JP6011626B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP6011626B2
JP6011626B2 JP2014532741A JP2014532741A JP6011626B2 JP 6011626 B2 JP6011626 B2 JP 6011626B2 JP 2014532741 A JP2014532741 A JP 2014532741A JP 2014532741 A JP2014532741 A JP 2014532741A JP 6011626 B2 JP6011626 B2 JP 6011626B2
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor substrate
collector electrode
transparent resin
resin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014532741A
Other languages
Japanese (ja)
Other versions
JPWO2014034006A1 (en
Inventor
敦文 井上
敦文 井上
時岡 秀忠
秀忠 時岡
努 松浦
努 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2014034006A1 publication Critical patent/JPWO2014034006A1/en
Application granted granted Critical
Publication of JP6011626B2 publication Critical patent/JP6011626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

本発明は太陽電池素子および太陽電池モジュールに関する。 The present invention relates to a solar cell element and a solar cell module.

結晶系シリコンなどの半導体基板の表面に金属ペーストを印刷して細線状の集電極が形成された太陽電池素子がよく知られている。例えば、特許文献1には集電極の抵抗を低減するために、金属ペーストの印刷を複数回繰り返して厚い集電極を形成する方法が示されている。   A solar cell element is well known in which a thin paste electrode is formed by printing a metal paste on the surface of a semiconductor substrate such as crystalline silicon. For example, Patent Document 1 discloses a method of forming a thick collector electrode by repeating printing of a metal paste a plurality of times in order to reduce the resistance of the collector electrode.

また、太陽電池モジュールとして、ガラス板と裏面封止材との間に太陽電池素子が透明な封止樹脂で封止された構造がよく知られている。典型的な封止方法は、ガラス板と裏面封止材である封止シートとの間に、相互に導線で電気接続した複数の太陽電池素子を挟み、ガラス板、封止シート間の隙間を加熱溶融したEVA(エチレン酢酸ビニル共重合樹脂)等の封止樹脂で埋める方法である。封止処理時の太陽電池素子の損傷を避けるために、たとえば特許文献2には太陽電池素子間の隙間に厚い封止樹脂シート片を配置して封止する方法が示されている。封止処理時の圧力が厚い封止樹脂シート片にかかり、直接太陽電池素子にかからないため、太陽電池素子の損傷が防止される。   As a solar cell module, a structure in which a solar cell element is sealed with a transparent sealing resin between a glass plate and a back surface sealing material is well known. A typical sealing method is to sandwich a plurality of solar cell elements that are electrically connected to each other with a conductive wire between a glass plate and a sealing sheet that is a back surface sealing material, and provide a gap between the glass plate and the sealing sheet. This is a method of filling with a sealing resin such as EVA (ethylene vinyl acetate copolymer resin) that is heated and melted. In order to avoid damage to the solar cell element during the sealing process, for example, Patent Document 2 discloses a method of sealing by placing a thick sealing resin sheet piece in the gap between the solar cell elements. Since the pressure at the time of the sealing process is applied to the thick sealing resin sheet piece and is not directly applied to the solar cell element, damage to the solar cell element is prevented.

特開2007−243230号公報JP 2007-243230 A 国際公開第2004/038811号International Publication No. 2004/038811

特許文献1のように集電極を厚く形成すると、半導体基板の表面から電極が突出するため集電極が何かの物体に衝突して破損する問題がある。また、衝突した際に集電極を介して半導体基板に局所的な力が加わって半導体基板がクラックを生じたり割れたりする問題があった。また、太陽電池モジュールの封止処理時においても、太陽電池素子の表面が硬いガラス板に接触し、電極が損傷したり、半導体基板にクラックが発生したりする問題があった。このような問題は特許文献2のような構成でも防ぐことが難しい。   When the collector electrode is formed thick as in Patent Document 1, the electrode protrudes from the surface of the semiconductor substrate, which causes a problem that the collector electrode collides with an object and is damaged. In addition, when a collision occurs, a local force is applied to the semiconductor substrate via the collector electrode, causing a problem that the semiconductor substrate is cracked or broken. Further, even during the sealing process of the solar cell module, there is a problem that the surface of the solar cell element is in contact with a hard glass plate, the electrode is damaged, and the semiconductor substrate is cracked. Such a problem is difficult to prevent even with the configuration of Patent Document 2.

そこで、本発明は集電極の破損を防ぐことができ、半導体基板にクラックが発生しにくい太陽電池素子および太陽電池モジュールを実現することを目的とする。   In view of the above, an object of the present invention is to realize a solar cell element and a solar cell module that can prevent the collector electrode from being damaged and are unlikely to crack in the semiconductor substrate.

本発明の太陽電池モジュールは、光起電力を有する接合部を備えた半導体基板と、半導体基板の第1面に形成され、互いに平行に一定間隔で並んだ複数の集電極と、半導体基板の第1面の裏面となる第2面に形成された裏面電極と、それぞれの集電極に対向する位置に集電極を覆う凹部が形成され、凹部内に集電極と接続されて導通する第1導電部材を有し、集電極および第1面を覆うように配置され、かつ半導体基板の端部からはみ出した位置に第1接続領域を備えた透明樹脂板と、裏面電極に対向する位置に裏面電極を覆う凹部が形成され、凹部内に裏面電極と接続されて導通する第2導電部材を有し、裏面電極および第2面を覆うように配置され、かつ半導体基板の端部からはみ出した位置に第2接続領域を備えた裏面樹脂板と、を有する太陽電池素子を直列に接続して配列させた太陽電池モジュールであって、隣接する太陽電池素子の第1接続領域と第2接続領域とを重ねて配置して導電性の接続部を介し接続され、隣接する太陽電池素子間で一方の太陽電池素子の集電極と他方の太陽電池素子の裏面電極とが電気的に接続されていることを特徴とする。 The solar cell module of the present invention includes a semiconductor substrate having a photovoltaic joint , a plurality of collector electrodes formed on the first surface of the semiconductor substrate and arranged in parallel with each other at a constant interval, and a first semiconductor substrate. A back electrode formed on the second surface, which is the back surface of one surface, and a concave portion that covers the collector electrode at a position facing each collector electrode, and is connected to the collector electrode in the recess and is electrically connected A transparent resin plate having a first connection region at a position protruding from the end of the semiconductor substrate, and a back electrode at a position facing the back electrode. A concave portion is formed, and a second conductive member that is connected to and conductively connected to the back electrode is formed in the concave portion. The second conductive member is disposed so as to cover the back electrode and the second surface, and is located at a position protruding from the end of the semiconductor substrate. A back surface resin plate having two connection areas; Solar cell modules in which solar cell elements connected in series are arranged in series, and the first connection region and the second connection region of adjacent solar cell elements are overlapped and connected via a conductive connection part The collector electrode of one solar cell element and the back electrode of the other solar cell element are electrically connected between adjacent solar cell elements.

本発明の太陽電池モジュールに係わる太陽電池素子は、表面に集電極が形成された半導体基板と、透明な接着剤により前記集電極と前記半導体基板の表面とを覆うように接着された透明樹脂板とを有し、該透明樹脂板は前記集電極に対向する位置に凹部が形成されているので、集電極の破損を防ぐことができる。また、接着された透明樹脂板が半導体基板を機械的に補強するので半導体基板にクラックが発生しにくい。 The solar cell element according to the solar cell module of the present invention includes a semiconductor substrate having a collector electrode formed on the surface thereof, and a transparent resin plate bonded with a transparent adhesive so as to cover the collector electrode and the surface of the semiconductor substrate. Since the concave portion is formed in the transparent resin plate at a position facing the collector electrode, the collector electrode can be prevented from being damaged. Moreover, since the bonded transparent resin plate mechanically reinforces the semiconductor substrate, cracks are unlikely to occur in the semiconductor substrate.

本発明の太陽電池モジュールによれば、上記の太陽電池素子がガラス板と封止材との間で透明な封止樹脂により固定された太陽電池モジュールであって、前記透明樹脂板は前記半導体基板よりも前記ガラス板側に配置されているので、封止時に流動性が高い封止樹脂を用いても集電極が直接ガラス板に接することがなく、集電極の破損を防ぐことができ、半導体基板にクラックが発生しにくい。   According to the solar cell module of the present invention, the solar cell element is a solar cell module fixed with a transparent sealing resin between a glass plate and a sealing material, and the transparent resin plate is the semiconductor substrate. Since it is arranged closer to the glass plate than the collector electrode, the collector electrode is not in direct contact with the glass plate even when a sealing resin having high fluidity is used for sealing, and the collector electrode can be prevented from being damaged. Cracks are unlikely to occur on the substrate.

実施の形態1の太陽電池モジュールの構造を示す上面図である。4 is a top view showing the structure of the solar cell module according to Embodiment 1. FIG. 実施の形態1の太陽電池モジュールの構造を示す断面図である。2 is a cross-sectional view showing the structure of the solar cell module according to Embodiment 1. FIG. 実施の形態1の太陽電池素子を表側から見た斜視図である。It is the perspective view which looked at the solar cell element of Embodiment 1 from the front side. 実施の形態1の太陽電池モジュールの部分断面図である。3 is a partial cross-sectional view of the solar cell module according to Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分側面図である。It is a partial side view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分側面図である。It is a partial side view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 本実施の形態1の太陽電池モジュールの製造方法を説明する部分側面図である。It is a partial side view explaining the manufacturing method of the solar cell module of this Embodiment 1. FIG. 実施の形態2の太陽電池モジュールの部分断面図である。6 is a partial cross-sectional view of the solar cell module according to Embodiment 2. FIG. 実施の形態3の太陽電池モジュールの部分断面図である。6 is a partial cross-sectional view of the solar cell module according to Embodiment 3. FIG. 実施の形態4の太陽電池モジュールの部分断面図である。6 is a partial cross-sectional view of a solar cell module according to Embodiment 4. FIG. 実施の形態5の太陽電池モジュールの部分断面図である。6 is a partial cross-sectional view of a solar cell module according to Embodiment 5. FIG. 実施の形態5の太陽電池モジュールの光の入射経路の例を説明する断面図である。6 is a cross-sectional view illustrating an example of a light incident path of the solar cell module according to Embodiment 5. FIG. 実施の形態5の太陽電池モジュールの光の入射経路の他の例を説明する断面図である。FIG. 10 is a cross-sectional view illustrating another example of the light incident path of the solar cell module according to the fifth embodiment. 実施の形態6の太陽電池モジュールの部分断面図である。FIG. 10 is a partial cross-sectional view of a solar cell module according to a sixth embodiment. 実施の形態6の太陽電池素子の半導体基板とその上の表側集電極を示した上面図である。It is the top view which showed the semiconductor substrate of the solar cell element of Embodiment 6, and the front side collector electrode on it. 実施の形態6の太陽電池素子の透明樹脂板を示した上面図である。FIG. 10 is a top view showing a transparent resin plate of a solar cell element in a sixth embodiment. 実施の形態6の太陽電池素子の例を示した斜視図である。FIG. 10 is a perspective view showing an example of a solar cell element in a sixth embodiment. 実施の形態6の太陽電池モジュールの太陽電池素子の接続構造の例を示した部分断面図である。10 is a partial cross-sectional view showing an example of a connection structure of solar cell elements of a solar cell module according to Embodiment 6. FIG. 実施の形態7の太陽電池モジュールの部分断面図である。FIG. 10 is a partial cross-sectional view of a solar cell module according to a seventh embodiment.

以下に、本発明の太陽電池素子および太陽電池モジュールの実施の形態について図面を参照して説明する。なお、図において構成要素に符号を付し、同じ符号を付した構成要素に関して説明は省略するものとする。   Embodiments of a solar cell element and a solar cell module of the present invention will be described below with reference to the drawings. In the figure, components are denoted by reference numerals, and description of the components denoted by the same reference numerals is omitted.

実施の形態1.
図1は本実施の形態1の太陽電池モジュールの構造の例を示す上面図である。図1は太陽光の受光面側である表(おもて)側から見た図である。図2は本実施の形態1の太陽電池モジュールの構造を示す断面図であり、図1の点線A−B間の断面である。この太陽電池モジュールはガラス板11と封止材12との間に太陽電池素子30が封止樹脂16により封止された太陽電池モジュール100である。太陽電池素子30は表側の表面と裏側の表面とに集電極を備え、配列されて隣り合う太陽電池素子30の電極間はインターコネクタ21で直列接続されている。なお、図1は12個の太陽電池素子30を直列接続した図であるが、個数および配置は任意に変更可能であり、並列接続を組み合わせてもよい。また、図には示さないが、太陽電池モジュール100の裏面側に電力を取り出すためのリード線が直列接続した両端に接続される。
Embodiment 1 FIG.
FIG. 1 is a top view showing an example of the structure of the solar cell module according to the first embodiment. FIG. 1 is a view seen from the front (front) side which is the light receiving surface side of sunlight. FIG. 2 is a cross-sectional view showing the structure of the solar cell module according to Embodiment 1, and is a cross section taken along the dotted line AB in FIG. This solar cell module is a solar cell module 100 in which a solar cell element 30 is sealed with a sealing resin 16 between a glass plate 11 and a sealing material 12. The solar cell elements 30 are provided with collector electrodes on the front surface and the back surface, and the electrodes of the adjacent solar cell elements 30 arranged in series are interconnected by an interconnector 21. Although FIG. 1 is a diagram in which twelve solar cell elements 30 are connected in series, the number and arrangement can be arbitrarily changed, and parallel connection may be combined. Although not shown in the drawing, lead wires for taking out electric power are connected to both ends of the solar cell module 100 connected in series.

ガラス板11は例えば、ソーダ石灰ガラスなどの材料を用いることができる。屋外で使用する太陽電池モジュールでは、ガラス板11として熱強化または化学強化したものを用いるとよい。ガラス板11のサイズは太陽電池素子30の数により種々に変更可能であるが、典型的な厚みは0.5〜3mmなどである。封止材12は水分の侵入などにより太陽電池素子が劣化しないように透湿性の低いフィルム、または表側と同様なガラス板を用いる。太陽電池素子30およびそれらの隙間を通過した光を太陽電池素子30側に反射させるために、封止材12として白色や金属色の光反射性の材料を用いてもよい。封止樹脂16は透明なEVA、またはシリコーン樹脂などを用いることができる。インターコネクタ21は、たとえば、はんだで被覆した銅線などを用いることができる。   The glass plate 11 can use materials, such as soda-lime glass, for example. In the solar cell module used outdoors, the glass plate 11 may be heat strengthened or chemically strengthened. Although the size of the glass plate 11 can be variously changed according to the number of the solar cell elements 30, a typical thickness is 0.5 to 3 mm or the like. As the sealing material 12, a film having low moisture permeability or a glass plate similar to the front side is used so that the solar cell element is not deteriorated due to intrusion of moisture or the like. In order to reflect the solar cell element 30 and the light that has passed through the gap between the solar cell element 30 and the solar cell element 30, a white or metallic light reflective material may be used as the sealing material 12. As the sealing resin 16, transparent EVA, silicone resin, or the like can be used. For the interconnector 21, for example, a copper wire coated with solder can be used.

図3は本実施の形態1の太陽電池素子30を表側から見た斜視図である。この図は、太陽電池素子30にインターコネクタ21を接続した図を示している。太陽電池素子30は表側集電極2が形成された半導体基板1と、表側集電極2および表側集電極2が形成されていない半導体基板1の表面を覆うように接着された透明樹脂板5とを有している。透明樹脂板5は透明な接着剤によって半導体基板1上に接着される。表側集電極2は連続した細線状であるが、図では表側集電極2は透明樹脂板5で覆われているため、点線で示している。太陽電池モジュールにおいて透明樹脂板5は半導体基板よりも前記ガラス板側に配置される。   FIG. 3 is a perspective view of the solar cell element 30 of the first embodiment viewed from the front side. This figure shows a diagram in which the interconnector 21 is connected to the solar cell element 30. The solar cell element 30 includes a semiconductor substrate 1 on which the front side collector electrode 2 is formed, and a transparent resin plate 5 bonded so as to cover the surface of the semiconductor substrate 1 on which the front side collector electrode 2 and the front side collector electrode 2 are not formed. Have. The transparent resin plate 5 is bonded onto the semiconductor substrate 1 with a transparent adhesive. Although the front side collector electrode 2 has a continuous thin line shape, in the figure, the front side collector electrode 2 is covered with the transparent resin plate 5 and is therefore indicated by a dotted line. In the solar cell module, the transparent resin plate 5 is disposed closer to the glass plate than the semiconductor substrate.

透明樹脂板5は半導体基板1と同程度の面積を有して半導体基板1の概ね全面を覆う。
透明樹脂板5の外形状は概ね半導体基板1に沿う形状とされることが望ましい。透明樹脂板5は半導体基板1からはみ出してもよいが、太陽電池モジュール100に用いたときに太陽電池素子30の透明樹脂板5が隣接する太陽電池素子30の半導体基板1に重ならないように、はみ出し量は小さな値とすることがのぞましい。また、図のように、インターコネクタ21が接続される領域は透明樹脂板5が形成されないようにしてもよい。インターコネクタ21が半導体基板1の表面を分断するように接続する場合には、透明樹脂板5を複数に分割してもよい。
The transparent resin plate 5 has the same area as the semiconductor substrate 1 and covers almost the entire surface of the semiconductor substrate 1.
It is desirable that the outer shape of the transparent resin plate 5 be a shape substantially along the semiconductor substrate 1. The transparent resin plate 5 may protrude from the semiconductor substrate 1, but when used in the solar cell module 100, the transparent resin plate 5 of the solar cell element 30 does not overlap the semiconductor substrate 1 of the adjacent solar cell element 30. It is recommended that the amount of protrusion be small. Further, as shown in the figure, the transparent resin plate 5 may not be formed in a region to which the interconnector 21 is connected. When the interconnector 21 is connected so as to divide the surface of the semiconductor substrate 1, the transparent resin plate 5 may be divided into a plurality of parts.

透明樹脂板5には表側集電極2に対向する位置に凹部5hが形成されている。表側集電極2は受光面側である表面に形成されるため、半導体基板1に入射する光をできるだけ遮らないように細線のパターンに形成される。表側集電極2は金属ペーストのスクリーン印刷などで形成されて、半導体基板1の表面から突出する。凹部5hはその突出した表側集電極2を覆うような形状に形成される。つまり、透明樹脂板5には半導体基板1の表面に面する側に表側集電極2とほぼ同じ形状の溝が形成されて、表側集電極2が凹部5h内に位置するように互いに組み合わされる関係にある。この透明樹脂板5の厚みはインターコネクタ21よりも薄くてもよいが、同等以上とするとよい。また、透明樹脂板5の厚みを半導体基板1よりも厚くしてもよい。   A concave portion 5 h is formed in the transparent resin plate 5 at a position facing the front-side collector electrode 2. Since the front-side collector electrode 2 is formed on the surface on the light-receiving surface side, it is formed in a fine line pattern so as not to block light incident on the semiconductor substrate 1 as much as possible. The front-side collector electrode 2 is formed by screen printing of a metal paste or the like and protrudes from the surface of the semiconductor substrate 1. The recess 5 h is formed in a shape that covers the protruding front collector electrode 2. That is, the transparent resin plate 5 is formed with a groove having substantially the same shape as the front collector 2 on the side facing the surface of the semiconductor substrate 1 and is combined with each other so that the front collector 2 is located in the recess 5h. It is in. The thickness of the transparent resin plate 5 may be smaller than that of the interconnector 21, but is preferably equal to or greater. Further, the transparent resin plate 5 may be thicker than the semiconductor substrate 1.

半導体基板1は、単結晶シリコン、多結晶シリコンなどの結晶シリコン、化合物半導体等からなる薄い半導体基板である。結晶シリコンの場合、典型的な基板サイズは10〜15cm角の略正方形、厚みは0.1〜0.3mmなどである。   The semiconductor substrate 1 is a thin semiconductor substrate made of crystalline silicon such as single crystal silicon or polycrystalline silicon, a compound semiconductor, or the like. In the case of crystalline silicon, the typical substrate size is approximately 10 to 15 cm square, and the thickness is 0.1 to 0.3 mm.

図4は本実施の形態1の太陽電池素子30がガラス板11と裏面側を封止材12との間に挟まれた太陽電池モジュール100の部分断面図であり、表側集電極2を横切る断面を示している。太陽電池素子30は表側をガラス板11、裏側を封止材12により挟まれて、透明な封止樹脂16a、16bで覆われて固定されている。なお、封止樹脂16aと封止樹脂16bとは封止樹脂16(図2参照)の表側部分と裏側部分である。   FIG. 4 is a partial cross-sectional view of the solar cell module 100 in which the solar cell element 30 of the first embodiment is sandwiched between the glass plate 11 and the sealing material 12 on the back surface side, and a cross section that crosses the front-side collector electrode 2. Is shown. The solar cell element 30 is sandwiched between the glass plate 11 on the front side and the sealing material 12 on the back side, and is covered and fixed with transparent sealing resins 16a and 16b. The sealing resin 16a and the sealing resin 16b are a front side portion and a back side portion of the sealing resin 16 (see FIG. 2).

半導体基板1の表側または裏側に半導体基板1と逆導電型の不純物を含む半導体層が形成されている。また、その逆の面には半導体基板1と同じ導電型の不純物を含む半導体層が形成されている。それらの半導体層の上にそれぞれ電極が形成されて電流が取り出される。表側集電極2はそのような電極として太陽電池素子30の主な受光面である表側の表面に形成された細線状の電極である。表側集電極2は半導体基板面内で発生した電流を収集してインターコネクタ21へ導く電極である。表側集電極2は、図のように直線状に伸びた細線が間隔をあけて平行に並んだグリッド状のパターンとすると良いが、網の目状または樹枝状としてもよい。表側集電極2は、その形状からグリッド電極、フィンガー電極とも呼ばれることがある。   A semiconductor layer containing impurities having a conductivity type opposite to that of the semiconductor substrate 1 is formed on the front side or the back side of the semiconductor substrate 1. A semiconductor layer containing impurities of the same conductivity type as that of the semiconductor substrate 1 is formed on the opposite surface. Electrodes are formed on these semiconductor layers, respectively, and current is taken out. The front side collecting electrode 2 is a thin line-like electrode formed on the front side surface, which is the main light receiving surface of the solar cell element 30, as such an electrode. The front-side collector electrode 2 is an electrode that collects current generated in the semiconductor substrate surface and guides it to the interconnector 21. The front-side collecting electrode 2 is preferably a grid-like pattern in which thin lines extending in a straight line are arranged in parallel at intervals as shown in the figure, but may be a mesh pattern or a dendritic pattern. The front-side collector electrode 2 is sometimes called a grid electrode or a finger electrode because of its shape.

太陽電池素子30の半導体基板1は図のように表側に反射防止用の微細な凹凸が形成されている。図では半導体基板1の裏側を平坦としたが、裏側に微細な凹凸を形成してもよく、また両側を平坦としてもよい。   As shown in the figure, the semiconductor substrate 1 of the solar cell element 30 has fine irregularities for preventing reflection on the front side. Although the back side of the semiconductor substrate 1 is flat in the figure, fine irregularities may be formed on the back side, and both sides may be flat.

表側集電極2は半導体基板1の表側の表面に銀または銅などの金属微粒子と樹脂を混合した金属ペーストを印刷して、加熱して焼き付けることで形成される。このようにして形成された表側集電極2は半導体基板1の主面よりも突出する。表側集電極2の幅が広くなると受光面積が縮小し、厚みが薄いと断面積が小さくなり電気抵抗増加により損失が増加する。このため、表側集電極2は幅が狭く、厚みを厚くすることによって高さが高くなった断面形状のものが望ましい。典型的な表側集電極2は幅0.04〜0.1mmで高さが0.02〜0.05mmなどであり、隣り合う表側集電極2間の間隔は1〜4mmである。表側集電極2と半導体基板1との間に透明導電膜を形成してもよい。   The front-side collector electrode 2 is formed by printing a metal paste in which metal fine particles such as silver or copper and a resin are mixed on the front-side surface of the semiconductor substrate 1 and baking it by heating. The front-side collector electrode 2 thus formed protrudes from the main surface of the semiconductor substrate 1. When the width of the front-side collector electrode 2 is increased, the light receiving area is reduced. When the thickness is thin, the cross-sectional area is reduced and the loss is increased due to an increase in electric resistance. For this reason, it is desirable that the front collector electrode 2 has a narrow cross-sectional shape whose height is increased by increasing the thickness. A typical front side collector electrode 2 has a width of 0.04 to 0.1 mm and a height of 0.02 to 0.05 mm, and the interval between adjacent front side collector electrodes 2 is 1 to 4 mm. A transparent conductive film may be formed between the front-side collector electrode 2 and the semiconductor substrate 1.

半導体基板1の裏側には裏側集電極3が形成されている。裏側集電極3は表側集電極2とは正負が逆の電極である。表側集電極2と同様に金属ペーストの印刷等で形成することができ、蒸着法、スパッタ法などの成膜技術、めっき法などで形成することもできる。図では裏側集電極3の形状として裏面全面に形成されたものを示したが、受光面側と同様に細線からなるパターン形状としてもよい。   A back side collector electrode 3 is formed on the back side of the semiconductor substrate 1. The back side collector electrode 3 is an electrode whose positive and negative are opposite to those of the front side collector electrode 2. Similarly to the front-side collector electrode 2, it can be formed by printing a metal paste or the like, and can also be formed by a film forming technique such as a vapor deposition method or a sputtering method, or a plating method. In the figure, the back side collector electrode 3 is formed on the entire back surface, but may have a pattern shape made of fine lines as in the light receiving surface side.

透明樹脂板5は表側集電極2が形成されていない領域の半導体基板1の表面と表側集電極2とを覆うように透明な接着剤9によって接着されている。透明樹脂板5には表側集電極2に対向する位置に凹部5hが形成されているが、凹部5hの間の全部または大半が平坦な面である。半導体基板1の表側表面の微細な凹凸の高さは数μm程度であり、表側集電極2の高さから見れば十分に小さい。このため、半導体基板1の表側表面は概ね平坦な面である。また、凹部5h間の透明樹脂板5の表面は平坦である。従って、透明樹脂板5と半導体基板1とはこれらの比較的平坦な面どうしで薄い接着剤9の層により接着されている。接着剤9の厚みは表側集電極2の高さよりも薄い。半導体基板1の表面に微細な凹凸がある場合は、その凹凸を平坦に埋める程度の厚みとすればよい。このような構成としたため、透明樹脂板5と半導体基板1とが平坦な面どうしで薄い接着剤9により強固に接着される。   The transparent resin plate 5 is bonded by a transparent adhesive 9 so as to cover the surface of the semiconductor substrate 1 in a region where the front side collector electrode 2 is not formed and the front side collector electrode 2. The transparent resin plate 5 has a recess 5h formed at a position facing the front-side collector electrode 2, but all or most of the recess 5h is a flat surface. The height of fine irregularities on the front surface of the semiconductor substrate 1 is about several μm, which is sufficiently small when viewed from the height of the front collector 2. For this reason, the front side surface of the semiconductor substrate 1 is a substantially flat surface. Further, the surface of the transparent resin plate 5 between the recesses 5h is flat. Therefore, the transparent resin plate 5 and the semiconductor substrate 1 are bonded to each other by a thin layer of adhesive 9 between these relatively flat surfaces. The thickness of the adhesive 9 is thinner than the height of the front collector electrode 2. If there are fine irregularities on the surface of the semiconductor substrate 1, the thickness may be such that the irregularities are filled flat. With such a configuration, the transparent resin plate 5 and the semiconductor substrate 1 are firmly bonded to each other by a thin adhesive 9 between flat surfaces.

また、透明樹脂板5の凹部5hの開口部の幅は表側集電極2の幅よりも広くされている。またその凹部5hの深さも表側集電極2に高さと同等以上とすると良い。このようにすると、表側集電極2と凹部5hとの間に隙間ができ、この隙間に接着剤9が入りこむ構造となる。なお、図では表側集電極2と凹部5hとが接触しない場合を示したが、部分的に接触していてもよい。   Further, the width of the opening of the recess 5 h of the transparent resin plate 5 is made wider than the width of the front-side collector electrode 2. Further, the depth of the recess 5h is preferably equal to or greater than the height of the front collector electrode 2. If it does in this way, a clearance gap will be formed between the front side collector electrode 2 and the recessed part 5h, and it will become a structure where the adhesive agent 9 penetrates into this clearance gap. In addition, although the figure showed the case where the front side collector electrode 2 and the recessed part 5h did not contact, you may contact partially.

透明樹脂板5の材料は主な受光面である表側に設置されるため、透明度が高い材料が望ましい。また、封止樹脂16に比べて耐熱温度が高い材料が望ましい。なお、この耐熱温度は形状を保持できる温度であり、たとえば、荷重たわみ温度、ビカット軟化温度、ガラス転位温度などを耐熱温度と考えることができる。たとえば典型的な封止樹脂16としてEVAを考えると、その荷重たわみ温度(0.45MPa)は30℃程度であるので、荷重たわみ温度が約70℃のPET(ポリエチレンテレフタレート)、約110℃のPEN(ポリエチレンナフタレート)、120〜150℃のCOP(シクロオレフィンポリマー)などを透明樹脂板5の材料として用いることができる。このように荷重たわみ温度が封止樹脂16の荷重たわみ温度よりも40℃以上高い材料であることが望ましい。   Since the material of the transparent resin plate 5 is installed on the front side which is the main light receiving surface, a material with high transparency is desirable. Further, a material having a higher heat resistant temperature than the sealing resin 16 is desirable. In addition, this heat-resistant temperature is a temperature which can hold | maintain a shape, For example, load deflection temperature, Vicat softening temperature, glass transition temperature etc. can be considered as heat-resistant temperature. For example, when considering EVA as a typical sealing resin 16, the deflection temperature under load (0.45 MPa) is about 30 ° C., so that the deflection temperature under load is about 70 ° C. PET (polyethylene terephthalate), PEN about 110 ° C. (Polyethylene naphthalate), COP (cycloolefin polymer) of 120 to 150 ° C. or the like can be used as the material of the transparent resin plate 5. Thus, it is desirable that the deflection temperature under load is 40 ° C. or more higher than the deflection temperature under load of the sealing resin 16.

また、透明樹脂板5の材料は封止樹脂16および接着剤9と光学屈折率差が小さい材料が望ましい。たとえば、封止樹脂16、接着剤9、透明樹脂板5の光学屈折率(nD)のうち、最大値と最小値との差が、それらの平均値の10%以下とするとよく、5%以下とするとさらによい。封止樹脂16または接着剤9と透明樹脂板5との間の光学屈折率を小さくすることで、それらの界面での反射を小さく抑えることができる。たとえば、封止樹脂16または接着剤9として用いることのできる典型的な材料であるEVAでは屈折率(nD)が約1.49、PVC(ポリビニルブチラール)では約1.52、シリコーン樹脂では約1.51である。透明樹脂板5として用いるのに適した典型的な材料であるPET、PENで約1.58〜1.60であり、COPでは約1.53などである。これらの材料を組み合わせることにより、界面の反射を低く抑えることができる。特に、上記の封止樹脂16、接着剤9の材料を用いる場合は、透明樹脂板5としてCOPを用いると界面の反射を最も小さくすることができるので望ましい。   The material of the transparent resin plate 5 is preferably a material having a small optical refractive index difference from the sealing resin 16 and the adhesive 9. For example, among the optical refractive indexes (nD) of the sealing resin 16, the adhesive 9, and the transparent resin plate 5, the difference between the maximum value and the minimum value may be 10% or less of the average value, and 5% or less. And even better. By reducing the optical refractive index between the sealing resin 16 or the adhesive 9 and the transparent resin plate 5, the reflection at the interface between them can be kept small. For example, EVA, which is a typical material that can be used as the sealing resin 16 or the adhesive 9, has a refractive index (nD) of about 1.49, about 1.52 for PVC (polyvinyl butyral), and about 1 for silicone resin. .51. A typical material suitable for use as the transparent resin plate 5 is about 1.58 to 1.60 for PET and PEN, and about 1.53 for COP. By combining these materials, interface reflection can be kept low. In particular, when the materials of the sealing resin 16 and the adhesive 9 are used, it is preferable to use COP as the transparent resin plate 5 because the interface reflection can be minimized.

透明樹脂板5の凹部5hはこれらの材料をシート状に加工する際に形成してもよいし、シート状にした後に溝加工によって形成してもよい。溝加工としては超音波加工、レーザー加工などを用いることができる。図では凹部5hをU字型の断面の溝形状としたが、V字型としてもよい。   The recess 5h of the transparent resin plate 5 may be formed when these materials are processed into a sheet shape, or may be formed by groove processing after forming the sheet shape. As the groove processing, ultrasonic processing, laser processing, or the like can be used. In the figure, the recess 5h is formed in a groove shape with a U-shaped cross section, but may be V-shaped.

接着剤9の材料は、透明であり、かつ、封止樹脂16を硬化する処理温度でも透明樹脂板5と半導体基板1との接着を保持できる材料である。このような材料として、たとえば、シリコーン樹脂、封止樹脂16の硬化より前にあらかじめ硬化処理されたEVA、などを用いることができる。特に熱硬化型のシリコーン樹脂は封止樹脂16を硬化する際の加熱でも変形が少ないので良い。   The material of the adhesive 9 is a material that is transparent and can maintain adhesion between the transparent resin plate 5 and the semiconductor substrate 1 even at a processing temperature at which the sealing resin 16 is cured. As such a material, for example, silicone resin, EVA cured in advance before curing of the sealing resin 16, or the like can be used. In particular, the thermosetting silicone resin may be less deformed even by heating when the sealing resin 16 is cured.

次に本実施の形態1の太陽電池モジュールの製造方法について、単結晶シリコン基板を用いた場合を例に説明する。図5〜図9は太陽電池素子30の製造方法を説明する部分断面図であり、図10〜12は太陽電池素子30を用いた太陽電池モジュールの製造方法を説明する部分側面図である。   Next, the method for manufacturing the solar cell module according to the first embodiment will be described using a single crystal silicon substrate as an example. 5 to 9 are partial cross-sectional views illustrating a method for manufacturing the solar cell element 30, and FIGS. 10 to 12 are partial side views illustrating a method for manufacturing a solar cell module using the solar cell element 30.

まず、図5のように半導体基板1として単結晶シリコン基板を用意する。単結晶シリコン基板の表側の表面1aにアルカリ性のエッチング液により微細な凹凸形状(テクスチャ)を形成する。表側の表面1aにのみ凹凸を形成して裏側の表面1bを平坦に保つには、表側の表面1aのみにエッチング液を接触させる処理、または裏側に保護膜を形成した状態で半導体基板1をエッチングする処理を行う。   First, a single crystal silicon substrate is prepared as the semiconductor substrate 1 as shown in FIG. A fine concavo-convex shape (texture) is formed on the front surface 1a of the single crystal silicon substrate with an alkaline etching solution. In order to form unevenness only on the front surface 1a and keep the back surface 1b flat, the semiconductor substrate 1 is etched in a state where an etching solution is brought into contact with only the front surface 1a or a protective film is formed on the back side. Perform the process.

次に、図6のように表側の表面1aの上に単結晶シリコン基板と逆導電型の半導体層31を形成する。これによって半導体接合ができる。裏側の表面1bには単結晶シリコン基板と同導電型の半導体層32を形成する。半導体層31、32を非晶質半導体としてもよい。非晶質半導体の半導体層31、32はシリコン形成用の原料ガスであるSiH4ガスに、B2H5、PH3などの不純物を添加するCVD(化学気相成長)法を用いて形成することができる。その場合、これらの半導体層31、32の厚みは数〜20nm程度とするとよい。また、不純物を添加した半導体層31および半導体層32の下に数nm程度の厚みで不純物の添加がほとんどない真性の半導体層を形成すると、高効率の太陽電池が得られる。なお、上記は半導体接合を単結晶半導体と非晶質半導体とからなるヘテロ接合型とした場合であるが、半導体基板1中に不純物を熱拡散してホモ接合型としてもよい。また、裏側の半導体層32を単結晶シリコン基板と逆導電型として、表側の半導体層31を単結晶シリコン基板と同導電型としてもよい。   Next, as shown in FIG. 6, a semiconductor layer 31 having a conductivity type opposite to that of the single crystal silicon substrate is formed on the front surface 1a. As a result, semiconductor bonding can be performed. A semiconductor layer 32 having the same conductivity type as that of the single crystal silicon substrate is formed on the front surface 1b. The semiconductor layers 31 and 32 may be amorphous semiconductors. The amorphous semiconductor layers 31 and 32 can be formed by a CVD (chemical vapor deposition) method in which impurities such as B2H5 and PH3 are added to SiH4 gas which is a raw material gas for forming silicon. In that case, the thickness of these semiconductor layers 31 and 32 is preferably about several to 20 nm. In addition, when an intrinsic semiconductor layer having a thickness of about several nanometers and almost no addition of impurities is formed under the semiconductor layer 31 and the semiconductor layer 32 to which impurities are added, a highly efficient solar cell can be obtained. Although the above is a case where the semiconductor junction is a heterojunction type composed of a single crystal semiconductor and an amorphous semiconductor, impurities may be thermally diffused in the semiconductor substrate 1 to be a homojunction type. Alternatively, the semiconductor layer 32 on the back side may have a conductivity type opposite to that of the single crystal silicon substrate, and the semiconductor layer 31 on the front side may have the same conductivity type as that of the single crystal silicon substrate.

次に、図7のように表側の半導体層31の上に反射防止膜33を形成する。反射防止膜9は、接着剤9の光学屈折率と半導体基板1の光学屈折率との間の光学屈折率を有する材料を用いると良い。たとえば、太陽光スペクトルのピーク波長に近い500nmにおいて、樹脂からなる接着剤9の光学屈折率が約1.5、半導体層7の光学屈折率が約4である場合、光学屈折率が1.8〜2.5の透明な金属酸化膜、窒化膜を用いるとよい。ヘテロ接合型の場合、半導体層31の厚みが非常に薄く、面内の電気伝導性が低いために、反射防止膜33を、In2O3、SnO2、ZnOなどの透明導電材料で形成すると集電抵抗が低下するので良い。熱拡散により比較的厚い半導体層31を形成した場合はシリコン窒化膜、酸化アルミニウム膜などを用いてもよい。これらの膜はCVD法、蒸着法、スパッタ法などで形成することができる。反射防止膜9の膜厚は干渉効果により太陽光スペクトルのピーク波長で反射率が低下する膜厚とすることがのぞましい。   Next, an antireflection film 33 is formed on the front semiconductor layer 31 as shown in FIG. The antireflection film 9 is preferably made of a material having an optical refractive index between the optical refractive index of the adhesive 9 and the optical refractive index of the semiconductor substrate 1. For example, when the optical refractive index of the adhesive 9 made of resin is about 1.5 and the optical refractive index of the semiconductor layer 7 is about 4 at 500 nm close to the peak wavelength of the sunlight spectrum, the optical refractive index is 1.8. A transparent metal oxide film or nitride film of ~ 2.5 may be used. In the case of the heterojunction type, the thickness of the semiconductor layer 31 is very thin and the in-plane electrical conductivity is low. Therefore, when the antireflection film 33 is formed of a transparent conductive material such as In 2 O 3, SnO 2, or ZnO, the current collecting resistance is reduced. It is good because it drops. When the relatively thick semiconductor layer 31 is formed by thermal diffusion, a silicon nitride film, an aluminum oxide film, or the like may be used. These films can be formed by CVD, vapor deposition, sputtering, or the like. The film thickness of the antireflection film 9 is preferably a film thickness at which the reflectance decreases at the peak wavelength of the sunlight spectrum due to the interference effect.

次に、図8のように表側の反射防止膜33の表面に表側集電極2を、また、裏側に裏側集電極3を形成する。これらの電極の製造方法は、量産性、製造コストの点で金属ペーストをスクリーン印刷する方法がよい。表側集電極2の幅を狭くしながらその高さを高くする方法として、同じパターンで繰り返して重ねるようにスクリーン印刷する方法を用いてもよい。半導体層31または半導体層32が非晶質シリコンのヘテロ接合型では、高温熱処理で半導体層31または半導体層32が結晶化するため、スクリーン印刷後の焼成温度は200℃以下とすることが望ましい。反射防止膜33が絶縁性などの場合は表側集電極2と半導体層31との電気的接触が実現するように表側集電極2の下の反射防止膜33に貫通孔を開けるようにすると良い。熱拡散により半導体層31を形成したホモ接合型の場合は、金属ペーストを高温焼成することによってその下部の反射防止膜33に貫通孔を開ける方法を用いてもよい。なお、図では裏側の半導体層32の上に直接に裏側集電極3を形成しているが、半導体層32と裏側集電極3との間に透明導電膜を形成してもよい。   Next, as shown in FIG. 8, the front-side collector electrode 2 is formed on the surface of the front-side antireflection film 33, and the back-side collector electrode 3 is formed on the back side. A method for producing these electrodes is preferably a method of screen printing a metal paste in terms of mass productivity and production cost. As a method of increasing the height of the front-side collector electrode 2 while reducing the width, a method of screen printing so as to repeatedly overlap in the same pattern may be used. When the semiconductor layer 31 or the semiconductor layer 32 is an amorphous silicon heterojunction type, since the semiconductor layer 31 or the semiconductor layer 32 is crystallized by high-temperature heat treatment, it is desirable that the baking temperature after screen printing be 200 ° C. or lower. When the antireflection film 33 is insulative or the like, it is preferable to make a through hole in the antireflection film 33 under the front side collector electrode 2 so that electrical contact between the front side collector electrode 2 and the semiconductor layer 31 is realized. In the case of the homojunction type in which the semiconductor layer 31 is formed by thermal diffusion, a method of forming a through hole in the antireflection film 33 below the metal paste by baking at a high temperature may be used. In the figure, the back side collector electrode 3 is formed directly on the back side semiconductor layer 32, but a transparent conductive film may be formed between the semiconductor layer 32 and the back side collector electrode 3.

次に、図9のように半導体基板1の表側に透明樹脂板5を接着する。表側集電極2のパターン形状に合わせて凹部5hが形成された透明樹脂板5を準備する。半導体基板1の表側表面または透明樹脂板5の凹部5hが形成された面に液状の接着剤9を塗布した後、表側集電極2と凹部5hとを位置合わせして貼りあわせ、加熱などにより接着剤9を硬化する。なお、図は半導体基板1と透明樹脂板5との間に接着剤9が完全に充填された構造であり、信頼性の点で最も好ましいが、接着剤9が部分的に半導体基板1の上と透明樹脂板5とを接着した構造であってもよい。部分的な接着によって半導体基板1と透明樹脂板5との間に残る隙間は後の工程で封止樹脂16によって埋められる。また、半導体基板1の上にはインターコネクタ21が接続される電極パターンが存在するが、透明樹脂板5はインターコネクタ21が接続される領域を除いて接着される。以上の手順で太陽電池素子30が完成する。   Next, the transparent resin plate 5 is bonded to the front side of the semiconductor substrate 1 as shown in FIG. A transparent resin plate 5 having a recess 5h formed in accordance with the pattern shape of the front-side collector electrode 2 is prepared. After the liquid adhesive 9 is applied to the front surface of the semiconductor substrate 1 or the surface of the transparent resin plate 5 where the recesses 5h are formed, the front collector electrode 2 and the recesses 5h are aligned and bonded together, and then bonded by heating or the like. The agent 9 is cured. The figure shows a structure in which the adhesive 9 is completely filled between the semiconductor substrate 1 and the transparent resin plate 5, which is most preferable in terms of reliability. However, the adhesive 9 is partially on the semiconductor substrate 1. The transparent resin plate 5 may be bonded. A gap remaining between the semiconductor substrate 1 and the transparent resin plate 5 due to partial adhesion is filled with the sealing resin 16 in a later step. In addition, an electrode pattern to which the interconnector 21 is connected exists on the semiconductor substrate 1, but the transparent resin plate 5 is bonded except for a region to which the interconnector 21 is connected. The solar cell element 30 is completed by the above procedure.

次に、複数の太陽電池素子30を用いて太陽電池モジュールを製造する。図10のように太陽電池素子30どうしをインターコネクタ21で接続する。インターコネクタ21の接続には、低融点の半田などを用いる。なお、図はインターコネクタ21の厚みと透明樹脂板5の厚みが概ね同一の場合に側面から見た図を示している。   Next, a solar cell module is manufactured using the plurality of solar cell elements 30. As shown in FIG. 10, the solar cell elements 30 are connected by the interconnector 21. For the connection of the interconnector 21, low melting point solder or the like is used. In addition, the figure has shown the figure seen from the side surface, when the thickness of the interconnector 21 and the thickness of the transparent resin board 5 are substantially the same.

次に、図11のように、ガラス板11、封止樹脂シート20、インターコネクタ21で相互に接続した太陽電池素子30、封止樹脂シート20、封止材12を順に積み重ねて、真空中で加熱とともに押圧する封止処理を行う。封止樹脂シート20は封止樹脂16をシート状にしたものである。封止樹脂シート20は溶融して表側のガラス板11と裏側の封止材12の間の隙間を埋めて、太陽電池素子30を固定する。このようにして図12のような太陽電池モジュールが完成する。   Next, as shown in FIG. 11, the solar cell element 30, the sealing resin sheet 20, and the sealing material 12 that are connected to each other by the glass plate 11, the sealing resin sheet 20, and the interconnector 21 are sequentially stacked, and in vacuum The sealing process which presses with heating is performed. The sealing resin sheet 20 is obtained by forming the sealing resin 16 into a sheet shape. The sealing resin sheet 20 melts and fills the gap between the front glass plate 11 and the back sealing material 12 to fix the solar cell element 30. In this way, the solar cell module as shown in FIG. 12 is completed.

本実施の形態1の太陽電池モジュールは、表側から透明なガラス板11に入った光は、透明な封止樹脂16a、透明な透明樹脂板5、透明な接着剤9を通過して半導体基板1に入り、発生したキャリアは内部の半導体接合により分離されて、表側集電極2、裏側集電極3から取り出される。   In the solar cell module according to the first embodiment, the light that enters the transparent glass plate 11 from the front side passes through the transparent sealing resin 16a, the transparent transparent resin plate 5, and the transparent adhesive 9, and the semiconductor substrate 1 The generated carriers are separated by an internal semiconductor junction and taken out from the front side collector electrode 2 and the back side collector electrode 3.

上記のように、本実施の形態1の太陽電池素子30は少なくとも一方の表面に細線状の表側集電極2を有し、表側集電極2の形状に合わせた凹部5hが形成された透明樹脂板5が半導体基板1の表面に接着されている。透明樹脂板5は、その凹部5hが表側集電極2を覆うとともに、凹部5h間の表側集電極2の平坦な領域が表側集電極2間の半導体基板1の比較的平坦な表面上に接着されている。このため、本実施の形態1のように表側集電極2が半導体基板1の表面から突出た構造であっても、表側集電極2が何かに物体が衝突して破損することを抑制することができる。透明樹脂板5の表面に何かの物体が衝突した際に、衝突で発生した力は透明樹脂板5、接着剤9を経て平坦な部分に分散され、表側集電極2にほとんど及ばない。また、太陽電池素子30どうしを積み重ねて運搬しても表側集電極2が破損しにくいので、運搬が容易になる。また、透明樹脂板5が接着されているため半導体基板1が補強され、外部から衝撃を受けても半導体基板1にクラックが発生しにくい。特に透明樹脂板5の厚みを半導体基板1と同等以上とすることにより、強度が優れる。   As described above, the solar cell element 30 according to the first embodiment has the thin-line front collector electrode 2 on at least one surface, and the transparent resin plate in which the concave portion 5h matching the shape of the front collector electrode 2 is formed. 5 is bonded to the surface of the semiconductor substrate 1. In the transparent resin plate 5, the concave portion 5 h covers the front-side collector electrode 2, and the flat region of the front-side collector electrode 2 between the concave portions 5 h is adhered to the relatively flat surface of the semiconductor substrate 1 between the front-side collector electrodes 2. ing. For this reason, even if the front-side collector electrode 2 protrudes from the surface of the semiconductor substrate 1 as in the first embodiment, the front-side collector electrode 2 can be prevented from colliding with an object and being damaged. Can do. When an object collides with the surface of the transparent resin plate 5, the force generated by the collision is distributed to the flat portion through the transparent resin plate 5 and the adhesive 9, and hardly reaches the front-side collector electrode 2. Further, even if the solar cell elements 30 are stacked and transported, the front-side collector electrode 2 is not easily damaged, so that the transport becomes easy. Further, since the transparent resin plate 5 is bonded, the semiconductor substrate 1 is reinforced, and cracks are hardly generated in the semiconductor substrate 1 even if it receives an impact from the outside. In particular, when the thickness of the transparent resin plate 5 is equal to or greater than that of the semiconductor substrate 1, the strength is excellent.

また、半導体基板1と透明樹脂板5とは熱膨張率が異なるため、温度変化で表側集電極2が透明樹脂板5から応力を受ける可能性がある。本実施の形態1では凹部5hの開口部の幅を表側集電極2の幅よりも広くしたため、表側集電極2と透明樹脂板5との間に隙間があり、表側集電極2が透明樹脂板5から応力を受けにくい。従って、温度変化によって表側集電極2が破損する可能性も低い。特に、表側集電極2と透明樹脂板5との間に隙間を埋める樹脂をEVAやシリコーン樹脂などの柔軟な接着剤9とするとよい。また、凹部5hの開口部の幅を表側集電極2の幅よりも広くしたため、集電極を凹部内に入れるための位置合わせ精度を緩くできる。   Further, since the semiconductor substrate 1 and the transparent resin plate 5 have different coefficients of thermal expansion, there is a possibility that the front-side collector electrode 2 receives stress from the transparent resin plate 5 due to temperature change. In Embodiment 1, since the width of the opening of the recess 5h is made wider than the width of the front-side collector electrode 2, there is a gap between the front-side collector electrode 2 and the transparent resin plate 5, and the front-side collector electrode 2 is a transparent resin plate. 5 is difficult to receive stress. Therefore, the possibility that the front-side collector electrode 2 is damaged due to a temperature change is low. In particular, a resin that fills the gap between the front-side collector electrode 2 and the transparent resin plate 5 may be a flexible adhesive 9 such as EVA or silicone resin. In addition, since the width of the opening of the recess 5h is made wider than the width of the front collector 2, the alignment accuracy for placing the collector in the recess can be relaxed.

また、太陽電池素子がガラス板に貼り付けて封止される太陽電池モジュールでは、上記のような封止処理工程において、封止樹脂16は軟化し、半導体基板1はインターコネクタ21との熱膨張率の違いなどにより反るため、半導体基板1の表面が硬いガラス板11に当たって、表側集電極2が破損する問題があった。特に、非晶質半導体を用いたヘテロ接合型の太陽電池素子30では金属ペーストの焼き付け温度を低く抑えねばならず、表側集電極2の下地との接着力が十分でなく破損しやすかった。しかし、本実施の形態1では、表側集電極2の上に透明樹脂板5が貼り付けられているため、半導体基板1が反ったとしてもガラス板11に表側集電極2が当たらない。また、透明樹脂板5の表側集電極2に対応する部分に凹部5hが形成され、透明樹脂板5と半導体基板1とは表側集電極2間の概ね平坦な部分どうして接着されているので、ガラス板11に当たった力は透明樹脂板5、接着剤9を経て平坦な部分に分散され、表側集電極2にほとんど及ばない。そのため、封止時に流動性が高い封止樹脂を用いても表側集電極2の破損を防ぐことができる。また、封止時に限らず、EVAのように常温でも柔らかい樹脂を封止樹脂16として用いた場合にも、使用中に表側集電極2はガラス板11に当たって破損することを防止することができる。   Moreover, in the solar cell module in which the solar cell element is attached to a glass plate and sealed, the sealing resin 16 is softened and the semiconductor substrate 1 is thermally expanded with the interconnector 21 in the sealing process as described above. Since the warp is caused by the difference in the rate, the surface of the semiconductor substrate 1 hits the hard glass plate 11 and the front collector electrode 2 is damaged. In particular, in the heterojunction solar cell element 30 using an amorphous semiconductor, the baking temperature of the metal paste has to be kept low, and the adhesive force between the front-side collector electrode 2 and the base is not sufficient, and is easily damaged. However, in this Embodiment 1, since the transparent resin plate 5 is affixed on the front side collector electrode 2, even if the semiconductor substrate 1 warps, the front side collector electrode 2 does not hit the glass plate 11. Further, a concave portion 5h is formed in a portion corresponding to the front side collector electrode 2 of the transparent resin plate 5, and the transparent resin plate 5 and the semiconductor substrate 1 are bonded to each other because the substantially flat portion between the front side collector electrode 2 is bonded. The force applied to the plate 11 is dispersed in a flat portion through the transparent resin plate 5 and the adhesive 9, and hardly reaches the front-side collector electrode 2. Therefore, even if it uses sealing resin with high fluidity at the time of sealing, damage to the front side collector electrode 2 can be prevented. Further, not only at the time of sealing, but also when a soft resin is used as the sealing resin 16 even at room temperature, such as EVA, the front-side collector electrode 2 can be prevented from hitting the glass plate 11 and being damaged during use.

また、半導体基板1の上にインターコネクタ21が固定されると、インターコネクタ21が半導体基板1の上に突出するため、これがガラス板11に当たって半導体基板1に局所的な力が加わり、半導体基板1が破損する問題があった。本実施の形態1では、インターコネクタ21の設置個所を避けて透明樹脂板5を接着したことにより、インターコネクタ21の突出する高さが透明樹脂板5の厚みの分だけ小さくなる。インターコネクタ21の突出する高さが小さくなるため、インターコネクタ21がガラス板11に接触した場合も局所的な応力がかかりにくく、半導体基板1が破損する可能性が大幅に減少する。特に透明樹脂板5の厚みがインターコネクタ21と同等以上とするとインターコネクタ21がガラス板11に接触しないのでさらによい。   Further, when the interconnector 21 is fixed on the semiconductor substrate 1, the interconnector 21 protrudes on the semiconductor substrate 1, so that it hits the glass plate 11 and a local force is applied to the semiconductor substrate 1. There was a problem of damage. In the first embodiment, the height at which the interconnector 21 protrudes is reduced by the thickness of the transparent resin plate 5 because the transparent resin plate 5 is adhered while avoiding the installation location of the interconnector 21. Since the protruding height of the interconnector 21 is reduced, local stress is hardly applied even when the interconnector 21 contacts the glass plate 11, and the possibility that the semiconductor substrate 1 is damaged is greatly reduced. In particular, if the thickness of the transparent resin plate 5 is equal to or greater than that of the interconnector 21, the interconnector 21 does not come into contact with the glass plate 11, which is even better.

実施の形態2.
図13は本実施の形態2の太陽電池モジュールの部分断面図である。本実施の形態2の太陽電池モジュール200は半導体基板1の受光面側の構成は実施の形態1と同じだが、裏側も実施の形態1の表側と同様な構造を有している。つまり、集電極が半導体基板1の両面に形成され、透明樹脂板5が半導体基板1の両面に接着されている。半導体基板1の表側には透明樹脂板5aが接着剤9aにより接着され、半導体基板1の裏側にも透明樹脂板5bが接着剤9bにより接着されている。半導体基板1の裏側の裏側集電極3は細線パターンからなる形状であり、裏側の透明樹脂板5bにも裏側集電極3に対応する凹部5jが形成されている。
Embodiment 2. FIG.
FIG. 13 is a partial cross-sectional view of the solar cell module according to the second embodiment. The solar cell module 200 of the second embodiment has the same structure as that of the first embodiment on the light receiving surface side of the semiconductor substrate 1, but the back side has the same structure as the front side of the first embodiment. That is, the collector electrode is formed on both surfaces of the semiconductor substrate 1, and the transparent resin plate 5 is bonded to both surfaces of the semiconductor substrate 1. A transparent resin plate 5a is bonded to the front side of the semiconductor substrate 1 with an adhesive 9a, and a transparent resin plate 5b is bonded to the back side of the semiconductor substrate 1 with an adhesive 9b. The back side collector electrode 3 on the back side of the semiconductor substrate 1 has a shape formed of a fine line pattern, and a recess 5j corresponding to the back side collector electrode 3 is also formed on the back side transparent resin plate 5b.

半導体基板1と透明樹脂板5a、5bとは熱膨張率が異なるため、表側と裏側との一方にのみ接着されていると、温度変化により発生する応力により全体が反る可能性がある。
しかし、本実施の形態2では表側と裏側とにそれぞれ透明樹脂板5a、5bが接着されているため、表側と裏側とで同様な応力が発生するため反りにくい。このため、温度変化による変形および破損を低減できる。また、裏面側の封止材12として、ガラスを使用してもよい。その場合、モジュール全体で受光面側と裏面側とがほぼ同じ材料からなる構成となり、さらに変形および破損を低減できる。また、裏面側の裏側集電極3が封止材12に当たって破損することが裏面側の透明樹脂板5によって防止できることは実施の形態1の受光面側と同様である。
Since the semiconductor substrate 1 and the transparent resin plates 5a and 5b have different coefficients of thermal expansion, if the semiconductor substrate 1 and the transparent resin plates 5a and 5b are bonded to only one of the front side and the back side, the whole may be warped due to the stress generated by the temperature change.
However, in the second embodiment, since the transparent resin plates 5a and 5b are bonded to the front side and the back side, respectively, the same stress is generated on the front side and the back side, so that it is difficult to warp. For this reason, deformation and breakage due to temperature change can be reduced. Moreover, you may use glass as the sealing material 12 of a back surface side. In this case, the light receiving surface side and the back surface side of the entire module are made of substantially the same material, and deformation and breakage can be further reduced. Similarly to the light receiving surface side of the first embodiment, the back side collecting electrode 3 on the back side can be prevented from being damaged by hitting the sealing material 12 by the transparent resin plate 5 on the back side.

なお、図では裏側集電極3を受光面側の表側集電極2と同様なパターンとしたが、幅、パターン、形成位置などが異なるようにしてもよい。裏面側から入射する光を利用する場合は封止材12、裏面側の透明樹脂板5および接着剤9を受光面側と同様な透明な材料を用いると良い。裏面側から入射する光を利用しない場合は、裏面側の透明樹脂板5および接着剤9は受光面側と異なる材料を用いてもよい。   In the figure, the back side collector electrode 3 has the same pattern as the front side collector electrode 2 on the light receiving surface side, but the width, pattern, formation position, and the like may be different. When light incident from the back surface side is used, it is preferable to use the same material as the light receiving surface side for the sealing material 12, the transparent resin plate 5 and the adhesive 9 on the back surface side. When light incident from the back side is not used, the transparent resin plate 5 and the adhesive 9 on the back side may use different materials from the light receiving side.

実施の形態3.
図14は本実施の形態3の太陽電池モジュールの部分断面図である。本実施の形態3の太陽電池モジュール300は実施の形態1と類似するが、透明樹脂板5にスリット5sが形成されている点が異なる。スリット5sは表側集電極2の間に設けるとよいが、表側集電極2と交差する方向に設けられていてもよい。スリット5sは、たとえば、幅50μmで面内方向の長さ数〜10mm程度のものが、断続的に形成されていると良い。断続的に形成されているため、透明樹脂板5はスリット5sによって完全に分断されておらず、半導体基板1の上に貼り付けやすい。スリット5sはレーザー加工、機械加工などで形成することができる。
Embodiment 3 FIG.
FIG. 14 is a partial cross-sectional view of the solar cell module according to the third embodiment. The solar cell module 300 of the third embodiment is similar to that of the first embodiment, except that a slit 5s is formed in the transparent resin plate 5. The slit 5 s is preferably provided between the front collector 2, but may be provided in a direction intersecting with the front collector 2. For example, the slit 5s having a width of 50 μm and a length of about several tens to 10 mm in the in-plane direction is preferably formed intermittently. Since the transparent resin plate 5 is formed intermittently, the transparent resin plate 5 is not completely divided by the slits 5 s and is easily attached on the semiconductor substrate 1. The slit 5s can be formed by laser processing, machining, or the like.

このスリット5sには封止樹脂16aが充填される。半導体基板1と透明樹脂板5とは熱膨張率が異なるため、温度変化により貼りあわせた全体が反る可能性があるが、本実施の形態3ではスリット5sの部分が変形容易であり、その幅が伸縮することで発生する応力を緩和できる。このため、温度変化による変形および破損を低減できる。なお、上記では応力緩和の構造として厚み方向に貫通するスリット5sを設けたが、非貫通の溝、多数の貫通孔などを設けても類似の効果が得られる。   The slit 5s is filled with a sealing resin 16a. Since the semiconductor substrate 1 and the transparent resin plate 5 have different coefficients of thermal expansion, there is a possibility that the whole bonded together will be warped due to temperature changes. However, in the third embodiment, the portion of the slit 5s is easily deformed. The stress generated by the expansion and contraction of the width can be relaxed. For this reason, deformation and breakage due to temperature change can be reduced. In the above description, the slit 5s penetrating in the thickness direction is provided as a stress relaxation structure, but a similar effect can be obtained by providing a non-penetrating groove, a large number of through holes, and the like.

実施の形態4.
図15は本実施の形態4の太陽電池モジュールの部分断面図である。本実施の形態4の太陽電池モジュール400は実施の形態1と類似するが、透明樹脂板5の形状が異なる。
本実施の形態4の透明樹脂板5は折り曲げにより凹部5hが形成されている。折り曲げの谷部が凹部5hとなり、ガラス板11側に折り曲げの山部ができる。また、表側集電極2間には折り曲げされていない平坦な部分がある。折り曲げ形状はプレス加工によって形成したり、透明樹脂板5の成型時に形成したりすることができる。
Embodiment 4 FIG.
FIG. 15 is a partial cross-sectional view of the solar cell module according to the fourth embodiment. The solar cell module 400 of the fourth embodiment is similar to that of the first embodiment, but the shape of the transparent resin plate 5 is different.
The transparent resin plate 5 according to the fourth embodiment has a recess 5h formed by bending. The bent valley portion becomes the concave portion 5h, and a bent peak portion is formed on the glass plate 11 side. Further, there is a flat portion that is not bent between the front-side collector electrodes 2. The bent shape can be formed by pressing, or can be formed when the transparent resin plate 5 is molded.

このような形状としたため、透明樹脂板5の凹部5hの作製が容易であり、実施の形態1と同様に表側集電極2を保護する効果がある。ガラス板11側に透明樹脂板5の折り曲げの山部が突出しているため、この山部がガラス板11に当たりやすいが、山部が当たっても折り曲げが広がる方向、すなわち凹部5hの開口部が広がる方向に変形するため、ガラス板11に当たることで発生した力は半導体基板1の平坦部分に分散し、表側集電極2には及びにくい。このため、十分に表側集電極2を保護する効果が得られる。
また、折り曲げ部分にはバネと同様に変形が容易であり、また変形しても復元しようとするので、実施の形態3のスリット5sを設けた場合と同様に温度変化で発生する応力を緩和することができる。上記では、透明樹脂板5の凹部5hをV字型の折り目状に形成したが、曲面からなる波形の形状としても同様な効果を得ることができる。
Since it was set as such a shape, preparation of the recessed part 5h of the transparent resin board 5 is easy, and there exists an effect which protects the front side collector electrode 2 similarly to Embodiment 1. FIG. Since the crest portion of the transparent resin plate 5 protrudes on the glass plate 11 side, this crest portion easily hits the glass plate 11, but the direction in which the folding spreads even when the crest portion hits, that is, the opening of the recess 5 h spreads. Due to the deformation in the direction, the force generated by hitting the glass plate 11 is dispersed in the flat portion of the semiconductor substrate 1 and hardly reaches the front collector electrode 2. For this reason, the effect which protects the front side collector electrode 2 fully is acquired.
Further, since the bent portion can be easily deformed similarly to the spring and is to be restored even when deformed, the stress generated by the temperature change is reduced as in the case where the slit 5s of the third embodiment is provided. be able to. In the above description, the concave portion 5h of the transparent resin plate 5 is formed in a V-shaped crease shape, but the same effect can be obtained even when the waveform shape is a curved surface.

実施の形態5.
図16は本実施の形態5の太陽電池モジュールの部分断面図である。本実施の形態5の太陽電池モジュール500は実施の形態1と類似するが、透明樹脂板5のガラス板11に面する側にも溝5vを有する点で異なる。溝5vは表側集電極2の直上となる位置にある。溝5v内には透明樹脂板5および封止樹脂16aに比べて光学屈折率の異なる透明材料13が設置されている。
Embodiment 5. FIG.
FIG. 16 is a partial cross-sectional view of the solar cell module according to the fifth embodiment. The solar cell module 500 of the fifth embodiment is similar to that of the first embodiment, but differs in that the groove 5v is also provided on the side of the transparent resin plate 5 facing the glass plate 11. The groove 5v is located immediately above the front-side collector electrode 2. A transparent material 13 having an optical refractive index different from that of the transparent resin plate 5 and the sealing resin 16a is provided in the groove 5v.

溝5vは凹部5hと同様にレーザー加工で透明樹脂板5を削る方法などで作製することができる。透明材料13が挿入を挿入した後の工程は実施の形態1と同様である。   The groove 5v can be produced by a method of cutting the transparent resin plate 5 by laser processing, similar to the concave portion 5h. The process after the transparent material 13 inserts the insertion is the same as in the first embodiment.

透明材料13の光学屈折率を透明樹脂板5および封止樹脂16aに比べて0.1以上低くすると良い。そのような透明材料13として、微細な気泡を含む樹脂、フッ素樹脂、ナノサイズの酸化ケイ素微粒子を含む材料などがある。これらの屈折率は1.2〜1.3程度であり、透明樹脂板5および封止樹脂16aに比べて屈折率は0.2〜0.3以上低い。また、窒素ガスなどの気体が封入された中空繊維を溝に挿入して、封入された気体を透明材料13としてもよい。その場合、透明材料13の屈折率さらに低く約1.0となる。   The optical refractive index of the transparent material 13 is preferably lower by 0.1 or more than the transparent resin plate 5 and the sealing resin 16a. Examples of such a transparent material 13 include a resin containing fine bubbles, a fluororesin, and a material containing nano-sized silicon oxide fine particles. These refractive indexes are about 1.2 to 1.3, and the refractive index is lower by 0.2 to 0.3 or more than the transparent resin plate 5 and the sealing resin 16a. Alternatively, a hollow fiber encapsulated with a gas such as nitrogen gas may be inserted into the groove, and the encapsulated gas may be used as the transparent material 13. In that case, the refractive index of the transparent material 13 is about 1.0.

図17は本実施の形態5の太陽電池モジュールの光の入射経路の例を説明する断面図である。なお、以下ではV字の角度を60度として透明材料13が正三角柱の形状となったものとして説明する。図ではガラス板11、封止樹脂16a、接着剤9を省略した。ガラス板11に垂直に入射した光Lは溝5vの無い部分では封止樹脂16a、透明樹脂板5、接着剤9を順に経て半導体基板1に入射する。封止樹脂16a、透明樹脂板5、接着剤9には大きな屈折率差がないため、界面でほとんど反射は生じない。一方、図のように溝5vでは光Lは透明材料13に入射する。透明材料13と封止樹脂16aとの界面に屈折率差があるため、光Lの一部は反射されて入射側に戻る。透明材料13内に入った光は溝5vの底部が傾斜しているため、透明樹脂板5との界面で屈折する。この界面に対して光Lの入射角は約60度である。透明材料13の屈折率が1.0と低い場合、入射角60度で侵入した光は透明材料13と透明樹脂板5との境界において屈折角約35度で屈折し、透明樹脂板5の側へ抜け出て、その後、表側集電極2を経ることなく、半導体基板1に入射する。溝5vの形状、透明材料13の屈折率によって、屈折角は種々に変化するが、透明樹脂板5の厚みによって透明材料13と表側集電極2との間に表側集電極2の幅同等以上など十分な距離があるため、ガラス板11に垂直に入射した光は表側集電極2に入射することなく、半導体基板1に入射することができる。透明材料13がなければ表側集電極2に入射し反射された光が本実施の形態5の太陽電池モジュール500では半導体基板1に入射するため、発電電流が増加し、発電効率が向上する。なお、ガラス板11に対して傾斜して入射する光では表側集電極2に入射することがあるため、なるべく表側集電極2に入射しないように太陽電池モジュール500を太陽の動きに合わせて傾ける追尾装置上に積載してもよい。   FIG. 17 is a cross-sectional view illustrating an example of a light incident path of the solar cell module according to the fifth embodiment. In the following description, it is assumed that the V-shaped angle is 60 degrees and the transparent material 13 has a regular triangular prism shape. In the figure, the glass plate 11, the sealing resin 16a, and the adhesive 9 are omitted. The light L perpendicularly incident on the glass plate 11 enters the semiconductor substrate 1 through the sealing resin 16 a, the transparent resin plate 5, and the adhesive 9 in order in a portion where there is no groove 5 v. Since the sealing resin 16a, the transparent resin plate 5, and the adhesive 9 have no large refractive index difference, almost no reflection occurs at the interface. On the other hand, as shown in the figure, the light L is incident on the transparent material 13 in the groove 5v. Since there is a difference in refractive index at the interface between the transparent material 13 and the sealing resin 16a, part of the light L is reflected and returns to the incident side. The light entering the transparent material 13 is refracted at the interface with the transparent resin plate 5 because the bottom of the groove 5v is inclined. The incident angle of the light L with respect to this interface is about 60 degrees. When the refractive index of the transparent material 13 is as low as 1.0, the light that has entered at an incident angle of 60 degrees is refracted at a refraction angle of about 35 degrees at the boundary between the transparent material 13 and the transparent resin plate 5, and the transparent resin plate 5 side And then enters the semiconductor substrate 1 without passing through the front collector electrode 2. Depending on the shape of the groove 5v and the refractive index of the transparent material 13, the angle of refraction changes variously, but the width of the front collector 2 is equal to or greater than the width of the transparent collector 13 and the front collector 2 depending on the thickness of the transparent resin plate 5. Since there is a sufficient distance, the light perpendicularly incident on the glass plate 11 can enter the semiconductor substrate 1 without entering the front-side collector electrode 2. If the transparent material 13 is not present, the light incident and reflected on the front collector electrode 2 is incident on the semiconductor substrate 1 in the solar cell module 500 of the fifth embodiment, so that the power generation current increases and the power generation efficiency is improved. In addition, since the light which inclines with respect to the glass plate 11 may enter into the front side collector electrode 2, the tracking which inclines the solar cell module 500 according to a solar motion so that it may not enter into the front side collector electrode 2 as much as possible. It may be loaded on the device.

上記では透明材料13の光学屈折率を透明樹脂板5および封止樹脂16aに比べて低くしたが、0.1以上高くしてもよい。そのような透明材料13として、酸化チタン、酸化ジルコニウムなど高屈折率の無機材料のサブミクロンの微粒子を質量割合として50〜70%、透明な樹脂中に分散したものを用いることができる。このような材料を溝5v内に塗布、焼き付けすることで屈折率が1.8以上の透明材料13を得ることができる。   In the above, the optical refractive index of the transparent material 13 is lower than that of the transparent resin plate 5 and the sealing resin 16a, but may be higher by 0.1 or more. As such a transparent material 13, a material in which submicron fine particles of a high refractive index inorganic material such as titanium oxide or zirconium oxide are dispersed in a transparent resin in a mass ratio of 50 to 70% can be used. A transparent material 13 having a refractive index of 1.8 or more can be obtained by applying and baking such a material in the groove 5v.

図18は本実施の形態5の太陽電池モジュールの光の入射経路の他の例を説明する断面図である。ガラス板11に垂直に入射した光Lは溝5vの無い部分では封止樹脂16a、透明樹脂板5、接着剤9を順に経て半導体基板1に入射する。封止樹脂16a、透明樹脂板5、接着剤9には大きな屈折率差がないため、界面でほとんど反射は生じない。一方、図のように溝5vでは光Lは透明材料13に入射する。透明材料13と封止樹脂16aとの界面に屈折率差があるため、光Lの一部は反射されて入射側に戻る。透明材料13の光学屈折率が1.8以上と高い場合、入射角60度で侵入した光は溝5vの一方の斜面である、透明材料13と透明樹脂板5との境界において全反射し、他方の斜面におおよそ垂直に入射する。そして他方の斜面である、透明材料13と透明樹脂板5との境界を通過した光Lは透明樹脂板5内を直進して表側集電極2に入ることなく半導体基板1に入射する。
従って、上記の透明材料13の光学屈折率が透明樹脂板5および封止樹脂16aに比べて低い場合と同様に高い場合でも発電効率が向上する。
FIG. 18 is a cross-sectional view illustrating another example of the light incident path of the solar cell module according to the fifth embodiment. The light L perpendicularly incident on the glass plate 11 enters the semiconductor substrate 1 through the sealing resin 16 a, the transparent resin plate 5, and the adhesive 9 in order in a portion where there is no groove 5 v. Since the sealing resin 16a, the transparent resin plate 5, and the adhesive 9 have no large refractive index difference, almost no reflection occurs at the interface. On the other hand, as shown in the figure, the light L is incident on the transparent material 13 in the groove 5v. Since there is a difference in refractive index at the interface between the transparent material 13 and the sealing resin 16a, part of the light L is reflected and returns to the incident side. When the optical refractive index of the transparent material 13 is as high as 1.8 or more, the light that has entered at an incident angle of 60 degrees is totally reflected at the boundary between the transparent material 13 and the transparent resin plate 5, which is one slope of the groove 5v, Incidently perpendicular to the other slope. The light L that has passed through the boundary between the transparent material 13 and the transparent resin plate 5, which is the other slope, goes straight through the transparent resin plate 5 and enters the semiconductor substrate 1 without entering the front-side collector electrode 2.
Accordingly, the power generation efficiency is improved even when the optical refractive index of the transparent material 13 is high as compared with the case where the optical refractive index is low compared to the transparent resin plate 5 and the sealing resin 16a.

溝5vは底部がガラス板11の面および半導体基板1の主面に対して傾斜しており、その内部に設置された透明材料13の光学屈折率が透明樹脂板5および封止樹脂16aと異なるので、透明材料13に入射した光Lはその光路が直進しない。このように光路を変更させる構造が表側集電極2の直上にあるので、光Lが表側集電極2に入射せず、半導体基板1に入射して発電効率が向上する。   The bottom of the groove 5v is inclined with respect to the surface of the glass plate 11 and the main surface of the semiconductor substrate 1, and the optical refractive index of the transparent material 13 installed therein is different from that of the transparent resin plate 5 and the sealing resin 16a. Therefore, the light path of the light L incident on the transparent material 13 does not travel straight. Since the structure for changing the optical path is directly above the front-side collector electrode 2, the light L does not enter the front-side collector electrode 2, but enters the semiconductor substrate 1 to improve power generation efficiency.

上記では溝5vの形状をV字型の溝形状として、透明材料13を三角柱の形状、特にほぼ正三角柱の形状としたので、製造が簡単で、かつ斜面の傾きを大きくできるので光の経路変更の効果が大きい。溝5vの形状として、V字型の溝形状のかわりに、U字型、W字型などの溝としても類似の効果が得られる。底部を曲面として集光や拡散光のレンズとなるようにしてもよい。溝5vの幅は表側集電極2の幅と同程度とすることが好ましいが、表側集電極2の幅の2〜3倍と広くしても、溝5v間に十分な広さで平坦な面があればよい。   In the above, the shape of the groove 5v is a V-shaped groove shape, and the transparent material 13 has a triangular prism shape, particularly a substantially regular triangular prism shape. Therefore, the manufacturing process is simple and the slope of the slope can be increased, so that the light path can be changed. The effect is great. Similar effects can be obtained when the groove 5v has a U-shaped or W-shaped groove instead of the V-shaped groove shape. You may make it become a lens of condensing or a diffused light by making a bottom part into a curved surface. The width of the groove 5v is preferably about the same as the width of the front collector 2, but even if it is as wide as two to three times the width of the front collector 2, a flat surface with a sufficient width between the grooves 5v. If there is.

実施の形態6.
図19は本実施の形態6の太陽電池モジュールの部分断面図である。本実施の形態6の太陽電池モジュール600は実施の形態2と類似するが、太陽電池素子30の透明樹脂板5a、5bの凹部5h、5j内に導電材料61a、61bが設置されている点が異なる。
表側集電極2および裏側集電極3は細線パターンの形状であり、それぞれに対応する凹部5h、5jは細線パターンに沿った溝として形成されている。導電材料61a、61bは凹部5h、5jの底部に形成され、凹部5h、5jを完全に埋めていない。このため、導電材料61a、61bが形成された凹部5h、5jは透明樹脂板5a、5bの主面に対してへこんだ部分であり、半導体基板1の主面から突出した表側集電極2および裏側集電極3が挿入される部分である。また、導電材料61a、61bはそれぞれに対応する凹部5h、5j内で表側集電極2および裏側集電極3と接触している。細線パターンの長手方向全長にわたって各電極と各導電材料とが接触することが最も望ましいが、部分的であってもよい。導電材料61a、61bは金属ペーストの塗布、金属めっきなどの方法で形成される。導電材料61a、61bの材料として、銀、銅、ニッケル、クロム、またはこれらの合金など、金属材料とするとよい。表側集電極2、裏側集電極3と導電材料61a、61bとの電気的接続に、例えば、ナノサイズの金属粒子を含む導電性材料を用いてもよい。
Embodiment 6 FIG.
FIG. 19 is a partial cross-sectional view of the solar cell module according to the sixth embodiment. The solar cell module 600 of the sixth embodiment is similar to that of the second embodiment, except that conductive materials 61a and 61b are installed in the recesses 5h and 5j of the transparent resin plates 5a and 5b of the solar cell element 30. Different.
The front-side collector electrode 2 and the back-side collector electrode 3 have a fine line pattern shape, and the corresponding recesses 5h and 5j are formed as grooves along the fine line pattern. The conductive materials 61a and 61b are formed at the bottoms of the recesses 5h and 5j, and do not completely fill the recesses 5h and 5j. For this reason, the recesses 5h and 5j in which the conductive materials 61a and 61b are formed are recessed portions with respect to the main surfaces of the transparent resin plates 5a and 5b, and the front side collector electrode 2 and the back side protruding from the main surface of the semiconductor substrate 1 This is the portion where the collector electrode 3 is inserted. The conductive materials 61a and 61b are in contact with the front-side collector electrode 2 and the back-side collector electrode 3 in the corresponding recesses 5h and 5j. Although it is most desirable that each electrode and each conductive material are in contact with each other over the entire length in the longitudinal direction of the fine line pattern, it may be partial. The conductive materials 61a and 61b are formed by a method such as application of a metal paste or metal plating. The material of the conductive materials 61a and 61b may be a metal material such as silver, copper, nickel, chromium, or an alloy thereof. For example, a conductive material containing nano-sized metal particles may be used for electrical connection between the front-side collector electrode 2 and the back-side collector electrode 3 and the conductive materials 61a and 61b.

図20は本実施の形態6の太陽電池素子30の半導体基板1とその上の表側集電極2を示した上面図である。太陽電池素子は矩形の半導体基板1と、その半導体基板1の上に直線状の細線が平行に一定間隔で並んだ細線パターンの形状を有する表側集電極2とを備える。表側集電極2の伸びる方向は半導体基板1の矩形の短辺方向と平行である。図では半導体基板1の端部まで表側集電極2が形成されていないが、端部まで形成されていてもよい。なお、図は上面のみ示したが、反対側の面の裏側集電極3の形状も表側集電極2と同様である。   FIG. 20 is a top view showing the semiconductor substrate 1 of the solar cell element 30 of the sixth embodiment and the front-side collector electrode 2 thereon. The solar cell element includes a rectangular semiconductor substrate 1 and a front-side collector electrode 2 having a shape of a fine line pattern in which straight fine lines are arranged in parallel at regular intervals on the semiconductor substrate 1. The direction in which the front-side collector electrode 2 extends is parallel to the rectangular short-side direction of the semiconductor substrate 1. In the figure, the front-side collector electrode 2 is not formed up to the end of the semiconductor substrate 1, but it may be formed up to the end. Although only the top surface is shown in the figure, the shape of the back side collector electrode 3 on the opposite side is the same as that of the front side collector electrode 2.

図21は本実施の形態6の太陽電池素子30の透明樹脂板5aを示した上面図である。透明樹脂板5aは半導体基板1よりサイズが少し大きい矩形であり、表側集電極2のパターンにあわせた凹部5hが形成されている。凹部5h内の底部には導電材料61aが形成されている。本実施の形態は、半導体基板1の表面に図3に示すようなインターコネクタが存在せず、グリッド形状の集電極2が形成されているのみである。インターコネクタが存在しないため、インターコネクタによって遮光されることがないため、利用可能な光量が増大して発電に寄与することが出来る。その反面、グリッド状の集電極2は一方の端から他方の端まで電流を流す必要があることから、集電極2における電圧降下が大きくなるおそれがある。例えば、図3と比較した通電時の電気抵抗はおよそ4倍になっており、電力に関して導通損失の増大を防ぐために、集電極2の配線抵抗をより低くする必要がある。そこで、本実施の形態では、凹部5h、5jにおける、集電極2と透明樹脂板5a、5bの間に、導電材料61a、61bを挿入して、集電極2周囲の導電性を高めている。
以下、導電材料61a、61bを用いる構造について述べる。例えば、集電極2の幅は75um程度、高さは35um程度とする。2本のインターコネクタが存在するときと同等の抵抗を維持するためには、集電極2と凹部5hを埋めて形成される導電部の断面積を4倍程度にする必要がある。これを満たすために、例えば、導電材料61a、61bとして、集電極2と同じ抵抗率を有している場合は集電極2と同じ幅で凹部5h、5j内に鉛直方向に105um程度の厚みを有する金属層を形成すればよい。この場合の幅は、凹部5h、5jに沿った実効的な値である。すなわち、断面積が集電極2の3倍であればよい。このとき、あらかじめ凹部は基板と垂直な方向に集電極2と導電材料61a、61bが収まる深さに設定される。
導電材料61a、61bが形成された凹部5h、5jと集電極2との接合は、実施の形態1と同様に半導体基板1の表側表面または透明樹脂板5に液状の接着剤9を塗布した後、集電極2と凹部5h、5jとを位置合わせして貼りあわせ、接着剤9とともに加熱などによって硬化させることにより形成する。その後、モジュール化に伴い150℃程度の熱工程を伴う太陽電池素子の真空封止加熱の際に、実質的に再度熱圧着させることで導電材料61a、61bと集電極2との接合を図ることが可能になる。真空封止時の加熱温度は高温による太陽電池特性の低下を起こさないために150℃程度とすることが望ましい。したがって集電極2と上の凹部5h、5jを埋める導電材料61a、61bは150℃〜180℃程度の温度で融解、ないし硬化するペーストを使用することが望ましい。
FIG. 21 is a top view showing the transparent resin plate 5a of the solar cell element 30 according to the sixth embodiment. The transparent resin plate 5 a is a rectangle that is slightly larger in size than the semiconductor substrate 1, and has a recess 5 h that matches the pattern of the front-side collector electrode 2. A conductive material 61a is formed at the bottom of the recess 5h. In the present embodiment, the interconnector as shown in FIG. 3 does not exist on the surface of the semiconductor substrate 1, and only the grid-shaped collector electrode 2 is formed. Since there is no interconnector, light is not shielded by the interconnector, so that the amount of light that can be used increases, contributing to power generation. On the other hand, since the grid-shaped collector electrode 2 needs to pass a current from one end to the other end, the voltage drop at the collector electrode 2 may increase. For example, the electric resistance at the time of energization compared with FIG. 3 is about 4 times, and it is necessary to lower the wiring resistance of the collector electrode 2 in order to prevent an increase in conduction loss with respect to power. Therefore, in the present embodiment, the conductive material 61a, 61b is inserted between the collector electrode 2 and the transparent resin plates 5a, 5b in the recesses 5h, 5j to enhance the conductivity around the collector electrode 2.
Hereinafter, a structure using the conductive materials 61a and 61b will be described. For example, the collector electrode 2 has a width of about 75 μm and a height of about 35 μm. In order to maintain the same resistance as when two interconnectors are present, the cross-sectional area of the conductive portion formed by filling the collector electrode 2 and the concave portion 5h needs to be about four times. In order to satisfy this, for example, as the conductive materials 61a and 61b, when having the same resistivity as the collector electrode 2, a thickness of about 105 μm in the vertical direction is formed in the recesses 5h and 5j with the same width as the collector electrode 2. What is necessary is just to form the metal layer which has. The width in this case is an effective value along the recesses 5h and 5j. That is, the cross-sectional area may be three times that of the collector electrode 2. At this time, the concave portion is set to a depth that allows the collector electrode 2 and the conductive materials 61a and 61b to be accommodated in a direction perpendicular to the substrate.
The concave portions 5h and 5j in which the conductive materials 61a and 61b are formed and the collector electrode 2 are joined after the liquid adhesive 9 is applied to the front surface of the semiconductor substrate 1 or the transparent resin plate 5 as in the first embodiment. The collector electrode 2 and the recesses 5h and 5j are aligned and bonded together, and are formed by curing together with the adhesive 9 by heating or the like. After that, in the vacuum sealing heating of the solar cell element with a heat process of about 150 ° C. with modularization, the conductive materials 61 a and 61 b and the collector electrode 2 are joined by substantially thermocompression bonding again. Is possible. The heating temperature at the time of vacuum sealing is preferably about 150 ° C. so as not to cause deterioration of solar cell characteristics due to high temperature. Therefore, it is desirable to use a paste that melts or hardens at a temperature of about 150 ° C. to 180 ° C. for the conductive materials 61a and 61b filling the collector electrode 2 and the concave portions 5h and 5j above.

なお、凹部5h内の底部の導電材料61a、61bは、めっき法により形成してもよい。通常スクリーン印刷などで形成される金属に比べて、めっき法により構成された金属は抵抗率が低い。具体的にはめっき法で構成された金属はバルクの金属と同等の抵抗率を示し、たとえば20℃における抵抗率は、銀は1.6μΩcm、銅は1.7μΩcm程度が期待できる。一方、スクリーン印刷により形成された銀では抵抗率は7μΩcm程度となるので、導電材料61a、61bをめっきにより形成する場合は、厚みを25μm程度に抑えることができる。めっき層と集電極2の間は、薄い導電性接着剤やはんだ等で接続すればよい。透明樹脂板5は絶縁体であるので、無電解めっき法を用いることでめっき層を形成できる。なお、導電材料61a、61bとして金属ストリップを挿入するなど、他の方法で導電性を高めてもよい。   The conductive materials 61a and 61b at the bottom in the recess 5h may be formed by a plating method. Compared to metals that are usually formed by screen printing or the like, metals formed by plating have a lower resistivity. Specifically, the metal formed by plating shows a resistivity equivalent to that of a bulk metal. For example, the resistivity at 20 ° C. can be expected to be about 1.6 μΩcm for silver and about 1.7 μΩcm for copper. On the other hand, since the resistivity of silver formed by screen printing is about 7 μΩcm, the thickness can be suppressed to about 25 μm when the conductive materials 61 a and 61 b are formed by plating. What is necessary is just to connect between a plating layer and the collector electrode 2 with a thin conductive adhesive, solder, etc. FIG. Since the transparent resin plate 5 is an insulator, a plating layer can be formed by using an electroless plating method. Note that the conductivity may be increased by other methods such as inserting metal strips as the conductive materials 61a and 61b.

また、透明樹脂板5aの矩形の長辺に沿った一方の端に導電材料からなる接続領域62aが形成されている。接続領域62aの導電材料は凹部5h内の導電材料61aと同材料でもよいし、異なる材料としてもよい。接続領域62aは複数の異なる凹部5h内の導電材料61aと接して、導電材料61aどうしを電気的に接続する。接続領域62aの導電材料は、複数の凹部5h内と複数の凹部5h間の透明樹脂板5aの平坦な表面とに連続して形成されている。接続領域62aは透明樹脂板5aと半導体基板1とを貼りあわせた際に、半導体基板1の端よりはみ出す位置に形成されている。図の場合、透明樹脂板5aの矩形の短辺の長さが半導体基板1の短辺の長さより長く、透明樹脂板5aを半導体基板1の表側に貼りあわせた際に透明樹脂板5aの長辺に沿った部分がはみ出す。そのはみ出す部分に接続領域62aが形成されている。なお、上記は表側に貼りあわせる透明樹脂板5aについて説明したが、裏側の裏側集電極3の形状、裏側に貼りあわせる透明樹脂板5bも同様の形状である。   In addition, a connection region 62a made of a conductive material is formed at one end along the long side of the rectangle of the transparent resin plate 5a. The conductive material of the connection region 62a may be the same material as the conductive material 61a in the recess 5h, or may be a different material. The connection region 62a is in contact with the conductive material 61a in the plurality of different recesses 5h to electrically connect the conductive materials 61a. The conductive material of the connection region 62a is continuously formed in the plurality of recesses 5h and the flat surface of the transparent resin plate 5a between the plurality of recesses 5h. The connection region 62 a is formed at a position that protrudes from the end of the semiconductor substrate 1 when the transparent resin plate 5 a and the semiconductor substrate 1 are bonded together. In the case of the figure, the length of the rectangular short side of the transparent resin plate 5a is longer than the length of the short side of the semiconductor substrate 1, and the length of the transparent resin plate 5a when the transparent resin plate 5a is bonded to the front side of the semiconductor substrate 1 is shown. The part along the side protrudes. A connection region 62a is formed at the protruding portion. In addition, although the above demonstrated the transparent resin board 5a bonded together on the front side, the shape of the back side collector electrode 3 on the back side and the transparent resin board 5b bonded on the back side are also the same shape.

図22は本実施の形態6の太陽電池素子を示した斜視図である。図20の半導体基板1、図21の透明樹脂板5a、および裏側の透明樹脂板5bを貼りあわせた構造を示している。半導体基板1の表側に接着された透明樹脂板5aと裏側に接着された透明樹脂板5bとは、それぞれの半導体基板1の主面に垂直な方向から見て180度反転している。すなわち、表側の接続領域62aと裏側の接続領域62bとは半導体基板1の反対側の端からはみ出している。   FIG. 22 is a perspective view showing the solar cell element according to the sixth embodiment. The structure which bonded the semiconductor substrate 1 of FIG. 20, the transparent resin board 5a of FIG. 21, and the transparent resin board 5b of the back side is shown. The transparent resin plate 5a bonded to the front side of the semiconductor substrate 1 and the transparent resin plate 5b bonded to the back side are inverted 180 degrees when viewed from the direction perpendicular to the main surface of each semiconductor substrate 1. In other words, the connection region 62 a on the front side and the connection region 62 b on the back side protrude from the opposite ends of the semiconductor substrate 1.

図23は本実施の形態6の太陽電池モジュール600の太陽電池素子の接続構造の例を示した部分断面図である。隣接する太陽電池素子30はそれぞれの半導体基板1の端からはみ出した接続領域62aと接続領域62bとが対向するように設置される。接続領域62aと接続領域62bとの間が電気的に接続されることによって、太陽電池素子30どうしが直列接続される。接続領域62aと接続領域62bとは直接接触するように透明樹脂板5a、5bを変形させてもよく、また、図のように導電性の接続材料66を介して電気的に接続するようにしてもよい。接続材料66は、たとえば、金属ペーストからなる材料、はんだで被覆した平角銅線などを用いることができる。接続材料66の厚みは半導体基板1の厚みと同等以上とすると接続材料66と接続領域62a、62bとの接触が良好となるのでよい。
また、接続材料66に異方性導電フィルムを使用してもよい。前記導電性の接続材料66に一般的な導電体を用いる場合、前記樹脂板5a、5bを貼り合わせる際に位置ずれが生じると、図23の左右方向に隣接する太陽電池素子30やグリッドの集電極2と物理的に接触して短絡してしまうことがある。導電性の接続材料66に異方性導電フィルムを使用することにより、上下の樹脂板を貼り合わせる際に位置ずれが生じたり、上下の貼り合わせの際の押し付け力により接続材料66が変形したりすることにより、接続材料66が半導体基板1やグリッド集電極2と接触しても短絡が生じない。また、異方性導電フィルムを接続する際の加熱および加圧工程では、接続領域を選択的に加熱、加圧すればよい。上下の樹脂板は熱伝導率が低いため、異方性導電フィルムの接続工程で半導体基板1が損傷するおそれも小さい。この方法によって、太陽電池モジュール600間の接続工程において生産性を高めることが可能になる。
FIG. 23 is a partial cross-sectional view showing an example of a solar cell element connection structure of solar cell module 600 of the sixth embodiment. Adjacent solar cell elements 30 are installed such that the connection region 62a and the connection region 62b that protrude from the end of each semiconductor substrate 1 face each other. The solar cell elements 30 are connected in series by electrically connecting the connection region 62a and the connection region 62b. The transparent resin plates 5a and 5b may be deformed so that the connection region 62a and the connection region 62b are in direct contact with each other, and are electrically connected via a conductive connection material 66 as shown in the figure. Also good. As the connection material 66, for example, a material made of a metal paste, a rectangular copper wire covered with solder, or the like can be used. If the thickness of the connection material 66 is equal to or greater than the thickness of the semiconductor substrate 1, the contact between the connection material 66 and the connection regions 62a and 62b may be good.
Further, an anisotropic conductive film may be used for the connection material 66. When a general conductor is used for the conductive connection material 66, if a positional shift occurs when the resin plates 5a and 5b are bonded together, the solar cell elements 30 and grids adjacent to each other in the left-right direction in FIG. There may be a short circuit due to physical contact with the electrode 2. By using an anisotropic conductive film for the conductive connection material 66, positional displacement occurs when the upper and lower resin plates are bonded together, or the connection material 66 is deformed by the pressing force when the upper and lower resin plates are bonded together. Thus, even if the connection material 66 comes into contact with the semiconductor substrate 1 or the grid collector electrode 2, no short circuit occurs. Moreover, what is necessary is just to selectively heat and pressurize a connection area | region in the heating and pressurization process at the time of connecting an anisotropic conductive film. Since the upper and lower resin plates have low thermal conductivity, the risk of damaging the semiconductor substrate 1 in the connecting step of the anisotropic conductive film is small. This method makes it possible to increase productivity in the connection process between the solar cell modules 600.

本実施の形態6の太陽電池素子は、上記のように、表側集電極2、裏側集電極3に対向する凹部5h、5j内に表側集電極2、裏側集電極3と接触する導電材料61a、61bを有するので、表側集電極2、裏側集電極3の断面積が増大するのと同様な効果があり、集電に伴う抵抗損失が低下するので、変換効率が向上する。上記は表側、裏側の両方に形成したが表側だけとしてもよい。また、透明樹脂板5a、5bは半導体基板1の端部からはみ出し、かつ、はみ出した領域に凹部5h、5j内の導電材料61a、61bと接続する導電性の接続領域62a、62bを有する。そして接続領域62a、62bを介して隣接する太陽電池素子どうしが電気的に接続される。つまり、導電材料61a、61bを有する透明樹脂板5a、5bがインターコネクタの機能を有している。このため、太陽電池素子間の電気接続が容易となる。特に、本実施の形態6では、半導体基板1の形状を矩形状にして、表側集電極2、裏側集電極3が伸びる方向を矩形の短辺に平行な方向としたので、表側集電極2、裏側集電極3の抵抗が低くなり、他に銅線などのインターコネクタを用いなくても良好な接続が可能となる。   As described above, the solar cell element of the sixth embodiment includes the conductive material 61a in contact with the front-side collector electrode 2 and the back-side collector electrode 3 in the recesses 5h and 5j facing the front-side collector electrode 2 and the back-side collector electrode 3, respectively. Since it has 61b, there exists an effect similar to the cross-sectional area of the front side collector electrode 2 and the back side collector electrode 3 increasing, and since the resistance loss accompanying current collection falls, conversion efficiency improves. Although the above is formed on both the front side and the back side, only the front side may be used. Further, the transparent resin plates 5a and 5b protrude from the end of the semiconductor substrate 1 and have conductive connection regions 62a and 62b connected to the conductive materials 61a and 61b in the recesses 5h and 5j in the protruding region. Adjacent solar cell elements are electrically connected to each other through the connection regions 62a and 62b. That is, the transparent resin plates 5a and 5b having the conductive materials 61a and 61b have a function of an interconnector. For this reason, the electrical connection between solar cell elements becomes easy. In particular, in Embodiment 6, the shape of the semiconductor substrate 1 is rectangular, and the direction in which the front side collector electrode 2 and the back side collector electrode 3 extend is parallel to the short side of the rectangle. The resistance of the back-side collector electrode 3 is reduced, and a good connection is possible without using an interconnector such as a copper wire.

変形例1
裏面側の透明樹脂板5bに替えて、曲げ弾性率の低い樹脂シート5cを用いる点が異なる(形状は図19の透明樹脂板5bと同じ)。太陽電池素子30に十分な光閉じ込め効果がある場合には、太陽電池素子30の裏面側に出射する光量が小さいために、図19のような構造では、裏面側の透明樹脂板5bへの光再入射の効果がほとんど得られない。したがって、この場合には、裏面に透明度の低い軟質の樹脂シート5cを用いることができる。透明樹脂板5bを用いた場合と比較して硬度が低いために、外部からの衝撃が加わった場合に、半導体基板1にかかる応力が低減されて半導体基板1の割れが起こりにくくなる。樹脂シート5cには、封止工程における加熱での劣化が起こりにくいものが適しており、たとえば耐熱性に優れるフッ素ゴムを使用すると良い。実施の形態1で述べたように、透明樹脂板5bに用いられるPETやPENの曲げ弾性率は2400MPa程度以上であるのに対して、フッ素ゴム製の樹脂シートを使用した場合、曲げ弾性率はおおむね5〜20MPaであるから、外部からの衝撃が加わった場合に、半導体基板1に加わる応力が100分の1程度に低減されることになる。
変形例2
図23に示された接続構造において、隣接する太陽電池素子間の隙間を封止樹脂で埋めて、ガラス板11を省いて受光面側の透明樹脂板5aが露出した形で太陽電池モジュール600を構成しても良い。ガラス板11がないので、ガラス板を透過する際の損失をなくすことができる。この場合は、封止材12をガラス板で構成して、モジュール全体の強度を確保してもよい。透明樹脂板5aの露出面の耐候性を高めるために、露出面に無機コーティングを施すことで、信頼性を高めることができる。
Modification 1
The difference is that a resin sheet 5c having a low flexural modulus is used instead of the transparent resin plate 5b on the back side (the shape is the same as the transparent resin plate 5b in FIG. 19). When the solar cell element 30 has a sufficient light confinement effect, the amount of light emitted to the back surface side of the solar cell element 30 is small. Therefore, in the structure as shown in FIG. 19, the light to the transparent resin plate 5b on the back surface side Almost no re-incidence effect is obtained. Therefore, in this case, a soft resin sheet 5c with low transparency can be used on the back surface. Since the hardness is lower than when the transparent resin plate 5b is used, when an external impact is applied, the stress applied to the semiconductor substrate 1 is reduced and the semiconductor substrate 1 is less likely to crack. As the resin sheet 5c, a resin sheet that is not easily deteriorated by heating in the sealing step is suitable. For example, fluororubber having excellent heat resistance may be used. As described in the first embodiment, the flexural modulus of PET or PEN used for the transparent resin plate 5b is about 2400 MPa or more, whereas when a fluororubber resin sheet is used, the flexural modulus is Since it is approximately 5 to 20 MPa, when an external impact is applied, the stress applied to the semiconductor substrate 1 is reduced to about 1/100.
Modification 2
In the connection structure shown in FIG. 23, the solar cell module 600 is formed in such a manner that a gap between adjacent solar cell elements is filled with sealing resin, the glass plate 11 is omitted, and the transparent resin plate 5a on the light receiving surface side is exposed. It may be configured. Since there is no glass plate 11, the loss at the time of permeate | transmitting a glass plate can be eliminated. In this case, the sealing material 12 may be formed of a glass plate to ensure the strength of the entire module. In order to increase the weather resistance of the exposed surface of the transparent resin plate 5a, the reliability can be enhanced by applying an inorganic coating to the exposed surface.

実施の形態7.
図24は本実施の形態7の太陽電池モジュール700の部分断面図である。本実施の形態7の太陽電池モジュール700は、半導体基板1の受光面側の構成は実施の形態6と同様であるが、裏面側の樹脂板5b中に散乱体63を包含している点に特徴がある。受光面側の透明樹脂板5aは内側の太陽電池基板に可能な限り多くの太陽光を導入する必要があるので、なるべく光の吸収の少ない材料にする必要がある。一方で、太陽電池基板材料としてシリコンを用いた場合、半導体基板1の受光面に入射した太陽光のうち太陽電池基板を透過して裏面側に到達する波長成分は、おおよそ900nmより長波長の近赤外線である。したがって、透明樹脂板5bは近赤外領域で透明であればよい。
散乱体63はシリコンの分光感度が大きい波長範囲900nm〜1200nmを効率良く散乱するものであり、例えば球状の酸化チタン微粒子や、銀微粒子が好適である。酸化チタン微粒子は、例えば平均粒子径が400nm〜700nmのものを用いれば良い。銀微粒子には扁平な形状のものを用いても良い。銀微粒子の直径の平均値は100nm〜300nmの範囲が望ましい。
これらの散乱体を透明樹脂板5b中に導入することにより、半導体基板1の裏面側に出射する光が散乱されて、その一部が、半導体基板1の裏面から再入射する。図24に記載された矢印は、透過光が散乱されて再入射する例を示している。したがって、裏面側に受光面と同様に透明樹脂板を配置した場合と比較して、発電電流が増加する効果が得られる。
なお、散乱体63の分布に傾斜をつけて、半導体基板1側に高濃度に分布させることで、散乱の割合を高めることができる。
また、透明樹脂板5bの凹部5j間にある平坦面上に上記の散乱体63を含む層を設けて、半導体基板1を透過した近赤外線を散乱させることもできる。一方、透明樹脂板5中に散乱体63を分散させる方法は、透明樹脂板5bの取扱が容易であり、太陽電池モジュール700の生産効率が高い利点がある。
Embodiment 7 FIG.
FIG. 24 is a partial cross-sectional view of solar cell module 700 of the seventh embodiment. The solar cell module 700 of the seventh embodiment is similar in configuration to the light receiving surface side of the semiconductor substrate 1 as in the sixth embodiment, but includes a scatterer 63 in the resin plate 5b on the back surface side. There are features. Since the transparent resin plate 5a on the light receiving surface side needs to introduce as much sunlight as possible into the inner solar cell substrate, it is necessary to use a material that absorbs as little light as possible. On the other hand, when silicon is used as the solar cell substrate material, the wavelength component that passes through the solar cell substrate and reaches the back surface side of the sunlight incident on the light receiving surface of the semiconductor substrate 1 is approximately longer than about 900 nm. Infrared. Therefore, the transparent resin plate 5b may be transparent in the near infrared region.
The scatterer 63 efficiently scatters a wavelength range of 900 nm to 1200 nm in which the spectral sensitivity of silicon is large. For example, spherical titanium oxide fine particles and silver fine particles are suitable. For example, titanium oxide fine particles having an average particle diameter of 400 nm to 700 nm may be used. Silver particles having a flat shape may be used. The average diameter of the silver fine particles is preferably in the range of 100 nm to 300 nm.
By introducing these scatterers into the transparent resin plate 5b, the light emitted to the back surface side of the semiconductor substrate 1 is scattered, and a part of the light reenters from the back surface of the semiconductor substrate 1. The arrows described in FIG. 24 indicate an example in which transmitted light is scattered and re-entered. Therefore, compared with the case where a transparent resin plate is disposed on the back side in the same manner as the light receiving surface, an effect of increasing the generated current can be obtained.
In addition, the ratio of scattering can be increased by inclining the distribution of the scatterers 63 and distributing the scatterers 63 at a high concentration on the semiconductor substrate 1 side.
In addition, a layer including the scatterer 63 may be provided on a flat surface between the concave portions 5j of the transparent resin plate 5b to scatter near infrared rays transmitted through the semiconductor substrate 1. On the other hand, the method of dispersing the scatterer 63 in the transparent resin plate 5 is advantageous in that the transparent resin plate 5b is easy to handle and the production efficiency of the solar cell module 700 is high.

変形例.
裏面側の樹脂板に含まれる散乱体63として、アップコンバージョンを起こすような蛍光体を使用することもできる。太陽光に含まれる1200nmより長波長の赤外光は、シリコン太陽電池においてはシリコンの分光感度が低いために、太陽電池基板に入射しても発電にほとんど寄与しない。蛍光体での波長変換により、半導体基板1の裏面側から再入射する光を前記太陽電池素子において発電に寄与する300〜1200nmの波長の光に変換させることで、散乱体による裏面からの再入射光による発電電流の増加を期待できる。
Modified example.
As the scatterer 63 included in the resin plate on the back side, a phosphor that causes up-conversion can be used. Infrared light having a wavelength longer than 1200 nm contained in sunlight hardly contributes to power generation even when it is incident on the solar cell substrate because silicon has a low spectral sensitivity in silicon solar cells. By re-entering light from the back side of the semiconductor substrate 1 into light having a wavelength of 300 to 1200 nm that contributes to power generation in the solar cell element by wavelength conversion in the phosphor, re-incident from the back surface by the scatterer. An increase in power generation current due to light can be expected.

上記の各実施の形態で述べた部分的な構造は、技術的な矛盾が生じない範囲内で組み合わせてもよい。   The partial structures described in the above embodiments may be combined as long as no technical contradiction occurs.

本発明の太陽電池素子および太陽電池モジュールは、信頼性、製造時の歩留まり向上に有用である。   The solar cell element and the solar cell module of the present invention are useful for improving reliability and yield during production.

1 半導体基板、1a 表側の表面、2b 裏側の表面、2 表側集電極、3 裏側集電極、5,5a,5b 透明樹脂板、 5c 樹脂シート、5h,5j 透明樹脂板の凹部、5p 透明樹脂板の凸部、5s スリット、5v V溝、9,9a,9b 接着剤、11 ガラス板、12 封止材、13 透明材料、16,16a,16b 封止樹脂、21 インターコネクタ、30 太陽電池素子、31 逆導電型の半導体層、32 同導電型の半導体層、33 反射防止膜、61,61a,61b 導電材料、62,62a,62b 接続領域、63 散乱体、66 接続材料、100,200,300,400,500,600,700 太陽電池モジュール。 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate, 1a Front side surface, 2b Back side surface, 2 Front side collector electrode, 3 Back side collector electrode, 5, 5a, 5b Transparent resin plate, 5c Resin sheet, 5h, 5j Concave part of transparent resin plate, 5p Transparent resin plate Convex part, 5s slit, 5v V groove, 9, 9a, 9b adhesive, 11 glass plate, 12 sealing material, 13 transparent material, 16, 16a, 16b sealing resin, 21 interconnector, 30 solar cell element, 31 semiconductor layer of reverse conductivity type, 32 semiconductor layer of the same conductivity type, 33 antireflection film, 61, 61a, 61b conductive material, 62, 62a, 62b connection region, 63 scatterer, 66 connection material, 100, 200, 300 , 400, 500, 600, 700 Solar cell module.

Claims (2)

光起電力を有する接合部を備えた半導体基板と、
前記半導体基板の第1面に形成され、互いに平行に一定間隔で並んだ複数の集電極と、
前記半導体基板の第1面の裏面となる第2面に形成された裏面電極と、
それぞれの前記集電極に対向する位置に前記集電極を覆う凹部が形成され、当該凹部内に前記集電極と接続されて導通する第1導電部材を有し、前記集電極および前記第1面を覆うように配置され、かつ前記半導体基板の端部からはみ出した位置に第1接続領域を備えた透明樹脂板と、
前記裏面電極に対向する位置に前記裏面電極を覆う凹部が形成され、当該凹部内に前記裏面電極と接続されて導通する第2導電部材を有し、前記裏面電極および前記第2面を覆うように配置され、かつ前記半導体基板の端部からはみ出した位置に第2接続領域を備えた裏面樹脂板と、
を有する太陽電池素子を直列に接続して配列させた太陽電池モジュールであって、
隣接する前記太陽電池素子の前記第1接続領域と前記第2接続領域とを重ねて配置して導電性の接続部を介し接続され、隣接する前記太陽電池素子間で一方の太陽電池素子の前記集電極と他方の太陽電池素子の前記裏面電極とが導通していることを特徴とする太陽電池モジュール。
A semiconductor substrate with a junction having photovoltaic power;
A plurality of collector electrodes formed on the first surface of the semiconductor substrate and arranged in parallel with each other at regular intervals ;
A back electrode formed on a second surface to be the back surface of the first surface of the semiconductor substrate;
A recess that covers the collector electrode is formed at a position facing each of the collector electrodes, and a first conductive member that is connected to the collector electrode and is conductive is provided in the recess, and the collector electrode and the first surface are connected to each other. A transparent resin plate disposed to cover and having a first connection region at a position protruding from an end of the semiconductor substrate;
A recess that covers the back electrode is formed at a position that faces the back electrode, and has a second conductive member that is connected to the back electrode and is conductive in the recess, so as to cover the back electrode and the second surface. And a rear resin plate provided with a second connection region at a position protruding from the end of the semiconductor substrate,
A solar cell module in which solar cell elements having
The first connection region and the second connection region of the adjacent solar cell elements are arranged so as to overlap each other and are connected via a conductive connection portion, and the one solar cell element is adjacent to each other between the adjacent solar cell elements. A solar cell module, wherein the collector electrode is electrically connected to the back electrode of the other solar cell element.
接続部は異方性導電フィルムであることを特徴とする請求項1に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the connecting portion is an anisotropic conductive film.
JP2014532741A 2012-09-03 2013-07-09 Solar cell module Expired - Fee Related JP6011626B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012193353 2012-09-03
JP2012193353 2012-09-03
PCT/JP2013/004225 WO2014034006A1 (en) 2012-09-03 2013-07-09 Solar cell element and solar cell module

Publications (2)

Publication Number Publication Date
JPWO2014034006A1 JPWO2014034006A1 (en) 2016-08-08
JP6011626B2 true JP6011626B2 (en) 2016-10-19

Family

ID=50182849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014532741A Expired - Fee Related JP6011626B2 (en) 2012-09-03 2013-07-09 Solar cell module

Country Status (2)

Country Link
JP (1) JP6011626B2 (en)
WO (1) WO2014034006A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154185A1 (en) * 2017-02-22 2018-08-30 Oy Ics Intelligent Control Systems Ltd Optical shield for photovoltaic cell
WO2019087693A1 (en) * 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 Solar cell module and production method therefor
CN108321231B (en) * 2018-03-20 2023-11-10 江苏东鋆光伏科技有限公司 Arc light-storage type solar cell panel structure and preparation method thereof
JP6864642B2 (en) * 2018-03-22 2021-04-28 株式会社東芝 Solar cells, multi-junction solar cells, solar cell modules and photovoltaic systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671093B2 (en) * 1985-04-19 1994-09-07 株式会社日立製作所 Photovoltaic element
GB2247564B (en) * 1990-08-16 1995-01-04 Eev Ltd A solar cell arrangement
JP3098835B2 (en) * 1992-01-13 2000-10-16 本田技研工業株式会社 Solar cell coating
JPH1187755A (en) * 1997-09-11 1999-03-30 Canon Inc Solar battery module and manufacture thereof
JP2001267595A (en) * 2000-03-17 2001-09-28 Aisin Seiki Co Ltd Solar cell module
JP4958525B2 (en) * 2006-11-29 2012-06-20 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
JP5116363B2 (en) * 2007-05-29 2013-01-09 デクセリアルズ株式会社 Manufacturing method of conductor wire
JP2010272725A (en) * 2009-05-22 2010-12-02 Mitsubishi Electric Corp Thin film solar cell module and method for manufacturing the same
JP5630158B2 (en) * 2010-09-06 2014-11-26 凸版印刷株式会社 Manufacturing method of solar cell module and sealing material for solar cell module

Also Published As

Publication number Publication date
JPWO2014034006A1 (en) 2016-08-08
WO2014034006A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP4646558B2 (en) Solar cell module
US9741887B2 (en) Solar cell module
KR101989091B1 (en) Solar cell and solar cell panel including the same
JP4989549B2 (en) Solar cell and solar cell module
KR101679452B1 (en) Solar battery, solar battery module and solar battery system
KR101509844B1 (en) Solar cell module
CN111615752B (en) Solar cell module
US20090050190A1 (en) Solar cell and solar cell module
US10879410B2 (en) Solar cell module
JP2011049525A (en) Solar cell module
WO2012102188A1 (en) Solar cell and solar cell module
KR102107209B1 (en) Interconnector and solar cell module with the same
US9698291B2 (en) Solar cell panel and method for manufacturing the same
JP2011044750A (en) Solar cell module
JP6011626B2 (en) Solar cell module
US8927851B2 (en) Solar cell module and method of manufacturing solar cell module
US20190044001A1 (en) Solar cell wiring member and solar cell module
US10170647B2 (en) Solar cell and method for manufacturing the same
US20110139210A1 (en) Solar cell panel
JP5269014B2 (en) Solar cell module
JP6207255B2 (en) Solar cell module and method for manufacturing solar cell module
KR101714780B1 (en) Solar cell module
JPH0897458A (en) Solar cell module

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees