内壁に当接する第2リングシール7が嵌め込まれている。これにより、弁芯I3と弁芯II4はケース1の内壁に沿って摺動し、かつ弁芯I3とケース1の内壁の間及び弁芯II4とケース1の内壁の間はそれぞれ密封される。 The number of the contact pillars 5 is two, the two contact pillars 5 are respectively fixed to both ends of the case 1, and a liquid passage groove 5 a is provided on the side wall of the contact pillar 5. The valve core I3 and the valve core II4 are located between the two contact pillars 5, and two sealing grooves are provided on the outer surfaces of the valve core I3 and the valve core II4. A second ring seal 7 that is in contact with the inner wall is fitted. As a result, the valve core I3 and the valve core II4 slide along the inner wall of the case 1, and the space between the valve core I3 and the inner wall of the case 1 and between the valve core II4 and the inner wall of the case 1 are sealed.

弁芯II4内は直列する液体通過小孔4aと液体通過大孔4bを有し、液体通過小孔4aと液体通過大孔4bはそれぞれ弁芯II4の軸線に沿って設けられ、液体通過小孔4aは軸方向で貫通する。 The valve core II4 has a liquid passage small hole 4a and a liquid passage large hole 4b in series. The liquid passage small hole 4a and the liquid passage large hole 4b are provided along the axis of the valve core II4, respectively. 4a penetrates in the axial direction.

弁芯I3の一端は、液体通過大孔4bを貫通して液体通過小孔4a内に挿込まれており、弁芯I3の一端は、液体通過小孔4aの側面との間、及び液体通過大孔4bの側面との間で液体通過間隙を有する。弁芯I3の一端は、液体通過小孔4aと液体通過大孔4bの間の角張りに当接する密閉円錐面3aを有する。密閉円錐面3aが液体通過小孔4aと液体通過大孔4bの間の角張りから離れる時、媒体は液体通過小孔4aと液体通過大孔4bの間から流される。液体通過小孔4aと液体通過大孔4bの間の角張りが円弧面取り4cである。 One end of the valve core I3 passes through the liquid passage large hole 4b and is inserted into the liquid passage small hole 4a, and one end of the valve core I3 is between the side surface of the liquid passage small hole 4a and the liquid passage A liquid passage gap is provided between the large holes 4b. One end of the valve core I3 has a sealed conical surface 3a that abuts against the angularity between the liquid passage small hole 4a and the liquid passage large hole 4b. When the sealing conical surface 3a moves away from the angularity between the liquid passage small hole 4a and the liquid passage large hole 4b, the medium flows from between the liquid passage small hole 4a and the liquid passage large hole 4b. A corner between the liquid passage small hole 4a and the liquid passage large hole 4b is an arc chamfer 4c.

方向誘導弁座6は弁芯I3の外部を套設され、方向誘導弁座6はケース1に固接され、弁芯I3と当て柱5の間には第1バネ8が設けられており、弁芯II4と他の当て柱5の間には第2バネ9が設けられている。図3に示されるように、方向誘導弁座6の端面と弁芯II4の端面の間には第1密閉ワッシャ10が設けられ、第1密閉ワッシャ10は、ケース1に密着し、更に方向誘導弁座6の端面に当接する。図2に示されるように、弁芯I3は密閉当接面3bを有し、方向誘導弁座6の他の端面と弁芯I3の密閉当接面3bの間には第2密閉ワッシャ11が設けられており、第2密閉ワッシャ11は、ケース1に密着し、更に方向誘導弁座6の他の端面に当接する。図1に示されるように、密閉円錐面3aが液体通過小孔4aと液体通過大孔4bの間の角張りに当接する時、弁芯II4は第1密閉ワッシャ10を通じて方向誘導弁座6に当接し、弁芯I3の密閉当接面3bと第2密閉ワッシャ11が離れる状態になっている。 The direction guide valve seat 6 is provided outside the valve core I3, the direction guide valve seat 6 is fixed to the case 1, and a first spring 8 is provided between the valve core I3 and the contact post 5. A second spring 9 is provided between the valve core II4 and the other contact post 5. As shown in FIG. 3, a first sealing washer 10 is provided between the end face of the direction guide valve seat 6 and the end face of the valve core II4. The first sealing washer 10 is in close contact with the case 1 and further guides the direction. It contacts the end face of the valve seat 6. As shown in FIG. 2, the valve core I3 has a sealing contact surface 3b, and a second sealing washer 11 is provided between the other end surface of the direction guide valve seat 6 and the sealing contact surface 3b of the valve core I3. The second sealing washer 11 is provided in close contact with the case 1 and further abuts against the other end face of the direction guide valve seat 6. As shown in FIG. 1, when the sealed conical surface 3a abuts against the angularity between the liquid passage small hole 4a and the liquid passage large hole 4b, the valve core II4 passes through the first sealing washer 10 to the direction guide valve seat 6. The sealing contact surface 3b of the valve core I3 and the second sealing washer 11 are in contact with each other.

第1バネ8と第2バネ9の実際の弾力状況に基いて、弁芯I3の密閉当接面3bが、第2密閉ワッシャ11を通じて方向誘導弁座6に当接し、弁芯II4が、第1密閉ワッシャ10を通じて離れる状態になっている。 Based on the actual elasticity of the first spring 8 and the second spring 9, the sealing contact surface 3b of the valve core I3 contacts the direction guide valve seat 6 through the second sealing washer 11, and the valve core II4 1 It is in a state of leaving through the sealing washer 10.

図7に示されるように、弁芯I3の端部において、密閉円錐面3aから前記端部までの端面の間は、大円柱部3cと小円柱部3dである。
図1と図4にされるように、当て柱5の内端面には、径方向に貫通する補助液体通過溝5bが設けられ、補助液体通過溝5bは液体通過小孔4aに対向して設けられている。
As shown in FIG. 7, at the end portion of the valve core I3, the space between the end surface from the sealing conical surface 3a to the end portion is a large cylindrical portion 3c and a small cylindrical portion 3d.
As shown in FIGS. 1 and 4, an auxiliary liquid passage groove 5b that penetrates in the radial direction is provided on the inner end surface of the contact post 5, and the auxiliary liquid passage groove 5b is provided to face the liquid passage small hole 4a. It has been.

図1に示されるように、ケーシング2とケース1の間にはスペーサ12が設けられ、スペーサ12とケース1は溶接して固接される。スペーサ12はケーシング2に固接され、スペーサ12にはケーシング2の内壁に当接する第3リングシール13が設けられている、第3リングシール13は、スペーサ12とケーシング2の内壁の間から媒体が漏れて、流量の制御精度に影響するのを防止する。ケース1と方向誘導弁座6には液体通過口1aが設けられており、図1に示されるように、ケーシング2の下端の圧力は上端の圧力より大きい時、媒体の圧力作用によって、弁芯I3を運動させるため、密閉円錐面3aが、液体通過小孔4aと液体通過大孔4bの間の角張りから離れており、これにより、媒体が液体通過小孔4a、液体通過大孔4b、液体通過口1a、ケーシング2とケース1との間の通路を流されることができる。 As shown in FIG. 1, a spacer 12 is provided between the casing 2 and the case 1, and the spacer 12 and the case 1 are welded to each other. The spacer 12 is fixed to the casing 2, and the spacer 12 is provided with a third ring seal 13 that contacts the inner wall of the casing 2. The third ring seal 13 is a medium between the spacer 12 and the inner wall of the casing 2. Is prevented from leaking and affecting the flow control accuracy. The case 1 and the direction guide valve seat 6 are provided with a liquid passage port 1a. As shown in FIG. 1, when the pressure at the lower end of the casing 2 is larger than the pressure at the upper end, the valve core is caused by the pressure action of the medium. In order to move I3, the conical conical surface 3a is separated from the angularity between the liquid passage small hole 4a and the liquid passage large hole 4b, so that the medium passes through the liquid passage small hole 4a, the liquid passage large hole 4b, The passage between the liquid passage port 1a and the casing 2 and the case 1 can be flowed.

ケーシング2の下端の圧力が上端の圧力より小さい時、媒体の圧力作用によって、弁芯II4を運動させるため、密閉円錐面3aが、液体通過小孔4aと液体通過大孔4bの間の角張りから離れており、これにより、媒体がケーシング2とケース1との間の通路、液体通過口1a、液体通過大孔4bと液体通過小孔4aを流されることができる。 When the pressure at the lower end of the casing 2 is smaller than the pressure at the upper end, the sealed conical surface 3a moves between the liquid passage small hole 4a and the liquid passage large hole 4b to move the valve core II4 by the pressure action of the medium. Thus, the medium can flow through the passage between the casing 2 and the case 1, the liquid passage port 1a, the liquid passage large hole 4b, and the liquid passage small hole 4a.

<実施例2>
本実施例は実施例1の構造と原理とほぼ同じであり、異なる箇所は、図5に示されるように、弁芯I3の端部において、密閉円錐面3aから前記端部までの端面の間は大円柱部3c、流量緩慢変化部3eと小円柱部3dである。
<Example 2>
The present embodiment is almost the same as the structure and principle of the first embodiment, and the different points are as shown in FIG. 5, in the end portion of the valve core I3 between the end surface from the sealing conical surface 3a to the end portion. Is a large cylindrical part 3c, a flow rate slow change part 3e and a small cylindrical part 3d.

弁芯I3の他の端面には第1液体通過孔3fが設けられ、弁芯I3の側壁には第1液体通過孔3fに連通する第2液体通過孔3gが設けられている。
ケーシング2の下端の圧力が上端の圧力より大きい時、媒体の圧力作用によって、弁芯I3を運動させるため、密閉円錐面3aが、液体通過小孔4aと液体通過大孔4bの間の角張りから離れており、これにより、媒体が液体通過小孔4a、液体通過大孔4b、第2液体通過孔3g、第1液体通過孔3fを流れることができる。
The other end face of the valve core I3 is provided with a first liquid passage hole 3f, and the side wall of the valve core I3 is provided with a second liquid passage hole 3g communicating with the first liquid passage hole 3f.
When the pressure at the lower end of the casing 2 is larger than the pressure at the upper end, the sealed conical surface 3a is moved between the liquid passage small hole 4a and the liquid passage large hole 4b to move the valve core I3 by the pressure action of the medium. Thus, the medium can flow through the small liquid passage hole 4a, the large liquid passage hole 4b, the second liquid passage hole 3g, and the first liquid passage hole 3f.

ケーシング2の下端の圧力が上端の圧力より小さい時、媒体の圧力作用によって、弁芯II4を運動させるため、密閉円錐面3aが、液体通過小孔4aと液体通過大孔4bの間の角張りから離れており、これにより、媒体が第1液体通過孔3f、第2液体通過孔3g、液体通過大孔4b、液体通過小孔4aを流れることができる。 When the pressure at the lower end of the casing 2 is smaller than the pressure at the upper end, the sealed conical surface 3a moves between the liquid passage small hole 4a and the liquid passage large hole 4b to move the valve core II4 by the pressure action of the medium. Thus, the medium can flow through the first liquid passage hole 3f, the second liquid passage hole 3g, the liquid passage large hole 4b, and the liquid passage small hole 4a.

<実施例3>
本実施例は実施例2の構造と原理とほぼ同じであり、異なる箇所は、図6に示されるように、ケース1の外部はケーシング2とスペーサ12を有せず、ケーシング2の両端は接続管部として延伸されている。
<Example 3>
The present embodiment is almost the same as the structure and principle of the second embodiment. The difference is that, as shown in FIG. 6, the outside of the case 1 does not have the casing 2 and the spacer 12, and both ends of the casing 2 are connected. It is extended as a pipe part.

<実施例4>
本実施例は実施例3の構造と原理とほぼ同じであり、異なる箇所は、図9に示されるように、ケース1には保護カバー14が套設され、接続管部は保護カバー14の外部に位置し、保護カバー14の両端はケース1に固接されている。
当て柱5の中心には、貫通する第3液体通過孔が設けられているため、媒体が第3液体通過孔から通過する。
<Example 4>
The present embodiment is almost the same as the structure and principle of the third embodiment. The difference is that the case 1 is provided with a protective cover 14 as shown in FIG. The both ends of the protective cover 14 are fixed to the case 1.
Since the third liquid passage hole that penetrates is provided at the center of the contact pillar 5, the medium passes through the third liquid passage hole.

1 ケース
1a 液体通過口
2 ケーシング
3 弁芯I
3a 密閉円錐面
3b 密閉当接面
3c 大円柱部
3d 小円柱部
3e 流量緩慢変化部
3f 第1液体通過孔
3g 第2液体通過孔
4 弁芯II
4a 液体通過小孔
4b 液体通過大孔
4c 円弧の面取り
5 当て柱
5a 液体通過溝
5b 補助の液体通過溝
5c 第3液体通過孔
6 方向誘導弁座
7 第2リングシール
8 第1バネ
9 第2バネ
10 第1密閉ワッシャ
11 第2密閉ワッシャ
12 スペーサ
13 第3リングシール
14 保護カバー
15 第1リングシール
1 case
1a Liquid passage port
2 Casing
3 Valve core I
3a Sealed conical surface
3b Sealing contact surface
3c Large cylindrical part
3d small cylinder
3e Flow rate slow change part
3f 1st liquid passage hole
3g 2nd liquid passage hole
4 Valve core II
4a Small hole for liquid passage
4b Large hole for liquid passage
4c Arc chamfer
5 Hit post
5a Liquid passage groove
5b Auxiliary liquid passage groove
5c 3rd liquid passage hole
6-way induction valve seat
7 Second ring seal
8 First spring
9 Second spring
10 First sealed washer
11 Second sealed washer
12 Spacer
13 Third ring seal
14 Protective cover
15 1st ring seal

Claims (10)

ケース(1)と、ケース(1)内に位置する弁芯I(3)と弁芯II(4)とを含む自動双方向膨張弁において、
前記弁芯II(4)内は直列する液体通過小孔(4a)と液体通過大孔(4b)を有し、
前記弁芯I(3)の一端は、液体通過大孔(4b)を貫通して、液体通過小孔(4a)内に挿し込まれており、
前記弁芯I(3)の一端と液体通過小孔(4a)の側面の間は、液体通過間隙を有しており、
前記弁芯I(3)の一端は、液体通過小孔(4a)と液体通過大孔(4b)の間の角張りに当接する密閉円錐面(3a)を有し、
液体通過小孔(4a)と液体通過大孔(4b)はそれぞれ弁芯II(4)の軸線に沿って設けられ、液体通過小孔(4a)は軸方向で貫通する
ことを特徴とする自動双方向膨張弁。
In an automatic bidirectional expansion valve including a case (1) and a valve core I (3) and a valve core II (4) located in the case (1)
The valve core II (4) has a liquid passage small hole (4a) and a liquid passage large hole (4b) in series,
One end of the valve core I (3) passes through the large liquid passage hole (4b) and is inserted into the small liquid passage hole (4a),
Between one end of the valve core I (3) and the side surface of the liquid passage small hole (4a), there is a liquid passage gap,
One end of the valve core I (3) has a sealed conical surface (3a) that abuts against the angularity between the liquid passage small hole (4a) and the liquid passage large hole (4b) ,
The liquid passage small hole (4a) and the liquid passage large hole (4b) are respectively provided along the axis of the valve core II (4), and the liquid passage small hole (4a) penetrates in the axial direction. Features an automatic bidirectional expansion valve.
ケース(1)と、ケース(1)内に位置する弁芯I(3)と弁芯II(4)とを含む自動双方向膨張弁において、
前記弁芯II(4)内は直列する液体通過小孔(4a)と液体通過大孔(4b)を有し、
前記弁芯I(3)の一端は、液体通過大孔(4b)を貫通して、液体通過小孔(4a)内に挿し込まれており、
前記弁芯I(3)の一端と液体通過小孔(4a)の側面の間は、液体通過間隙を有しており、
前記弁芯I(3)の一端は、液体通過小孔(4a)と液体通過大孔(4b)の間の角張りに当接する密閉円錐面(3a)を有し
前記ケース(1)の両端には当て柱(5)がそれぞれ固定され、当て柱(5)の側壁には液体通過溝(5a)が設けられており、前記当て柱(5)の内端面には、径方向に貫通する補助液体通過溝(5b)が設けられている、
ことを特徴とする自動双方向膨張弁。
In an automatic bidirectional expansion valve including a case (1) and a valve core I (3) and a valve core II (4) located in the case (1)
The valve core II (4) has a liquid passage small hole (4a) and a liquid passage large hole (4b) in series,
One end of the valve core I (3) passes through the large liquid passage hole (4b) and is inserted into the small liquid passage hole (4a),
Between one end of the valve core I (3) and the side surface of the liquid passage small hole (4a), there is a liquid passage gap,
One end of the valve core I (3) has a sealed conical surface (3a) that abuts against the angularity between the liquid passage small hole (4a) and the liquid passage large hole (4b),
At both ends of the case (1), the contact pillars (5) are respectively fixed, and the side walls of the contact pillar (5) are provided with liquid passage grooves (5a), which are formed on the inner end surface of the contact pillar (5). Is provided with an auxiliary liquid passage groove (5b) penetrating in the radial direction,
An automatic bidirectional expansion valve characterized by that.
前記液体通過小孔(4a)と液体通過大孔(4b)の間の角張りが円弧面取り(4c)である、ことを特徴とする請求項1または2に記載の自動双方向膨張弁。 The automatic bidirectional expansion valve according to claim 1 or 2 , characterized in that the angular tension between the liquid passage small hole (4a) and the liquid passage large hole (4b) is an arc chamfer (4c). 前記弁芯I(3)の端部において、密閉円錐面(3a)から前記端部までの端面の間は、大円柱部(3c)と小円柱部(3d)である、ことを特徴とする請求項1〜3のいずれかに記載の自動双方向膨張弁。 The end portion of the valve core I (3) has a large cylindrical portion (3c) and a small cylindrical portion (3d) between the end faces from the sealed conical surface (3a) to the end portion. The automatic bidirectional expansion valve according to any one of claims 1 to 3 . 前記弁芯I(3)の端部において、密閉円錐面(3a)から前記端部までの端面の間は、大円柱部(3c)、流量緩慢変化部(3e)と小円柱部(3d)である、ことを特徴とする請求項4に記載の自動双方向膨張弁。 At the end of the valve core I (3), there are a large cylindrical part (3c), a slow flow rate changing part (3e) and a small cylindrical part (3d) between the end face from the sealed conical surface (3a) to the end. 5. The automatic bidirectional expansion valve according to claim 4 , wherein 前記弁芯I(3)の外部には方向誘導弁座(6)が套設され、方向誘導弁座(6)はケース(1)に固接されており、
弁芯I(3)の他の端面には第1液体通過孔(3f)が設けられ、弁芯I(3)の側壁には、第1液体通過孔(3f)に連通する複数の第2液体通過孔(3g)が設けられており、
前記液体通過小孔(4a)は弁芯II(4)を貫通する、ことを特徴とする請求項1から請求項5にいずれか1項に記載の自動双方向膨張弁。
A direction induction valve seat (6) is provided outside the valve core I (3), and the direction induction valve seat (6) is fixedly connected to the case (1).
The other end face of the valve core I (3) is provided with a first liquid passage hole (3f), and the side wall of the valve core I (3) has a plurality of second fluids communicating with the first liquid passage hole (3f). Liquid passage hole (3g) is provided,
The automatic bidirectional expansion valve according to any one of claims 1 to 5 , wherein the liquid passage small hole (4a) passes through the valve core II (4).
前記方向誘導弁座(6)の端面と弁芯II(4)の端面との間には、第1密閉ワッシャ(10)が設けられている、ことを特徴とする請求項6に記載の自動双方向膨張弁。 The automatic sealing device according to claim 6 , wherein a first sealing washer (10) is provided between an end surface of the direction guide valve seat (6) and an end surface of the valve core II (4). Bidirectional expansion valve. 前記弁芯I(3)は密閉当接面(3b)を有し、方向誘導弁座(6)の他の端面と弁芯I(3)の密閉当接面(3b)との間には、第2密閉ワッシャ(11)が設けられている、ことを特徴とする請求項7に記載の自動双方向膨張弁。 The valve core I (3) has a sealing contact surface (3b) between the other end surface of the direction guide valve seat (6) and the sealing contact surface (3b) of the valve core I (3). 8. The automatic bidirectional expansion valve according to claim 7 , wherein a second hermetic washer (11) is provided. 前記ケース(1)の外部には保護カバー(14)が套設され、ケースの両端はそれぞれ接続管部であり、接続管部は保護カバー(14)の外部に位置し、保護カバー(14)の両端とケース(1)との間は溶接によって固接される、ことを特徴とする請求項1から請求項8のいずれか1項に記載の自動双方向膨張弁。 A protective cover (14) is provided on the outside of the case (1), and both ends of the case are connection pipe parts, and the connection pipe parts are located outside the protective cover (14). 9. The automatic bidirectional expansion valve according to any one of claims 1 to 8, wherein both ends of the valve and the case (1) are fixed to each other by welding. 前記弁芯I(3)と弁芯II(4)の外側面それぞれには、少なくとも2つの密封溝が設けられ、各密封溝内には、ケース(1)の内壁に当接する第2リングシール(7)が嵌め込まれている、ことを特徴とする請求項1から請求項9のいずれか1項に記載の自動双方向膨張弁。 Each of the outer surfaces of the valve core I (3) and the valve core II (4) is provided with at least two sealing grooves, and a second ring seal that contacts the inner wall of the case (1) is provided in each sealing groove. The automatic bidirectional expansion valve according to any one of claims 1 to 9, wherein (7) is fitted.
JP2015078943A 2014-06-10 2015-04-08 Automatic bidirectional expansion valve Expired - Fee Related JP6014709B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420306097.4 2014-06-10
CN201420306097.4U CN203881014U (en) 2014-06-10 2014-06-10 Automatic two-way expansion valve

Publications (2)

Publication Number Publication Date
JP2015232389A JP2015232389A (en) 2015-12-24
JP6014709B2 true JP6014709B2 (en) 2016-10-25

Family

ID=51681503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078943A Expired - Fee Related JP6014709B2 (en) 2014-06-10 2015-04-08 Automatic bidirectional expansion valve

Country Status (3)

Country Link
US (1) US20150354876A1 (en)
JP (1) JP6014709B2 (en)
CN (1) CN203881014U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107906804A (en) * 2017-12-18 2018-04-13 温岭市恒发空调部件有限公司 A kind of expansion valve
US10330362B1 (en) * 2017-12-20 2019-06-25 Rheem Manufacturing Company Compressor protection against liquid slug
CN109539642A (en) * 2019-01-18 2019-03-29 奥克斯空调股份有限公司 A kind of adaptive throttling device and air conditioner
CN111692782A (en) * 2019-03-15 2020-09-22 浙江盾安禾田金属有限公司 Two-way throttle valve
CN114151578A (en) * 2020-09-07 2022-03-08 盾安环境技术有限公司 Flow valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517924B2 (en) * 2005-04-04 2010-08-04 Smc株式会社 Vacuum pressure control valve
CN102011887B (en) * 2010-12-10 2012-06-13 上海鸿润科技有限公司 Valve and valve core subassembly thereof
CN102878734B (en) * 2012-10-26 2014-10-15 温岭市恒发空调部件有限公司 Expansion valve

Also Published As

Publication number Publication date
JP2015232389A (en) 2015-12-24
US20150354876A1 (en) 2015-12-10
CN203881014U (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP6014709B2 (en) Automatic bidirectional expansion valve
US10941878B2 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
CN204553850U (en) The valve cage of a kind of fluid valve and a kind of mangetic core assembly for control valve
RU2016116661A (en) EXPENDITURE REGULATOR ENSURING IMPROVED SEALING BY USING DIFFERENTIAL THERMAL EXPANSION
JPWO2007046379A1 (en) Cage valve
US10273921B2 (en) High pressure pump
CN104088904A (en) Inner restrictor hydrostatic cylindrical guide rail
US10584759B2 (en) Bellows accumulator, in particular pulsation damper
US9366342B2 (en) Poppet valve with linear area gain
EP3260745A1 (en) Flow control valve
CN105074311A (en) Fluid-throttling member
JPWO2015177880A1 (en) Pressure shock absorber
CN207278898U (en) Throttling stop valve and there is its air-conditioning system
JPWO2014080663A1 (en) Check valve
CN107636406A (en) Throttling arrangement and freeze cycle
CN207214537U (en) A kind of expansion valve
US11125342B2 (en) Spool valve
CN104344014A (en) Four-way valve and air-conditioner
JP2018048719A (en) Shock absorber
JP6138271B2 (en) Expansion valve and refrigeration cycle apparatus equipped with the same
CN103791663A (en) Thermal expansion valve with unidirectional control function
CN109804210A (en) Throttling set and refrigerating circulation system
CN109695721A (en) Throttling stop valve and air-conditioning system with it
JP2018025364A (en) Expansion valve
JP6917026B2 (en) Servo valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees