JP6009525B2 - Game machine - Google Patents

Game machine Download PDF

Info

Publication number
JP6009525B2
JP6009525B2 JP2014250664A JP2014250664A JP6009525B2 JP 6009525 B2 JP6009525 B2 JP 6009525B2 JP 2014250664 A JP2014250664 A JP 2014250664A JP 2014250664 A JP2014250664 A JP 2014250664A JP 6009525 B2 JP6009525 B2 JP 6009525B2
Authority
JP
Japan
Prior art keywords
random number
bit
register
value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250664A
Other languages
Japanese (ja)
Other versions
JP2015044112A (en
JP2015044112A5 (en
Inventor
小倉 敏男
敏男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP2014250664A priority Critical patent/JP6009525B2/en
Publication of JP2015044112A publication Critical patent/JP2015044112A/en
Publication of JP2015044112A5 publication Critical patent/JP2015044112A5/ja
Application granted granted Critical
Publication of JP6009525B2 publication Critical patent/JP6009525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pinball Game Machines (AREA)

Description

本発明は、遊技を行うことが可能なパチンコ機やスロット機、パロット機などの遊技機に関する。 The present invention, Yu technique can perform a pachinko machine or a slot machine, relates to a gaming machine such as Parrott machine.

遊技機として、遊技球などの遊技媒体を発射装置によって遊技領域に発射し、遊技領域に設けられている入賞口などの入賞領域に遊技媒体が入賞すると、所定個の遊技媒体が遊技者に払い出されるものがある。また、遊技媒体を投入して所定の賭け数を設定し、操作レバーを操作することにより複数種類の図柄を回転させ、ストップボタンを操作して図柄を停止させたときに停止図柄の組合せが特定の図柄の組み合わせになると、所定数の景品遊技媒体が遊技者に払い出されるものがある。また、取り込まれた遊技媒体数に応じて所定の賭け数を設定し、操作レバーを操作することにより複数種類の図柄を回転させ、ストップボタンを操作して図柄を停止させたときに停止図柄の組合せが特定の図柄の組み合わせになると、所定数の遊技媒体が遊技者に払い出されるものがある。   As a gaming machine, a game medium such as a game ball is launched into a game area by a launching device, and when a game medium wins a prize area such as a prize opening provided in the game area, a predetermined number of game media are paid out to the player. There is something to be done. Also, when a game medium is inserted, a predetermined number of bets are set, multiple types of symbols are rotated by operating the operation lever, and a combination of stop symbols is specified when the symbols are stopped by operating the stop button There are cases where a predetermined number of premium game media are paid out to the player. Also, when a predetermined number of bets are set according to the number of game media taken in, a plurality of types of symbols are rotated by operating the operation lever, and the symbols are stopped when the symbols are stopped by operating the stop button. When the combination becomes a combination of specific symbols, a predetermined number of game media may be paid out to the player.

遊技機における遊技進行は、マイクロコンピュータ等による遊技制御手段によって制御される。遊技媒体の払出の制御を行う払出制御手段が、遊技制御手段が搭載されている遊技制御基板(主基板)とは別の払出制御基板に搭載されている場合、遊技の進行は主基板に搭載された遊技制御手段によって制御されるので、入賞にもとづく景品遊技媒体数は遊技制御手段によって決定され、景品遊技媒体数を示す制御コマンドが払出制御基板に送信される。そして、払出制御手段は、遊技制御手段からの制御コマンドにもとづいて、入賞にもとづく景品遊技媒体を払い出す処理を行う。   Game progress in the gaming machine is controlled by game control means such as a microcomputer. If the payout control means for controlling the payout of game media is mounted on a payout control board different from the game control board (main board) on which the game control means is mounted, the progress of the game is mounted on the main board Therefore, the number of prize game media based on the winning is determined by the game control means, and a control command indicating the number of prize game media is transmitted to the payout control board. Then, the payout control means performs a process of paying out the prize game medium based on the winning based on the control command from the game control means.

また、そのような遊技機では、遊技機への電源供給開始時に初期化処理やバックアップデータに基づく遊技状態復旧処理を実行可能に構成されたものがある(例えば、特許文献1)。例えば、特許文献1には、遊技機への電源供給開始時に、バックアップRAM領域に記憶するバックアップデータにもとづいて、内部状態を電源断時の状態に復帰させることによって、電源断が発生しても遊技者に不利益がもたらされることを防止するとともに、クリアスイッチがオンされたことにもとづいて初期化処理を実行することによって、遊技店での遊技機運用上の利便性を向上させることが記載さている。   In addition, there is a game machine configured to execute an initialization process and a game state restoration process based on backup data when power supply to the game machine is started (for example, Patent Document 1). For example, Patent Document 1 discloses that when power supply to a gaming machine is started, the internal state is restored to the power-off state based on the backup data stored in the backup RAM area. It is described that it is possible to prevent the player from being disadvantaged and to improve the convenience of operating the gaming machine at the game store by executing the initialization process based on the clear switch being turned on. It is.

特開2001−327727号公報(段落0059−0063、段落0241、図8)JP 2001-327727 A (paragraphs 0059-0063, paragraph 0241, FIG. 8)

一般に、遊技機では、初期化処理が実行されると、乱数回路も初期化される。そのため、初期化処理が実行された直後である場合には、初期値からハードウェア乱数の更新が開始されることから比較的乱数値が予測しやすく、大当りを狙われやすい。特許文献1に記載された遊技機では、遊技中に遊技機の隙間から器具を差し込んで不正にクリアスイッチをオンにした状態で電源をリセットする行為を防止する対策は何ら講じられていない。そのため、遊技中に不正に乱数回路が初期化され、大当りを狙う不正行為が行われるおそれがある。   Generally, in a gaming machine, when an initialization process is executed, a random number circuit is also initialized. Therefore, immediately after the initialization process is executed, the update of the hardware random number is started from the initial value, so the random number value is relatively easy to predict and the big hit is likely to be targeted. In the gaming machine described in Patent Document 1, no measures are taken to prevent the act of resetting the power supply in a state where the clear switch is illegally turned on by inserting a device through the gap of the gaming machine during gaming. Therefore, the random number circuit is illegally initialized during the game, and there is a possibility that an illegal act aiming for a big hit is performed.

そこで、本発明は、不正に初期化処理が実行されることを防止することによって、不正行為を防止することができる遊技機を提供することを目的とする。   In view of the above, an object of the present invention is to provide a gaming machine that can prevent an illegal act by preventing an initialization process from being executed illegally.

本発明による遊技機は、遊技を行うことが可能な遊技機であって、遊技の進行を制御する遊技制御手段と、遊技機に設けられた電気部品を制御する電気部品制御手段と、遊技機に設けられた開閉扉(例えば、機構板を含む遊技枠)を開放状態とすることにより操作可能となり、操作に応じて操作信号を出力する初期化操作手段(例えば、クリアスイッチ921)とを備え、遊技制御手段は、遊技機への電源が投入されたときに、初期化操作手段から操作信号が入力されているか否かを判定する操作信号判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS7を実行する部分)と、遊技機への電源が投入されたときに、開放状態であるか否かを判定する開放状態判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS7aを実行する部分)と、操作信号判定手段によって操作信号が入力されていると判定され、且つ開放状態判定手段によって開放状態であると判定されたことにもとづいて、初期化処理を実行する初期化処理実行手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS7aでYのときにステップS10に移行してステップS10〜S14を実行する部分)と、初期化処理を実行したときに、電気部品制御手段を初期化するための初期化コマンドを出力する初期化コマンド出力手段と、開放状態判定手段によって開放状態でないと判定されたことにもとづいて、初期化処理実行手段による初期化処理の実行を制限する初期化制限手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS7aでNのときにステップS7bを実行したあと、そのままループ処理に移行し、ステップS10〜S14を実行しないようにする部分)と、所定の異常を検出すると、遊技の進行を不能動化する不能動化手段とを含み、不能動化手段による不能動化は、遊技機への電源を再投入し、操作信号判定手段によって操作信号が入力されていると判定され且つ開放状態判定手段によって開放状態であると判定されたことにもとづいて初期化処理実行手段によって初期化処理が実行されることにより解除されることを特徴とする。そのような構成により、不正に初期化処理が実行されることを防止することによって、不正行為を防止することができる。 A gaming machine according to the present invention is a gaming machine capable of playing a game, a game control means for controlling the progress of the game, an electrical part control means for controlling electrical parts provided in the gaming machine, and a gaming machine An opening / closing door (for example, a game frame including a mechanism board) provided on the door is operable by opening it, and includes an initialization operation means (for example, a clear switch 921) that outputs an operation signal according to the operation. The game control means determines whether or not an operation signal is input from the initialization operation means when the power to the gaming machine is turned on (for example, a step in the game control microcomputer 560). S7 and the portions for performing), when the power to the game machine is turned on, determines the open state determining means for determining whether or not an open state (e.g., a microcomputer 5 for game control The step of executing step S7a at 0) and the operation signal determining means determine that the operation signal has been input and the open state determining means determines that the open state has been established. Initialization processing execution means to be executed (for example, a portion of the game control microcomputer 560 that proceeds to step S10 when step S7a is Y and executes steps S10 to S14), and when initialization processing is executed, An initialization command output means for outputting an initialization command for initializing the electrical component control means, and an initialization process executed by the initialization process execution means based on the determination that the release state determination means is not in the open state. Initialization limiting means for limiting execution (eg, in the game control microcomputer 560, the After executing step S7b when N in flop S7a, the process proceeds to loop processing as it is, with partial) to not perform the steps S10 to S14, upon detecting a predetermined abnormality and deactivation of the proceeding of the game, look including the deactivation means, deactivation due to deactivation means, by restoring the power to the gaming machine, it is determined that the operation signal by the operation signal determination means is input and an open state determining means It is canceled when the initialization process is executed by the initialization process execution unit based on the determination of the open state . With such a configuration, unauthorized actions can be prevented by preventing the initialization process from being executed illegally.

遊技機は、開放状態判定手段によって開放状態でないと判定されたことにもとづいて、所定の報知処理を実行する報知処理実行手段(例えば、演出制御用マイクロコンピュータ100におけるステップS630を実行する部分)を備えるように構成されていてもよい。そのような構成によれば、不正行為が行われている可能性があることを報知することができ、不正行為防止のための対策を強化することができる。   The gaming machine has notification processing execution means (for example, a part for executing step S630 in the production control microcomputer 100) for executing a predetermined notification process based on the determination that the opening state determination means is not in the open state. It may be configured to include. According to such a configuration, it is possible to notify that there is a possibility that fraud is being performed, and it is possible to strengthen measures for preventing fraud.

遊技機は、遊技の進行を制御する遊技制御処理を実行する遊技制御処理実行手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS21〜S39(ステップS31,S33を除く。)を実行する部分)と、開放状態判定手段によって開放状態でないと判定されたことにもとづいて、遊技制御処理実行手段による遊技制御処理の実行を不能動化する不能動化手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS7aでNのときにステップS7bを実行したあと、そのままループ処理に移行し、ステップS16が実行されないことによって、ステップS21〜S39が実行されないようにする部分)と、を備えるように構成されていてもよい。不正行為が行われている可能性があることを検出すれば、遊技の継続を不能にすることができ、不正行為防止のための対策を強化することができる。   The gaming machine is a game control process executing means for executing a game control process for controlling the progress of the game (for example, a part for executing steps S21 to S39 (excluding steps S31 and S33) in the game control microcomputer 560). The disabling means for disabling the execution of the game control process by the game control process executing means based on the determination that the open state determining means is not in the open state (for example, in the game control microcomputer 560, step After executing step S7b when N in S7a, the process proceeds to the loop processing as it is, and the step S16 is not executed, so that the steps S21 to S39 are not executed). Also good. If it is detected that there is a possibility of cheating, continuation of the game can be disabled, and measures for preventing cheating can be strengthened.

パチンコ遊技機を正面からみた正面図である。It is the front view which looked at the pachinko game machine from the front. ガラス扉枠を取り外した状態での遊技盤の前面を示す正面図である。It is a front view which shows the front surface of the game board in the state which removed the glass door frame. 遊技機を裏面から見た背面図である。It is the rear view which looked at the gaming machine from the back. 遊技制御基板(主基板)の構成例を示すブロック図である。It is a block diagram which shows the structural example of a game control board (main board). 払出制御基板の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural example of a payout control board. 中継基板、演出制御基板、ランプドライバ基板および音声出力基板の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural example of a relay board | substrate, an effect control board, a lamp driver board | substrate, and an audio | voice output board | substrate. 電源基板の構成例を示すブロック図である。It is a block diagram which shows the structural example of a power supply board. リセット信号および電源断信号の状態を模式的に示すタイミング図である。It is a timing diagram which shows typically the state of a reset signal and a power-off signal. 遊技制御用マイクロコンピュータの構成例を示すブロック図である。It is a block diagram which shows the structural example of the microcomputer for game control. 遊技制御用マイクロコンピュータにおけるアドレスマップの一例を示す図である。It is a figure which shows an example of the address map in the microcomputer for game control. プログラム管理エリアおよび内蔵レジスタの主要部分を例示する図である。It is a figure which illustrates the main part of a program management area and a built-in register. ヘッダおよび機能設定における設定内容の一例を示す図である。It is a figure which shows an example of the setting content in a header and function setting. 第1乱数初期設定、第2乱数初期設定および割込み初期設定における設定内容の一例を示す図である。It is a figure which shows an example of the setting content in 1st random number initial setting, 2nd random number initial setting, and interruption initial setting. セキュリティ時間設定における設定内容の一例を示す図である。It is a figure which shows an example of the setting content in security time setting. 内部情報レジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of an internal information register. 乱数回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of a random number circuit. 乱数列変更レジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of a random number sequence change register. 乱数列変更回路による乱数更新規則の変更動作を示す説明図である。It is explanatory drawing which shows the change operation | movement of the random number update rule by a random number sequence change circuit. 乱数列変更回路による乱数更新規則の変更動作を示す説明図である。It is explanatory drawing which shows the change operation | movement of the random number update rule by a random number sequence change circuit. 乱数値取込レジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of a random value acquisition register. 乱数ラッチ選択レジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of a random number latch selection register. 乱数値レジスタの構成例を示す図である。It is a figure which shows the structural example of a random value register. 乱数ラッチフラグレジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of a random number latch flag register. 乱数割込み制御レジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of a random number interrupt control register. 遊技制御用マイクロコンピュータに乱数回路が外付けされる場合の構成例を示す図である。It is a figure which shows the structural example in case a random number circuit is externally attached to the microcomputer for game control. 入力ポートレジスタの構成例等を示す図である。It is a figure which shows the structural example etc. of an input port register. シリアル通信回路の送信部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmission part of a serial communication circuit. シリアル通信回路の受信部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the receiving part of a serial communication circuit. シリアル通信回路が各制御基板に搭載されるマイクロコンピュータと送受信するデータのデータフォーマットの例を示す説明図である。It is explanatory drawing which shows the example of the data format of the data which a serial communication circuit transmits / receives with the microcomputer mounted in each control board. ボーレートレジスタの例を示す説明図である。It is explanatory drawing which shows the example of a baud rate register. 制御レジスタAおよび通信フォーマット設定データの例を示す説明図である。It is explanatory drawing which shows the example of the control register A and communication format setting data. 制御レジスタBおよび割り込み要求設定データの例を示す説明図である。It is explanatory drawing which shows the example of the control register B and interrupt request setting data. ステータスレジスタAおよびステータス確認データの例を示す図である。It is a figure which shows the example of status register A and status confirmation data. ステータスレジスタBおよびステータス確認データの例を示す図である。It is a figure which shows the example of status register B and status confirmation data. 制御レジスタCおよびエラー割り込み要求設定データの例を示す説明図である。It is explanatory drawing which shows the example of the control register C and error interrupt request setting data. シリアル通信回路が備えるデータレジスタの例を示す説明図である。It is explanatory drawing which shows the example of the data register with which a serial communication circuit is provided. 大当り判定用テーブルメモリの例を示す説明図である。It is explanatory drawing which shows the example of the table memory for jackpot determination. 遊技制御手段における出力ポートのビット割り当て例を示す説明図である。It is explanatory drawing which shows the example of bit allocation of the output port in a game control means. 遊技制御手段における入力ポートのビット割り当て例を示す説明図である。It is explanatory drawing which shows the bit allocation example of the input port in a game control means. 主基板におけるCPUが実行するセキュリティチェック処理を示すフローチャートである。It is a flowchart which shows the security check process which CPU in a main board | substrate performs. 遊技制御用マイクロコンピュータが実行するメイン処理を示すフローチャートである。It is a flowchart which shows the main process which the microcomputer for game control performs. 遊技制御用マイクロコンピュータが実行するメイン処理を示すフローチャートである。It is a flowchart which shows the main process which the microcomputer for game control performs. 乱数回路設定処理の一例を示すフローチャートである。It is a flowchart which shows an example of a random number circuit setting process. 乱数回路異常検査処理の一例を示すフローチャートである。It is a flowchart which shows an example of a random number circuit abnormality test | inspection process. 4msタイマ割込処理を示すフローチャートである。It is a flowchart which shows a 4 ms timer interruption process. 電源断処理の一例を示すフローチャートである。It is a flowchart which shows an example of a power-off process. 電源断処理の一例を示すフローチャートである。It is a flowchart which shows an example of a power-off process. 遊技制御手段から払出制御手段に対して出力される制御信号の内容の一例を示す説明図である。It is explanatory drawing which shows an example of the content of the control signal output with respect to the payout control means from a game control means. 遊技制御手段と払出制御手段との間で送受信される制御コマンドの内容の一例を示す説明図である。It is explanatory drawing which shows an example of the content of the control command transmitted / received between a game control means and a payout control means. 接続OKコマンドおよび賞球準備中コマンドに設定されるエラー情報の例を示す説明図である。It is explanatory drawing which shows the example of the error information set to a connection OK command and a prize ball preparation command. 制御信号および制御コマンドの送受信に用いられる信号線等を示すブロック図である。It is a block diagram which shows the signal line etc. which are used for transmission / reception of a control signal and a control command. 通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。It is a sequence diagram showing transmission and reception of signals between the game control microcomputer and the payout control microcomputer during normal operation. 賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。FIG. 6 is a sequence diagram showing signal transmission / reception between a game control microcomputer and a payout control microcomputer during a prize ball operation. 賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。FIG. 6 is a sequence diagram showing signal transmission / reception between a game control microcomputer and a payout control microcomputer during a prize ball operation. 直ちに賞球動作を実行できない場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。FIG. 10 is a sequence diagram showing signal transmission / reception between a game control microcomputer and a payout control microcomputer when a winning ball operation cannot be executed immediately. 通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。FIG. 5 is a timing chart showing signal transmission and reception between a game control microcomputer and a payout control microcomputer during normal operation. 賞球中にエラーが発生した場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。FIG. 10 is a timing chart showing signal transmission / reception between a game control microcomputer and a payout control microcomputer when an error occurs during a winning ball. 接続確認中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。FIG. 5 is a timing chart showing signal transmission / reception between a game control microcomputer and a payout control microcomputer when a communication error occurs during connection confirmation. 賞球個数通知中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。FIG. 5 is a timing chart showing signal transmission / reception between a game control microcomputer and a payout control microcomputer when a communication error occurs during award ball number notification. 賞球処理の一例を示すフローチャートである。It is a flowchart which shows an example of a prize ball process. 賞球個数テーブルの例を示す説明図である。It is explanatory drawing which shows the example of a prize ball number table. 賞球コマンド出力カウンタ加算処理を示すフローチャートである。It is a flowchart which shows a prize ball command output counter addition process. 賞球制御処理を示すフローチャートである。It is a flowchart which shows a prize ball control process. 賞球送信処理1を示すフローチャートである。It is a flowchart which shows prize ball transmission processing 1. 賞球接続確認処理を示すフローチャートである。It is a flowchart which shows a prize ball connection confirmation process. 賞球送信処理2を示すフローチャートである。It is a flowchart which shows the prize ball transmission process 2. FIG. 賞球受領確認処理を示すフローチャートである。It is a flowchart which shows a prize ball receipt confirmation process. 賞球終了確認処理を示すフローチャートである。It is a flowchart which shows a prize ball completion | finish confirmation process. 賞球カウンタ減算処理を示すフローチャートである。It is a flowchart which shows a prize ball counter subtraction process. 枠状態出力処理の一例を示すフローチャートである。It is a flowchart which shows an example of a frame state output process. 枠状態表示コマンドに設定されるEXTデータの具体例を示す説明図である。It is explanatory drawing which shows the specific example of EXT data set to a frame state display command. 特別図柄プロセス処理の一例を示すフローチャートである。It is a flowchart which shows an example of a special symbol process process. 始動口スイッチ通過処理を示すフローチャートである。It is a flowchart which shows a starting port switch passage process. 特別図柄通常処理の一例を示すフローチャートである。It is a flowchart which shows an example of a special symbol normal process. スイッチ処理で使用されるRAMに形成される各2バイトのバッファを示す説明図である。It is explanatory drawing which shows each 2 byte buffer formed in RAM used by switch processing. スイッチ処理の処理例を示すフローチャートである。It is a flowchart which shows the process example of a switch process. 払出制御手段における出力ポートのビット割り当て例を示す説明図である。It is explanatory drawing which shows the bit allocation example of the output port in a payout control means. 払出制御手段における入力ポートのビット割り当て例を示す説明図である。It is explanatory drawing which shows the example of bit allocation of the input port in a payout control means. 払出制御用CPUが実行するメイン処理を示すフローチャートである。It is a flowchart which shows the main process which CPU for payout control performs. 払出制御用CPUが実行するタイマ割込処理を示すフローチャートである。It is a flowchart which shows the timer interruption process which CPU for payout control performs. 主制御通信処理を示すフローチャートである。It is a flowchart which shows a main control communication process. 主制御コマンド受信処理を示すフローチャートである。It is a flowchart which shows a main control command reception process. 主制御接続確認処理を示すフローチャートである。It is a flowchart which shows a main control connection confirmation process. 主制御通信通常処理を示すフローチャートである。It is a flowchart which shows main control communication normal processing. 主制御通信通常処理を示すフローチャートである。It is a flowchart which shows main control communication normal processing. 主制御通信中処理を示すフローチャートである。It is a flowchart which shows the process during main control communication. 主制御通信中処理を示すフローチャートである。It is a flowchart which shows the process during main control communication. 主制御通信終了処理を示すフローチャートである。It is a flowchart which shows a main control communication end process. 主制御送信コマンド変換処理を示すフローチャートである。It is a flowchart which shows a main control transmission command conversion process. 払出制御処理を示すフローチャートである。It is a flowchart which shows payout control processing. 払出開始待ち処理を示すフローチャートである。It is a flowchart which shows the payout start waiting process. 払出モータ停止待ち処理を示すフローチャートである。It is a flowchart which shows a payout motor stop waiting process. 払出通過待ち処理を示すフローチャートである。It is a flowchart which shows payout passage waiting processing. 払出通過待ち処理を示すフローチャートである。It is a flowchart which shows payout passage waiting processing. 払出通過待ち処理を示すフローチャートである。It is a flowchart which shows payout passage waiting processing. エラーの種類とエラー表示用LEDの表示との関係等の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the kind of error, and the display of LED for an error display. エラー処理を示すフローチャートである。It is a flowchart which shows an error process. エラー処理を示すフローチャートである。It is a flowchart which shows an error process. 情報出力処理を示すフローチャートである。It is a flowchart which shows an information output process. 情報出力処理を示すフローチャートである。It is a flowchart which shows an information output process. 演出制御用CPUが実行するメイン処理を示すフローチャートである。It is a flowchart which shows the main process which CPU for production control performs. コマンド解析処理の具体例を示すフローチャートである。It is a flowchart which shows the specific example of a command analysis process. 演出制御プロセス処理を示すフローチャートである。It is a flowchart which shows production control process processing. 乱数回路における動作を説明するためのタイミングチャートである。It is a timing chart for demonstrating operation | movement in a random number circuit. 乱数値レジスタの読出動作などを説明するためのタイミングチャートである。7 is a timing chart for explaining a read operation of a random value register, and the like. 電源電圧の低下時における動作などを説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation | movement etc. at the time of the fall of a power supply voltage. 本発明による遊技機の変形例であるスロットマシンを正面からみた正面図である。FIG. 11 is a front view of a slot machine as a modification of the gaming machine according to the present invention as viewed from the front. スロットマシンにおける遊技制御基板(主基板)および演出制御基板等の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural examples, such as a game control board (main board) and an effect control board, in a slot machine.

以下、本発明の一実施形態を図面を参照して説明する。
まず、遊技機の一例であるパチンコ遊技機の全体の構成について説明する。図1はパチンコ遊技機を正面からみた正面図、図2は遊技盤の前面を示す正面図である。なお、以下の実施の形態では、パチンコ遊技機を例に説明を行うが、本発明による遊技機はパチンコ遊技機に限られず、スロット機などの他の遊技機に適用することもできる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, the overall configuration of a pachinko gaming machine that is an example of a gaming machine will be described. FIG. 1 is a front view of a pachinko gaming machine as viewed from the front, and FIG. 2 is a front view showing the front of the game board. In the following embodiments, a pachinko gaming machine will be described as an example. However, the gaming machine according to the present invention is not limited to a pachinko gaming machine, and can be applied to other gaming machines such as a slot machine.

パチンコ遊技機1は、縦長の方形状に形成された外枠(図示せず)と、外枠の内側に開閉可能に取り付けられた遊技枠とで構成される。また、パチンコ遊技機1は、遊技枠に開閉可能に設けられている額縁状に形成されたガラス扉枠2を有する。遊技枠は、外枠に対して開閉自在に設置される前面枠(図示せず)を備え、前面枠には機構部品等が取り付けられる機構板が取り付けられる。また、前面枠にも、種々の部品が取り付けられる。   The pachinko gaming machine 1 includes an outer frame (not shown) formed in a vertically long rectangular shape, and a game frame attached to the inside of the outer frame so as to be opened and closed. Further, the pachinko gaming machine 1 has a glass door frame 2 formed in a frame shape that is provided in the game frame so as to be opened and closed. The game frame includes a front frame (not shown) that can be opened and closed with respect to the outer frame, and a mechanism plate to which mechanical parts and the like are attached is attached to the front frame. Various parts are also attached to the front frame.

図1に示すように、パチンコ遊技機1は、額縁状に形成されたガラス扉枠2を有する。ガラス扉枠2の下部表面には打球供給皿(上皿)3がある。打球供給皿3の下部には、打球供給皿3に収容しきれない遊技球を貯留する余剰球受皿4と遊技球を発射する打球操作ハンドル(操作ノブ)5が設けられている。ガラス扉枠2の背面には、遊技盤6が着脱可能に取り付けられている。なお、遊技盤6は、それを構成する板状体と、その板状体に取り付けられた種々の部品とを含む構造体である。また、遊技盤6の前面には遊技領域7が形成されている。   As shown in FIG. 1, the pachinko gaming machine 1 has a glass door frame 2 formed in a frame shape. On the lower surface of the glass door frame 2 is a hitting ball supply tray (upper plate) 3. Under the hitting ball supply tray 3, an extra ball receiving tray 4 for storing game balls that cannot be accommodated in the hit ball supply tray 3 and a hitting operation handle (operation knob) 5 for launching the game balls are provided. A game board 6 is detachably attached to the back surface of the glass door frame 2. The game board 6 is a structure including a plate-like body constituting the game board 6 and various components attached to the plate-like body. A game area 7 is formed on the front surface of the game board 6.

遊技領域7の中央付近には、それぞれが演出用の飾り図柄(演出図柄)を可変表示する複数の可変表示部を含む演出表示装置(飾り図柄表示装置)9が設けられている。演出表示装置9には、例えば「左」、「中」、「右」の3つの可変表示部(図柄表示エリア)がある。演出表示装置9は、特別図柄表示器8による特別図柄の可変表示期間中に、装飾用(演出用)の図柄としての演出図柄の可変表示を行う。演出図柄の可変表示を行う演出表示装置9は、演出制御基板に搭載されている演出制御用マイクロコンピュータによって制御される。   In the vicinity of the center of the game area 7, there is provided an effect display device (decorative symbol display device) 9 including a plurality of variable display portions each variably displaying an effect decorative symbol (effect symbol). The effect display device 9 includes, for example, three variable display portions (symbol display areas) of “left”, “middle”, and “right”. The effect display device 9 performs variable display of the effect symbol as a symbol for decoration (for effect) during the variable display period of the special symbol by the special symbol indicator 8. The effect display device 9 that performs variable display of effect symbols is controlled by an effect control microcomputer mounted on the effect control board.

演出表示装置9の下部には、始動入賞口14に入った有効入賞球数すなわち保留記憶(始動記憶または始動入賞記憶ともいう。)数を表示する4つの特別図柄保留記憶表示器18が設けられている。特別図柄保留記憶表示器18は、保留記憶数を入賞順に4個まで表示する。特別図柄保留記憶表示器18は、始動入賞口14に始動入賞があるごとに、点灯状態のLEDの数を1増やす。そして、特別図柄保留記憶表示器18は、特別図柄表示器8で可変表示が開始されるごとに、点灯状態のLEDの数を1減らす(すなわち1つのLEDを消灯する)。具体的には、特別図柄保留記憶表示器18は、特別図柄表示器8で可変表示が開始されるごとに、点灯状態をシフトする。なお、この例では、始動入賞口14への入賞による始動記憶数に上限数(4個まで)が設けられているが、上限数を4個以上にしてもよい。   Below the effect display device 9, four special symbol hold memory indicators 18 are provided for displaying the number of effective winning balls that have entered the start winning opening 14, that is, the number of hold memories (also referred to as start memory or start prize memory). ing. The special symbol reservation storage display 18 displays up to four reservation storage numbers in the order of winning. The special symbol hold storage display 18 increases the number of LEDs in the lit state by 1 each time there is a start winning in the start winning opening 14. Then, each time the special symbol display 8 starts variable display, the special symbol hold storage indicator 18 reduces the number of LEDs in the lit state by 1 (that is, turns off one LED). Specifically, the special symbol hold storage display 18 shifts the lighting state each time variable display is started on the special symbol display 8. In this example, the upper limit number (up to 4) is provided for the number of starting memories by winning to the start winning opening 14, but the upper limit number may be four or more.

演出表示装置9の上部には、識別情報としての特別図柄を可変表示する特別図柄表示器(特別図柄表示装置)8が設けられている。この実施の形態では、特別図柄表示器8は、例えば0〜9の数字を可変表示可能な簡易で小型の表示器(例えば7セグメントLED)で実現されている。特別図柄表示器8は、遊技者に特定の停止図柄を把握しづらくさせるために、0〜99など、より多種類の数字を可変表示するように構成されていてもよい。また、演出表示装置9は、特別図柄表示器8による特別図柄の可変表示期間中に、装飾用(演出用)の図柄としての演出図柄の可変表示を行う。   A special symbol display (special symbol display device) 8 that variably displays a special symbol as identification information is provided on the top of the effect display device 9. In this embodiment, the special symbol display 8 is realized by a simple and small display (for example, 7 segment LED) capable of variably displaying numbers 0 to 9, for example. The special symbol display 8 may be configured to variably display a larger number of numbers such as 0 to 99 in order to make it difficult for the player to grasp a specific stop symbol. Further, the effect display device 9 performs variable display of the effect symbol as a symbol for decoration (for effect) during the variable display period of the special symbol by the special symbol indicator 8.

演出表示装置9の下方には、始動入賞口14を形成する可変入賞球装置15が設けられている。可変入賞球装置15は、羽根を開閉可能に構成され、羽根が開放しているときに遊技球が入賞し易い状態(開状態)となり、羽根が開放していないとき(閉じているとき)に遊技球が入賞し難い状態(閉状態)となる。始動入賞口14に入った入賞球は、遊技盤6の背面に導かれ、始動口スイッチ14aによって検出される。なお、この実施の形態では、後述するように、始動口スイッチ14aによって遊技球が検出されたことにもとづいて、特別図柄の変動表示が開始され、賞球払出が実行される。また、可変入賞球装置15は、ソレノイド16によって開状態にされる。なお、可変入賞球装置15の真上に第1始動入賞口を設け、可変入賞球装置15を第2始動入賞口としてもよい。   Below the effect display device 9, a variable winning ball device 15 that forms a start winning opening 14 is provided. The variable winning ball device 15 is configured to be able to open and close the wings, and when the wings are open, the game ball is likely to win a prize (open state), and when the wings are not open (closed). The game ball becomes difficult to win (closed state). The winning ball that has entered the start winning opening 14 is guided to the back of the game board 6 and detected by the start opening switch 14a. In this embodiment, as will be described later, on the basis of the detection of the game ball by the start port switch 14a, the special symbol variation display is started, and the prize ball payout is executed. The variable winning ball device 15 is opened by a solenoid 16. The first winning prize opening may be provided directly above the variable winning ball apparatus 15, and the variable winning ball apparatus 15 may be used as the second starting prize opening.

可変入賞球装置15の下部には、特定遊技状態(大当り状態)においてソレノイド21によって開状態に制御される開閉板を用いた特別可変入賞球装置20が設けられている。特別可変入賞球装置20は大入賞口を開閉する手段である。特別可変入賞球装置20に入賞し遊技盤6の背面に導かれた入賞球は、カウントスイッチ23で検出される。   Below the variable winning ball apparatus 15, a special variable winning ball apparatus 20 using an opening / closing plate that is controlled to be opened by a solenoid 21 in a specific gaming state (big hit state) is provided. The special variable winning ball apparatus 20 is a means for opening and closing the big winning opening. The winning ball that has won the special variable winning ball device 20 and led to the back of the game board 6 is detected by the count switch 23.

遊技球がゲート32を通過しゲートスイッチ32aで検出されると、普通図柄表示器10の表示の可変表示が開始される。この実施の形態では、左右のランプ(点灯時に図柄が視認可能になる)が交互に点灯することによって可変表示が行われ、例えば、可変表示の終了時に左側のランプが点灯すれば当たりになる。そして、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定回数、所定時間だけ開状態になる。普通図柄表示器10の近傍には、ゲート32を通過した入賞球数を表示する4つのLEDによる表示部を有する普通図柄始動記憶表示器41が設けられている。ゲート32への遊技球の通過があるごとに、普通図柄始動記憶表示器41は点灯するLEDを1増やす。そして、普通図柄表示器10の可変表示が開始されるごとに、点灯するLEDを1減らす。   When the game ball passes through the gate 32 and is detected by the gate switch 32a, variable display of the normal symbol display 10 is started. In this embodiment, variable display is performed by alternately lighting left and right lamps (designs can be visually recognized when lit). For example, if the left lamp is lit at the end of variable display, it is a hit. When the stop symbol on the normal symbol display 10 is a predetermined symbol (winning symbol), the variable winning ball device 15 is opened for a predetermined number of times. In the vicinity of the normal symbol display 10, a normal symbol start memory display 41 having a display unit with four LEDs for displaying the number of winning balls that have passed through the gate 32 is provided. Each time there is a game ball passing through the gate 32, the normal symbol start memory display 41 increases the number of LEDs to be turned on by one. Each time the variable display on the normal symbol display 10 is started, the number of LEDs to be lit is reduced by one.

遊技盤6には、複数の入賞口29,30が設けられ、遊技球の入賞口29,30への入賞は、それぞれ入賞口スイッチ29a,30aによって検出される。各入賞口29,30は、遊技媒体を受け入れて入賞を許容する領域として遊技盤6に設けられる入賞領域を構成している。なお、始動入賞口14や大入賞口も、遊技媒体を受け入れて入賞を許容する入賞領域を構成する。なお、各入賞口29,30に入賞した遊技球を入賞スイッチで検出する構成に代えて、遊技球が所定領域(例えばゲート)を通過したことを検出スイッチで検出する構成としてもよい。遊技領域7の左右周辺には、遊技中に点滅表示される装飾ランプ25が設けられ、下部には、入賞しなかった遊技球を吸収するアウト口26がある。また、遊技領域7の外側の左右上部には、効果音を発する2つのスピーカ27が設けられている。遊技領域7の外周には、天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cが設けられている。さらに、遊技領域7における各構造物(大入賞口等)の周囲には装飾LEDが設置されている。天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cおよび装飾用LEDは、遊技機に設けられている装飾発光体の一例である。なお、この実施の形態では、遊技機に設けられている発光体をランプやLEDを用いて構成する場合を示しているが、この実施の形態で示した態様にかぎらず、例えば、遊技機に設けられている発光体を全てLEDを用いて構成するようにしてもよい。   The game board 6 is provided with a plurality of winning holes 29 and 30, and winning of game balls to the winning holes 29 and 30 is detected by winning hole switches 29a and 30a, respectively. Each of the winning ports 29 and 30 constitutes a winning area provided on the game board 6 as an area for accepting game media and allowing winning. The start winning opening 14 and the big winning opening also constitute a winning area that accepts game media and allows winning. In addition, it may be configured to detect with a detection switch that a game ball has passed a predetermined area (for example, a gate), instead of the configuration in which the game ball won in each winning opening 29, 30 is detected with a prize switch. Around the left and right of the game area 7, there are provided decorative lamps 25 blinking and displayed during the game, and at the lower part there is an outlet 26 for absorbing a game ball that has not won a prize. Two speakers 27 that emit sound effects are provided on the left and right upper portions outside the game area 7. On the outer periphery of the game area 7, a top frame lamp 28a, a left frame lamp 28b, and a right frame lamp 28c are provided. Further, a decoration LED is installed around each structure (such as a big prize opening) in the game area 7. The top frame lamp 28a, the left frame lamp 28b, the right frame lamp 28c, and the decoration LED are examples of a decorative light emitter provided in the gaming machine. In this embodiment, the case where the light emitter provided in the gaming machine is configured by using a lamp or an LED is shown. However, the present invention is not limited to the mode shown in this embodiment. You may make it comprise all the provided light-emitting bodies using LED.

なお、図1および図2では、図示を省略しているが、左枠ランプ28bの近傍に、賞球払出中に点灯する賞球ランプが設けられ、天枠ランプ28aの近傍に、補給球が切れたときに点灯する球切れランプが設けられている。なお、賞球ランプおよび球切れランプは、賞球の払出中である場合や球切れが検出された場合に、演出制御基板に搭載された演出制御用マイクロコンピュータによって点灯制御される。さらに、プリペイドカードが挿入されることによって球貸しを可能にするプリペイドカードユニット(以下、「カードユニット」という。)50が、パチンコ遊技機1に隣接して設置されている。   Although not shown in FIGS. 1 and 2, a prize ball lamp that is turned on during the prize ball payout is provided in the vicinity of the left frame lamp 28b, and a supply ball is provided in the vicinity of the top frame lamp 28a. There is a ball-out lamp that illuminates when it runs out. Note that the award ball lamp and the out-of-ball lamp are controlled to be turned on by the effect control microcomputer mounted on the effect control board when the award ball is being paid out or when the out-of-ball is detected. Further, a prepaid card unit (hereinafter referred to as “card unit”) 50 that enables lending a ball by inserting a prepaid card is installed adjacent to the pachinko gaming machine 1.

カードユニット50には、例えば、使用可能状態であるか否かを示す使用可表示ランプ、カードユニットがいずれの側のパチンコ遊技機1に対応しているのかを示す連結台方向表示器、カードユニット内にカードが投入されていることを示すカード投入表示ランプ、記録媒体としてのカードが挿入されるカード挿入口、およびカード挿入口の裏面に設けられているカードリーダライタの機構を点検する場合にカードユニットを解放するためのカードユニット錠が設けられている。   The card unit 50 includes, for example, a usable display lamp that indicates whether or not the card unit 50 is in a usable state, a connection table direction indicator that indicates which side of the pachinko gaming machine 1 corresponds to the card unit, and a card unit. When checking the card insertion indicator lamp indicating that a card is inserted in the card, the card insertion slot into which the card as a recording medium is inserted, and the card reader / writer mechanism provided on the back of the card insertion slot A card unit lock for releasing the card unit is provided.

遊技者の操作により打球発射装置から発射された遊技球は、打球レールを通って遊技領域7に入り、その後、遊技領域7を下りてくる。遊技球が始動入賞口14に入り始動口スイッチ14aで検出されると、図柄の可変表示を開始できる状態であれば、特別図柄表示器8において特別図柄が可変表示(変動)を始める。図柄の可変表示を開始できる状態でなければ、保留記憶数を1増やす。   A game ball launched from the ball striking device by the player's operation enters the game area 7 through the hit ball rail, and then descends the game area 7. When the game ball enters the start winning opening 14 and is detected by the start opening switch 14a, the special symbol on the special symbol display 8 starts variable display (variation) if the variable display of the symbol can be started. If the variable display of the symbol cannot be started, the number of reserved memories is increased by one.

特別図柄表示器8における特別図柄の可変表示は、一定時間が経過したときに停止する。停止時の特別図柄(停止図柄)が大当り図柄(特定表示結果)であると、大当り遊技状態に移行する。すなわち、特別可変入賞球装置20が、一定時間経過するまで、または、所定個数(例えば10個)の遊技球が入賞するまで開放する。そして、特別可変入賞球装置20の開放は、決定されたラウンド数の最後のラウンドまで(例えば、15ラウンドまで)許容される。   The variable display of the special symbol on the special symbol display device 8 stops when a certain time has elapsed. If the special symbol (stop symbol) at the time of stoppage is a jackpot symbol (specific display result), the game shifts to a jackpot gaming state. That is, the special variable winning ball apparatus 20 is released until a predetermined time elapses or a predetermined number (for example, 10) of gaming balls wins. The opening of the special variable winning ball apparatus 20 is allowed until the last round of the determined number of rounds (for example, up to 15 rounds).

停止時の特別図柄表示器8における特別図柄が確率変動を伴う大当り図柄(確変図柄)である場合には、次に大当りになる確率が高くなる。すなわち、確変状態という遊技者にとってさらに有利な状態になる。   When the special symbol on the special symbol display 8 at the time of stoppage is a jackpot symbol (probability variation symbol) with a probability variation, the probability of the next jackpot increases. That is, it becomes a more advantageous state for the player in the probability variation state.

遊技球がゲート32を通過すると、普通図柄表示器10において普通図柄が可変表示される状態になる。また、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定時間だけ開状態になる。   When the game ball passes through the gate 32, the normal symbol display unit 10 enters a state in which the normal symbol is variably displayed. Further, when the stop symbol on the normal symbol display 10 is a predetermined symbol (winning symbol), the variable winning ball device 15 is opened for a predetermined time.

また、図2に示すように、遊技盤の上方には、扉体(この例では、ガラス扉枠2)の状態(遊技領域7を覆う閉鎖状態または遊技領域7を外部から接触可能な状態にする開放状態)を検出(具体的には、前面に遊技領域7が形成されている遊技盤6が取り付けられた前面枠に対してガラス扉枠2が開放されたか否かを検出)するための扉開放センサ155Aが取り付けられている。また、遊技盤の上方には、機構板の状態(遊技機内部に外部から接触不能な閉鎖状態または遊技機内部に外部から接触可能な開放状態)を検出(具体的には、前面に遊技領域7が形成されている遊技盤6が取り付けられた前面枠に対して機構板が開放されたか否かを検出)するための機構板開放センサ155Bが取り付けられている。なお、扉体(この例では、ガラス扉枠2)の状態と機構板の状態とを共通の開放センサを用いて検出するように構成してもよい。   In addition, as shown in FIG. 2, above the game board, a door (in this example, a glass door frame 2) is in a closed state (covering the game area 7 or in a state where the game area 7 can be contacted from the outside). (Specifically, detecting whether or not the glass door frame 2 is opened with respect to the front frame to which the game board 6 having the game area 7 formed on the front surface is attached). A door opening sensor 155A is attached. In addition, the state of the mechanism plate (a closed state in which the inside of the gaming machine cannot be contacted from the outside or an open state in which the inside of the gaming machine can be contacted from the outside) is detected above the gaming board (specifically, the gaming area on the front side) A mechanism plate opening sensor 155B for detecting whether or not the mechanism plate has been opened is attached to the front frame to which the game board 6 on which the game board 6 is formed is attached. In addition, you may comprise so that the state of a door body (in this example, the glass door frame 2) and the state of a mechanism board may be detected using a common open sensor.

次に、パチンコ遊技機1の裏面の構造について図3を参照して説明する。図3は、遊技機を裏面から見た背面図である。図3に示すように、パチンコ遊技機1裏面側では、演出表示装置9を制御する演出制御用マイクロコンピュータ100が搭載された演出制御基板80を含む変動表示制御ユニット、遊技制御用マイクロコンピュータ等が搭載された遊技制御基板(主基板)31、音声出力基板70、ランプドライバ基板35、および球払出制御を行う払出制御用マイクロコンピュータ等が搭載された払出制御基板37等の各種基板が設置されている。なお、遊技制御基板31は基板収納ケース200に収納されている。   Next, the structure of the back surface of the pachinko gaming machine 1 will be described with reference to FIG. FIG. 3 is a rear view of the gaming machine as seen from the back side. As shown in FIG. 3, on the back side of the pachinko gaming machine 1, a variable display control unit including an effect control board 80 on which an effect control microcomputer 100 for controlling the effect display device 9 is mounted, a game control microcomputer, and the like are provided. Various boards such as a mounted game control board (main board) 31, an audio output board 70, a lamp driver board 35, and a payout control board 37 mounted with a payout control microcomputer for performing ball payout control are installed. Yes. The game control board 31 is stored in the board storage case 200.

さらに、パチンコ遊技機1裏面側には、DC30V、DC21V、DC12VおよびDC5V等の各種電源電圧を作成する電源回路が搭載された電源基板910やタッチセンサ基板91が設けられている。電源基板910には、パチンコ遊技機1における遊技制御基板31および各電気部品制御基板(演出制御基板80および払出制御基板37)やパチンコ遊技機1に設けられている各電気部品(電力が供給されることによって動作する部品)への電力供給を実行あるいは遮断するための電力供給許可手段としての電源スイッチ、遊技制御基板31の遊技制御用マイクロコンピュータ560のRAM55をクリアするためのクリアスイッチが設けられている。さらに、電源スイッチの内側(基板内部側)には、交換可能なヒューズが設けられている。   Further, on the back side of the pachinko gaming machine 1, a power supply substrate 910 and a touch sensor substrate 91 on which power supply circuits for generating various power supply voltages such as DC30V, DC21V, DC12V, and DC5V are mounted. The power supply board 910 is supplied with the game control board 31 and each electrical component control board (the effect control board 80 and the payout control board 37) in the pachinko gaming machine 1 and each electrical component (power is supplied) provided in the pachinko gaming machine 1. A power switch as a power supply permission means for executing or shutting off the power supply to the component), and a clear switch for clearing the RAM 55 of the game control microcomputer 560 of the game control board 31 are provided. ing. Further, a replaceable fuse is provided inside the power switch (inside the substrate).

なお、この実施の形態では、主基板31は遊技盤側に設けられ、払出制御基板37は遊技枠側に設けられている。このような構成であっても、後述するように、主基板31と払出制御基板37との間の通信をシリアル通信で行うことによって、遊技盤を交換する際の配線の取り回しを容易にしている。   In this embodiment, the main board 31 is provided on the game board side, and the payout control board 37 is provided on the game frame side. Even in such a configuration, as will be described later, the communication between the main board 31 and the payout control board 37 is performed by serial communication, thereby facilitating the routing of the wiring when replacing the game board. .

なお、各制御基板には、制御用マイクロコンピュータを含む制御手段が搭載されている。制御手段は、遊技制御手段等からのコマンドとしての指令信号(制御信号)に従って遊技機に設けられている電気部品(遊技用装置:球払出装置97、演出表示装置9、ランプやLEDなどの発光体、スピーカ27等)を制御する。以下、主基板31を制御基板に含めて説明を行うことがある。その場合には、制御基板に搭載される制御手段は、遊技制御手段と、遊技制御手段等からの指令信号に従って遊技機に設けられている電気部品を制御する手段とのそれぞれを指す。また、主基板31以外のマイクロコンピュータが搭載された基板をサブ基板ということがある。なお、球払出装置97は、遊技球を誘導する通路とステッピングモータ等により駆動されるスプロケット等によって誘導された遊技球を上皿や下皿に払い出すための装置であって、払い出された賞球や貸し球をカウントする払出個数カウントスイッチ等もユニットの一部として構成されている。なお、この実施の形態では、払出検出手段は、払出個数カウントスイッチ301によって実現され、球払出装置97から実際に賞球や貸し球が払い出されたことを検出する機能を備える。この場合、払出個数カウントスイッチ301は、賞球や貸し球の払い出しを1球検出するごとに検出信号を出力する。   Each control board is equipped with control means including a control microcomputer. The control means is an electrical component (game device: ball payout device 97, effect display device 9, light emission from a lamp, LED, etc.) provided in the gaming machine according to a command signal (control signal) as a command from the game control means or the like. Body, speaker 27, etc.). Hereinafter, the main board 31 may be included in the control board for explanation. In that case, the control means mounted on the control board refers to each of the game control means and the means for controlling the electrical components provided in the gaming machine in accordance with a command signal from the game control means or the like. A substrate on which a microcomputer other than the main substrate 31 is mounted may be referred to as a sub-substrate. The ball payout device 97 is a device for paying out a game ball guided by a passage for guiding the game ball and a sprocket driven by a stepping motor or the like to an upper plate or a lower plate. A payout number counting switch for counting prize balls and rental balls is also configured as part of the unit. In this embodiment, the payout detection means is realized by the payout number count switch 301 and has a function of detecting that a winning ball or a lending ball is actually paid out from the ball payout device 97. In this case, the payout number count switch 301 outputs a detection signal every time one payout of prize balls or rental balls is detected.

パチンコ遊技機1裏面において、上方には、各種情報をパチンコ遊技機1の外部に出力するための各端子を備えたターミナル基板160が設置されている。ターミナル基板160には、例えば、大当り遊技状態の発生を示す大当り情報等の情報出力信号(図60に示す始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、セキュリティ信号、賞球信号1、遊技機エラー状態信号)を外部出力するための情報出力端子が設けられている。   On the back side of the pachinko gaming machine 1, a terminal board 160 having terminals for outputting various information to the outside of the pachinko gaming machine 1 is installed above. The terminal board 160 includes, for example, an information output signal such as jackpot information indicating the occurrence of a jackpot gaming state (a start port signal shown in FIG. 60, one symbol determination signal, one jackpot signal, two jackpot signals, three jackpot signals, hour An information output terminal for externally outputting a short signal, security signal, prize ball signal 1, gaming machine error state signal) is provided.

貯留タンク38に貯留された遊技球は誘導レール(図示せず)を通り、カーブ樋を経て払出ケース40Aで覆われた球払出装置97に至る。球払出装置97の上方には、遊技媒体切れ検出手段としての球切れスイッチ187が設けられている。球切れスイッチ187が球切れを検出すると、球払出装置97の払出動作が停止する。球切れスイッチ187は遊技球通路内の遊技球の有無を検出するスイッチであるが、貯留タンク38内の補給球の不足を検出する球切れ検出スイッチ167も誘導レールにおける上流部分(貯留タンク38に近接する部分)に設けられている。球切れ検出スイッチ167が遊技球の不足を検知すると、遊技機設置島に設けられている補給機構からパチンコ遊技機1に対して遊技球の補給が行なわれる。   The game ball stored in the storage tank 38 passes through a guide rail (not shown), and reaches a ball payout device 97 covered with a payout case 40A through a curve rod. Above the ball payout device 97, a ball break switch 187 is provided as a game medium break detection means. When the ball break switch 187 detects a ball break, the payout operation of the ball payout device 97 stops. The ball break switch 187 is a switch for detecting the presence or absence of a game ball in the game ball passage, but the ball break detection switch 167 for detecting the shortage of supply balls in the storage tank 38 is also an upstream portion of the guide rail (in the storage tank 38). (Proximate part). When the ball break detection switch 167 detects a shortage of game balls, the game balls are replenished to the pachinko gaming machine 1 from the replenishment mechanism provided on the gaming machine installation island.

入賞にもとづく景品としての遊技球や球貸し要求にもとづく遊技球が多数払出されて打球供給皿3が満杯になると、遊技球は、余剰球誘導通路を経て余剰球受皿4に導かれる。さらに遊技球が払出されると、感知レバー(図示せず)が貯留状態検出手段としての満タンスイッチを押圧して、貯留状態検出手段としての満タンスイッチがオンする。その状態では、球払出装置内の払出モータの回転が停止して球払出装置の動作が停止するとともに打球発射装置の駆動も停止する。   When a large number of game balls as prizes based on winning a prize or a game ball based on a ball lending request are paid out and the hitting ball supply tray 3 is full, the game balls are guided to the surplus ball receiving tray 4 through the surplus ball guiding path. Further, when the game ball is paid out, a sensing lever (not shown) presses the full tank switch as the storage state detection means, and the full tank switch as the storage state detection means is turned on. In this state, the rotation of the payout motor in the ball payout device is stopped, the operation of the ball payout device is stopped, and the driving of the ball hitting device is also stopped.

図4は、主基板(遊技制御基板)31における回路構成の一例を示すブロック図である。なお、図4には、払出制御基板37および演出制御基板80等も示されている。主基板31には、プログラムに従ってパチンコ遊技機1を制御する遊技制御用マイクロコンピュータ(遊技制御手段に相当)560、制御用クロック生成回路111、および乱数用クロック生成回路112が搭載されている。遊技制御用マイクロコンピュータ560は、ゲーム制御(遊技進行制御)用のプログラム等を記憶するROM54、ワークメモリとして使用される記憶手段としてのRAM55、プログラムに従って制御動作を行うCPU56およびI/Oポート部57を含む。この実施の形態では、ROM54およびRAM55は遊技制御用マイクロコンピュータ560に内蔵されている。すなわち、遊技制御用マイクロコンピュータ560は、1チップマイクロコンピュータである。1チップマイクロコンピュータには、少なくともRAM55が内蔵されていればよく、ROM54は外付けであっても内蔵されていてもよい。また、I/Oポート部57は、外付けであってもよい。遊技制御用マイクロコンピュータ560には、さらに、ハードウェア乱数(ハードウェア回路が発生する乱数)を発生する乱数回路509が内蔵されている。   FIG. 4 is a block diagram showing an example of the circuit configuration of the main board (game control board) 31. FIG. 4 also shows a payout control board 37, an effect control board 80, and the like. On the main board 31, a game control microcomputer (corresponding to a game control means) 560 for controlling the pachinko gaming machine 1 according to a program, a control clock generation circuit 111, and a random number clock generation circuit 112 are mounted. The game control microcomputer 560 includes a ROM 54 for storing a game control (game progress control) program and the like, a RAM 55 as storage means used as a work memory, a CPU 56 for performing control operations in accordance with the program, and an I / O port unit 57. including. In this embodiment, the ROM 54 and the RAM 55 are built in the game control microcomputer 560. That is, the game control microcomputer 560 is a one-chip microcomputer. The one-chip microcomputer only needs to include at least the RAM 55, and the ROM 54 may be external or internal. The I / O port unit 57 may be externally attached. The game control microcomputer 560 further includes a random number circuit 509 that generates hardware random numbers (random numbers generated by the hardware circuit).

ここで、制御用クロック生成回路111は、遊技制御用マイクロコンピュータ560の外部にて、所定周波数の発振信号となる制御用クロックCCLKを生成する。制御用クロック生成回路111により生成された制御用クロックCCLKは、例えば、後述する図9に示すような遊技制御用マイクロコンピュータ560の制御用外部クロック端子EXCを介してクロック回路502に供給される。乱数用クロック生成回路112は、遊技制御用マイクロコンピュータ560の外部にて、制御用クロックCCLKの発振周波数とは異なる所定周波数の発振信号となる乱数用クロックRCLKを生成する。乱数用クロック生成回路112により生成された乱数用クロックRCLKは、例えば、後述する図9に示すような遊技制御用マイクロコンピュータ560の乱数用外部クロック端子ERCを介して乱数回路509に供給される。一例として、乱数用クロック生成回路112により生成される乱数用クロックRCLKの発振周波数は、制御用クロック生成回路111により生成される制御用クロックCCLKの発振周波数以下となるようにすればよい。あるいは、乱数用クロック生成回路112により生成される乱数用クロックRCLKの発振周波数は、制御用クロック生成回路111により生成される制御用クロックCCLKの発振周波数よりも高周波となるようにしてもよい。   Here, the control clock generation circuit 111 generates a control clock CCLK that becomes an oscillation signal of a predetermined frequency outside the game control microcomputer 560. The control clock CCLK generated by the control clock generation circuit 111 is supplied to the clock circuit 502 via a control external clock terminal EXC of a game control microcomputer 560 as shown in FIG. The random number clock generation circuit 112 generates a random number clock RCLK that is an oscillation signal having a predetermined frequency different from the oscillation frequency of the control clock CCLK, outside the game control microcomputer 560. The random number clock RCLK generated by the random number clock generation circuit 112 is supplied to the random number circuit 509 via a random number external clock terminal ERC of a game control microcomputer 560 as shown in FIG. As an example, the oscillation frequency of the random number clock RCLK generated by the random number clock generation circuit 112 may be equal to or lower than the oscillation frequency of the control clock CCLK generated by the control clock generation circuit 111. Alternatively, the oscillation frequency of the random number clock RCLK generated by the random number clock generation circuit 112 may be higher than the oscillation frequency of the control clock CCLK generated by the control clock generation circuit 111.

なお、遊技制御用マイクロコンピュータ560においてCPU56がROM54に格納されているプログラムに従って制御を実行するので、以下、遊技制御用マイクロコンピュータ560(またはCPU56)が実行する(または、処理を行う)ということは、具体的には、CPU56がプログラムに従って制御を実行することである。このことは、主基板31以外の他の基板に搭載されているマイクロコンピュータについても同様である。   In the game control microcomputer 560, the CPU 56 executes control in accordance with the program stored in the ROM 54, so that the game control microcomputer 560 (or CPU 56) executes (or performs processing) hereinafter. Specifically, the CPU 56 executes control according to a program. The same applies to microcomputers mounted on substrates other than the main substrate 31.

また、遊技制御用マイクロコンピュータ560には、払出制御基板37(の払出制御用マイクロコンピュータ370)や演出制御基板80(の演出制御用マイクロコンピュータ)とシリアル通信で信号を入出力(送受信)するためのシリアル通信回路511が内蔵されている。なお、払出制御用マイクロコンピュータ370や演出制御用マイクロコンピュータにも、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力するためのシリアル通信回路が内蔵されている(払出制御用マイクロコンピュータ370に内蔵されたシリアル通信回路については、図5参照)。遊技制御用マイクロコンピュータ560は、2チャネルのシリアル通信回路511を内蔵しており、払出制御用マイクロコンピュータ370とシリアル通信を行うことが可能であるとともに、演出制御用マイクロコンピュータ100ともシリアル通信を行うことが可能である。ただし、この実施の形態では、演出制御用マイクロコンピュータ100との間のシリアル通信に関しては、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータに対してのみ信号が出力され、演出制御用マイクロコンピュータから遊技制御用マイクロコンピュータ560に対しては信号が出力されない。なお、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータとの間の通信については、シリアル通信で行う構成に限られるわけではなく、パラレル通信で行うように構成してもよい。   Further, the game control microcomputer 560 inputs / outputs (transmits / receives) signals to / from the payout control board 37 (the payout control microcomputer 370) and the effect control board 80 (the effect control microcomputer) by serial communication. Serial communication circuit 511 is incorporated. The payout control microcomputer 370 and the effect control microcomputer also incorporate a serial communication circuit for inputting / outputting signals to / from the game control microcomputer 560 through serial communication (the payout control microcomputer 370 includes (See FIG. 5 for the built-in serial communication circuit). The game control microcomputer 560 includes a two-channel serial communication circuit 511, and can perform serial communication with the payout control microcomputer 370 and also performs serial communication with the effect control microcomputer 100. It is possible. However, in this embodiment, for serial communication with the production control microcomputer 100, a signal is output only from the game control microcomputer 560 to the production control microcomputer, and the production control microcomputer 100 No signal is output to the game control microcomputer 560. Note that the communication between the game control microcomputer 560 and the effect control microcomputer is not limited to the serial communication configuration, and may be configured to perform parallel communication.

また、RAM55は、その一部または全部が電源基板において作成されるバックアップ電源によってバックアップされている不揮発性記憶手段としてのバックアップRAMである。すなわち、遊技機に対する電力供給が停止しても、所定期間(バックアップ電源としてのコンデンサが放電してバックアップ電源が電力供給不能になるまで)は、RAM55の一部または全部の内容は保存される。特に、少なくとも、遊技状態すなわち遊技制御手段の制御状態に応じたデータ(特別図柄プロセスフラグや保留記憶数カウンタの値など)と未払出賞球数を示すデータ(具体的には、後述する賞球コマンド出力カウンタの値)は、バックアップRAMに保存される。遊技制御手段の制御状態に応じたデータとは、停電等が生じた後に復旧した場合に、そのデータにもとづいて、制御状態を停電等の発生前に復旧させるために必要なデータである。また、制御状態に応じたデータと未払出賞球数を示すデータとを遊技の進行状態を示すデータと定義する。なお、この実施の形態では、RAM55の全部が、電源バックアップされているとする。   The RAM 55 is a backup RAM as a non-volatile storage means, part or all of which is backed up by a backup power supply created on the power supply board. That is, even if the power supply to the gaming machine is stopped, a part or all of the contents of the RAM 55 is stored for a predetermined period (until the capacitor as the backup power supply is discharged and the backup power supply cannot be supplied). In particular, at least data corresponding to the game state, that is, the control state of the game control means (such as the value of the special symbol process flag and the pending storage number counter) and data indicating the number of unpaid prize balls (specifically, prize balls described later) The value of the command output counter) is stored in the backup RAM. The data corresponding to the control state of the game control means is data necessary for restoring the control state before the occurrence of a power failure or the like based on the data when the power is restored after a power failure or the like occurs. Further, data corresponding to the control state and data indicating the number of unpaid prize balls are defined as data indicating the progress state of the game. In this embodiment, it is assumed that the entire RAM 55 is backed up.

遊技制御用マイクロコンピュータ560のリセット端子には、電源基板からのリセット信号が入力される。電源基板には、遊技制御用マイクロコンピュータ560等に供給されるリセット信号を生成するリセット回路が搭載されている。なお、リセット信号がハイレベルになると遊技制御用マイクロコンピュータ560等は動作可能状態になり、リセット信号がローレベルになると遊技制御用マイクロコンピュータ560等は動作停止状態になる。従って、リセット信号がハイレベルである期間は、遊技制御用マイクロコンピュータ560等の動作を許容する許容信号が出力されていることになり、リセット信号がローレベルである期間は、遊技制御用マイクロコンピュータ560等の動作を停止させる動作停止信号が出力されていることになる。なお、リセット回路をそれぞれの電気部品制御基板(電気部品を制御するためのマイクロコンピュータが搭載されている基板)に搭載してもよい。   A reset signal from the power supply board is input to the reset terminal of the game control microcomputer 560. A reset circuit for generating a reset signal supplied to the game control microcomputer 560 and the like is mounted on the power supply board. When the reset signal becomes high level, the game control microcomputer 560 and the like are in an operable state, and when the reset signal becomes low level, the game control microcomputer 560 and the like are in an operation stop state. Therefore, an allowable signal that allows the operation of the game control microcomputer 560 or the like is output during a period when the reset signal is at a high level, and a game control microcomputer is output when the reset signal is at a low level. An operation stop signal for stopping the operation of 560 or the like is output. Note that the reset circuit may be mounted on each electric component control board (a board on which a microcomputer for controlling the electric parts is mounted).

さらに、遊技制御用マイクロコンピュータ560の入力ポートには、電源基板からの電源電圧が所定値以下に低下したことを示す電源断信号が入力される。すなわち、電源基板には、遊技機において使用される所定電圧(例えば、DC30VやDC5Vなど)の電圧値を監視して、電圧値があらかじめ定められた所定値にまで低下すると(電源電圧の低下を検出すると)、その旨を示す電源断信号を出力する電源監視回路が搭載されている。なお、電源監視回路を電源基板に搭載するのではなく、バックアップ電源によって電源バックアップされる基板(例えば、主基板31)に搭載するようにしてもよい。また、遊技制御用マイクロコンピュータ560の入力ポートには、RAMの内容をクリアすることを指示するためのクリアスイッチが操作されたことを示すクリア信号(図示せず)が入力される。   Further, a power-off signal indicating that the power supply voltage from the power supply board has dropped below a predetermined value is input to the input port of the game control microcomputer 560. That is, the power supply board monitors the voltage value of a predetermined voltage (for example, DC30V or DC5V) used in the gaming machine, and when the voltage value decreases to a predetermined value (the power supply voltage is reduced). A power supply monitoring circuit that outputs a power-off signal indicating that). Instead of mounting the power monitoring circuit on the power supply board, it may be mounted on a board (for example, main board 31) backed up by a backup power supply. A clear signal (not shown) indicating that the clear switch for instructing to clear the contents of the RAM is operated is input to the input port of the game control microcomputer 560.

また、ゲートスイッチ32a、始動口スイッチ14a、カウントスイッチ23、および各入賞口スイッチ29a,30aからの検出信号を基本回路53に与える入力ドライバ回路58も主基板31に搭載され、可変入賞球装置15を開閉するソレノイド16、および特別可変入賞球装置を開閉するソレノイド21を基本回路53からの指令に従って駆動する出力回路59も主基板31に搭載され、電源投入時に遊技制御用マイクロコンピュータ560をリセットするためのシステムリセット回路(図示せず)や、大当り遊技状態の発生を示す大当り情報等の情報出力信号を、ターミナル基板160を介して、ホールコンピュータ等の外部装置に対して出力する情報出力回路64も主基板31に搭載されている。   Also, an input driver circuit 58 for supplying the basic circuit 53 with detection signals from the gate switch 32a, the start port switch 14a, the count switch 23, and the winning port switches 29a and 30a is also mounted on the main board 31, and the variable winning ball device 15 Are mounted on the main board 31 to reset the game control microcomputer 560 when the power is turned on. The solenoid 16 for opening and closing the solenoid and the solenoid 21 for opening and closing the special variable winning ball apparatus according to a command from the basic circuit 53 are also mounted. A system reset circuit (not shown) for output, and an information output circuit 64 for outputting information output signals such as jackpot information indicating the occurrence of a jackpot gaming state to an external device such as a hall computer via the terminal board 160 Is also mounted on the main board 31.

この実施の形態では、演出制御基板80に搭載されている演出制御手段(演出制御用マイクロコンピュータで構成される。)が、中継基板77を介して遊技制御用マイクロコンピュータ560からの演出制御コマンドを受信し、演出図柄を可変表示する演出表示装置9の表示制御を行う。   In this embodiment, the effect control means (configured by the effect control microcomputer) mounted on the effect control board 80 receives the effect control command from the game control microcomputer 560 via the relay board 77. The display control of the effect display device 9 that receives and displays the effect symbol variably is performed.

図5は、払出制御基板37および球払出装置97などの払出に関連する構成要素を示すブロック図である。図5に示すように、払出制御基板37には、払出制御用CPU371を含む払出制御用マイクロコンピュータ370が搭載されている。この実施の形態では、払出制御用マイクロコンピュータ370は、1チップマイクロコンピュータであり、少なくともRAMが内蔵されている。払出制御用マイクロコンピュータ370、RAM(図示せず)、払出制御用プログラムを格納したROM(図示せず)およびI/Oポート等は、払出制御手段を構成する。すなわち、払出制御手段は、払出制御用CPU371、RAMおよびROMを有する払出制御用マイクロコンピュータ370と、I/Oポートとで実現される。また、I/Oポートは、払出制御用マイクロコンピュータ370に内蔵されていてもよい。なお、遊技制御用マイクロコンピュータ560と異なり、払出制御用マイクロコンピュータ370が内蔵するRAMは、バックアップ電源による電源バックアップを受けていない。そのため、遊技機に対する電力供給が停止してしまうと、払出制御用マイクロコンピュータ370が内蔵するRAMの記憶内容は失われることになる。   FIG. 5 is a block diagram showing components related to payout, such as the payout control board 37 and the ball payout device 97. As shown in FIG. 5, a payout control microcomputer 370 including a payout control CPU 371 is mounted on the payout control board 37. In this embodiment, the payout control microcomputer 370 is a one-chip microcomputer and incorporates at least a RAM. The payout control microcomputer 370, the RAM (not shown), the ROM (not shown) storing the payout control program, the I / O port, and the like constitute the payout control means. That is, the payout control means is realized by a payout control CPU 371, a payout control microcomputer 370 having a RAM and a ROM, and an I / O port. The I / O port may be built in the payout control microcomputer 370. Note that, unlike the game control microcomputer 560, the RAM built in the payout control microcomputer 370 has not been backed up by a backup power source. Therefore, if the power supply to the gaming machine is stopped, the stored contents of the RAM built in the payout control microcomputer 370 are lost.

なお、払出制御用マイクロコンピュータ370は、所定の払出条件が成立したことにもとづいて遊技球を払い出す制御を行う。なお、所定の払出条件は、遊技領域に設けられた入賞領域(普通入賞口29,30、大入賞口、始動入賞口14)に遊技球が入賞したことや、貸し球要求がなされたことによって成立する。また、例えば、パロット機やスロットマシンなどの遊技機に適用する場合には、所定の払出条件は、遊技球やメダルの返却要求がなされたことによっても成立する。さらに、例えば、パロット機やスロットマシンなどの遊技機に適用する場合には、所定の払出条件は、図柄の停止図柄が所定の入賞図柄となったことによっても成立する。   The payout control microcomputer 370 performs control to pay out the game ball based on a predetermined payout condition being satisfied. Note that the predetermined payout condition is that a game ball has won a prize area (ordinary prize opening 29, 30, large prize opening, start prize opening 14) provided in the game area, or a rental ball request has been made. To establish. In addition, for example, when applied to a gaming machine such as a parrot machine or a slot machine, the predetermined payout condition is also satisfied when a game ball or medal return request is made. Further, for example, when applied to a gaming machine such as a parrot machine or a slot machine, the predetermined payout condition is also established when the symbol stop symbol becomes a predetermined winning symbol.

球切れスイッチ187、満タンスイッチ48および払出個数カウントスイッチ301からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372fに入力される。なお、この実施の形態では、払出個数カウントスイッチ301からの検出信号は、払出制御用マイクロコンピュータ370に入力されたあと、I/Oポート372aおよび出力回路373Bを介して主基板31に出力される。   Detection signals from the ball break switch 187, the full switch 48, and the payout count switch 301 are input to the I / O port 372 f of the payout control board 37 via the relay board 72. In this embodiment, the detection signal from the payout number count switch 301 is input to the payout control microcomputer 370 and then output to the main board 31 via the I / O port 372a and the output circuit 373B. .

また、払出モータ位置センサ295からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372eに入力される。払出モータ位置センサ295は、払出モータ289の回転位置を検出するための発光素子(LED)と受光素子とによるセンサであり、遊技球が詰まったこと、すなわちいわゆる球噛みを検出するために用いられる。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、球切れスイッチ187からの検出信号が球切れ状態を示していたり、満タンスイッチ48からの検出信号が満タン状態を示していると、球払出処理を停止する。   A detection signal from the payout motor position sensor 295 is input to the I / O port 372e of the payout control board 37 via the relay board 72. The payout motor position sensor 295 is a sensor composed of a light emitting element (LED) and a light receiving element for detecting the rotational position of the payout motor 289, and is used for detecting that the game ball is clogged, that is, so-called ball biting. . In the payout control microcomputer 370 mounted on the payout control board 37, the detection signal from the ball break switch 187 indicates that the ball is out of ball, or the detection signal from the full tank switch 48 indicates that the ball is full. Then, the ball payout process is stopped.

さらに、満タンスイッチ48からの検出信号が満タン状態を示していると、払出制御用マイクロコンピュータ370は、打球発射装置からの球発射を停止させるために、発射基板90に対してローレベルの満タン信号を出力する。発射基板90のAND回路91が出力する発射モータ94への発射モータ信号は、発射基板90から発射モータ94に伝えられる。払出制御用マイクロコンピュータ370からの満タン信号は、発射基板90に搭載されたAND回路91の入力側の一方に入力され、駆動信号生成回路92からの駆動信号(発射モータ94を駆動するための信号であって、電源基板からの電源を供給する役割を果たす信号である。)は、AND回路91の入力側の他方に入力される。そして、AND回路91の発射モータ信号が発射モータ94に入力される。すなわち、払出制御用マイクロコンピュータ370が満タン信号を出力している間は、発射モータ94への発射モータ信号の出力が停止される。払出制御用マイクロコンピュータ370が満タン信号を出力している間であっても、発射モータ94への発射モータ信号の出力を停止せず、打球発射装置からの球発射を停止させないように構成してもよい。   Further, when the detection signal from the full tank switch 48 indicates a full state, the payout control microcomputer 370 has a low level with respect to the launch board 90 in order to stop the ball launch from the hitting ball launcher. A full tank signal is output. A launch motor signal output from the AND circuit 91 of the launch board 90 to the launch motor 94 is transmitted from the launch board 90 to the launch motor 94. A full tank signal from the payout control microcomputer 370 is input to one of the input sides of the AND circuit 91 mounted on the launch board 90, and a drive signal from the drive signal generation circuit 92 (for driving the launch motor 94). Is a signal that serves to supply power from the power supply board.) Is input to the other input side of the AND circuit 91. Then, the firing motor signal of the AND circuit 91 is input to the firing motor 94. That is, while the payout control microcomputer 370 is outputting the full tank signal, the output of the firing motor signal to the firing motor 94 is stopped. Even when the payout control microcomputer 370 is outputting a full tank signal, the output of the launch motor signal to the launch motor 94 is not stopped, and the ball launch from the hitting ball launcher is not stopped. May be.

払出制御用マイクロコンピュータ370には、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力(送受信)するためのシリアル通信回路380が内蔵されている。この実施の形態では、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、シリアル通信回路511,380を介して、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続確認を行うために、一定の間隔(例えば1秒)で払出制御コマンド(接続確認コマンド、接続OKコマンド)をやり取り(送受信)している。例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路511を介して、一定の間隔で接続確認を行うための接続確認コマンドを送信し、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560からの接続確認コマンドを受信した場合、その旨を通知する接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。また、例えば、入賞が発生した場合には、遊技制御用マイクロコンピュータ560は、払い出すべき賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定がなされた賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そして、払出制御用マイクロコンピュータ370は、賞球個数を受け付けたことを示す賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。さらに、払出制御用マイクロコンピュータ370は、賞球払出動作が終了すると、賞球終了を示す賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、払出制御用マイクロコンピュータ370は、賞球払出動作を終了するまでの間、一定の間隔で賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。また、所定のエラー(球貸し、満タン、球切れなどのエラー)が発生した場合には、エラーの内容を示すデータを、接続OKコマンドや賞球準備中コマンドの下位4ビットを異ならせることにより設定し、当該設定がなされた接続OKコマンドや賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370におけるシリアル通信による具体的な信号のやり取りについては、図52〜図59において詳述する。   The payout control microcomputer 370 incorporates a serial communication circuit 380 for inputting / outputting (transmitting / receiving) signals with the game control microcomputer 560 through serial communication. In this embodiment, the game control microcomputer 560 and the payout control microcomputer 370 are connected between the game control microcomputer 560 and the payout control microcomputer 370 via the serial communication circuits 511 and 380. In order to confirm, payout control commands (connection confirmation command, connection OK command) are exchanged (transmitted / received) at regular intervals (for example, 1 second). For example, the game control microcomputer 560 transmits a connection confirmation command for confirming the connection at regular intervals via the serial communication circuit 511, and the payout control microcomputer 370 receives the game control microcomputer 560 from the game control microcomputer 560. When the connection confirmation command is received, a connection OK command notifying that is transmitted to the game control microcomputer 560. Also, for example, when a winning occurs, the game control microcomputer 560 sets data indicating the number of winning balls to be paid out in the lower 4 bits of the winning ball number command, and the number of winning balls set in the setting. The command is transmitted to the payout control microcomputer 370. Then, the payout control microcomputer 370 transmits a prize ball number reception command indicating that the prize ball number has been received to the game control microcomputer 560. Furthermore, when the payout control microcomputer 370 finishes the prize ball payout operation, it transmits a prize ball end command indicating the completion of the prize ball to the game control microcomputer 560. The payout control microcomputer 370 transmits a prize ball preparing command to the game control microcomputer 560 at regular intervals until the prize ball payout operation is completed. In addition, when a predetermined error (an error such as ball lending, full tank, or out of ball) has occurred, the lower 4 bits of the connection OK command or the winning ball preparation command should be made different from the data indicating the error content. The connection OK command and the winning ball preparation command in which the setting is made are transmitted to the game control microcomputer 560. Note that specific signal exchange by serial communication between the game control microcomputer 560 and the payout control microcomputer 370 will be described in detail with reference to FIGS.

また、払出制御用マイクロコンピュータ370は、出力ポート372cを介して、7セグメントLEDによるエラー表示用LED374にエラー信号を出力する。なお、払出制御基板37の入力ポート372fには、エラー状態を解除するためのエラー解除スイッチ375からの検出信号が入力される。エラー解除スイッチ375は、ソフトウェアリセットによってエラー状態を解除するために用いられる。   Also, the payout control microcomputer 370 outputs an error signal to the error display LED 374 using a 7-segment LED via the output port 372c. A detection signal from an error release switch 375 for releasing the error state is input to the input port 372f of the payout control board 37. The error cancel switch 375 is used to cancel the error state by software reset.

さらに、払出制御用マイクロコンピュータ370からの払出モータ289への駆動信号は、出力ポート372aおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に伝えられる。なお、出力ポート372aの外側に、ドライバ回路(モータ駆動回路)が設置されているが、図5では記載省略されている。   Further, a drive signal from the payout control microcomputer 370 to the payout motor 289 is transmitted to the payout motor 289 in the payout mechanism portion of the ball payout device 97 via the output port 372a and the relay board 72. Although a driver circuit (motor drive circuit) is installed outside the output port 372a, the description is omitted in FIG.

遊技機に隣接して設置されているカードユニット50には、カードユニット制御用マイクロコンピュータが搭載されている。また、カードユニット50には、使用可表示ランプ、連結台方向表示器、カード投入表示ランプおよびカード挿入口が設けられている。インタフェース基板(中継基板)66には、打球供給皿3の近傍に設けられている度数表示LED60、球貸し可LED61、球貸しスイッチ62および返却スイッチ63が接続される。   A card unit control microcomputer is mounted on the card unit 50 installed adjacent to the gaming machine. In addition, the card unit 50 is provided with a usable display lamp, a connecting table direction indicator, a card insertion display lamp, and a card insertion slot. A frequency display LED 60, a ball lending LED 61, a ball lending switch 62, and a return switch 63 provided in the vicinity of the hitting ball supply tray 3 are connected to the interface board (relay board) 66.

インタフェース基板66からカードユニット50には、遊技者の操作に応じて、球貸しスイッチ62が操作されたことを示す球貸しスイッチ信号および返却スイッチ63が操作されたことを示す返却スイッチ信号が与えられる。また、カードユニット50からインタフェース基板66には、プリペイドカードの残高を示すカード残高表示信号および球貸し可表示信号が与えられる。カードユニット50と払出制御基板37の間では、接続信号(VL信号)、ユニット操作信号(BRDY信号)、球貸し要求信号(BRQ信号)、球貸し完了信号(EXS信号)およびパチンコ機動作信号(PRDY信号)が入力ポート372fおよび出力ポート372dを介して送受信される。カードユニット50と払出制御基板37の間には、インタフェース基板66が介在している。よって、接続信号(VL信号)等の信号は、図5に示すように、インタフェース基板66を介してカードユニット50と払出制御基板37の間で送受信されることになる。   A card lending switch signal indicating that the ball lending switch 62 has been operated and a return switch signal indicating that the return switch 63 has been operated are provided to the card unit 50 from the interface board 66 in accordance with the player's operation. . Further, a card balance display signal indicating a prepaid card balance and a ball lending display signal are given from the card unit 50 to the interface board 66. Between the card unit 50 and the payout control board 37, a connection signal (VL signal), a unit operation signal (BRDY signal), a ball lending request signal (BRQ signal), a ball lending completion signal (EXS signal) and a pachinko machine operation signal ( PRDY signal) is transmitted / received via the input port 372f and the output port 372d. An interface board 66 is interposed between the card unit 50 and the payout control board 37. Therefore, a signal such as a connection signal (VL signal) is transmitted and received between the card unit 50 and the payout control board 37 via the interface board 66 as shown in FIG.

パチンコ遊技機1の電源が投入されると、払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、カードユニット50にPRDY信号を出力する。また、カードユニット制御用マイクロコンピュータは、電源が投入されると、VL信号を出力する。払出制御用マイクロコンピュータ370は、VL信号の入力状態によってカードユニット50の接続状態/未接続状態を判定する。カードユニット50においてカードが受け付けられ、球貸しスイッチが操作され球貸しスイッチ信号が入力されると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRDY信号を出力する。この時点から所定の遅延時間が経過すると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRQ信号を出力する。   When the power of the pachinko gaming machine 1 is turned on, the payout control microcomputer 370 mounted on the payout control board 37 outputs a PRDY signal to the card unit 50. The card unit control microcomputer outputs a VL signal when the power is turned on. The payout control microcomputer 370 determines the connected / unconnected state of the card unit 50 according to the input state of the VL signal. When a card is received in the card unit 50, the ball lending switch is operated and a ball lending switch signal is input, the card unit control microcomputer outputs a BRDY signal to the payout control board 37. When a predetermined delay time elapses from this point, the card unit control microcomputer outputs a BRQ signal to the payout control board 37.

そして、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち上げ、カードユニット50からのBRQ信号の立ち下がりを検出すると、払出モータ289を駆動し、所定個の貸し球を遊技者に払い出す。そして、払出が完了したら、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち下げる。その後、カードユニット50からのBRDY信号がオン状態でないことを条件に、遊技制御手段から払出指令信号を受けると賞球払出制御を実行する。   Then, the payout control microcomputer 370 raises the EXS signal to the card unit 50 and, when detecting the fall of the BRQ signal from the card unit 50, drives the payout motor 289 to give a predetermined number of rental balls to the player. Pay out. When the payout is completed, the payout control microcomputer 370 causes the EXS signal to the card unit 50 to fall. Thereafter, on the condition that the BRDY signal from the card unit 50 is not in the ON state, the winning ball payout control is executed when a payout command signal is received from the game control means.

カードユニット50で用いられる電源電圧AC24Vは払出制御基板37から供給される。すなわち、カードユニット50に対する電源基板910からの電力供給は、払出制御基板37およびインタフェース基板66を介して行われる。この例では、インタフェース基板66内に配されているカードユニット50に対するAC24Vの電源供給ラインに、カードユニット50を保護するためのヒューズが設けられ、カードユニット50に所定電圧以上の電圧が供給されることが防止される。   The power supply voltage AC24V used in the card unit 50 is supplied from the payout control board 37. That is, power supply from the power supply board 910 to the card unit 50 is performed via the payout control board 37 and the interface board 66. In this example, a fuse for protecting the card unit 50 is provided in a 24 V AC power supply line for the card unit 50 arranged in the interface board 66, and a voltage higher than a predetermined voltage is supplied to the card unit 50. It is prevented.

また、この実施の形態では、カードユニット50が遊技機とは別体として遊技機に隣接して設置されている場合を例にするが、カードユニット50は遊技機と一体化されていてもよい。また、コイン投入に応じてその金額に応じた遊技球が貸し出されるような場合でも本発明を適用できる。   Further, in this embodiment, the case where the card unit 50 is installed adjacent to the gaming machine as a separate body from the gaming machine is taken as an example, but the card unit 50 may be integrated with the gaming machine. . Further, the present invention can be applied even in the case where game balls corresponding to the amount of money are lent out in accordance with coin insertion.

また、ガラス扉枠2の状態を検出する扉開放センサ155A(図2参照)の検出信号が、払出制御基板37に入力される。払出制御基板37において、扉開放センサ155Aの検出信号は、払出制御用マイクロコンピュータ370には入力されず、払出制御基板37上を分岐して主基板31に出力される。なお、払出制御基板37上で分岐した後、出力回路373Bを介して主基板31に出力されるようにしてもよい。また、扉開放センサ155Aの検出信号を払出制御用マイクロコンピュータ370に入力するようにし、払出制御用マイクロコンピュータ370を介して扉開放信号を主基板31に出力するようにしてもよい。また、扉開放センサ155Aの検出信号を、払出制御基板37に入力することなく、主基板31に直接入力するようにしてもよい。   Further, a detection signal of a door opening sensor 155 </ b> A (see FIG. 2) that detects the state of the glass door frame 2 is input to the dispensing control board 37. In the payout control board 37, the detection signal of the door opening sensor 155 </ b> A is not input to the payout control microcomputer 370 but is branched onto the payout control board 37 and output to the main board 31. In addition, after branching on the payout control board 37, it may be output to the main board 31 via the output circuit 373B. Alternatively, the detection signal of the door opening sensor 155A may be input to the dispensing control microcomputer 370, and the door opening signal may be output to the main board 31 via the dispensing control microcomputer 370. Further, the detection signal of the door opening sensor 155A may be directly input to the main board 31 without being input to the payout control board 37.

また、機構板の状態を検出する機構板開放センサ155B(図2参照)の検出信号が、払出制御基板37に入力される。払出制御基板37において、機構板開放センサ155Bの検出信号は、払出制御用マイクロコンピュータ370に入力されるとともに、払出制御基板37上を分岐して(払出制御用マイクロコンピュータ370に入力される前段部分で分岐して)主基板31に出力される。なお、払出制御基板37上で分岐した後、出力回路373Bを介して主基板31に出力されるようにしてもよい。また、機構板開放センサ155Bの検出信号を払出制御用マイクロコンピュータ370に入力するようにし、払出制御用マイクロコンピュータ370を介して機構板開放信号を主基板31に出力するようにしてもよい。また、機構板開放センサ155Bの検出信号を、払出制御基板37に入力するとともに、主基板31にも直接入力するようにしてもよい。また、機構板開放センサ155Bの検出信号を、払出制御基板37に入力せずに、まず遊技制御用マイクロコンピュータ560に入力するようにし、遊技制御用マイクロコンピュータ560を介して機構板開放信号を払出制御基板37に出力するようにしてもよい。   Further, a detection signal of a mechanism plate opening sensor 155B (see FIG. 2) that detects the state of the mechanism plate is input to the payout control board 37. In the payout control board 37, the detection signal of the mechanism plate opening sensor 155B is input to the payout control microcomputer 370 and branched on the payout control board 37 (the former part input to the payout control microcomputer 370). And then output to the main board 31. In addition, after branching on the payout control board 37, it may be output to the main board 31 via the output circuit 373B. Alternatively, the detection signal of the mechanism plate opening sensor 155B may be input to the payout control microcomputer 370, and the mechanism plate open signal may be output to the main board 31 via the payout control microcomputer 370. Further, the detection signal of the mechanism plate opening sensor 155B may be input to the payout control board 37 and also input directly to the main board 31. Further, the detection signal of the mechanism plate opening sensor 155B is not input to the payout control board 37, but is first input to the game control microcomputer 560, and the mechanism plate open signal is paid out via the game control microcomputer 560. You may make it output to the control board 37. FIG.

図6は、中継基板77、演出制御基板80、ランプドライバ基板35および音声出力基板70の回路構成例を示すブロック図である。なお、図6に示す例では、ランプドライバ基板35および音声出力基板70には、マイクロコンピュータは搭載されていないが、マイクロコンピュータを搭載してもよい。また、ランプドライバ基板35および音声出力基板70を設けずに、演出制御に関して演出制御基板80のみを設けてもよい。   FIG. 6 is a block diagram illustrating a circuit configuration example of the relay board 77, the effect control board 80, the lamp driver board 35, and the audio output board 70. In the example shown in FIG. 6, the lamp driver board 35 and the audio output board 70 are not equipped with a microcomputer, but may be equipped with a microcomputer. Further, without providing the lamp driver board 35 and the audio output board 70, only the effect control board 80 may be provided for effect control.

演出制御基板80は、演出制御用CPU101a、および演出図柄プロセスフラグ等の演出に関する情報を記憶するRAMを含む演出制御用マイクロコンピュータ100を搭載している。なお、RAMは外付けであってもよい。この実施の形態では、演出制御用マイクロコンピュータ100におけるRAMは電源バックアップされていない。演出制御基板80において、演出制御用CPU101aは、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作する。また、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力(送受信)するシリアル通信回路101bを内蔵している。また、演出制御用CPU101aは、演出制御コマンドにもとづいて、VDP(ビデオディスプレイプロセッサ)109に演出表示装置9の表示制御を行わせる。   The effect control board 80 includes an effect control microcomputer 101 including an effect control CPU 101a and a RAM for storing information related to effects such as effect symbol process flags. The RAM may be externally attached. In this embodiment, the RAM in the production control microcomputer 100 is not backed up. In the effect control board 80, the effect control CPU 101a operates according to a program stored in a built-in or external ROM (not shown). The effect control microcomputer 100 has a built-in serial communication circuit 101b that inputs / outputs (transmits / receives) signals with the game control microcomputer 560 through serial communication. In addition, the effect control CPU 101a causes the VDP (video display processor) 109 to perform display control of the effect display device 9 based on the effect control command.

この実施の形態では、演出制御用マイクロコンピュータ100と共動して演出表示装置9の表示制御を行うVDP109が演出制御基板80に搭載されている。VDP109は、演出制御用マイクロコンピュータ100とは独立したアドレス空間を有し、そこにVRAMをマッピングする。VRAMは、画像データを展開するためのバッファメモリである。そして、VDP109は、VRAM内の画像データをフレームメモリを介して演出表示装置9に出力する。   In this embodiment, a VDP 109 that performs display control of the effect display device 9 in cooperation with the effect control microcomputer 100 is mounted on the effect control board 80. The VDP 109 has an address space independent of the production control microcomputer 100, and maps a VRAM therein. VRAM is a buffer memory for developing image data. Then, the VDP 109 outputs the image data in the VRAM to the effect display device 9 via the frame memory.

演出制御用CPU101aは、受信した演出制御コマンドに従ってCGROM(図示せず)から必要なデータを読み出すための指令をVDP109に出力する。CGROMは、演出表示装置9に表示されるキャラクタ画像データや動画像データ、具体的には、人物、文字、図形や記号等(演出図柄を含む)、および背景画像のデータをあらかじめ格納しておくためのROMである。VDP109は、演出制御用CPU101aの指令に応じて、CGROMから画像データを読み出す。そして、VDP109は、読み出した画像データにもとづいて表示制御を実行する。   The effect control CPU 101a outputs to the VDP 109 a command for reading out necessary data from a CGROM (not shown) in accordance with the received effect control command. The CGROM stores character image data and moving image data displayed on the effect display device 9, specifically, a person, characters, figures, symbols (including effect symbols), and background image data in advance. ROM. The VDP 109 reads the image data from the CGROM in response to the instruction from the effect control CPU 101a. The VDP 109 executes display control based on the read image data.

さらに、演出制御用CPU101aは、出力ポート105を介してランプドライバ基板35に対してLEDを駆動する信号を出力する。また、演出制御用CPU101aは、出力ポート104を介して音声出力基板70に対して音番号データを出力する。   Further, the effect control CPU 101 a outputs a signal for driving the LED to the lamp driver board 35 via the output port 105. In addition, the production control CPU 101 a outputs sound number data to the audio output board 70 via the output port 104.

ランプドライバ基板35において、LEDを駆動する信号は、入力ドライバ351を介してLEDドライバ352に入力される。LEDドライバ352は、LEDを駆動する信号にもとづいて枠LED28などの枠側に設けられている発光体に電流を供給する。また、遊技盤側に設けられている装飾LED25に電流を供給する。   In the lamp driver board 35, a signal for driving the LED is input to the LED driver 352 via the input driver 351. The LED driver 352 supplies a current to a light emitter provided on the frame side such as the frame LED 28 based on a signal for driving the LED. Further, an electric current is supplied to the decoration LED 25 provided on the game board side.

音声出力基板70において、音番号データは、入力ドライバ702を介して音声合成用IC703に入力される。音声合成用IC703は、音番号データに応じた音声や効果音を発生し増幅回路705に出力する。増幅回路705は、音声合成用IC703の出力レベルを、ボリューム706で設定されている音量に応じたレベルに増幅した音声信号をスピーカ27に出力する。音声データROM704には、音番号データに応じた制御データが格納されている。音番号データに応じた制御データは、所定期間(例えば演出図柄の変動期間)における効果音または音声の出力態様を時系列的に示すデータの集まりである。   In the voice output board 70, the sound number data is input to the voice synthesis IC 703 via the input driver 702. The voice synthesizing IC 703 generates voice or sound effect according to the sound number data, and outputs it to the amplifier circuit 705. The amplification circuit 705 outputs an audio signal obtained by amplifying the output level of the speech synthesis IC 703 to a level corresponding to the volume set by the volume 706 to the speaker 27. The voice data ROM 704 stores control data corresponding to the sound number data. The control data corresponding to the sound number data is a collection of data showing the output form of the sound effect or sound in a time series in a predetermined period (for example, the changing period of the effect design).

次に、電源基板910の構成を図7のブロック図を参照して説明する。電源基板910には、遊技機内の各電気部品制御基板や機構部品への電力供給を実行または遮断するための電源スイッチ914が設けられている。なお、電源スイッチ914は、遊技機において、電源基板910の外に設けられていてもよい。電源スイッチ914が閉状態(オン状態)では、交流電源(AC24V)がトランス911の入力側(一次側)に印加される。トランス911は、交流電源(AC24V)と電源基板910の内部とを電気的に絶縁するためのものであるが、その出力電圧もAC24Vである。また、トランス911の入力側には、過電圧保護回路としてのバリスタ918が設置されている。   Next, the configuration of the power supply substrate 910 will be described with reference to the block diagram of FIG. The power supply board 910 is provided with a power switch 914 for executing or shutting off power supply to each electrical component control board and mechanism component in the gaming machine. Note that the power switch 914 may be provided outside the power supply board 910 in the gaming machine. When the power switch 914 is in a closed state (on state), AC power (AC 24 V) is applied to the input side (primary side) of the transformer 911. The transformer 911 is for electrically insulating the AC power supply (AC24V) and the inside of the power supply substrate 910, and its output voltage is also AC24V. A varistor 918 as an overvoltage protection circuit is installed on the input side of the transformer 911.

電源基板910は、電気部品制御基板(主基板31、払出制御基板37および演出制御基板80等)と独立して設置され、遊技機内の各基板および機構部品が使用する電圧を生成する。この例では、AC24V、VSL(DC+30V)、VLP(DC+24V)、VDD(DC+12V)およびVCC(DC+5V)を生成する。また、バックアップ電源(VBB)すなわちバックアップRAMに記憶内容を保持させるための記憶保持手段となるコンデンサ916は、DC+5V(VCC)すなわち各基板上のIC等を駆動する電源のラインから充電される。また、+5Vラインとバックアップ+5V(VBB)ラインとの間に、逆流防止用のダイオード917が挿入される。なお、VSLは、整流平滑回路915において、整流素子でAC24Vを整流昇圧することによって生成される。VSLは、ソレノイド駆動電源になる。また、VLPは、ランプ点灯用の電圧であって、整流回路912において、整流素子でAC24Vを整流することによって生成される。   The power supply board 910 is installed independently of the electric component control board (the main board 31, the payout control board 37, the effect control board 80, etc.), and generates a voltage used by each board and the mechanical parts in the gaming machine. In this example, AC24V, VSL (DC + 30V), VLP (DC + 24V), VDD (DC + 12V) and VCC (DC + 5V) are generated. Further, a capacitor 916 serving as a storage holding means for holding the stored contents in the backup power supply (VBB), that is, the backup RAM, is charged from DC + 5V (VCC), that is, a power supply line that drives an IC or the like on each substrate. Further, a backflow prevention diode 917 is inserted between the + 5V line and the backup + 5V (VBB) line. Note that VSL is generated by rectifying and boosting AC 24 V with a rectifying element in the rectifying and smoothing circuit 915. VSL becomes a solenoid driving power source. VLP is a lamp lighting voltage, and is generated by rectifying AC24V with a rectifier element in the rectifier circuit 912.

電源電圧生成手段としてのDC−DCコンバータ913は、1つまたは複数のスイッチングレギュレータ(図7では2つのレギュレータIC924A,924Bを示す。)を有し、VSLにもとづいてVDDおよびVCCを生成する。レギュレータIC(スイッチングレギュレータ)924A,924Bの入力側には、比較的大容量のコンデンサ923A,923Bが接続されている。従って、外部からの遊技機に対する電力供給が停止したときに、VSL、VDD、VCC等の直流電圧は、比較的緩やかに低下する。   The DC-DC converter 913 serving as a power supply voltage generation unit has one or a plurality of switching regulators (two regulator ICs 924A and 924B are shown in FIG. 7), and generates VDD and VCC based on VSL. Relatively large capacitors 923A and 923B are connected to the input sides of the regulator ICs (switching regulators) 924A and 924B. Therefore, when the power supply to the gaming machine from the outside is stopped, the direct current voltages such as VSL, VDD, VCC, etc., decrease relatively slowly.

図7に示すように、トランス911から出力されたAC24Vは、そのままコネクタ922Bに供給される。また、VLPは、コネクタ922Cに供給される。VCC、VDDおよびVSLは、コネクタ922A,922B,922Cに供給される。   As shown in FIG. 7, AC24V output from the transformer 911 is supplied to the connector 922B as it is. The VLP is supplied to the connector 922C. VCC, VDD and VSL are supplied to connectors 922A, 922B and 922C.

コネクタ922Aに接続されるケーブルは、主基板31に接続される。コネクタ922Aには、VBBも供給されている。また、コネクタ922Bに接続されるケーブルは、払出制御基板37に接続される。なお、コネクタ922BにもVBBが供給されるようにしてもよい。すなわち、払出制御基板37にもバックアップ電源が供給されるようにし、後述する電源断処理が実行されるようにしてもよい。また、コネクタ922Cに接続されるケーブルは、ランプドライバ基板35に接続される。なお、演出制御基板80および音声出力基板70には、ランプドライバ基板35を経由して各電圧が供給される。   The cable connected to the connector 922A is connected to the main board 31. VBB is also supplied to the connector 922A. The cable connected to the connector 922B is connected to the payout control board 37. Note that VBB may also be supplied to the connector 922B. That is, backup power may be supplied to the payout control board 37, and a power-off process described later may be executed. The cable connected to the connector 922C is connected to the lamp driver board 35. Each voltage is supplied to the effect control board 80 and the audio output board 70 via the lamp driver board 35.

また、電源基板910には、押しボタン構造のクリアスイッチ921が搭載されている。電源基板910に搭載されているので、電源基板910から主基板31に亘る電源系統を一系統にすることができ、クリアスイッチ921からのクリア信号の配線と電源系統とを分離しやすくすることができる。クリアスイッチ921が押下されるとローレベル(オン状態)のクリア信号が出力され、コネクタ922Aを介して主基板31に出力される。また、クリアスイッチ921が押下されていなければハイレベル(オフ状態)の信号が出力される。なお、クリアスイッチ921は、押しボタン構造以外の他の構成であってもよい。また、クリアスイッチ921は、遊技機において、電源基板910以外に設けられていてもよい。なお、クリア信号は、主基板31を介して、払出制御基板37に送出される。   In addition, a clear switch 921 having a push button structure is mounted on the power supply board 910. Since the power supply board 910 is mounted, the power supply system extending from the power supply board 910 to the main board 31 can be integrated into one system, and the clear signal wiring from the clear switch 921 can be easily separated from the power supply system. it can. When the clear switch 921 is pressed, a low level (ON state) clear signal is output and output to the main board 31 via the connector 922A. If the clear switch 921 is not pressed, a high level (off state) signal is output. The clear switch 921 may have a configuration other than the push button structure. Further, the clear switch 921 may be provided other than the power supply board 910 in the gaming machine. The clear signal is sent to the payout control board 37 via the main board 31.

さらに、電源基板910には、電気部品制御基板に搭載されているマイクロコンピュータに対するリセット信号を作成するとともに、電源断信号を出力する電源監視回路920と、電源監視回路920からのリセット信号を増幅してコネクタ922A,922Bを介して主基板31および払出制御基板37に出力するとともに、電源断信号を増幅してコネクタ922Aを開始して主基板31に出力する出力ドライバ回路925が搭載されている。なお、電源断信号は、主基板31を経由して、払出制御基板31や演出制御基板80に送出される。   Further, the power supply board 910 generates a reset signal for the microcomputer mounted on the electric component control board, amplifies the reset signal from the power supply monitor circuit 920 that outputs a power-off signal, and the power supply monitor circuit 920. In addition, an output driver circuit 925 that outputs to the main board 31 and the payout control board 37 via the connectors 922A and 922B, amplifies the power-off signal, starts the connector 922A, and outputs it to the main board 31 is mounted. The power-off signal is sent to the payout control board 31 and the effect control board 80 via the main board 31.

電源監視回路920は電源断信号を出力する電源監視手段とリセット信号を生成するリセット信号生成手段とを実現する回路であるが、電源監視回路920として、市販の停電監視リセットモジュールICを使用することができる。電源監視回路920は、遊技機において用いられる所定電圧(例えば+24V)が所定値(例えば+5Vであるが、+18Vなど他の値としてもよい)以下になった期間が、あらかじめ決められている時間(例えば56ms)以上継続すると電源断信号を出力する。具体的には、電源断信号をオン状態(ローレベル)にする。なお、+18Vとすれば、後で説明するように、電力供給停止時のスイッチの誤検出防止が確実になる。   The power supply monitoring circuit 920 is a circuit that realizes a power supply monitoring unit that outputs a power-off signal and a reset signal generation unit that generates a reset signal. Can do. The power supply monitoring circuit 920 has a predetermined period of time during which a predetermined voltage (for example, + 24V) used in the gaming machine is equal to or less than a predetermined value (for example, + 5V, but may be other values such as + 18V). For example, a power-off signal is output if it continues for 56 ms or longer. Specifically, the power-off signal is turned on (low level). If + 18V is set, as will be described later, it is possible to reliably prevent erroneous detection of the switch when the power supply is stopped.

また、電源監視回路920は、例えば、VCCが+4.5V以下になると、リセット信号をローレベルにする。なお、この実施の形態では、電源断信号を出力する機能とリセット信号を出力する機能とが1つの電源監視回路920で実現されているが、それらを別の回路で実現してもよい。その場合、リセット信号を出力する回路として、ウォッチドッグタイマ内蔵ICを使用することができる。そのようなICとして、電源電圧の瞬断や瞬停などに起因してCPUが誤動作したり暴走したりすることを防止するために、クロック信号がクロック入力端子(CK端子)に入力されない期間(コンデンサ接続端子(TC端子)に接続される単一のコンデンサの容量に応じて設定される期間、また、タイマ監視時間は検出電圧可変端子(VS 端子)に接続される抵抗に応じて可変可能)が所定時間以上になると一定期間リセット信号をハイレベルからリセットレベル(CPUを動作停止させるレベル)としてのローレベル(ローレベル期間は、コンデンサ接続端子に接続される上記コンデンサの容量に応じて設定される)にすることを繰り返すウォッチドッグ機能を内蔵するとともに(ウォッチドッグタイマ停止端子(RCT端子)の入力レベルをGND端子の入力レベルと同じレベルである接地レベルにすることによってこの機能を停止可)、例えばVCC(動作可能電圧+0.8V以上)が+5VであるときにVCCが+4.2V以下になるとリセット信号をローレベルにし、VCCが高くなっていくときと低くなっていくときとでリセット信号のレベルを反転するための検出電圧値を変えるヒステリシス特性を有し、さらに、リセットレベルがローレベルであるリセット信号(RESET ̄端子の出力)の他に、リセットレベルがハイレベルであるリセット信号(RESET端子の出力)を出力可能であるシステムリセットICを使用することができる。なお、リセット回路をそれぞれの電気部品制御基板に搭載した場合に、電源断信号をローレベルにすることになる電圧値を異ならせるようにしてもよい(例えば、主基板31における場合を最も高くして、遊技制御用マイクロコンピュータ560に最も早く電源断信号が入力されるようにする。)   For example, the power supply monitoring circuit 920 sets the reset signal to a low level when VCC becomes +4.5 V or less. In this embodiment, the function of outputting the power-off signal and the function of outputting the reset signal are realized by one power supply monitoring circuit 920, but they may be realized by different circuits. In that case, a watchdog timer built-in IC can be used as a circuit for outputting a reset signal. In such an IC, in order to prevent the CPU from malfunctioning or running away due to a momentary power supply voltage interruption or instantaneous interruption, a period in which a clock signal is not input to the clock input terminal (CK terminal) ( (The period set according to the capacitance of a single capacitor connected to the capacitor connection terminal (TC terminal), and the timer monitoring time can be changed according to the resistance connected to the detection voltage variable terminal (VS terminal)) If the reset signal exceeds a predetermined time, the reset signal is changed from a high level to a low level (the level at which the CPU is stopped) for a certain period (the low level period is set according to the capacitance of the capacitor connected to the capacitor connection terminal). A watchdog function that repeats the setting of the This function can be stopped by setting the ground level to the same level as the input level of the GND terminal). For example, when VCC (operable voltage +0.8 V or more) is +5 V, VCC becomes +4.2 V or less. It has a hysteresis characteristic that changes the detection voltage value for inverting the level of the reset signal depending on whether the reset signal is low level and VCC is high or low, and the reset level is low level. In addition to a certain reset signal (output from the RESET terminal), a system reset IC that can output a reset signal (output from the RESET terminal) having a high reset level can be used. When the reset circuit is mounted on each electric component control board, the voltage value that causes the power-off signal to be low may be made different (for example, the case of the main board 31 is made highest). The power-off signal is input to the game control microcomputer 560 the earliest.)

電源監視回路920は、遊技機に対する電力供給が停止する際には、電源断信号を出力(ローレベルにする)してから所定期間が経過したことを条件にリセット信号をローレベルにする。所定期間は、主基板31に搭載されている遊技制御用マイクロコンピュータ560が後述する電源断処理を実行するのに十分な時間である。すなわち、電源監視回路920は、電圧低下検出信号としての電源断信号を出力した後、遊技制御用マイクロコンピュータ560が電源断処理を実行完了した後に、動作停止信号(リセット信号のローレベル)を出力する。また、電源監視回路920は、電圧低下検出信号を出力する第1の電源監視手段と動作停止信号を出力する第2の電源監視手段とを兼ねている。また、遊技機に対する電力供給が開始され、VCCが例えば+4.5Vを越えるとリセット信号をハイレベルにする。   When the power supply to the gaming machine is stopped, the power supply monitoring circuit 920 sets the reset signal to a low level on condition that a predetermined period has elapsed since the power-off signal was output (set to a low level). The predetermined period is a time sufficient for the game control microcomputer 560 mounted on the main board 31 to execute a power-off process described later. That is, the power monitoring circuit 920 outputs an operation stop signal (low level of the reset signal) after the game control microcomputer 560 completes the power-off process after outputting the power-off signal as the voltage drop detection signal. To do. The power monitoring circuit 920 also serves as first power monitoring means for outputting a voltage drop detection signal and second power monitoring means for outputting an operation stop signal. In addition, when power supply to the gaming machine is started and VCC exceeds +4.5 V, for example, the reset signal is set to high level.

なお、この実施の形態では、電源監視手段が所定電位の電源の出力を監視し、外部から遊技機に供給される電力の供給停止に関わる検出条件として、遊技機の外部からの電圧(この実施の形態ではAC24V)から作成された所定の直流電圧が所定値以下になったことを用いたが、検出条件は、それに限られず、外部のからの電力が途絶えたことを検出できるのであれば、他の条件を用いてもよい。例えば、交流波そのものを監視して交流波が途絶えたことを検出条件としてもよいし、交流波をディジタル化した信号を監視して、ディジタル信号が平坦になったことをもって交流波が途絶えたことを検出条件としてもよい。さらに、例えば、+12V電源電圧や+5V電源電圧を監視して、その電圧が所定値にまで低下したことを検出して電源断信号を出力するようにしてもよい。ただし、+12Vで動作するスイッチの誤動作を防止するために、+12V以上の電圧を監視することが好ましい。   In this embodiment, the power supply monitoring means monitors the output of the power supply of a predetermined potential, and the voltage from the outside of the gaming machine (this implementation) In this embodiment, it is used that the predetermined DC voltage created from AC24V) is equal to or lower than the predetermined value. However, the detection condition is not limited to this. Other conditions may be used. For example, the AC wave itself may be monitored and the AC wave may be detected as a detection condition, or the signal obtained by digitizing the AC wave may be monitored and the AC signal may be stopped when the digital signal becomes flat. May be used as a detection condition. Further, for example, a + 12V power supply voltage or a + 5V power supply voltage may be monitored, and it may be detected that the voltage has dropped to a predetermined value and a power-off signal is output. However, in order to prevent a malfunction of a switch operating at + 12V, it is preferable to monitor a voltage of + 12V or higher.

また、この実施の形態では、電源監視手段が電源基板910に搭載されているが、電源監視手段を払出制御基板37に搭載してもよい。払出制御基板37に搭載した場合には、電源監視手段から遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370への電源断信号の経路が短くなり、電源断信号に対してノイズが乗る可能性を低減できる。   In this embodiment, the power supply monitoring unit is mounted on the power supply board 910, but the power supply monitoring unit may be mounted on the payout control board 37. When mounted on the payout control board 37, the path of the power-off signal from the power monitoring means to the game control microcomputer 560 and the payout control microcomputer 370 is shortened, and noise may be applied to the power-off signal. Can be reduced.

図8は、パチンコ遊技機1への電力供給が開始されたとき、および電力供給が停止するときにおける、AC24V、VSL、VCC、リセット信号および電源断信号の状態を、模式的に示すタイミング図である。図8に示すように、パチンコ遊技機1への電力供給が開始されたときに、VSLおよびVCCは徐々に規定値(直流+30Vおよび直流+5V)に達する。このとき、VCCが第1の所定値を超えると、電源監視回路303はリセット信号の出力を停止(ハイレベルに設定)してオフ状態とする。また、VSLが第2の所定値を超えると、電源監視回路303は電源断信号の出力を停止(ハイレベルに設定)してオフ状態とする。他方、パチンコ遊技機1への電力供給が停止するときに、VSLおよびVCCは徐々に低下する。このとき、VSLが第2の所定値にまで低下すると、電源監視回路303は電源断信号をオン状態として出力(ローレベルに設定)する。また、VCCが第1の所定値にまで低下すると、電源監視回路920はリセット信号をオン状態として出力(ローレベルに設定)する。   FIG. 8 is a timing chart schematically showing the states of the AC 24 V, VSL, VCC, reset signal, and power-off signal when power supply to the pachinko gaming machine 1 is started and when power supply is stopped. is there. As shown in FIG. 8, when the supply of power to the pachinko gaming machine 1 is started, VSL and VCC gradually reach specified values (DC + 30V and DC + 5V). At this time, when VCC exceeds the first predetermined value, the power supply monitoring circuit 303 stops outputting the reset signal (sets it to a high level) and turns it off. When VSL exceeds the second predetermined value, the power supply monitoring circuit 303 stops outputting the power-off signal (sets it to a high level) and turns it off. On the other hand, when the power supply to the pachinko gaming machine 1 is stopped, VSL and VCC gradually decrease. At this time, when VSL falls to the second predetermined value, the power supply monitoring circuit 303 outputs the power-off signal as an ON state (sets it to a low level). When VCC decreases to the first predetermined value, the power monitoring circuit 920 outputs the reset signal as an ON state (sets it to a low level).

図9は、主基板31に搭載された遊技制御用マイクロコンピュータ560の構成例を示している。図9に示す遊技制御用マイクロコンピュータ560は、例えば1チップマイクロコンピュータであり、外部バスインタフェース501と、クロック回路502と、固有情報記憶回路503と、リセット/割込みコントローラ504と、CPU(Central Processing Unit)56と、ROM(Read Only Memory)54と、RAM(Random Access Memory)55と、CTC(Counter/Timer Circuit)508と、乱数回路509と、PIP(Parallel Input Port)510と、シリアル通信回路511と、アドレスデコード回路512とを備えて構成される。   FIG. 9 shows a configuration example of the game control microcomputer 560 mounted on the main board 31. A game control microcomputer 560 shown in FIG. 9 is, for example, a one-chip microcomputer, and includes an external bus interface 501, a clock circuit 502, a specific information storage circuit 503, a reset / interrupt controller 504, a CPU (Central Processing Unit). ) 56, ROM (Read Only Memory) 54, RAM (Random Access Memory) 55, CTC (Counter / Timer Circuit) 508, random number circuit 509, PIP (Parallel Input Port) 510, and serial communication circuit 511. And an address decoding circuit 512.

なお、この実施の形態では、シリアル通信回路511を内蔵するマイクロコンピュータを搭載した基板(例えば、主基板31)とは異なる基板(例えば、払出制御基板37や演出制御基板80)のマイクロコンピュータとの通信にシリアル通信回路511を用いる場合を説明するが、シリアル通信回路511は、シリアル通信回路511を内蔵するマイクロコンピュータを搭載した基板が備える別のマイクロコンピュータとシリアル通信を行ってもよい。例えば、同じ構成の2つのマイクロコンピュータが同じ基板に搭載されている場合に、各マイクロコンピュータが内蔵するシリアル通信回路が相互にシリアル通信を行ってもよい。   In this embodiment, the microcomputer on a board (for example, the payout control board 37 or the effect control board 80) different from the board (for example, the main board 31) on which the microcomputer incorporating the serial communication circuit 511 is mounted. Although the case where the serial communication circuit 511 is used for communication will be described, the serial communication circuit 511 may perform serial communication with another microcomputer included in the board on which the microcomputer including the serial communication circuit 511 is mounted. For example, when two microcomputers having the same configuration are mounted on the same substrate, serial communication circuits built in the microcomputers may perform serial communication with each other.

図10は、遊技制御用マイクロコンピュータ560におけるアドレスマップの一例を示している。図10に示すように、アドレス0000H〜アドレス1FFFHの領域は、ROM54に割り当てられ、ユーザプログラムエリアとプログラム管理エリアとを含んでいる。図11(A)は、ROM54におけるプログラム管理エリアの主要部分について、用途や内容の一例を示している。アドレス2000H〜アドレス20FFHの領域は、遊技制御用マイクロコンピュータ560の内蔵レジスタに割り当てられる内蔵レジスタエリアである。図11(B)は、内蔵レジスタエリアの主要部分について、用途や内容の一例を示している。アドレス7E00H〜アドレス7FFFHの領域は、RAM55に割り当てられたワークエリアであり、I/Oマップやメモリマップに割り付けることができる。アドレスFDD0H〜アドレスFDFBHの領域は、アドレスデコード回路512に割り当てられるXCSデコードエリアである。   FIG. 10 shows an example of an address map in the game control microcomputer 560. As shown in FIG. 10, the area from address 0000H to address 1FFFH is allocated to the ROM 54 and includes a user program area and a program management area. FIG. 11A shows an example of the usage and contents of the main part of the program management area in the ROM 54. The area from address 2000H to address 20FFH is a built-in register area assigned to the built-in register of the game control microcomputer 560. FIG. 11B shows an example of the usage and contents of the main part of the built-in register area. An area from address 7E00H to address 7FFFH is a work area assigned to the RAM 55, and can be assigned to an I / O map or a memory map. An area from address FDD0H to address FDFBH is an XCS decode area allocated to the address decode circuit 512.

プログラム管理エリアは、CPU56がユーザプログラムを実行するために必要な情報を格納する記憶領域である。図11(A)に示すように、プログラム管理エリアには、ヘッダKHDR、機能設定KFCS、第1乱数初期設定KRS1、第2乱数初期設定KRS2、割込み初期設定KIIS、セキュリティ時間設定KSESなどが、含まれている。   The program management area is a storage area for storing information necessary for the CPU 56 to execute the user program. As shown in FIG. 11A, the program management area includes a header KHDR, a function setting KFCS, a first random number initial setting KRS1, a second random number initial setting KRS2, an interrupt initial setting KIIS, a security time setting KSES, and the like. It is.

プログラム管理エリアに記憶されるヘッダKHDRは、遊技制御用マイクロコンピュータ560における内部データの読出設定を示す。図12(A)は、ヘッダKHDRにおける設定データと動作との対応関係を例示している。ここで、遊技制御用マイクロコンピュータ560では、ROM読出防止機能と、バス出力マスク機能とを設定可能である。ROM読出防止機能は、遊技制御用マイクロコンピュータ560が備えるROM54の記憶データについて、読出動作を許可または禁止する機能であり、読出禁止に設定された状態では、ROM54の記憶データを読み出すことができない。バス出力マスク機能は、外部バスインタフェース501に接続された外部装置から遊技制御用マイクロコンピュータ560の内部データに対する読出要求があった場合に、外部バスインタフェース501におけるアドレスバス出力、データバス出力および制御信号出力にマスクをかけることにより、外部装置から内部データの読み出しを不能にする機能である。図12(A)に示すように、ヘッダKHDRの設定データに対応して、ROM読出防止機能やバス出力マスク機能の動作組合せが異なるように設定される。図12(A)に示す設定データのうち、ROM読出が許可されるとともに、バス出力マスクが有効となる設定データは、バス出力マスク有効データともいう。また、ROM読出が禁止されるとともに、バス出力マスクが有効となる設定データ(全て「00H」)は、ROM読出禁止データともいう。ROM読出が許可されるとともに、バス出力マスクが無効となる設定データは、バス出力マスク無効データともいう。   A header KHDR stored in the program management area indicates a setting for reading internal data in the game control microcomputer 560. FIG. 12A illustrates the correspondence between setting data and operation in the header KHDR. Here, in the game control microcomputer 560, a ROM read prevention function and a bus output mask function can be set. The ROM read prevention function is a function for permitting or prohibiting the read operation of the data stored in the ROM 54 provided in the game control microcomputer 560. When the read prohibition is set, the data stored in the ROM 54 cannot be read. The bus output mask function is an address bus output, data bus output and control signal in the external bus interface 501 when an external device connected to the external bus interface 501 makes a read request for the internal data of the game control microcomputer 560. This function makes it impossible to read internal data from an external device by masking the output. As shown in FIG. 12A, the operation combination of the ROM read prevention function and the bus output mask function is set differently in accordance with the setting data of the header KHDR. Of the setting data shown in FIG. 12A, the setting data for which ROM reading is permitted and the bus output mask is valid is also referred to as bus output mask valid data. Further, the setting data (all “00H”) in which ROM reading is prohibited and the bus output mask is valid is also referred to as ROM reading prohibiting data. The setting data for which ROM reading is permitted and the bus output mask becomes invalid is also referred to as bus output mask invalid data.

プログラム管理エリアに記憶される機能設定KFCSは、遊技制御用マイクロコンピュータ560におけるウォッチドッグタイマ(WDT;Watch Dog Timer)の動作設定や、各種機能兼用端子の使用設定を示す。図12(B)は、機能設定KFCSにおける設定内容の一例を示している。   The function setting KFCS stored in the program management area indicates the operation setting of a watch dog timer (WDT) in the game control microcomputer 560 and the use setting of various function shared terminals. FIG. 12B shows an example of setting contents in the function setting KFCS.

機能設定KFCSのビット番号[7−5]は、例えばリセット/割込みコントローラ504における割込み要因として設定可能なウォッチドッグタイマの動作許可/禁止や、許可した場合の周期を示している。機能設定KFCSのビット番号[4]は、遊技制御用マイクロコンピュータ560における所定の機能兼用端子(第1兼用端子)を、シリアル通信回路511が使用する第2チャネル送信端子TXBとするか、アドレスデコード回路512が使用するチップセレクト出力端子XCS13とするかを指定するTXB端子設定である。図12(B)に示す例において、機能設定KFCSのビット番号[4]におけるビット値が“0”であれば、第1兼用端子がシリアル通信回路511での第2チャネル送信に使用される第2チャネル送信端子TXBの設定となる。これに対して、そのビット値が“1”であれば、第1兼用端子がアドレスデコード回路512で使用されるチップセレクト出力端子XCS13の設定となる。この実施の形態では、機能設定KFCSのビット番号[4]を“0”として、第1兼用端子を第2チャネル送信端子TXBに設定することにより、演出制御基板80との間でのシリアル通信を可能にする。   The bit number [7-5] of the function setting KFCS indicates, for example, the operation permission / prohibition of the watchdog timer that can be set as an interrupt factor in the reset / interrupt controller 504, and the cycle when it is permitted. The bit number [4] of the function setting KFCS indicates that the predetermined function shared terminal (first shared terminal) in the game control microcomputer 560 is the second channel transmission terminal TXB used by the serial communication circuit 511 or is address decoded. This is a TXB terminal setting that designates whether the circuit 512 uses the chip select output terminal XCS13. In the example shown in FIG. 12B, when the bit value in the bit number [4] of the function setting KFCS is “0”, the first shared terminal is used for the second channel transmission in the serial communication circuit 511. This is the setting for the 2-channel transmission terminal TXB. On the other hand, if the bit value is “1”, the first dual-purpose terminal is set to the chip select output terminal XCS13 used in the address decode circuit 512. In this embodiment, by setting the bit number [4] of the function setting KFCS to “0” and setting the first shared terminal to the second channel transmission terminal TXB, serial communication with the effect control board 80 is performed. to enable.

機能設定KFCSのビット番号[3]は、遊技制御用マイクロコンピュータ560における所定の機能兼用端子(第2兼用端子)を、シリアル通信回路511が使用する第1チャネル送信端子TXAとするか、アドレスデコード回路512が使用するチップセレクト出力端子XCS12とするかを示すTXA端子設定である。図12(B)に示す例において、機能設定KFCSのビット番号[3]におけるビット値が“0”であれば、第2兼用端子がシリアル通信回路511での第1チャネル送信に使用される第1チャネル送信端子TXAの設定となる。これに対して、そのビット値が“1”であれば、第2兼用端子がアドレスデコード回路512で使用されるチップセレクト出力端子XCS12の設定となる。この実施の形態では、機能設定KFCSのビット番号[3]を“0”として、第2兼用端子を第1チャネル送信端子TXAに設定することにより、払出制御基板37との間でのシリアル通信を可能にする。   The bit number [3] of the function setting KFCS indicates that a predetermined function shared terminal (second shared terminal) in the game control microcomputer 560 is the first channel transmission terminal TXA used by the serial communication circuit 511, or is address decoded. This is a TXA terminal setting that indicates whether the circuit 512 uses the chip select output terminal XCS12. In the example shown in FIG. 12B, if the bit value in the bit number [3] of the function setting KFCS is “0”, the second shared terminal is used for the first channel transmission in the serial communication circuit 511. 1 channel transmission terminal TXA is set. On the other hand, if the bit value is “1”, the second dual-purpose terminal is set to the chip select output terminal XCS12 used in the address decode circuit 512. In this embodiment, by setting the bit number [3] of the function setting KFCS to “0” and setting the second shared terminal to the first channel transmission terminal TXA, serial communication with the payout control board 37 is performed. to enable.

機能設定KFCSのビット番号[2]は、遊技制御用マイクロコンピュータ560における所定の機能兼用端子(第3兼用端子)を、シリアル通信回路511が使用する第1チャネル受信端子RXAとするか、PIP510が使用する入力ポートP5とするかを示すRXA端子設定である。図12(B)に示す例において、機能設定KFCSのビット番号[2]におけるビット値が“0”であれば、第3兼用端子がシリアル通信回路511での第1チャネル受信に使用される第1チャネル受信端子RXAの設定となる。これに対して、そのビット値が“1”であれば、第3兼用端子がPIP510で使用される入力ポートP5の設定となる。この実施の形態では、機能設定KFCSのビット番号[2]を“0”として、第3兼用端子を第1チャネル受信端子RXAに設定することにより、払出制御基板37との間でのシリアル通信を可能にする。   The bit number [2] of the function setting KFCS indicates that the predetermined function shared terminal (third shared terminal) in the game control microcomputer 560 is the first channel reception terminal RXA used by the serial communication circuit 511, or the PIP 510 This is an RXA terminal setting indicating whether to use the input port P5. In the example shown in FIG. 12B, if the bit value in the bit number [2] of the function setting KFCS is “0”, the third shared terminal is used for the first channel reception in the serial communication circuit 511. 1 channel receiving terminal RXA is set. On the other hand, if the bit value is “1”, the third shared terminal is set to the input port P5 used in the PIP 510. In this embodiment, by setting the bit number [2] of the function setting KFCS to “0” and setting the third shared terminal to the first channel receiving terminal RXA, serial communication with the payout control board 37 is performed. to enable.

機能設定KFCSのビット番号[1]は、遊技制御用マイクロコンピュータ560における所定の機能兼用端子(第4兼用端子)を、CPU56等に接続される外部ノンマスカブル割込み端子XNMIとするか、PIP510が使用する入力ポートP4とするかを示すNMI接続設定である。図12(B)に示す例において、機能設定KFCSのビット番号[1]におけるビット値が“0”であれば、第4兼用端子がCPU56等に接続される外部ノンマスカブル割込み端子XNMIの設定となる(CPU接続)。これに対して、そのビット値が“1”であれば、第4兼用端子がPIP510で使用される入力ポートP4の設定となる(CPU非接続)。   The bit number [1] of the function setting KFCS is a predetermined function shared terminal (fourth shared terminal) in the game control microcomputer 560 is used as an external non-maskable interrupt terminal XNMI connected to the CPU 56 or the like, or is used by the PIP 510 This is an NMI connection setting indicating whether to set the input port P4. In the example shown in FIG. 12B, if the bit value in the bit number [1] of the function setting KFCS is “0”, the external non-maskable interrupt terminal XNMI connected to the CPU 56 or the like is set to the fourth shared terminal. (CPU connection). On the other hand, if the bit value is “1”, the fourth shared terminal is set for the input port P4 used in the PIP 510 (CPU disconnected).

機能設定KFCSのビット番号[0]は、遊技制御用マイクロコンピュータ560における所定の機能兼用端子(第5兼用端子)を、CPU56等に接続される外部マスカブル割込み端子XINTとするか、PIP510が使用する入力ポートP3とするかを示すXINT接続設定である。図12(B)に示す例において、機能設定KFCSのビット番号[0]におけるビット値が“0”であれば、第5兼用端子がCPU56等に接続される外部マスカブル割込み端子XINTの設定となる(CPU接続)。これに対して、そのビット値が“1”であれば、第5兼用端子がPIP510で使用される入力ポートP3の設定となる(CPU非接続)。   The bit number [0] of the function setting KFCS is a predetermined function shared terminal (fifth shared terminal) in the game control microcomputer 560 used as an external maskable interrupt terminal XINT connected to the CPU 56 or the like, or used by the PIP 510 The XINT connection setting indicates whether the input port is P3. In the example shown in FIG. 12B, if the bit value in the bit number [0] of the function setting KFCS is “0”, the external maskable interrupt terminal XINT whose fifth shared terminal is connected to the CPU 56 or the like is set. (CPU connection). On the other hand, if the bit value is “1”, the fifth shared terminal is set for the input port P3 used in the PIP 510 (CPU disconnected).

プログラム管理エリアに記憶される第1乱数初期設定KRS1および第2乱数初期設定KRS2は、乱数回路509の初期設定を示す。図13(A)は、第1乱数初期設定KRS1における設定内容の一例を示している。図13(B)は、第2乱数初期設定KRS2における設定内容の一例を示している。   The first random number initial setting KRS1 and the second random number initial setting KRS2 stored in the program management area indicate the initial setting of the random number circuit 509. FIG. 13A shows an example of setting contents in the first random number initial setting KRS1. FIG. 13B shows an example of setting contents in the second random number initial setting KRS2.

第1乱数初期設定KRS1のビット番号[3]は、乱数回路509を使用するか否かを示す乱数回路使用設定である。図13(A)に示す例において、第1乱数初期設定KRS1のビット番号[3]におけるビット値が“0”であれば、乱数回路509を使用しない設定となる一方(未使用)、“1”であれば、乱数回路509を使用する設定となる(使用)。この実施の形態では、第1乱数初期設定KRS1のビット番号[3]を“1”として、乱数回路509を使用可能に設定する。   The bit number [3] of the first random number initial setting KRS1 is a random number circuit use setting indicating whether to use the random number circuit 509 or not. In the example shown in FIG. 13A, if the bit value in the bit number [3] of the first random number initial setting KRS1 is “0”, the random number circuit 509 is not used (unused), but “1”. "Is set to use the random number circuit 509 (use). In this embodiment, the bit number [3] of the first random number initial setting KRS1 is set to “1”, and the random number circuit 509 is set to be usable.

第1乱数初期設定KRS1のビット番号[2]は、乱数回路509における乱数値となる数値データの更新に用いられる乱数更新クロックRGK(図16参照)を、内部システムクロックSCLKとするか、乱数用クロックRCLKの2分周とするかを示す乱数更新クロック設定である。図13(A)に示す例において、第1乱数初期設定KRS1のビット番号[2]におけるビット値が“0”であれば、内部システムクロックSCLKを乱数更新クロックRGKに用いる設定となる一方、“1”であれば、乱数用クロックRCLKを2分周して乱数更新クロックRGKに用いる設定となる。この実施の形態では、第1乱数初期設定KRS1のビット番号[2]を“1”として、乱数用クロックRCLKを2分周して乱数更新クロックRGKに用いる設定とする。   The bit number [2] of the first random number initial setting KRS1 is the random number update clock RGK (see FIG. 16) used for updating the numerical data that becomes the random number value in the random number circuit 509, or the internal system clock SCLK. This is a random number update clock setting indicating whether the clock RCLK is divided by two. In the example shown in FIG. 13A, if the bit value in the bit number [2] of the first random number initial setting KRS1 is “0”, the internal system clock SCLK is set to be used as the random number update clock RGK. If it is 1 ″, the random number clock RCLK is divided by two and used as the random number update clock RGK. In this embodiment, the bit number [2] of the first random number initial setting KRS1 is set to “1”, and the random number clock RCLK is divided by two to be used as the random number update clock RGK.

第1乱数初期設定KRS1のビット番号[1−0]は、乱数回路509における乱数更新規則を変更するか否かや、変更する場合における変更方式を示す乱数更新規則設定である。図13(A)に示す例において、第1乱数初期設定KRS1のビット番号[1−0]におけるビット値が“00”であれば、乱数更新規則を変更しない設定となり、“01”であれば、2周目以降にて乱数更新規則をソフトウェアにより変更する設定となり、“10”であれば、2周目以降にて乱数更新規則を自動で変更する設定となる。   The bit number [1-0] of the first random number initial setting KRS1 is a random number update rule setting indicating whether or not to change the random number update rule in the random number circuit 509 and the change method in the case of the change. In the example shown in FIG. 13A, if the bit value in the bit number [1-0] of the first random number initial setting KRS1 is “00”, the random number update rule is not changed, and if it is “01”. The setting for changing the random number update rule by software is made after the second round, and if it is “10”, the random number update rule is automatically changed after the second round.

第2乱数初期設定KRS2のビット番号[3−2]は、固定のビット値“00”が設定される。なお、図13(B)における「00B」の“B”は2進数表示であることを示す。第2乱数初期設定KRS2のビット番号[1−0]は、乱数回路509における乱数値となる数値データでのスタート値に関する設定を示す。図13(B)に示す例において、第2乱数初期設定KRS2のビット番号[1]におけるビット値が“0”であれば、スタート値が所定のデフォルト値0000Hに設定される一方、“1”であるときには、遊技制御用マイクロコンピュータ560ごとに付与された固有の識別情報であるIDナンバーにもとづく値がスタート値に設定される。また、図13(B)に示す例では、第2乱数初期設定KRS2のビット番号[0]におけるビット値が“0”であれば、システムリセット毎にスタート値を変更しない設定となる一方、“1”であるときには、システムリセット毎にスタート値を変更する設定となる。なお、スタート値をIDナンバーにもとづく値に設定する場合には、IDナンバーに所定のスクランブル処理を施す演算や、IDナンバーを用いた加算・減算・乗算・除算などの演算の一部または全部を実行して、算出された値をスタート値に用いるようにすればよい。また、第2乱数初期設定KRS2のビット番号[0]におけるビット値が“1”である場合には、システムリセット毎に所定のフリーランカウンタ(例えば図16に示すフリーランカウンタ554A)におけるカウント値にもとづいて設定される値をスタート値に用いるようにすればよい。さらに、第2乱数初期設定KRS2のビット番号[1]および[0]におけるビット値がともに“1”である場合には、IDナンバーとフリーランカウンタにおけるカウント値とにもとづいて設定される値をスタート値に用いるようにすればよい。   The bit number [3-2] of the second random number initial setting KRS2 is set to a fixed bit value “00”. Note that “B” of “00B” in FIG. 13B indicates binary display. The bit number [1-0] of the second random number initial setting KRS2 indicates the setting relating to the start value in the numerical data that becomes the random value in the random number circuit 509. In the example shown in FIG. 13B, if the bit value in the bit number [1] of the second random number initial setting KRS2 is “0”, the start value is set to a predetermined default value 0000H, while “1”. In this case, a value based on the ID number, which is unique identification information assigned to each game control microcomputer 560, is set as the start value. In the example shown in FIG. 13B, if the bit value in the bit number [0] of the second random number initial setting KRS2 is “0”, the start value is not changed every time the system is reset. When it is 1 ″, the start value is changed every time the system is reset. When the start value is set to a value based on the ID number, a part or all of the operations such as a predetermined scramble process for the ID number and the addition / subtraction / multiplication / division using the ID number are performed. It is only necessary to execute and use the calculated value as the start value. Further, when the bit value [0] of the second random number initial setting KRS2 is “1”, the count value in a predetermined free-run counter (for example, the free-run counter 554A shown in FIG. 16) every system reset. A value set based on the above may be used as the start value. Further, when the bit values [1] and [0] of the second random number initial setting KRS2 are both “1”, a value set based on the ID number and the count value in the free-run counter is set. It may be used as a start value.

なお、乱数回路509にて乱数値となる数値データを生成するための回路が2系統(第1および第2チャネル対応)設けられる場合には、図13(A)および(B)に示す第1乱数初期設定KRS1のビット番号[3−0]と第2乱数初期設定KRS2のビット番号[3−0]とを、第1チャネルにおける初期設定を示すものとして使用する。その一方で、第1乱数初期設定KRS1のビット番号[7−4]や第2乱数初期設定KRS2のビット番号[7−4]を(図13(A)および(B)では省略)、第2チャネルにおける初期設定を示すものとして使用すればよい。   Note that when two systems (corresponding to the first and second channels) for generating numerical data to be random values in the random number circuit 509 are provided, the first shown in FIGS. 13A and 13B. The bit number [3-0] of the random number initial setting KRS1 and the bit number [3-0] of the second random number initial setting KRS2 are used to indicate the initial setting in the first channel. On the other hand, the bit number [7-4] of the first random number initial setting KRS1 and the bit number [7-4] of the second random number initial setting KRS2 (omitted in FIGS. 13A and 13B), the second It may be used as an indication of the initial setting in the channel.

プログラム管理エリアに記憶される割込み初期設定KIISは、遊技制御用マイクロコンピュータ560にて発生するマスカブル割込みの取扱いに関する初期設定を示す。図13(C)は、割込み初期設定KIISにおける設定内容の一例を示している。   Interrupt initial settings KIIS stored in the program management area indicate initial settings related to handling of maskable interrupts generated in the game control microcomputer 560. FIG. 13C shows an example of setting contents in the interrupt initial setting KIIS.

割込み初期設定KIISのビット番号[7−4]では、割込みベクタの上位4ビットを設定する。割込み初期設定KIISのビット番号[3−0]では、マスカブル割込み要因の優先度の組合せを設定する。図13(C)に示す例において、割込み初期設定KIISのビット番号[3−0]により「00H」〜「02H」および「06H」のいずれかが指定されれば、CTC508からのマスカブル割込み要因を最優先とする優先度の組合せが設定される。これに対して、「03H」および「07H」のいずれかが指定されれば、乱数回路509からのマスカブル割込み要因を最優先とする優先度の組合せが設定される。また、「04H」および「05H」のいずれかが指定されれば、シリアル通信回路511からのマスカブル割込み要因を最優先とする優先度の組合せが設定される。なお、同一回路からのマスカブル割込み要因を最優先とする優先度の組合せでも、指定値が異なる場合には、最優先となるマスカブル割込み要因の種類や第2順位以下における優先度の組合せなどが異なっている。   In the bit number [7-4] of the interrupt initial setting KIIS, the upper 4 bits of the interrupt vector are set. In the bit number [3-0] of the interrupt initial setting KIIS, a combination of maskable interrupt factor priorities is set. In the example shown in FIG. 13C, if any of “00H” to “02H” and “06H” is specified by the bit number [3-0] of the interrupt initial setting KIIS, the maskable interrupt factor from the CTC 508 is determined. A combination of priorities to be given the highest priority is set. On the other hand, if any one of “03H” and “07H” is specified, a combination of priorities that gives the highest priority to the maskable interrupt factor from the random number circuit 509 is set. If either “04H” or “05H” is designated, a combination of priorities with the highest priority given to the maskable interrupt factor from the serial communication circuit 511 is set. Note that even if the priority combination has the highest priority for maskable interrupt factors from the same circuit, if the specified value is different, the type of maskable interrupt factor that has the highest priority, the priority combination in the second or lower order, etc. will differ. ing.

プログラム管理エリアに記憶されるセキュリティ時間設定KSESは、乱数用クロックRCLKの周波数を監視する場合に異常を検知する周波数や、遊技制御用マイクロコンピュータ560の動作開始時などに移行するセキュリティモードの時間(セキュリティ時間)に関する設定を示す。ここで、遊技制御用マイクロコンピュータ560の動作モードがセキュリティモードであるときには、所定のセキュリティチェック処理が実行されて、ROM54の記憶内容が変更されたか否かが検査される。図14(A)は、セキュリティ時間設定KSESにおける設定内容の一例を示している。   The security time setting KSES stored in the program management area is the frequency at which an abnormality is detected when monitoring the frequency of the random number clock RCLK, the time of the security mode in which the game control microcomputer 560 shifts to the start of operation, etc. Indicates settings related to (security time). Here, when the operation mode of the game control microcomputer 560 is the security mode, a predetermined security check process is executed to check whether or not the content stored in the ROM 54 has been changed. FIG. 14A shows an example of setting contents in the security time setting KSES.

セキュリティ時間設定KSESのビット番号[7−6]は、乱数用クロックRCLKの周波数を監視する場合に異常が検出される周波数を示す乱数用クロック異常検出設定である。図14(B)は、セキュリティ時間設定KSESのビット番号[7−6]における設定内容の一例を示している。セキュリティ時間設定KSESのビット番号[7−6]は、内部システムクロックSCLKの周波数にもとづき、乱数用クロックRCLKの周波数が異常と検知される基準値(判定値)を指定する。こうしたセキュリティ時間設定KSESのビット番号[7−6]における設定にもとづき、乱数用クロックRCLKの入力状態を内部システムクロックSCLKと比較することにより、乱数用クロックRCLKの入力状態に異常が発生したか否かの判定を可能にする。セキュリティ時間設定KSESのビット番号「5」は、固定のビット値“0”が設定される。   Bit number [7-6] of security time setting KSES is a random number clock abnormality detection setting indicating a frequency at which an abnormality is detected when the frequency of random number clock RCLK is monitored. FIG. 14B shows an example of setting contents in the bit number [7-6] of the security time setting KSES. The bit number [7-6] of the security time setting KSES designates a reference value (determination value) at which the frequency of the random number clock RCLK is detected as abnormal based on the frequency of the internal system clock SCLK. Whether or not an abnormality has occurred in the input state of the random number clock RCLK by comparing the input state of the random number clock RCLK with the internal system clock SCLK based on the setting in the bit number [7-6] of the security time setting KSES. It is possible to determine whether. The bit number “5” of the security time setting KSES is set to a fixed bit value “0”.

セキュリティ時間設定KSESのビット番号[4−3]は、セキュリティ時間をシステムリセット毎にランダムな時間分延長する場合の時間設定を示す。図14(C)は、セキュリティ時間設定KSESのビット番号[4−3]における設定内容の一例を示している。図14(C)に示す例において、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値が“00”であれば、ランダムな時間延長を行わない設定となる。これに対して、そのビット値が“01”であればショートモードの設定となり、“10”であればロングモードの設定となる。ここで、ショートモードやロングモードが指定された場合には、例えば遊技制御用マイクロコンピュータ560に内蔵されたフリーランカウンタのカウント値を、システムリセットの発生時に遊技制御用マイクロコンピュータ560が備える所定の内蔵レジスタ(可変セキュリティ時間用レジスタ)に格納する。そして、初期設定時に可変セキュリティ時間用レジスタの格納値をそのまま用いること、あるいは、その格納値を所定の演算関数(例えばハッシュ関数)に代入して得られた値を用いることなどにより、セキュリティ時間を延長する際の延長時間がランダムに決定されればよい。一例として、内部システムクロックSCLKの周波数が6.0MHzである場合には、ショートモードにおいて0〜680μs(マイクロ秒)の範囲で延長時間がランダムに決定され、ロングモードにおいて0〜348,160μsの範囲で延長時間がランダムに決定される。また、他の一例として、内部システムクロックSCLKの周波数が10.0MHzである場合には、ショートモードにおいて0〜408μsの範囲で延長時間がランダムに決定され、ロングモードにおいて0〜208,896μsの範囲で延長時間がランダムに決定される。可変セキュリティ時間用レジスタは、例えば遊技制御用マイクロコンピュータ560のRAM55におけるバックアップ領域といった、主基板31におけるバックアップ箇所と共通のバックアップ電源を用いてバックアップされるものであればよい。あるいは、可変セキュリティ時間用レジスタは、RAM55におけるバックアップ領域などに用いられるバックアップ電源とは別個に設けられた電源によりバックアップされてもよい。こうして、可変セキュリティ時間用レジスタがバックアップ電源によってバックアップされることで、電力供給が停止した場合でも、所定期間は可変セキュリティ時間用レジスタの格納値が保存されることになる。なお、フリーランカウンタにおけるカウント値を読み出して可変セキュリティ時間用レジスタに格納するタイミングは、システムリセットの発生時に限定されず、あらかじめ定められた任意のタイミングとしてもよい。あるいは、フリーランカウンタをバックアップ電源によってバックアップしておき、初期設定時にフリーランカウンタから読み出した格納値を用いてセキュリティ時間を延長する際の延長時間がランダムに決定されてもよい。   The bit number [4-3] of the security time setting KSES indicates a time setting when the security time is extended by a random time every system reset. FIG. 14C shows an example of setting contents in the bit number [4-3] of the security time setting KSES. In the example shown in FIG. 14C, if the bit value in the bit number [4-3] of the security time setting KSES is “00”, the setting is such that random time extension is not performed. On the other hand, if the bit value is “01”, the short mode is set. If the bit value is “10”, the long mode is set. Here, when the short mode or the long mode is designated, for example, the count value of the free run counter built in the game control microcomputer 560 is set to a predetermined value provided in the game control microcomputer 560 when a system reset occurs. Store in the built-in register (variable security time register). Then, the security time can be reduced by using the stored value of the variable security time register as it is at the time of initial setting, or by using the value obtained by substituting the stored value into a predetermined arithmetic function (for example, a hash function). What is necessary is just to determine the extension time at the time of extending at random. As an example, when the frequency of the internal system clock SCLK is 6.0 MHz, the extension time is randomly determined in the range of 0 to 680 μs (microseconds) in the short mode, and in the range of 0 to 348, 160 μs in the long mode. The extension time is determined at random. As another example, when the frequency of the internal system clock SCLK is 10.0 MHz, the extension time is randomly determined in the range of 0 to 408 μs in the short mode, and in the range of 0 to 208,896 μs in the long mode. The extension time is determined at random. The variable security time register only needs to be backed up using a backup power source common to the backup location on the main board 31, such as a backup area in the RAM 55 of the game control microcomputer 560. Alternatively, the variable security time register may be backed up by a power source provided separately from a backup power source used for a backup area in the RAM 55 or the like. In this way, the variable security time register is backed up by the backup power supply, so that the stored value of the variable security time register is saved for a predetermined period even when the power supply is stopped. The timing at which the count value in the free-run counter is read and stored in the variable security time register is not limited to when a system reset occurs, but may be any predetermined timing. Alternatively, the free run counter may be backed up by a backup power source, and the extension time for extending the security time using the stored value read from the free run counter at the initial setting may be determined at random.

また、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値によりショートモードまたはロングモードを設定するとともに、セキュリティ時間設定KSESのビット番号[2−0]におけるビット値を“000”以外とすることにより固定時間に加える延長時間を設定することもできる。この場合には、ビット番号[2−0]におけるビット値に対応した延長時間と、ビット番号[4−3]におけるビット値にもとづいてランダムに決定された延長時間との双方が、固定時間に加算されて、遊技制御用マイクロコンピュータ560がセキュリティモードとなるセキュリティ時間が決定されることになる。   Further, the short mode or the long mode is set by the bit value in the bit number [4-3] of the security time setting KSES, and the bit value in the bit number [2-0] of the security time setting KSES is set to other than “000”. Thus, it is possible to set an extension time to be added to the fixed time. In this case, both the extension time corresponding to the bit value in the bit number [2-0] and the extension time randomly determined based on the bit value in the bit number [4-3] are fixed times. By adding, the security time during which the game control microcomputer 560 is in the security mode is determined.

図9に示す遊技制御用マイクロコンピュータ560が備える外部バスインタフェース501は、遊技制御用マイクロコンピュータ560を構成するチップの外部バスと内部バスとのインタフェース機能や、アドレスバス、データバスおよび各制御信号の方向制御機能などを有するバスインタフェースである。例えば、外部バスインタフェース501は、遊技制御用マイクロコンピュータ560に外付けされた外部メモリや外部入出力装置などに接続され、これらの外部装置との間でアドレス信号やデータ信号、各種の制御信号などを送受信するものであればよい。この実施の形態において、外部バスインタフェース501には、内部リソースアクセス制御回路501Aが含まれている。   The external bus interface 501 provided in the game control microcomputer 560 shown in FIG. 9 includes an interface function between the external bus and the internal bus of the chip constituting the game control microcomputer 560, an address bus, a data bus, and each control signal. A bus interface having a direction control function and the like. For example, the external bus interface 501 is connected to an external memory or an external input / output device externally attached to the game control microcomputer 560, and an address signal, a data signal, various control signals, etc. are connected to these external devices. As long as it transmits and receives. In this embodiment, the external bus interface 501 includes an internal resource access control circuit 501A.

内部リソースアクセス制御回路501Aは、外部バスインタフェース501を介した外部装置から遊技制御用マイクロコンピュータ560の内部データに対するアクセスを制御して、例えばROM54に記憶されたゲーム制御用プログラム(遊技制御処理プログラム)や固定データといった、内部データの不適切な外部読出を制限するための回路である。ここで、外部バスインタフェース501には、例えばインサーキットエミュレータ(ICE;InCircuit Emulator)といった回路解析装置が、外部装置として接続されることがある。   The internal resource access control circuit 501A controls access to the internal data of the game control microcomputer 560 from an external device via the external bus interface 501, and for example, a game control program (game control processing program) stored in the ROM 54 And a circuit for limiting inappropriate external reading of internal data such as fixed data. Here, a circuit analysis device such as an in-circuit emulator (ICE; InCircuit Emulator) may be connected to the external bus interface 501 as an external device.

一例として、ROM54のプログラム管理エリアに記憶されたヘッダKHDRの内容に応じて、ROM54における記憶データの読み出しを禁止するか許可するかを切り替えられるようにする。例えば、ヘッダKHDRがバス出力マスク無効データとなっている場合には、外部装置によるROM54の読み出しを可能にして、内部データの外部読出を許可する。これに対して、ヘッダKHDRがバス出力マスク有効データとなっている場合には、例えば外部バスインタフェース501におけるアドレスバス出力、データバス出力および制御信号出力にマスクをかけることなどにより、外部装置からROM54の読み出しを不能にして、内部データの外部読出を禁止する。この場合、外部バスインタフェース501に接続された外部装置から内部データの読み出しが要求されたときには、あらかじめ定められた固定値を出力することで、外部装置からは内部データを読み出すことができないようにする。また、ヘッダKHDRがROM読出禁止データとなっている場合には、ROM54自体を読出不能として、ROM54における記憶データの読み出しを防止してもよい。そして、例えば製造段階のROMでは、ヘッダKHDRをROM読出禁止データとすることで、ROM自体を読出不能としておき、開発用ROMとするのであればバス出力マスク無効データをヘッダKHDRに書き込むことで、外部装置による内部データの検証を可能にする。これに対して、量産用ROMとするのであればバス出力マスク有効データをヘッダKHDRに書き込むことで、CPU56などによる遊技制御用マイクロコンピュータ560の内部におけるROM54の読み出しは可能とする一方で、外部装置によるROM54の読み出しはできないようにすればよい。   As an example, switching between prohibiting or permitting reading of stored data in the ROM 54 can be switched according to the contents of the header KHDR stored in the program management area of the ROM 54. For example, when the header KHDR is bus output mask invalid data, the ROM 54 can be read by an external device, and external reading of internal data is permitted. On the other hand, when the header KHDR is the bus output mask valid data, the ROM 54 from the external device by masking the address bus output, data bus output, and control signal output in the external bus interface 501, for example. Is disabled, and external reading of internal data is prohibited. In this case, when reading of internal data is requested from an external device connected to the external bus interface 501, a predetermined fixed value is output so that the internal data cannot be read from the external device. . Further, when the header KHDR is ROM read prohibition data, the ROM 54 itself may not be read, and reading of stored data in the ROM 54 may be prevented. For example, in a ROM at the manufacturing stage, by making the header KHDR ROM read prohibition data, the ROM itself is made unreadable, and if it is a development ROM, bus output mask invalid data is written in the header KHDR, Allows verification of internal data by an external device. On the other hand, if the ROM for mass production is used, the bus output mask valid data is written in the header KHDR, so that the ROM 54 can be read in the game control microcomputer 560 by the CPU 56 or the like, while the external device It is only necessary to prevent the ROM 54 from being read.

他の一例として、内部リソースアクセス制御回路501Aは、ROM54における記憶データの全部または一部といった、遊技制御用マイクロコンピュータ560の内部データの読み出しが、外部バスインタフェース501に接続された外部装置から要求されたことを検出する。この読出要求を検出したときに、内部リソースアクセス制御回路501Aは、遊技制御用マイクロコンピュータ560の内部データの読み出しを許可するか否かの判定を行う。例えば、ROM54における記憶データの全部または一部に暗号化処理が施されているものとする。この場合、内部リソースアクセス制御回路501Aは、外部装置からの読出要求がROM54に記憶された暗号化処理プログラムや鍵データ等に対する読出要求であれば、この読出要求を拒否して、遊技制御用マイクロコンピュータ560の内部データの読み出しを禁止する。外部バスインタフェース501では、ROM54の記憶データが出力される出力ポートと、内部バスとの間にスイッチ素子を設け、内部リソースアクセス制御回路501Aが内部データの読み出しを禁止した場合には、このスイッチ素子をオフ状態とするように制御すればよい。このように、内部リソースアクセス制御回路501Aは、外部装置からの読出要求が所定の内部データ(例えばROM54の所定領域)の読み出しを要求するものであるか否かに応じて、内部データの読み出しを禁止するか許可するかを決定するようにしてもよい。   As another example, the internal resource access control circuit 501A is requested by an external device connected to the external bus interface 501 to read out internal data of the game control microcomputer 560 such as all or a part of data stored in the ROM 54. Detect that. When this read request is detected, the internal resource access control circuit 501A determines whether or not to permit reading of internal data of the game control microcomputer 560. For example, it is assumed that all or part of the stored data in the ROM 54 is encrypted. In this case, if the read request from the external device is a read request for an encryption processing program or key data stored in the ROM 54, the internal resource access control circuit 501A rejects the read request, and the game control micro Reading of internal data of the computer 560 is prohibited. In the external bus interface 501, a switch element is provided between the output port from which data stored in the ROM 54 is output and the internal bus. When the internal resource access control circuit 501 A prohibits reading of the internal data, the switch element May be controlled to be turned off. As described above, the internal resource access control circuit 501A reads the internal data depending on whether or not the read request from the external device requests reading of predetermined internal data (for example, a predetermined area of the ROM 54). You may make it determine whether it prohibits or permits.

あるいは、内部リソースアクセス制御回路501Aは、内部データの読出要求を検出したときに、所定の認証コードが外部装置から入力されたか否かを判定してもよい。この場合には、例えば内部リソースアクセス制御回路501Aの内部あるいはROM54の所定領域に、認証コードとなる所定のコードパターンがあらかじめ記憶されていればよい。そして、外部装置から認証コードが入力されたときには、この認証コードを内部記憶された認証コードと比較して、一致すれば読出要求を受容して、遊技制御用マイクロコンピュータ560の内部データの読み出しを許可する。これに対して、外部装置から入力された認証コードが内部記憶された認証コードと一致しない場合には、読出要求を拒否して、遊技制御用マイクロコンピュータ560の内部データの読み出しを禁止する。このように、内部リソースアクセス制御回路501Aは、外部装置から入力された認証コードが内部記憶された認証コードと一致するか否かに応じて、内部データの読み出しを禁止するか許可するかを決定するようにしてもよい。これにより、検査機関などがあらかじめ知得した正しい認証コードを用いて、遊技制御用マイクロコンピュータ560の内部データを損なうことなく読み出すことができ、内部データの正当性を適切に検査することなどが可能になる。   Alternatively, the internal resource access control circuit 501A may determine whether or not a predetermined authentication code has been input from an external device when detecting a read request for internal data. In this case, for example, a predetermined code pattern serving as an authentication code may be stored in advance in the internal resource access control circuit 501A or in a predetermined area of the ROM 54. When an authentication code is input from an external device, the authentication code is compared with an internally stored authentication code. If they match, a read request is accepted and the internal data of the game control microcomputer 560 is read. To give permission. On the other hand, if the authentication code input from the external device does not match the authentication code stored internally, the read request is rejected and reading of the internal data of the game control microcomputer 560 is prohibited. As described above, the internal resource access control circuit 501A determines whether to prohibit or permit reading of the internal data depending on whether or not the authentication code input from the external device matches the authentication code stored internally. You may make it do. As a result, it is possible to read out the internal data of the game control microcomputer 560 using a correct authentication code known in advance by an inspection organization or the like, and properly inspect the validity of the internal data. become.

さらに他の一例として、内部リソースアクセス制御回路501Aに読出禁止フラグを設け、読出禁止フラグがオン状態であれば外部装置によるROM54の読み出しを禁止する。その一方で、読出禁止フラグがオフ状態であるときには、外部装置によるROM54の読み出しが許可される。ここで、読出禁止フラグは、初期状態ではオフ状態であるが、読出禁止フラグを一旦オン状態とした後には、読出禁止フラグをクリアしてオフ状態に復帰させることができないように構成されていればよい。すなわち、読出禁止フラグはオフ状態からオン状態に不可逆的に変更することが可能とされている。例えば、内部リソースアクセス制御回路501Aには、読出禁止フラグをクリアしてオフ状態とする機能が設けられておらず、どのような命令によっても読出禁止フラグをクリアすることができないように設定されていればよい。そして、内部リソースアクセス制御回路501Aは、外部装置からROM54における記憶データといった遊技制御用マイクロコンピュータ560の内部データの読み出しが要求されたときに、読出禁止フラグがオンであるか否かを判定する。このとき、読出禁止フラグがオンであれば、外部装置からの読出要求を拒否して、遊技制御用マイクロコンピュータ560の内部データの読み出しを禁止する。他方、読出禁止フラグがオフであれば、外部装置からの読出要求を受容して、遊技制御用マイクロコンピュータ560の内部データの読み出しを許可にする。このような構成であれば、ゲーム制御用の遊技制御処理プログラムを作成してROM54に格納する提供者においては、読出禁止フラグがオフとなっている状態でデバッグの終了したプログラムをROM54から外部装置に読み込むことができる。そして、デバッグの作業が終了した後に出荷する際には、読出禁止フラグをオン状態にセットすることにより、それ以後はROM54の外部読出を制限することができ、パチンコ遊技機1の使用者などによるROM54の読出を防止することができる。このように、内部リソースアクセス制御回路501Aは、読出禁止フラグといった内部フラグがオフであるかオンであるかに応じて、内部データの読み出しを禁止するか許可するかを決定するようにしてもよい。   As yet another example, a read prohibition flag is provided in the internal resource access control circuit 501A, and reading of the ROM 54 by an external device is prohibited if the read prohibition flag is on. On the other hand, when the read prohibition flag is in the off state, reading of the ROM 54 by the external device is permitted. Here, the read prohibition flag is off in the initial state, but once the read prohibition flag is turned on, the read prohibition flag cannot be cleared and returned to the off state. That's fine. That is, the read prohibition flag can be irreversibly changed from the off state to the on state. For example, the internal resource access control circuit 501A does not have a function of clearing the read prohibition flag to turn it off, and is set so that the read prohibition flag cannot be cleared by any instruction. Just do it. Then, the internal resource access control circuit 501A determines whether or not the read prohibition flag is on when the external device requests to read the internal data of the game control microcomputer 560 such as the data stored in the ROM 54. At this time, if the read prohibition flag is on, the read request from the external device is rejected, and reading of the internal data of the game control microcomputer 560 is prohibited. On the other hand, if the reading prohibition flag is off, the reading request from the external device is accepted and reading of the internal data of the game control microcomputer 560 is permitted. With such a configuration, a provider who creates a game control processing program for game control and stores it in the ROM 54 can load a program that has been debugged from the ROM 54 with the read prohibition flag turned off from the external device. Can be read. Then, when shipping after the debugging work is completed, by setting the read prohibition flag to the on state, external reading of the ROM 54 can be restricted thereafter, and by the user of the pachinko gaming machine 1 or the like Reading of the ROM 54 can be prevented. As described above, the internal resource access control circuit 501A may determine whether to prohibit or permit reading of internal data depending on whether an internal flag such as a read prohibition flag is off or on. .

なお、読出禁止フラグを不可逆に設定するのではなく、オン状態からオフ状態に変更することも可能とする一方で、読出禁止フラグをオン状態からオフ状態に変更して内部データの読み出しが許可されるときには、ROM54の記憶データを消去(例えばフラッシュ消去など)することにより、ROM54の外部読出を制限するようにしてもよい。   Note that the read prohibition flag is not set irreversibly but can be changed from the on state to the off state, while the read prohibition flag is changed from the on state to the off state to permit reading of internal data. In this case, external reading of the ROM 54 may be restricted by erasing the data stored in the ROM 54 (for example, flash erasure).

遊技制御用マイクロコンピュータ560が備えるクロック回路502は、例えば制御用外部クロック端子EXCに入力される発振信号を2分周することなどにより、内部システムクロックSCLKを生成する回路である。この実施の形態では、制御用外部クロック端子EXCに制御用クロック生成回路111が生成した制御用クロックCCLKが入力される。クロック回路502により生成された内部システムクロックSCLKは、例えばCPU56といった、遊技制御用マイクロコンピュータ560において遊技の進行を制御する各種回路に供給される。また、内部システムクロックSCLKは、乱数回路509にも供給され、乱数用クロック生成回路112から供給される乱数用クロックRCLKの周波数を監視するために用いられる。さらに、内部システムクロックSCLKは、クロック回路502に接続されたシステムクロック出力端子CLKOから、遊技制御用マイクロコンピュータ560の外部へと出力されてもよい。なお、内部システムクロックSCLKは、遊技制御用マイクロコンピュータ560の外部へは出力されないことが望ましい。このように、内部システムクロックSCLKの外部出力を制限することにより、遊技制御用マイクロコンピュータ560の内部回路(CPU56など)の動作周期を外部から特定することが困難になり、乱数値となる数値データをソフトウェアにより更新する場合に、乱数値の更新周期が外部から特定されてしまうことを防止できる。   The clock circuit 502 included in the game control microcomputer 560 is a circuit that generates the internal system clock SCLK by, for example, dividing the oscillation signal input to the control external clock terminal EXC by two. In this embodiment, the control clock CCLK generated by the control clock generation circuit 111 is input to the control external clock terminal EXC. The internal system clock SCLK generated by the clock circuit 502 is supplied to various circuits such as the CPU 56 that control the progress of the game in the game control microcomputer 560. The internal system clock SCLK is also supplied to the random number circuit 509 and used to monitor the frequency of the random number clock RCLK supplied from the random number clock generation circuit 112. Further, the internal system clock SCLK may be output from the system clock output terminal CLKO connected to the clock circuit 502 to the outside of the game control microcomputer 560. It is desirable that the internal system clock SCLK is not output to the outside of the game control microcomputer 560. As described above, by limiting the external output of the internal system clock SCLK, it becomes difficult to specify the operation cycle of the internal circuit (such as the CPU 56) of the game control microcomputer 560 from the outside, and numerical data that becomes a random value Can be prevented from being specified from the outside when the software is updated by software.

遊技制御用マイクロコンピュータ560が備える固有情報記憶回路503は、例えば遊技制御用マイクロコンピュータ560の内部情報となる複数種類の固有情報を記憶する回路である。一例として、固有情報記憶回路503は、ROMコード、チップ個別ナンバー、IDナンバーといった3種類の固有情報を記憶する。ROM54コードは、ROM54の所定領域における記憶データから生成される4バイトの数値であり、生成方法の異なる4つの数値が準備されればよい。チップ個別ナンバーは、遊技制御用マイクロコンピュータ560の製造時に付与される4バイトの番号であり、遊技制御用マイクロコンピュータ560を構成するチップ毎に異なる数値を示している。IDナンバーは、遊技制御用マイクロコンピュータ560の製造時に付与される8バイトの番号であり、遊技制御用マイクロコンピュータ560を構成するチップ毎に異なる数値を示している。ここで、チップ個別ナンバーはユーザプログラムから読み取ることができる一方、IDナンバーはユーザプログラムから読み取ることができないように設定されていればよい。なお、固有情報記憶回路503は、例えばROM54の所定領域を用いることなどにより、ROM54に含まれるようにしてもよい。あるいは、固有情報記憶回路503は、例えばCPU56の内蔵レジスタを用いることなどにより、CPU56に含まれるようにしてもよい。   The unique information storage circuit 503 included in the game control microcomputer 560 is a circuit that stores a plurality of types of unique information that is internal information of the game control microcomputer 560, for example. As an example, the unique information storage circuit 503 stores three types of unique information such as a ROM code, a chip individual number, and an ID number. The ROM 54 code is a 4-byte numerical value generated from stored data in a predetermined area of the ROM 54, and four numerical values with different generation methods may be prepared. The chip individual number is a 4-byte number assigned when the game control microcomputer 560 is manufactured, and indicates a different value for each chip constituting the game control microcomputer 560. The ID number is an 8-byte number assigned when the game control microcomputer 560 is manufactured, and shows a different numerical value for each chip constituting the game control microcomputer 560. Here, the chip individual number may be read from the user program, while the ID number may be set so as not to be read from the user program. The unique information storage circuit 503 may be included in the ROM 54 by using a predetermined area of the ROM 54, for example. Alternatively, the unique information storage circuit 503 may be included in the CPU 56 by using a built-in register of the CPU 56, for example.

遊技制御用マイクロコンピュータ560が備えるリセット/割込みコントローラ504は、遊技制御用マイクロコンピュータ560の内部や外部にて発生する各種リセット、割込み要求を制御するためのものである。リセット/割込みコントローラ504が制御するリセットには、システムリセットとユーザリセットが含まれている。システムリセットは、外部システムリセット端子XSRSTに一定の期間にわたりローレベル信号が入力されたときに発生するリセットである。ユーザリセットは、ウォッチドッグタイマ(WDT)のタイムアウト信号が発生したことや、指定エリア外走行禁止(IAT)が発生したことなど、所定の要因により発生するリセットである。   A reset / interrupt controller 504 provided in the game control microcomputer 560 is for controlling various reset and interrupt requests generated inside and outside the game control microcomputer 560. Resets controlled by the reset / interrupt controller 504 include system resets and user resets. The system reset is a reset that occurs when a low level signal is input to the external system reset terminal XSRST for a certain period. The user reset is a reset that occurs due to a predetermined factor, such as a watchdog timer (WDT) time-out signal or a non-designated area travel prohibition (IAT).

リセット/割込みコントローラ504が制御する割込みには、ノンマスカブル割込みNMIとマスカブル割込みINTが含まれている。ノンマスカブル割込みNMIは、CPU56の割込み禁止状態でも無条件に受け付けられる割込みであり、外部ノンマスカブル割込み端子XNMI(入力ポートP4と兼用)に一定の期間にわたりローレベル信号が入力されたときに発生する割込みである。マスカブル割込みINTは、CPU56の設定命令により、割込み要求の受け付けを許可/禁止できる割込みであり、優先順位設定による多重割込みの実行が可能である。マスカブル割込みINTの要因としては、外部マスカブル割込み端子XINT(入力ポートP3と兼用)に一定の期間にわたりローレベル信号が入力が入力されたこと、CTC508に含まれるタイマ回路にてタイムアウトが発生したこと、シリアル通信回路511にてデータ受信またはデータ送信による割込み要因が発生したこと、乱数回路509にて乱数値となる数値データの取込による割込み要因が発生したことなど、複数種類の割込み要因があらかじめ定められていればよい。   Interrupts controlled by the reset / interrupt controller 504 include a non-maskable interrupt NMI and a maskable interrupt INT. The non-maskable interrupt NMI is an interrupt that is unconditionally accepted even when the CPU 56 is in an interrupt disabled state, and is an interrupt that is generated when a low level signal is input to the external non-maskable interrupt terminal XNMI (also used as the input port P4) for a certain period. is there. The maskable interrupt INT is an interrupt that can permit / prohibit acceptance of an interrupt request by a setting instruction of the CPU 56, and multiple interrupts can be executed by setting priority. The cause of the maskable interrupt INT is that a low level signal has been input to the external maskable interrupt terminal XINT (also used as the input port P3) for a certain period of time, a time-out has occurred in the timer circuit included in the CTC 508, A plurality of types of interrupt factors are determined in advance, such as the occurrence of an interrupt factor due to data reception or data transmission in the serial communication circuit 511 and the occurrence of an interrupt factor due to fetching of numerical data as a random value in the random number circuit 509. It only has to be done.

リセット/割込みコントローラ504は、図11(B)に示すような遊技制御用マイクロコンピュータ560が備える内蔵レジスタのうち、割込みマスクレジスタIMR(アドレス2028H)、割込み待ちモニタレジスタIRR(アドレス2029H)、割込み中モニタレジスタISR(アドレス202AH)、内部情報レジスタCIF(アドレス208CH)などを用いて、割込みの制御やリセットの管理を行う。割込みマスクレジスタIMRは、互いに異なる複数の要因によるマスカブル割込みINTのうち、使用するものと使用しないものとを設定するレジスタである。割込み待ちモニタレジスタIRRは、割込み初期設定KIISにより設定されたマスカブル割込み要因のそれぞれについて、マスカブル割込み要求信号の発生状態を確認するレジスタである。割込み中モニタレジスタISRは、割込み初期設定KIISにより設定されたマスカブル割込み要因のそれぞれについて、マスカブル割込み要求信号の処理状態を確認するレジスタである。内部情報レジスタCIFは、直前に発生したリセット要因を管理したり、乱数用クロックRCLKの周波数異常を記録したりするためのレジスタである。   The reset / interrupt controller 504 includes an interrupt mask register IMR (address 2028H), an interrupt wait monitor register IRR (address 2029H), and interrupts among the built-in registers included in the game control microcomputer 560 as shown in FIG. The monitor register ISR (address 202AH), the internal information register CIF (address 208CH), etc. are used to control interrupts and manage resets. The interrupt mask register IMR is a register that sets what is used and what is not used among maskable interrupts INT caused by a plurality of different factors. The interrupt wait monitor register IRR is a register for confirming the generation state of a maskable interrupt request signal for each maskable interrupt factor set by the interrupt initial setting KIIS. The in-interrupt monitor register ISR is a register for confirming the processing state of the maskable interrupt request signal for each maskable interrupt factor set by the interrupt initial setting KIIS. The internal information register CIF is a register for managing the reset factor generated immediately before and recording the frequency abnormality of the random number clock RCLK.

図15(A)は、内部情報レジスタCIFの構成例を示している。図15(B)は、内部情報レジスタCIFに格納される内部情報データの各ビットにおける設定内容の一例を示している。内部情報レジスタCIFのビット番号[4]に格納される内部情報データCIF4は、乱数用クロックRCLKにおける周波数異常の有無を示す乱数用クロック異常指示である。図15(B)に示す例では、乱数用クロックRCLKの周波数異常が検知されないときに、内部情報データCIF4のビット値が“0”となる一方、周波数異常が検知されたときには、そのビット値が“1”となる。内部情報レジスタCIFのビット番号[2]に格納される内部情報データCIF2は、直前に発生したリセット要因がシステムリセットであるか否かを示すシステムリセット指示である。図15(B)に示す例では、直前のリセット要因がシステムリセットではないときに(システムリセット未発生)、内部情報データCIF2のビット値が“0”となる一方、システムリセットであるときには(システムリセット発生)、そのビット値が“1”となる。内部情報データCIF2を用いた動作の第1例として、電源投入時に遊技制御用マイクロコンピュータ560のCPU56などが内部情報データCIF2のビット値をチェックして、そのビット値が“1”(セット)でなければ、通常の電源投入ではないと判断する。このときには、例えば演出制御基板80に向けて所定の演出制御コマンドを伝送させることなどにより、パチンコ遊技機1における電源投入直後に大当り遊技状態とすることを狙った不正信号の入力行為が行われた可能性がある旨を、演出装置などにより報知させてもよい。また、内部情報データCIF2を用いた動作の第2例として、パチンコ遊技機1が電源投入時にのみ確変状態を報知し、通常時には確変状態を報知しない場合に、電源投入時に遊技制御用マイクロコンピュータ560のCPU56などが内部情報データCIF2のビット値をチェックして、そのビット値が“1”(セット)でなければ、遊技状態の報知を行わないようにしてもよい。   FIG. 15A shows a configuration example of the internal information register CIF. FIG. 15B shows an example of setting contents in each bit of the internal information data stored in the internal information register CIF. The internal information data CIF4 stored in the bit number [4] of the internal information register CIF is a random number clock abnormality instruction indicating the presence or absence of a frequency abnormality in the random number clock RCLK. In the example shown in FIG. 15B, when the frequency abnormality of the random number clock RCLK is not detected, the bit value of the internal information data CIF4 is “0”, whereas when the frequency abnormality is detected, the bit value is “1”. The internal information data CIF2 stored in the bit number [2] of the internal information register CIF is a system reset instruction indicating whether or not the reset factor generated immediately before is a system reset. In the example shown in FIG. 15B, when the immediately preceding reset factor is not a system reset (system reset has not occurred), the bit value of the internal information data CIF2 is “0”, whereas when the system reset is a system reset (system reset) When the reset occurs), the bit value becomes “1”. As a first example of the operation using the internal information data CIF2, the CPU 56 of the game control microcomputer 560 checks the bit value of the internal information data CIF2 when the power is turned on, and the bit value is “1” (set). If not, it is determined that the power is not turned on normally. At this time, for example, by transmitting a predetermined effect control command to the effect control board 80, an illegal signal input action is performed aiming at a big hit gaming state immediately after power-on in the pachinko gaming machine 1. You may notify that there exists possibility with a production | presentation apparatus etc. Further, as a second example of the operation using the internal information data CIF2, when the pachinko gaming machine 1 notifies the probability variation state only when the power is turned on and does not inform the probability variation state normally, the game control microcomputer 560 when the power is turned on. The CPU 56 or the like may check the bit value of the internal information data CIF2, and if the bit value is not “1” (set), the gaming state may not be notified.

内部情報レジスタCIFのビット番号[1]に格納される内部情報データCIF1は、直前に発生したリセット要因がウォッチドッグタイマ(WDT)のタイムアウトによるユーザリセットであるか否かを示すWDTタイムアウト指示である。図15(B)に示す例では、直前のリセット要因がウォッチドッグタイマのタイムアウトによるユーザリセットではないときに(タイムアウト未発生)、内部情報データCIF1のビット値が“0”となる一方、ウォッチドッグタイマのタイムアウトによるユーザリセットであるときに(タイムアウト発生)、そのビット値が“1”となる。内部情報レジスタCIFのビット番号[0]に格納される内部情報データCIF0は、直前に発生したリセット要因が指定エリア外走行禁止(IAT)によるユーザリセットであるか否かを示すIAT発生指示である。図15(B)に示す例では、直前のリセット要因が指定エリア外走行の発生によるユーザリセットではないときに(IAT発生なし)、内部情報データCIF0のビット値が“0”となる一方、指定エリア外走行の発生によるユーザリセットであるときに(IAT発生あり)、そのビット値が“1”となる。   The internal information data CIF1 stored in the bit number [1] of the internal information register CIF is a WDT timeout instruction indicating whether or not the reset factor generated immediately before is a user reset due to a watchdog timer (WDT) timeout. . In the example shown in FIG. 15B, when the previous reset factor is not a user reset due to a watchdog timer timeout (timeout has not occurred), the bit value of the internal information data CIF1 becomes “0”, while the watchdog When a user reset is caused by a timer timeout (timeout occurs), the bit value becomes “1”. The internal information data CIF0 stored in the bit number [0] of the internal information register CIF is an IAT generation instruction indicating whether or not the reset factor generated immediately before is a user reset due to prohibition of travel outside the designated area (IAT). . In the example shown in FIG. 15B, when the reset factor immediately before is not a user reset due to the occurrence of traveling outside the designated area (no IAT occurrence), the bit value of the internal information data CIF0 becomes “0”, while When the user reset is caused by the occurrence of out-of-area travel (the occurrence of IAT), the bit value becomes “1”.

遊技制御用マイクロコンピュータ560が備えるCPU56は、ROM54から読み出した制御コードにもとづいてユーザプログラム(ゲーム制御用の遊技制御処理プログラム)を実行することにより、パチンコ遊技機1における遊技制御を実行する制御用CPUである。こうした遊技制御が実行されるときには、CPU56がROM54から固定データを読み出す固定データ読出動作や、CPU56がRAM55に各種の変動データを書き込んで一時記憶させる変動データ書込動作、CPU56がRAM55に一時記憶されている各種の変動データを読み出す変動データ読出動作、CPU56が外部バスインタフェース501やPIP510、シリアル通信回路511などを介して遊技制御用マイクロコンピュータ560の外部から各種信号の入力を受け付ける受信動作、CPU56が外部バスインタフェース501やシリアル通信回路511などを介して遊技制御用マイクロコンピュータ560の外部へと各種信号を出力する送信動作等も行われる。   The CPU 56 included in the game control microcomputer 560 executes a user program (game control processing program for game control) based on the control code read from the ROM 54, thereby executing a game control in the pachinko gaming machine 1. CPU. When such game control is executed, the CPU 56 temporarily stores fixed data from the ROM 54, the CPU 56 temporarily stores various data in the RAM 55, and temporarily stores the data in the RAM 55. The CPU 56 temporarily stores the data in the RAM 55. The CPU 56 receives a variety of signals from the outside of the game control microcomputer 560 via the external bus interface 501, the PIP 510, the serial communication circuit 511, and the like. A transmission operation for outputting various signals to the outside of the game control microcomputer 560 via the external bus interface 501 and the serial communication circuit 511 is also performed.

このように、遊技制御用マイクロコンピュータ560では、CPU56がROM54に格納されているプログラムに従って制御を実行するので、以下、遊技制御用マイクロコンピュータ560(またはCPU56)が実行する(または処理を行う)ということは、具体的には、CPU56がプログラムに従って制御を実行することである。このことは、主基板31以外の他の基板に搭載されているマイクロコンピュータについても同様である。   As described above, in the game control microcomputer 560, the CPU 56 executes control in accordance with the program stored in the ROM 54. Therefore, the game control microcomputer 560 (or CPU 56) executes (or performs processing) hereinafter. Specifically, the CPU 56 executes control according to a program. The same applies to microcomputers mounted on substrates other than the main substrate 31.

遊技制御用マイクロコンピュータ560が備えるROM54には、ユーザプログラム(ゲーム制御用の遊技制御処理プログラム)を示す制御コードや固定データ等が記憶されている。また、ROM54には、セキュリティチェックプログラム54Aが記憶されている。CPU56は、パチンコ遊技機1の電源投入やシステムリセットの発生に応じて遊技制御用マイクロコンピュータ560がセキュリティモードに移行したときに、ROM54に記憶されたセキュリティチェックプログラム54Aを読み出し、ROM54の記憶内容が変更されたか否かを検査するセキュリティチェック処理を実行する。なお、セキュリティチェックプログラム54Aは、ROM54とは異なる内蔵メモリに記憶されてもよい。また、セキュリティチェックプログラム54Aは、例えば外部バスインタフェース501を介して遊技制御用マイクロコンピュータ560に外付けされた外部メモリの記憶内容を検査するセキュリティチェック処理に対応したものであってもよい。   The ROM 54 provided in the game control microcomputer 560 stores a control code indicating a user program (game control processing program for game control), fixed data, and the like. The ROM 54 stores a security check program 54A. The CPU 56 reads the security check program 54A stored in the ROM 54 when the game control microcomputer 560 shifts to the security mode in response to the power-on of the pachinko gaming machine 1 or the occurrence of a system reset. A security check process is executed to check whether or not the change has been made. The security check program 54A may be stored in a built-in memory different from the ROM 54. Further, the security check program 54A may correspond to a security check process for inspecting the storage content of an external memory externally attached to the game control microcomputer 560 via the external bus interface 501, for example.

遊技制御用マイクロコンピュータ560が備えるRAM55は、ゲーム制御用のワークエリアを提供する。ここで、RAM55の少なくとも一部は、電源基板910において作成されるバックアップ電源によってバックアップされているバックアップRAMであればよい。すなわち、パチンコ遊技機1への電力供給が停止しても、所定期間はRAM55の少なくとも一部の内容が保存される。   The RAM 55 provided in the game control microcomputer 560 provides a work area for game control. Here, at least a part of the RAM 55 may be a backup RAM that is backed up by a backup power source created in the power supply board 910. That is, even if the power supply to the pachinko gaming machine 1 is stopped, at least a part of the contents of the RAM 55 is stored for a predetermined period.

遊技制御用マイクロコンピュータ560が備えるCTC508は、例えば8ビットのプログラマブルタイマを3チャネル(PTC0−PTC2)内蔵して構成され、リアルタイム割込みの発生や時間計測を可能とするタイマ回路を含んでいる。各プログラマブルタイマPTC0−PTC2は、内部システムクロックSCLKにもとづいて生成されたカウントクロックの信号変化(例えばハイレベルからローレベルへと変化する立ち下がりタイミング)などに応じて、タイマ値が更新されるものであればよい。また、CTC508は、例えば8ビットのプログラマブルカウンタを4チャネル(PCC0−PCC3)内蔵してもよい。各プログラマブルカウンタPCC0−PCC3は、内部システムクロックSCLKの信号変化、あるいは、プログラマブルカウンタPCC0−PCC3のいずれかにおけるタイムアウトの発生などに応じて、カウント値が更新されるものであればよい。CTC508は、セキュリティ時間を延長する際の延長時間(可変設定時間)をシステムリセット毎にランダムに決定するために用いられるフリーランカウンタなどを、含んでもよい。あるいは、こうしたフリーランカウンタは、例えばRAM55のバックアップ領域といった、CTC508とは異なる遊技制御用マイクロコンピュータ560の内部回路に含まれてもよい。   The CTC 508 provided in the game control microcomputer 560 includes, for example, three channels (PTC0 to PTC2) of 8-bit programmable timers, and includes a timer circuit capable of generating a real-time interrupt and measuring time. Each programmable timer PTC0-PTC2 has a timer value that is updated in response to a change in the count clock signal generated based on the internal system clock SCLK (for example, a falling timing that changes from a high level to a low level). If it is. The CTC 508 may incorporate, for example, an 8-bit programmable counter with 4 channels (PCC0 to PCC3). Each of the programmable counters PCC0 to PCC3 only needs to have its count value updated in response to a signal change of the internal system clock SCLK or occurrence of a timeout in any of the programmable counters PCC0 to PCC3. The CTC 508 may include a free-run counter used to randomly determine an extension time (variable setting time) for extending the security time for each system reset. Alternatively, such a free-run counter may be included in an internal circuit of the game control microcomputer 560 different from the CTC 508, for example, a backup area of the RAM 55.

遊技制御用マイクロコンピュータ560が備える乱数回路509は、例えば16ビット乱数といった、所定の更新範囲を有する乱数値となる数値データを生成する回路である。この実施の形態では、乱数回路509が生成するハードウェア乱数は、大当りとするか否かを判定するための大当り判定用乱数(ランダムR)として用いられる。なお、CPU56は、乱数回路509から抽出した数値データにもとづき、乱数回路509とは異なるランダムカウンタを用いて、ソフトウェアによって各種の数値データを加工あるいは更新することで、遊技に用いられる乱数値の全部または一部を示す数値データをカウントするようにしてもよい。あるいは、CPU56は、乱数回路509を用いることなく、ソフトウェアによって大当り判定用乱数などの乱数値を示す数値データの一部をカウント(更新)するようにしてもよい。一例として、ハードウェアとなる乱数回路509からCPU56により抽出された数値データを、ソフトウェアにより加工することで、大当り判定用乱数(ランダムR)を示す数値データが更新され、それ以外の乱数値(例えば、大当り種別判定用乱数や、変動パターン種別決定用乱数、変動パターン決定用乱数)を示す数値データは、CPU56がランダムカウンタなどを用いてソフトウェアにより更新すればよい。   A random number circuit 509 provided in the game control microcomputer 560 is a circuit that generates numerical data that is a random value having a predetermined update range, such as a 16-bit random number. In this embodiment, the hardware random number generated by the random number circuit 509 is used as a big hit determination random number (random R) for determining whether or not to make a big hit. Note that the CPU 56 uses the random counter different from the random number circuit 509 based on the numerical data extracted from the random number circuit 509 to process or update various numerical data by software so that all the random values used in the game can be obtained. Alternatively, numerical data indicating a part may be counted. Alternatively, the CPU 56 may count (update) a part of numerical data indicating a random value such as a big hit determination random number by software without using the random number circuit 509. As an example, numerical data extracted by the CPU 56 from the random number circuit 509 serving as hardware is processed by software to update the numerical data indicating the random number for jackpot determination (random R), and other random values (for example, The numerical data indicating the jackpot type determination random number, the variation pattern type determination random number, and the variation pattern determination random number) may be updated by software using the random counter or the like.

図16は、乱数回路509の一構成例を示すブロック図である。乱数回路509は、図16に示すように、周波数監視回路551、クロック用フリップフロップ552、乱数生成回路553、スタート値設定回路554、フリーランカウンタ554A、乱数列変更回路555、乱数列変更設定回路556、ラッチ用フリップフロップ557A、557B、乱数ラッチセレクタ558A、558B、乱数値レジスタ559A、559Bを備えて構成される。なお、乱数値レジスタ559Aと乱数値レジスタ559Bはそれぞれ、図11(B)に示すような遊技制御用マイクロコンピュータ560の内蔵レジスタに含まれる乱数値レジスタR1D(アドレス2038H−2039H)と乱数値レジスタR2D(アドレス203AH−203BH)に対応している。   FIG. 16 is a block diagram illustrating a configuration example of the random number circuit 509. As shown in FIG. 16, the random number circuit 509 includes a frequency monitoring circuit 551, a clock flip-flop 552, a random number generation circuit 553, a start value setting circuit 554, a free-run counter 554A, a random number sequence change circuit 555, and a random number sequence change setting circuit. 556, latch flip-flops 557A and 557B, random number latch selectors 558A and 558B, and random number value registers 559A and 559B. Note that the random value register 559A and the random value register 559B are a random value register R1D (address 2038H-2039H) and a random value register R2D included in the built-in registers of the game control microcomputer 560 as shown in FIG. (Addresses 203AH-203BH).

周波数監視回路551は、乱数用クロック生成回路112により生成された乱数用クロックRCLKの乱数回路509に対する入力状態を監視して、その異常発生を検知するための回路である。周波数監視回路551は、例えば乱数用外部クロック端子ERCに入力される発振信号を監視して、内部システムクロックSCLKとの比較により、セキュリティ時間設定KSESのビット番号[7−6]における設定内容(図14(B)参照)に応じた周波数異常を検知したときに、内部情報レジスタCIFのビット番号[4]を“1”にセットする。この実施の形態では、乱数用外部クロック端子ERCに乱数用クロック生成回路112が生成した乱数用クロックRCLKが入力される。   The frequency monitoring circuit 551 is a circuit for monitoring the input state of the random number clock RCLK generated by the random number clock generation circuit 112 to the random number circuit 509 and detecting the occurrence of an abnormality. The frequency monitoring circuit 551 monitors, for example, an oscillation signal input to the random number external clock terminal ERC, and compares it with the internal system clock SCLK to set contents in the bit number [7-6] of the security time setting KSES (see FIG. 14 (B)), the bit number [4] of the internal information register CIF is set to “1”. In this embodiment, the random number clock RCLK generated by the random number clock generation circuit 112 is input to the random number external clock terminal ERC.

クロック用フリップフロップ552は、例えばD型フリップフロップなどを用いて構成され、乱数用外部クロック端子ERCからの乱数用クロックRCLKがクロック端子CKに入力される。また、クロック用フリップフロップ552では、逆相出力端子(反転出力端子)QバーがD入力端子に接続されている。そして、正相出力端子(非反転出力端子)Qから乱数更新クロックRGKを出力する一方で、逆相出力端子(反転出力端子)Qバーからラッチ用クロックRC0を出力する。この場合、クロック用フリップフロップ552は、クロック端子CKに入力される乱数用クロックRCLKにおける信号状態が所定の変化をしたときに、正相出力端子(非反転出力端子)Qおよび逆相出力端子(反転出力端子)Qバーからの出力信号における信号状態を変化させる。例えば、クロック用フリップフロップ552は、乱数用クロックRCLKの信号状態がローレベルからハイレベルへと変化する立ち上がりのタイミング、あるいは、乱数用クロックRCLKの信号状態がハイレベルからローレベルへと変化する立ち下がりのタイミングのうち、いずれか一方のタイミングにて、D入力端子における入力信号を取り込む。このとき、正相出力端子(非反転出力端子)Qからは、D入力端子にて取り込まれた入力信号が反転されることなく出力される一方で、逆相出力端子(反転出力端子)Qバーからは、D入力端子にて取り込まれた入力信号が反転されて出力される。こうして、クロック用フリップフロップ552の正相出力端子(非反転出力端子)Qからは乱数用クロックRCLKにおける発振周波数(例えば20MHz)の1/2となる発振周波数(例えば10MHz)を有する乱数更新クロックRGKが出力される一方、逆相出力端子(反転出力端子)Qバーからは乱数更新クロックRGKの逆相信号(反転信号)、すなわち乱数更新クロックRGKと同一周波数で乱数更新クロックRGKとは位相がπ(=180°)だけ異なるラッチ用クロックRC0が出力される。   The clock flip-flop 552 is configured using, for example, a D-type flip-flop, and the random number clock RCLK from the random number external clock terminal ERC is input to the clock terminal CK. Further, in the clock flip-flop 552, the negative phase output terminal (inverted output terminal) Q bar is connected to the D input terminal. The random number update clock RGK is output from the positive phase output terminal (non-inverted output terminal) Q, while the latch clock RC0 is output from the negative phase output terminal (inverted output terminal) Q bar. In this case, when the signal state of the random number clock RCLK input to the clock terminal CK changes a predetermined state, the clock flip-flop 552 has a positive phase output terminal (non-inverted output terminal) Q and a negative phase output terminal ( Inverted output terminal) Changes the signal state in the output signal from the Q bar. For example, the clock flip-flop 552 rises when the signal state of the random number clock RCLK changes from a low level to a high level, or rises when the signal state of the random number clock RCLK changes from a high level to a low level. The input signal at the D input terminal is captured at any one of the falling timings. At this time, from the positive phase output terminal (non-inverted output terminal) Q, the input signal captured at the D input terminal is output without being inverted, while the negative phase output terminal (inverted output terminal) Q bar is output. From the input signal captured by the D input terminal is inverted and output. Thus, the random number update clock RGK having an oscillation frequency (for example, 10 MHz) that is ½ of the oscillation frequency (for example, 20 MHz) of the random number clock RCLK from the positive phase output terminal (non-inverted output terminal) Q of the clock flip-flop 552. Is output from the negative phase output terminal (inverted output terminal) Q bar, that is, the reverse phase signal (inverted signal) of the random number update clock RGK, that is, the same frequency as the random number update clock RGK and the phase of the random number update clock RGK is π. A different latch clock RC0 is output by (= 180 °).

クロック用フリップフロップ552から出力された乱数更新クロックRGKは、乱数生成回路553のクロック端子に入力されて、乱数生成回路553におけるカウント値の歩進に用いられる。また、クロック用フリップフロップ552から出力されたラッチ用クロックRC0は、分岐点BR1にてラッチ用クロックRC1とラッチ用クロックRC2とに分岐される。したがって、ラッチ用クロックRC1とラッチ用クロックRC2とは、互いに同一の発振周波数を有し、互いに共通の周期で信号状態が変化することになる。ここで、ラッチ用クロックRC1やラッチ用クロックRC2における信号状態の変化としては、例えばローレベルからハイレベルへと変化する立ち上がりや、ハイレベルからローレベルへと変化する立ち下がりなどがある。ラッチ用クロックRC1は、ラッチ用フリップフロップ557Aのクロック端子CKに入力されて、始動入賞時ラッチ信号SL1の生成に用いられる乱数取得用クロックとなる。ラッチ用クロックRC2は、ラッチ用フリップフロップ557Bのクロック端子CKに入力されて、始動入賞時ラッチ信号SL2の生成に用いられる乱数取得用クロックとなる。   The random number update clock RGK output from the clock flip-flop 552 is input to the clock terminal of the random number generation circuit 553 and used for incrementing the count value in the random number generation circuit 553. The latch clock RC0 output from the clock flip-flop 552 is branched into the latch clock RC1 and the latch clock RC2 at the branch point BR1. Therefore, the latch clock RC1 and the latch clock RC2 have the same oscillation frequency, and the signal state changes with a common cycle. Here, examples of changes in the signal state in the latch clock RC1 and the latch clock RC2 include a rising edge that changes from a low level to a high level and a falling edge that changes from a high level to a low level. The latch clock RC1 is input to the clock terminal CK of the latch flip-flop 557A, and becomes a random number acquisition clock used to generate the start winning latch signal SL1. The latch clock RC2 is input to the clock terminal CK of the latch flip-flop 557B and becomes a random number acquisition clock used to generate the start winning latch signal SL2.

ここで、乱数用クロックRCLKの発振周波数と、制御用クロック生成回路111によって生成される制御用クロックCCLKの発振周波数とは、互いに異なる周波数となっており、また、いずれか一方の発振周波数が他方の発振周波数の整数倍になることがない。一例として、制御用クロックCCLKの発振周波数が11.0MHzである一方で、乱数用クロックRCLKの発振周波数は9.7MHzであればよい。そのため、乱数更新クロックRGKやラッチ用クロックRC1、RC2はいずれも、CPU56に供給される制御用クロックCCLKとは異なる周期で信号状態が変化する発振信号となる。すなわち、クロック用フリップフロップ552は、乱数用クロック生成回路112によって生成された乱数用クロックRCLKにもとづき、カウント値を更新するための乱数更新クロックRGKや、複数の乱数取得用クロックとなるラッチ用クロックRC1、RC2として、制御用クロックCCLKや内部システムクロックSCLK(制御用クロックCCLKを2分周したもの)とは異なる周期で信号状態が変化する発振信号を生成する。   Here, the oscillation frequency of the random number clock RCLK and the oscillation frequency of the control clock CCLK generated by the control clock generation circuit 111 are different from each other, and one of the oscillation frequencies is the other. It is never an integral multiple of the oscillation frequency. As an example, while the oscillation frequency of the control clock CCLK is 11.0 MHz, the oscillation frequency of the random number clock RCLK may be 9.7 MHz. Therefore, both the random number update clock RGK and the latch clocks RC1 and RC2 are oscillation signals whose signal states change at a different period from the control clock CCLK supplied to the CPU 56. In other words, the clock flip-flop 552 is based on the random number clock RCLK generated by the random number clock generation circuit 112, and the random number update clock RGK for updating the count value and the latch clock that is used as a plurality of random number acquisition clocks. As RC1 and RC2, oscillation signals whose signal states change with a period different from the control clock CCLK and the internal system clock SCLK (the control clock CCLK divided by two) are generated.

乱数生成回路553は、例えば16ビットのカウンタなどから構成され、クロック用フリップフロップ552から出力される乱数更新クロックRGKなどの入力にもとづき、数値データを更新可能な所定の範囲において所定の初期値から所定の最終値まで循環的に更新する回路である。例えば乱数生成回路553は、所定のクロック端子への入力信号である乱数更新クロックRGKにおける立ち下がりエッジに応答して、「0」から「65535」までの範囲内で設定された初期値から「65535」まで1ずつ加算するように数値データをカウントアップして行く。そして、「65535」までカウントアップした後には、「0」から初期値よりも1小さい最終値となる数値まで1ずつ加算するようにカウントアップすることで、数値データを循環的に更新する。   The random number generation circuit 553 is composed of, for example, a 16-bit counter and the like, based on an input such as a random number update clock RGK output from the clock flip-flop 552, from a predetermined initial value within a predetermined range in which numerical data can be updated. It is a circuit that cyclically updates to a predetermined final value. For example, the random number generation circuit 553 responds to the falling edge of the random number update clock RGK, which is an input signal to a predetermined clock terminal, from the initial value set within the range from “0” to “65535” to “65535”. The numerical data is counted up so that “1” is added to “1”. Then, after counting up to “65535”, the numerical data is updated cyclically by counting up from “0” to a numerical value that becomes a final value that is 1 smaller than the initial value.

スタート値設定回路554は、第2乱数初期設定KRS2のビット番号[1−0]におけるビット値(図13(B)参照)に応じて、乱数生成回路553により生成されるカウント値におけるスタート値を設定する。例えば、スタート値設定回路554は、第2乱数初期設定KRS2のビット番号[1−0]が“00”であればスタート値をデフォルト値である「0000H」に設定し、“10”であればIDナンバーにもとづく値に設定し、“01”であればシステムリセット毎に変更されるフリーランカウンタ554Aにおけるカウント値にもとづく値に設定し、“11”であればIDナンバーとフリーランカウンタ554Aにおけるカウント値とにもとづく値に設定する。図16に示す構成例では、乱数回路509にフリーランカウンタ554Aが内蔵されている。そして、スタート値をシステムリセット毎に変更する場合には、初期設定時にフリーランカウンタ554Aのカウント値をそのまま用いること、あるいは、そのカウント値を所定の演算関数(例えばハッシュ関数)に代入して得られた値を用いることなどにより、スタート値がランダムに決定されればよい。フリーランカウンタ554Aは、例えば遊技制御用マイクロコンピュータ560のRAM55におけるバックアップ領域といった、主基板31におけるバックアップ箇所と共通のバックアップ電源を用いてバックアップされるものであればよい。あるいは、フリーランカウンタ554Aは、RAM55におけるバックアップ領域などに用いられるバックアップ電源とは別個に設けられた電源によりバックアップされてもよい。こうして、フリーランカウンタ554Aがバックアップ電源によってバックアップされることで、電力供給が停止した場合でも、所定期間はフリーランカウンタ554Aにおけるカウント値が保存されることになる。   The start value setting circuit 554 sets the start value in the count value generated by the random number generation circuit 553 in accordance with the bit value (see FIG. 13B) in the bit number [1-0] of the second random number initial setting KRS2. Set. For example, the start value setting circuit 554 sets the start value to the default value “0000H” if the bit number [1-0] of the second random number initial setting KRS2 is “00”, and if it is “10”. A value based on the ID number is set. If “01”, the value is set based on the count value in the free-run counter 554A which is changed every time the system is reset. Set to a value based on the count value. In the configuration example shown in FIG. 16, a free-run counter 554A is built in the random number circuit 509. When the start value is changed at every system reset, the count value of the free-run counter 554A is used as it is at the initial setting, or the count value is substituted into a predetermined arithmetic function (for example, a hash function). The start value may be determined at random by using the obtained value. The free-run counter 554A only needs to be backed up using a backup power source common to the backup location on the main board 31, such as a backup area in the RAM 55 of the game control microcomputer 560. Alternatively, the free-run counter 554A may be backed up by a power source provided separately from a backup power source used for a backup area in the RAM 55 or the like. In this way, the free-run counter 554A is backed up by the backup power source, so that the count value in the free-run counter 554A is stored for a predetermined period even when the power supply is stopped.

フリーランカウンタ554Aがバックアップ電源によってバックアップされるものに限定されず、例えばシステムリセットの発生時にフリーランカウンタ554Aのカウント値を所定の内蔵レジスタ(例えば乱数スタート値用レジスタ)に格納し、この内蔵レジスタがバックアップ電源によってバックアップされるようにしてもよい。そして、初期設定時に乱数スタート値用レジスタの格納値をそのまま用いること、あるいは、その格納値を所定の演算関数に代入して得られた値を用いることなどにより、スタート値がランダムに決定されてもよい。この場合、フリーランカウンタ554Aにおけるカウント値を読み出して乱数スタート値用レジスタに格納するタイミングは、システムリセットの発生時に限定されず、あらかじめ定められた任意のタイミングとしてもよい。フリーランカウンタ554Aは、乱数回路509に内蔵されて数値データのスタート値をランダムに決定するために用いられる専用のフリーランカウンタであってもよい。すなわち、フリーランカウンタ554Aは、セキュリティ時間を延長する際に延長時間のランダムな決定に用いられるフリーランカウンタとは別個の構成として設けられたものであってもよい。あるいは、フリーランカウンタ554Aとして、遊技制御用マイクロコンピュータ560には内蔵されるが乱数回路509の外部に設けられて、セキュリティ時間を延長する際に延長時間のランダムな決定に用いられるフリーランカウンタと共通のものを用いてもよい。この場合には、数値データのスタート値を決定する処理と、セキュリティ時間中の延長時間をランダムに決定する処理とにおいて、例えばカウント値を代入する演算関数を互いに異ならせること、あるいは、一方の決定処理ではカウント値をそのまま用いるのに対して他方の決定処理ではカウント値を所定の演算関数に代入して得られた値を用いることなどにより、スタート値の決定手法と延長時間の決定手法とを異ならせてもよい。   The free-run counter 554A is not limited to the one backed up by the backup power source. For example, when a system reset occurs, the count value of the free-run counter 554A is stored in a predetermined built-in register (for example, a random number start value register). May be backed up by a backup power source. Then, the initial value is randomly determined by using the stored value of the random number start value register as it is or by using the value obtained by substituting the stored value into a predetermined arithmetic function. Also good. In this case, the timing at which the count value in the free-run counter 554A is read and stored in the random number start value register is not limited to when a system reset occurs, but may be any predetermined timing. The free-run counter 554A may be a dedicated free-run counter built in the random number circuit 509 and used to randomly determine the start value of numerical data. That is, the free-run counter 554A may be provided as a separate configuration from the free-run counter used for random determination of the extension time when extending the security time. Alternatively, as a free-run counter 554A, a free-run counter incorporated in the game control microcomputer 560 but provided outside the random number circuit 509 and used for random determination of the extension time when extending the security time. A common one may be used. In this case, in the process of determining the start value of the numerical data and the process of randomly determining the extension time in the security time, for example, the calculation function for substituting the count value is different from each other, or one of the determinations is made In the process, the count value is used as it is, while in the other determination process, the value obtained by substituting the count value into a predetermined arithmetic function is used. It may be different.

このように、フリーランカウンタ554Aは、乱数回路509に内蔵されるものに限定されず、例えばCTC508に含まれるものでもよい。あるいは、例えばRAM55のバックアップ領域といった、CTC508とは異なる遊技制御用マイクロコンピュータ560の内部回路に含まれてもよい。また、フリーランカウンタ554Aは、セキュリティ時間を延長する際の延長時間をシステムリセット毎にランダムに決定するために用いられるフリーランカウンタと、同一のカウンタであってもよいし、別個に設けられたカウンタであってもよい。   Thus, the free-run counter 554A is not limited to the one built in the random number circuit 509, and may be included in the CTC 508, for example. Alternatively, it may be included in an internal circuit of the game control microcomputer 560 different from the CTC 508, for example, a backup area of the RAM 55. In addition, the free-run counter 554A may be the same counter as the free-run counter used for randomly determining the extension time for extending the security time for each system reset, or provided separately. It may be a counter.

乱数列変更回路555は、乱数生成回路553により生成された数値データの順列を所定の乱数更新規則に従った順列に変更可能とする回路である。例えば、乱数列変更回路555は、乱数生成回路553から出力される数値データにおけるビットの入れ替えや転置などのビットスクランブル処理を実行する。また、乱数列変更回路555は、例えばビットスクランブル処理に用いるビットスクランブル用キーやビットスクランブルテーブルを変更することなどにより、数値データの順列を変更することができる。   The random number sequence change circuit 555 is a circuit that allows the permutation of numerical data generated by the random number generation circuit 553 to be changed to a permutation according to a predetermined random number update rule. For example, the random number sequence change circuit 555 executes bit scramble processing such as bit replacement or transposition in numerical data output from the random number generation circuit 553. Further, the random number sequence change circuit 555 can change the permutation of numerical data, for example, by changing a bit scramble key or a bit scramble table used for bit scramble processing.

乱数列変更設定回路556は、第1乱数初期設定KRS1のビット番号[1−0]におけるビット値(図13(A)参照)などに応じて、乱数列変更回路555における乱数更新規則を変更する設定を行うための回路である。例えば、乱数列変更設定回路556は、第1乱数初期設定KRS1のビット番号[1−0]が“00”であれば2周目以降も乱数更新規則を変更しない設定とする一方、“01”であれば2周目以降はソフトウェアでの変更要求に応じて乱数更新規則を変更し、“10”であれば自動で乱数更新規則を変更する。   The random number sequence change setting circuit 556 changes the random number update rule in the random number sequence change circuit 555 according to the bit value (see FIG. 13A) in the bit number [1-0] of the first random number initial setting KRS1. It is a circuit for setting. For example, if the bit number [1-0] of the first random number initial setting KRS1 is “00”, the random number sequence change setting circuit 556 sets the random number update rule not to change after the second round, while “01” If so, the random number update rule is changed in response to a change request by software after the second round, and if it is “10”, the random number update rule is automatically changed.

乱数列変更回路556は、第1乱数初期設定KRS1のビット番号[1−0]が“01”であることに対応してソフトウェアによる乱数更新規則の変更を行う場合に、図11(B)に示すような遊技制御用マイクロコンピュータ560が備える内蔵レジスタのうち、乱数列変更レジスタRDSC(アドレス2034H)を用いて、乱数更新規則の変更を制御する。図17(A)は、乱数列変更レジスタRDSCの構成例を示している。図17(B)は、乱数列変更レジスタRDSCに格納される乱数列変更要求データの各ビットにおける設定内容の一例を示している。乱数列変更レジスタRDSCのビット番号[0]に格納される乱数列変更要求データRDSC0は、乱数更新規則をソフトウェアにより変更する場合に、乱数列の変更要求の有無を示している。図17(B)に示す例では、ソフトウェアにより乱数列の変更要求がないときに、乱数列変更要求データRDSC0のビット値が“0”となる一方、乱数列の変更要求があったときには、そのビット値が“1”となる。   When the random number update circuit 556 changes the random number update rule by software in response to the bit number [1-0] of the first random number initial setting KRS1 being “01”, FIG. Among the built-in registers included in the game control microcomputer 560 as shown, the random number update rule RDSC (address 2034H) is used to control the change of the random number update rule. FIG. 17A shows a configuration example of the random number sequence change register RDSC. FIG. 17B shows an example of setting contents in each bit of random number sequence change request data stored in the random number sequence change register RDSC. The random number sequence change request data RDSC0 stored in the bit number [0] of the random number sequence change register RDSC indicates the presence / absence of a random number sequence change request when the random number update rule is changed by software. In the example shown in FIG. 17B, when the random number sequence change request is not received by software, the bit value of the random number sequence change request data RDSC0 is “0”. The bit value is “1”.

図18は、乱数更新規則をソフトウェアにより変更する場合の動作例を示している。この場合、乱数生成回路553から出力されるカウント値順列RCNが所定の初期値から所定の最終値まで循環的に更新されたときに、乱数列変更要求データRDSC0が“1”であることに応答して、乱数更新規則を変更する。図18に示す動作例では、始めに乱数列変更回路555から出力される乱数列RSNが、「0→1→…→65535」となっている。この後、CPU56がROM54に格納されたユーザプログラムを実行することによって、所定のタイミングで乱数列変更レジスタRDSCのビット番号[0]に“1”が書き込まれたものとする。   FIG. 18 shows an operation example when the random number update rule is changed by software. In this case, when the count value permutation RCN output from the random number generation circuit 553 is cyclically updated from a predetermined initial value to a predetermined final value, the response is that the random number sequence change request data RDSC0 is “1”. Then, change the random number update rule. In the operation example shown in FIG. 18, the random number sequence RSN output from the random number sequence change circuit 555 first is “0 → 1 →... → 65535”. Thereafter, it is assumed that “1” is written to the bit number [0] of the random number sequence change register RDSC at a predetermined timing by the CPU 56 executing the user program stored in the ROM 54.

そして、第1乱数初期設定KRS1のビット番号[1−0]が“01”であることに対応して、乱数列変更設定回路556が乱数列変更要求データRDSC0を読み出し、そのビット値が“1”であることに応答して、乱数更新規則を変更するための設定を行う。このとき、乱数列変更設定回路556は、乱数生成回路553から出力されたカウント値順列RCNが所定の最終値に達したことに応じて、例えばあらかじめ用意された複数種類の乱数更新規則のいずれかを選択することなどにより、乱数更新規則を変更する。図18に示す動作例では、乱数列変更回路555が乱数生成回路553から出力されたカウント値順列RCNにおける最終値に対応する数値データ「65535」を出力した後、乱数列変更要求データRDSC0に応じて乱数更新規則を変更する。その後、乱数列変更回路555は、変更後の乱数更新規則に従った乱数列RSNとして、「65535→65534→…→0」を出力する。乱数列変更レジスタRDSCは、乱数列変更設定回路556により乱数列変更要求データRDSC0が読み出されたときに初期化される。そのため、再び乱数列変更レジスタRDSCのビット番号[0]にビット値“1”が書き込まれるまでは、乱数列変更回路555から出力される乱数列RSNが、「65535→65534→…→0」となる。   In response to the bit number [1-0] of the first random number initial setting KRS1 being “01”, the random number sequence change setting circuit 556 reads the random number sequence change request data RDSC0 and the bit value is “1”. In response to "," a setting for changing the random number update rule is made. At this time, the random number sequence change setting circuit 556, according to the count value permutation RCN output from the random number generation circuit 553 reaching a predetermined final value, for example, any one of a plurality of types of random number update rules prepared in advance. The random number update rule is changed by selecting. In the operation example shown in FIG. 18, the random number sequence change circuit 555 outputs numerical data “65535” corresponding to the final value in the count value permutation RCN output from the random number generation circuit 553, and then responds to the random number sequence change request data RDSC0. Change the random number update rule. Thereafter, the random number sequence change circuit 555 outputs “65535 → 65534 →... → 0” as the random number sequence RSN according to the changed random number update rule. The random number sequence change register RDSC is initialized when the random number sequence change setting circuit 556 reads the random number sequence change request data RDSC0. Therefore, until the bit value “1” is written to the bit number [0] of the random number sequence change register RDSC again, the random number sequence RSN output from the random number sequence change circuit 555 is “65535 → 65534 →... → 0”. Become.

CPU56がROM54に格納されたユーザプログラムを実行することによって、乱数列変更レジスタRDSCのビット番号[0]に再びビット値“1”が書き込まれると、乱数更新規則が再度変更される。図18に示す動作例では、乱数列変更回路555が乱数列RSNにおける最終値に対応する数値データ「0」を出力したときに、乱数列変更要求データRDSC0としてビット値“1”が書き込まれたことに応じて乱数更新規則を変更する。その後、乱数列変更回路555は、変更後の乱数更新規則に従った乱数列RSNとして、「0→2→…→65534→1→…→65535」を出力する。   When the CPU 56 executes the user program stored in the ROM 54 and the bit value “1” is written again to the bit number [0] of the random number sequence change register RDSC, the random number update rule is changed again. In the operation example shown in FIG. 18, when the random number sequence change circuit 555 outputs the numerical data “0” corresponding to the final value in the random number sequence RSN, the bit value “1” is written as the random number sequence change request data RDSC0. Change the random number update rule accordingly. Thereafter, the random number sequence changing circuit 555 outputs “0 → 2 →... → 65534 → 1 →... → 65535” as the random number sequence RSN according to the changed random number update rule.

図19は、乱数更新規則を自動で変更する場合の動作例を示している。この場合、乱数生成回路553から出力されるカウント値順列RCNが所定の初期値から所定の最終値まで循環的に更新されたことに応じて、乱数列変更設定回路556が自動的に乱数更新規則を変更する。図19に示す動作例では、始めに乱数列変更回路555から出力される乱数列RSNが、「0→1→…→65535」となっている。   FIG. 19 shows an operation example when the random number update rule is automatically changed. In this case, in response to the count value permutation RCN output from the random number generation circuit 553 being cyclically updated from a predetermined initial value to a predetermined final value, the random number sequence change setting circuit 556 automatically changes the random number update rule. To change. In the operation example shown in FIG. 19, the random number sequence RSN output from the random number sequence change circuit 555 is “0 → 1 →... → 65535”.

そして、乱数変更回路555から出力された乱数列RSNが所定の最終値に達したときに、乱数列変更設定回路556は、あらかじめ用意された複数種類の更新規則のうちからあらかじめ定められた順序に従って更新規則を選択することにより、更新規則を変更するようにしてもよい。あるいは、乱数列変更設定回路556は、複数種類の更新規則のうちから任意の更新規則を選択することにより、更新規則を変更するようにしてもよい。図19に示す動作例では、1回目の乱数更新規則の変更により、乱数列変更回路555から出力される乱数列RSNが、「65535→65534→…→0」となる。その後、2回目の乱数更新規則の変更により、乱数列変更回路555から出力される乱数列RSNは、「0→2→…→65534→1→…→65535」となる。図19に示す動作例では、3回目の乱数更新規則の変更により、乱数列変更回路555から出力される乱数列RSNは、「65534→0→…→32768」となる。4回目の乱数更新規則の変更が行われたときには、乱数列変更回路555から出力される乱数列RSNが、「16383→49151→…→49150」となる。5回目の乱数更新規則の変更が行われたときには、乱数列変更回路555から出力される乱数列RSNが、「4→3→…→465531」となる。   When the random number sequence RSN output from the random number change circuit 555 reaches a predetermined final value, the random number sequence change setting circuit 556 follows a predetermined order from among a plurality of types of update rules prepared in advance. The update rule may be changed by selecting the update rule. Alternatively, the random number sequence change setting circuit 556 may change the update rule by selecting an arbitrary update rule from among a plurality of types of update rules. In the operation example shown in FIG. 19, the random number sequence RSN output from the random number sequence change circuit 555 becomes “65535 → 65534 →. Thereafter, due to the second change in the random number update rule, the random number sequence RSN output from the random number sequence change circuit 555 becomes “0 → 2 →... → 65534 → 1 →. In the operation example illustrated in FIG. 19, the random number sequence RSN output from the random number sequence change circuit 555 is “65534 → 0 →... → 32768” due to the third change in the random number update rule. When the fourth random number update rule change is performed, the random number sequence RSN output from the random number sequence change circuit 555 becomes “16383 → 49151 →... → 49150”. When the fifth random number update rule change is performed, the random number sequence RSN output from the random number sequence change circuit 555 becomes “4 → 3 →... → 465553”.

このように、乱数列変更回路555は、乱数生成回路553から出力されたカウント値順列RCNを、乱数列変更設定回路556の設定によりあらかじめ定められた乱数更新規則にもとづいて変更することで、数値データを所定手順により更新した乱数列RSNを出力することができる。   Thus, the random number sequence change circuit 555 changes the count value permutation RCN output from the random number generation circuit 553 based on the random number update rule determined in advance by the setting of the random number sequence change setting circuit 556, so that the numerical value A random number sequence RSN in which data is updated by a predetermined procedure can be output.

ラッチ用フリップフロップ557A、557Bはそれぞれ、例えばD型フリップフロップなどを用いて構成される。ラッチ用フリップフロップ557Aでは、D入力端子にPIP510が備える入力ポートP0からの配線が接続され、クロック端子CKにラッチ用クロックRC1を伝送する配線が接続されている。この実施の形態では、入力ポートP0に始動口スイッチ14aからの始動入賞信号SSが入力される。ラッチ用フリップフロップ557Aは、ラッチ用クロックRC1の立ち下がりエッジなどに応答して、始動入賞信号SSを取り込み、始動入賞時ラッチ信号SL1として出力する。これにより、ラッチ用フリップフロップ557Aでは、ラッチ用クロックRC1の立ち下がりエッジに同期して、始動入賞信号SSが始動入賞時ラッチ信号SL1として出力される。ラッチ用フリップフロップ557Bでは、D入力端子にPIP510が備える入力ポートP1からの配線が接続され、クロック端子CKにラッチ用クロックRC2を伝送する配線が接続されている。この実施の形態では、入力ポートP1にも始動口スイッチ14aからの始動入賞信号SSが入力される。ラッチ用フリップフロップ557Bは、ラッチ用クロックRC2の立ち下がりエッジなどに応答して、始動入賞信号SSを取り込み、始動入賞時ラッチ信号SL2として出力する。これにより、ラッチ用フリップフロップ557Bでは、ラッチ用クロックRC2の立ち下がりエッジに同期して、始動入賞信号SSが始動入賞時ラッチ信号SL2として出力される。なお、例えば、遊技機が2つの始動入賞口を備える場合には、一方の始動口スイッチからの始動入賞信号が始動入賞時ラッチ信号SL1として出力され、他方の始動口スイッチからの始動入賞信号が始動入賞時ラッチ信号SL2として出力されるようにしてもよい。   Each of the latch flip-flops 557A and 557B is configured using, for example, a D-type flip-flop. In the latch flip-flop 557A, a wiring from the input port P0 included in the PIP 510 is connected to the D input terminal, and a wiring for transmitting the latch clock RC1 is connected to the clock terminal CK. In this embodiment, the start winning signal SS from the start port switch 14a is input to the input port P0. The latch flip-flop 557A takes in the start winning signal SS in response to the falling edge of the latch clock RC1, and outputs it as the start winning latch signal SL1. Thus, in the latch flip-flop 557A, the start winning signal SS is output as the start winning latch signal SL1 in synchronization with the falling edge of the latch clock RC1. In the latch flip-flop 557B, a wiring from the input port P1 included in the PIP 510 is connected to the D input terminal, and a wiring for transmitting the latch clock RC2 is connected to the clock terminal CK. In this embodiment, the start winning signal SS from the start port switch 14a is also input to the input port P1. The latch flip-flop 557B takes in the start winning signal SS in response to the falling edge of the latch clock RC2, and outputs it as the start winning latch signal SL2. Thus, in the latch flip-flop 557B, the start winning signal SS is output as the start winning latch signal SL2 in synchronization with the falling edge of the latch clock RC2. For example, when the gaming machine has two start winning ports, a start winning signal from one start port switch is output as a start winning latch signal SL1, and a start winning signal from the other start port switch is output. It may be output as the start winning latch signal SL2.

なお、始動入賞信号SSは、始動口スイッチ14aから直接伝送されるものに限定されない。一例として、始動口スイッチ14aからの出力信号がオン状態となっている時間を計測し、計測した時間が所定の時間(例えば3ms)になったときに、始動入賞信号SSを出力するタイマ回路を設けてもよい。   The start winning signal SS is not limited to the signal directly transmitted from the start port switch 14a. As an example, a timer circuit that measures the time during which the output signal from the start port switch 14a is on and outputs a start winning signal SS when the measured time reaches a predetermined time (for example, 3 ms). It may be provided.

乱数ラッチセレクタ558Aは、ラッチ用フリップフロップ557Aから伝送される始動入賞時ラッチ信号SL1と、ソフトウェアによる乱数ラッチ要求信号とを取り込み、いずれかを乱数ラッチ信号LL1として選択的に出力する回路である。乱数ラッチセレクタ558Bは、ラッチ用フリップフロップ557Bから伝送される始動入賞時ラッチ信号SL2と、ソフトウェアによる乱数ラッチ要求信号とを取り込み、いずれかを乱数ラッチ信号LL1として選択的に出力する回路である。乱数ラッチセレクタ558Aと乱数ラッチセレクタ558Bは、図11(B)に示すような遊技制御用マイクロコンピュータ560が備える内蔵レジスタのうち、乱数値取込レジスタRDLT(アドレス2032H)と、乱数ラッチ選択レジスタRDLS(アドレス2030H)とを用いて、乱数ラッチ信号LL1や乱数ラッチ信号LL2の出力を制御する。乱数値取込レジスタRDLTは、乱数列変更回路555から出力された乱数列RSNにおける数値データを、ソフトウェアにより乱数値レジスタ559Aや乱数値レジスタ559Bに取り込むために用いられるレジスタである。乱数ラッチ選択レジスタRDLSは、乱数列変更回路555から出力された乱数列RSNにおける数値データを、乱数値レジスタ559Aや乱数値レジスタ559Bに、ソフトウェアにより取り込むか、入力ポートP0、P1への信号入力により取り込むかの取込方法を示すレジスタである。   The random number latch selector 558A is a circuit that takes in the start winning latch signal SL1 transmitted from the latch flip-flop 557A and the random number latch request signal by software, and selectively outputs one as the random number latch signal LL1. The random number latch selector 558B is a circuit that takes in the start winning latch signal SL2 transmitted from the latch flip-flop 557B and the random number latch request signal by software, and selectively outputs one as the random number latch signal LL1. The random number latch selector 558A and the random number latch selector 558B are a random value fetch register RDLT (address 2032H) and a random number latch selection register RDLS among the built-in registers included in the game control microcomputer 560 as shown in FIG. (Address 2030H) is used to control the output of the random number latch signal LL1 and the random number latch signal LL2. The random value acquisition register RDLT is a register used for acquiring numerical data in the random number sequence RSN output from the random number sequence change circuit 555 into the random value register 559A or the random value register 559B by software. The random number latch selection register RDLS receives the numerical data in the random number sequence RSN output from the random number sequence change circuit 555 into the random number value register 559A or the random number value register 559B by software, or by signal input to the input ports P0 and P1. It is a register indicating a fetching method of fetching.

図20(A)は、乱数値取込レジスタRDLTの構成例を示している。図20(B)は、乱数値取込レジスタRDLTに格納される乱数値取込指定データの各ビットにおける設定内容の一例を示している。乱数値取込レジスタRDLTのビット番号[1]に格納される乱数値取込指定データRDLT1は、乱数値レジスタR2Dとなる乱数値レジスタ559Bに対する乱数値取込指定の有無を示している。図20(B)に示す例では、ソフトウェアにより乱数値レジスタR2Dに対する乱数値の取込指定がないときに、乱数値取込指定データRDLT1のビット値が“0”となる一方、乱数値の取込指定があったときには、そのビット値が“1”となる。乱数値取込レジスタRDLTのビット番号[0]に格納される乱数値取込指定データRDLT0は、乱数値レジスタR1Dとなる乱数値レジスタ559Aに対する乱数値取込指定の有無を示している。図20(B)に示す例では、ソフトウェアにより乱数値レジスタR1Dに対する乱数値の取込指定がないときに、乱数値取込指定データRDLT0のビット値が“0”となる一方、乱数値の取込指定があったときには、そのビット値が“1”となる。   FIG. 20A shows a configuration example of the random value fetch register RDLT. FIG. 20B shows an example of the setting contents in each bit of the random value fetch specification data stored in the random value fetch register RDLT. The random value acquisition specification data RDLT1 stored in the bit number [1] of the random value acquisition register RDLT indicates whether or not the random value acquisition specification for the random value register 559B serving as the random value register R2D is present. In the example shown in FIG. 20 (B), when the random number value acquisition specification for the random value register R2D is not specified by software, the bit value of the random value acquisition specification data RDLT1 is “0”, while the random value acquisition is not performed. The bit value is “1” when an instruction is included. The random value acquisition specification data RDLT0 stored in the bit number [0] of the random value acquisition register RDLT indicates whether or not a random value acquisition specification is given to the random value register 559A serving as the random value register R1D. In the example shown in FIG. 20 (B), when the random number value acquisition specification for the random value register R1D is not specified by software, the bit value of the random value acquisition specification data RDLT0 is “0”, while the random value acquisition is not performed. The bit value is “1” when an instruction is included.

図21(A)は、乱数ラッチ選択レジスタRDLSの構成例を示している。図21(B)は、乱数ラッチ選択レジスタRDLSに格納される乱数ラッチ選択データの各ビットにおける設定内容の一例を示している。乱数ラッチ選択レジスタRDLSのビット番号[1]に格納される乱数ラッチ選択データRDLS1は、乱数値レジスタR2Dとなる乱数値レジスタ559Bへの取込方法を示している。図21(B)に示す例では、ソフトウェアによる乱数値取込指定データRDLT1の書き込みに応じて乱数値となる数値データを乱数値レジスタR2Dに取り込む場合に、乱数ラッチ選択データRDLS1のビット値を“0”とする。これに対して、入力ポートP1への信号入力に応じて乱数値となる数値データを乱数値レジスタR2Dに取り込む場合には、乱数ラッチ選択データRDLS1のビット値を“1”とする。乱数ラッチ選択レジスタRDLSのビット番号[0]に格納される乱数ラッチ選択データRDLS0は、乱数値レジスタR1Dとなる乱数値レジスタ559Aへの取込方法を示している。図21(B)に示す例では、ソフトウェアによる乱数値取込指定データRDLT0の書き込みに応じて乱数値となる数値データを乱数値レジスタR1Dに取り込む場合に、乱数ラッチ選択データRDLS0のビット値を“0”とする。これに対して、入力ポートP0への信号入力に応じて乱数値となる数値データを乱数値レジスタR1Dに取り込む場合には、乱数ラッチ選択データRDLS0のビット値を“1”とする。   FIG. 21A shows a configuration example of the random number latch selection register RDLS. FIG. 21B shows an example of setting contents in each bit of random number latch selection data stored in the random number latch selection register RDLS. The random number latch selection data RDLS1 stored in the bit number [1] of the random number latch selection register RDLS indicates a method of taking in the random number value register 559B serving as the random number value register R2D. In the example shown in FIG. 21B, when the numerical value data that becomes the random number value is loaded into the random number value register R2D in response to the writing of the random number value loading designation data RDLT1 by the software, the bit value of the random number latch selection data RDLS1 is set to “ 0 ”. On the other hand, when the numerical value data to be a random number value is taken into the random value register R2D in response to the signal input to the input port P1, the bit value of the random number latch selection data RDLS1 is set to “1”. The random number latch selection data RDLS0 stored in the bit number [0] of the random number latch selection register RDLS indicates a method of taking in the random number value register 559A serving as the random number value register R1D. In the example shown in FIG. 21B, when the numerical value data that becomes the random number value is loaded into the random number value register R1D in response to the writing of the random number value loading designation data RDLT0 by software, the bit value of the random number latch selection data RDLS0 is set to “ 0 ”. On the other hand, when the numerical value data to be a random number value is taken into the random value register R1D in response to the signal input to the input port P0, the bit value of the random number latch selection data RDLS0 is set to “1”.

乱数値レジスタ559A、559Bはそれぞれ、乱数列変更回路555から出力された乱数列RSNにおける数値データを乱数値として格納するレジスタである。図22(A)および(B)は、乱数値レジスタR1Dとなる乱数値レジスタ559Aの構成例を示している。なお、図22(A)は、乱数値レジスタR1Dの下位バイトR1D(L)を示し、図22(B)は、乱数値レジスタR1Dの上位バイトR1D(H)を示している。図22(C)および(D)は、乱数値レジスタR2Dとなる乱数値レジスタ559Bの構成例を示している。なお、図22(C)は、乱数値レジスタR2Dの下位バイトR2D(L)を示し、図22(D)は、乱数値レジスタR2Dの上位バイトR2D(H)を示している。乱数値レジスタ559A、559Bはいずれも16ビット(2バイト)のレジスタであり、16ビットの乱数値を格納することができる。   The random value registers 559A and 559B are registers for storing numerical data in the random number sequence RSN output from the random number sequence changing circuit 555 as random number values. 22A and 22B show a configuration example of a random value register 559A serving as the random value register R1D. 22A shows the lower byte R1D (L) of the random value register R1D, and FIG. 22B shows the upper byte R1D (H) of the random value register R1D. 22C and 22D show a configuration example of a random value register 559B serving as the random value register R2D. Note that FIG. 22C shows the lower byte R2D (L) of the random value register R2D, and FIG. 22D shows the upper byte R2D (H) of the random value register R2D. Each of the random value registers 559A and 559B is a 16-bit (2-byte) register and can store a 16-bit random value.

乱数値レジスタ559Aは、乱数ラッチセレクタ558Aから供給される乱数ラッチ信号LL1がオン状態となったことに応答して、乱数列変更回路555から出力された乱数列RSNにおける数値データを乱数値として取り込んで格納する。乱数値レジスタ559Aは、CPU56から供給されるレジスタリード信号RRS1がオン状態となったときに、読出可能(イネーブル)状態となり、格納されている数値データを内部バス等に出力する。これに対して、レジスタリード信号RRS1がオフ状態であるときには、常に同じ値(例えば「65535H」など)を出力して、読出不能(ディセーブル)状態となればよい。また、乱数値レジスタ559Aは、乱数ラッチ信号LL1がオン状態である場合に、レジスタリード信号RRS1を受信不可能な状態となるようにしてもよい。さらに、乱数値レジスタ559Aは、乱数ラッチ信号LL1がオン状態となるより前にレジスタリード信号RRS1がオン状態となっている場合に、乱数ラッチ信号LL1を受信不可能な状態となるようにしてもよい。   The random value register 559A takes in the numerical data in the random number sequence RSN output from the random number sequence change circuit 555 as a random value in response to the random number latch signal LL1 supplied from the random number latch selector 558A being turned on. Store with. When the register read signal RRS1 supplied from the CPU 56 is turned on, the random value register 559A is in a readable (enable) state and outputs the stored numerical data to an internal bus or the like. On the other hand, when the register read signal RRS1 is in the off state, the same value (for example, “65535H” or the like) is always output, and the reading is disabled (disabled). Further, the random value register 559A may be in a state in which the register read signal RRS1 cannot be received when the random number latch signal LL1 is in the ON state. Further, the random number register 559A may be configured to be in a state in which the random number latch signal LL1 cannot be received when the register read signal RRS1 is in the on state before the random number latch signal LL1 is in the on state. Good.

乱数値レジスタ559Bは、乱数ラッチセレクタ558Bから供給される乱数ラッチ信号LL2がオン状態となったことに応答して、乱数列変更回路555から出力された乱数列RSNにおける数値データを乱数値として取り込んで格納する。乱数値レジスタ559Bは、CPU56から供給されるレジスタリード信号RRS2がオン状態となったときに、読出可能(イネーブル)状態となり、格納されている数値データを内部バス等に出力する。これに対して、レジスタリード信号RRS2がオフ状態であるときには、常に同じ値(例えば「65535H」など)を出力して、読出不能(ディセーブル)状態となればよい。また、乱数値レジスタ559Bは、乱数ラッチ信号LL2がオン状態である場合に、レジスタリード信号RRS2を受信不可能な状態となるようにしてもよい。さらに、乱数値レジスタ559Bは、乱数ラッチ信号LL2がオン状態となるより前にレジスタリード信号RRS2がオン状態となっている場合に、乱数ラッチ信号LL2を受信不可能な状態となるようにしてもよい。   The random value register 559B takes in the numerical data in the random number sequence RSN output from the random number sequence change circuit 555 as a random value in response to the random number latch signal LL2 supplied from the random number latch selector 558B being turned on. Store with. When the register read signal RRS2 supplied from the CPU 56 is turned on, the random value register 559B is in a readable (enable) state and outputs stored numerical data to an internal bus or the like. On the other hand, when the register read signal RRS2 is in the OFF state, the same value (for example, “65535H” or the like) is always output, and the reading is disabled (disabled). Further, the random value register 559B may be in a state in which the register read signal RRS2 cannot be received when the random number latch signal LL2 is in the ON state. Further, the random value register 559B may be configured to be in a state in which the random number latch signal LL2 cannot be received when the register read signal RRS2 is in the on state before the random number latch signal LL2 is in the on state. Good.

乱数値レジスタ559Aと乱数値レジスタ559Bは、図11(B)に示すような遊技制御用マイクロコンピュータ560が備える内蔵レジスタのうち、乱数ラッチフラグレジスタRDFM(アドレス2033H)と、乱数割込み制御レジスタRDIC(アドレス2031H)とを用いて、乱数ラッチ時の動作管理や割込み制御を可能にする。乱数ラッチフラグレジスタRDFMは、乱数値レジスタ559Aと乱数値レジスタ559Bのそれぞれに対応して、乱数値となる数値データがラッチされたか否かを示す乱数ラッチフラグを格納するレジスタである。例えば、乱数ラッチフラグレジスタRDFMでは、乱数値レジスタ559Aと乱数値レジスタ559Bのそれぞれに対応した乱数ラッチフラグの状態(オンまたはオフ)を示すデータが格納され、乱数値レジスタ559Aや乱数値レジスタ559Bに数値データが取り込まれて格納されたときに対応する乱数ラッチフラグがオン状態となり新たな数値データの格納が制限される一方、乱数値レジスタ559Aや乱数値レジスタ559Bに格納された数値データが読み出されたときに対応する乱数ラッチフラグがオフ状態となり新たな数値データの格納が許可される。乱数割込み制御レジスタRDICは、乱数値レジスタ559Aや乱数値レジスタ559Bに乱数値となる数値データがラッチされたときに発生する割込みの許可/禁止を設定するレジスタである。   The random value register 559A and the random value register 559B are a random number latch flag register RDFM (address 2033H) and a random number interrupt control register RDIC (of the built-in registers included in the game control microcomputer 560 as shown in FIG. 11B). Address 2031H) and enable operation management and interrupt control at the time of random number latching. The random number latch flag register RDFM is a register for storing a random number latch flag indicating whether or not numerical data to be a random number value is latched corresponding to each of the random number value register 559A and the random number value register 559B. For example, in the random number latch flag register RDFM, data indicating the state (ON or OFF) of the random number latch flag corresponding to each of the random number value register 559A and the random number value register 559B is stored, and numerical values are stored in the random number value register 559A and the random number value register 559B. When the data is fetched and stored, the corresponding random number latch flag is turned on and storage of new numerical data is restricted, while the numerical data stored in the random value register 559A or the random value register 559B is read. The corresponding random number latch flag is turned off, and storage of new numerical data is permitted. The random number interrupt control register RDIC is a register that sets permission / prohibition of an interrupt that occurs when numerical data that becomes a random value is latched in the random value register 559A or the random value register 559B.

図23(A)は、乱数ラッチフラグレジスタRDFMの構成例を示している。図23(B)は、乱数ラッチフラグレジスタRDFMに格納される乱数ラッチフラグデータの各ビットにおける設定内容の一例を示している。乱数ラッチフラグレジスタRDFMのビット番号[1]に格納される乱数ラッチフラグデータRDFM1は、乱数値レジスタR2Dとなる乱数値レジスタ559Bに数値データが取り込まれたか否かを示す乱数ラッチフラグとなる。図23(B)に示す例では、乱数値レジスタR2Dに数値データが取り込まれていないときに(乱数値取込なし)、乱数ラッチフラグデータRDFM1のビット値が“0”となって乱数ラッチフラグがオフ状態にクリアされる一方、数値データが取り込まれたときには(乱数値取込あり)、そのビット値が“1”となって乱数ラッチフラグがオン状態にセットされる。乱数ラッチフラグレジスタRDFMのビット番号[0]に格納される乱数ラッチフラグデータRDFM0は、乱数値レジスタR1Dとなる乱数値レジスタ559Aに数値データが取り込まれたか否かを示す乱数ラッチフラグとなる。図23(B)に示す例では、乱数値レジスタR1Dに数値データが取り込まれていないときに(乱数値取込なし)、乱数ラッチフラグデータRDFM0のビット値が“0”となって乱数ラッチフラグがオフ状態にクリアされる一方、数値データが取り込まれたときには(乱数値取込あり)、そのビット値が“1”となって乱数ラッチフラグがオン状態にセットされる。   FIG. 23A shows a configuration example of the random number latch flag register RDFM. FIG. 23B shows an example of setting contents in each bit of the random number latch flag data stored in the random number latch flag register RDFM. The random number latch flag data RDFM1 stored in the bit number [1] of the random number latch flag register RDFM becomes a random number latch flag indicating whether or not numerical data has been taken into the random number value register 559B serving as the random number value register R2D. In the example shown in FIG. 23B, when the numerical value data is not taken into the random value register R2D (no random value is taken), the bit value of the random number latch flag data RDFM1 becomes “0” and the random number latch flag is set. On the other hand, when the numerical data is fetched (with random number fetching), the bit value becomes “1” and the random number latch flag is set to the on state while clearing to the off state. The random number latch flag data RDFM0 stored in the bit number [0] of the random number latch flag register RDFM is a random number latch flag indicating whether or not numerical data has been taken into the random number value register 559A serving as the random number value register R1D. In the example shown in FIG. 23B, when the numerical data is not taken into the random value register R1D (no random value is taken), the bit value of the random number latch flag data RDFM0 becomes “0” and the random number latch flag is set. On the other hand, when the numerical data is fetched (with random number fetching), the bit value becomes “1” and the random number latch flag is set to the on state while clearing to the off state.

各乱数ラッチフラグがオンであるときには、各乱数ラッチフラグと対応付けられた乱数値レジスタR1Dあるいは乱数値レジスタR2Dにおける新たな数値データの格納が制限(禁止)される。すなわち、乱数値レジスタR1Dに数値データが取り込まれたか否かを示す乱数ラッチフラグデータRDFM0のビット値が“1”となって乱数ラッチフラグがオン状態であるときには、乱数値レジスタR1Dに格納された数値データを変更することができず、新たな数値データの格納(取り込み)が制限(禁止)される。また、乱数値レジスタR2Dに乱数値データが取り込まれたか否かを示す乱数ラッチフラグデータRDFM1のビット値が“1”となって乱数ラッチフラグがオン状態であるときには、乱数値レジスタR2Dに格納された数値データを変更することができず、新たな数値データの格納(取り込み)が制限(禁止)される。これに対して、各乱数ラッチフラグがオフであるときには、各乱数ラッチフラグと対応付けられた乱数値レジスタR1Dあるいは乱数値レジスタR2Dにおける新たな数値データの格納が許可される。すなわち、乱数ラッチフラグデータRDFM0のビット値が“0”となって乱数ラッチフラグがオフ状態であるときには、乱数値レジスタR1Dに格納された数値データを変更することができ、新たな数値データの格納(取り込み)が許可される。また、乱数ラッチフラグデータRDFM1のビット値が“0”となって乱数ラッチフラグがオフ状態であるときには、乱数値レジスタR2Dに格納された数値データを変更することができ、新たな数値データの格納(取り込み)が許可される。   When each random number latch flag is on, storage of new numerical data in the random number value register R1D or the random number value register R2D associated with each random number latch flag is restricted (prohibited). That is, when the bit value of the random number latch flag data RDFM0 indicating whether or not the numerical value data is taken into the random number value register R1D is “1” and the random number latch flag is in the ON state, the numerical value stored in the random number value register R1D Data cannot be changed, and storage (import) of new numerical data is restricted (prohibited). Further, when the bit value of the random number latch flag data RDFM1 indicating whether or not the random number value data is taken into the random number value register R2D is “1” and the random number latch flag is in the ON state, the random number value register R2D is stored in the random number value register R2D. Numerical data cannot be changed, and storage (import) of new numerical data is restricted (prohibited). On the other hand, when each random number latch flag is off, storage of new numerical data in the random number value register R1D or the random number value register R2D associated with each random number latch flag is permitted. That is, when the bit value of the random number latch flag data RDFM0 is “0” and the random number latch flag is in the OFF state, the numerical data stored in the random value register R1D can be changed, and new numerical data is stored ( Import) is allowed. Further, when the bit value of the random number latch flag data RDFM1 is “0” and the random number latch flag is in the OFF state, the numerical data stored in the random value register R2D can be changed, and new numerical data can be stored ( Import) is allowed.

なお、乱数ラッチフラグデータRDFM0や乱数ラッチフラグデータRDFM1のビット値は、“0”となることで対応する乱数ラッチフラグがオフ状態にクリアされる一方で“1”となることでオン状態にセットされる正論理のものに限定されず、“1”となることで対応する乱数ラッチフラグがオフ状態となる一方で“0”となることでオン状態となる負論理のものであってもよい。すなわち、各乱数ラッチフラグは、対応する乱数値レジスタR1Dまたは乱数値レジスタR2Dに数値データが格納されたときにオン状態となり新たな数値データの格納が制限(禁止)される一方で、対応する乱数値レジスタR1Dまたは乱数値レジスタR2Dの読み出しが行われたときにオフ状態となり新たな数値データの格納が許可されるものであればよい。   Note that the bit values of the random number latch flag data RDFM0 and the random number latch flag data RDFM1 are set to “0” when the corresponding random number latch flag is cleared to “off”, while being set to “1”. It is not limited to a positive logic type, and it may be a negative logic type that turns on when a corresponding random number latch flag is turned off when it is “1”. That is, each random number latch flag is turned on when numerical data is stored in the corresponding random value register R1D or random value register R2D, and the storage of new numerical data is restricted (prohibited), while the corresponding random value Any register may be used as long as it is turned off when reading of the register R1D or the random number register R2D is performed and storage of new numerical data is permitted.

図24(A)は、乱数割込み制御レジスタRDICの構成例を示している。図24(B)は、乱数割込み制御レジスタRDICに格納される乱数割込み制御データの各ビットにおける設定内容の一例を示している。乱数割込み制御レジスタRDICのビット番号[1]に格納される乱数割込み制御データRDIC1は、乱数値レジスタR2Dとなる乱数値レジスタ559Bに数値データが取り込まれたときに発生する割込みを、許可するか禁止するかの割込み制御設定を示している。図24(B)に示す例では、乱数値レジスタR2Dへの取込時における割込みを禁止する場合に(割込み禁止)、乱数割込み制御データRDIC1のビット値を“0”とする一方、この割込みを許可する場合には(割込み許可)、そのビット値を“1”とする。乱数割込み制御レジスタRDICのビット番号[0]に格納される乱数割込み制御データRDIC0は、乱数値レジスタR1Dとなる乱数値レジスタ559Aに数値データが取り込まれたときに発生する割込みを、許可するか禁止するかの割込み制御設定を示している。図24(B)に示す例では、乱数値レジスタR1Dへの取込時における割込みを禁止する場合に(割込み禁止)、乱数割込み制御データRDIC0のビット値を“0”とする一方、この割込みを許可する場合には(割込み許可)、そのビット値を“1”とする。   FIG. 24A shows a configuration example of the random number interrupt control register RDIC. FIG. 24B shows an example of setting contents in each bit of random number interrupt control data stored in the random number interrupt control register RDIC. The random number interrupt control data RDIC1 stored in the bit number [1] of the random number interrupt control register RDIC permits or prohibits an interrupt that occurs when numerical data is taken into the random number value register 559B serving as the random number value register R2D. Indicates the interrupt control setting for In the example shown in FIG. 24B, when interrupting at the time of fetching into the random value register R2D is prohibited (interrupt disabled), the bit value of the random number interrupt control data RDIC1 is set to “0”, while this interrupt is When enabling (interrupt enabled), the bit value is set to “1”. The random number interrupt control data RDIC0 stored in the bit number [0] of the random number interrupt control register RDIC allows or prohibits an interrupt that occurs when numerical data is taken into the random value register 559A that becomes the random value register R1D. Indicates the interrupt control setting for In the example shown in FIG. 24 (B), when interrupting at the time of fetching into the random value register R1D is prohibited (interrupt disabled), the bit value of the random number interrupt control data RDIC0 is set to “0”, while this interrupt is When enabling (interrupt enabled), the bit value is set to “1”.

なお、図9に示す構成例では、乱数回路509が遊技制御用マイクロコンピュータ560に内蔵されている。これに対して、例えば図25に示すように、乱数回路509は、遊技制御用マイクロコンピュータ560とは異なる乱数回路チップとして、遊技制御用マイクロコンピュータ560に外付けされるものであってもよい。この場合、始動口スイッチ14aからの始動入賞信号SSをスイッチ回路114の内部にて分岐し、一方を遊技制御用マイクロコンピュータ560が備えるPIP510の入力ポートP0へと入力させて、他方を乱数回路509が備えるラッチ用フリップフロップ557A,557BのD入力端子へと入力させればよい。遊技制御用マイクロコンピュータ560との間では、例えば遊技制御用マイクロコンピュータ560が備えるクロック回路502からシステムクロック出力端子CLKOを介して出力された内部システムクロックSCLKを乱数回路509が備える周波数監視回路551やクロック用フリップフロップ552へと入力させたり、遊技制御用マイクロコンピュータ560が備える外部バスインタフェース501に接続されたアドレスバスやデータバス、制御信号線などを介して、乱数値レジスタR1Dや乱数値レジスタR2Dに格納された数値データの読み出しなどが行われたりすればよい。   In the configuration example shown in FIG. 9, a random number circuit 509 is built in the game control microcomputer 560. On the other hand, for example, as shown in FIG. 25, the random number circuit 509 may be externally attached to the game control microcomputer 560 as a random number circuit chip different from the game control microcomputer 560. In this case, the start winning signal SS from the start port switch 14a is branched inside the switch circuit 114, one is input to the input port P0 of the PIP 510 provided in the game control microcomputer 560, and the other is the random number circuit 509. May be input to the D input terminal of the latch flip-flops 557A and 557B. Between the game control microcomputer 560, for example, the frequency monitor circuit 551 provided in the random number circuit 509 includes the internal system clock SCLK output from the clock circuit 502 provided in the game control microcomputer 560 via the system clock output terminal CLKO. The random number value register R1D and the random number value register R2D are input to the clock flip-flop 552 or via an address bus, data bus, control signal line, etc. connected to the external bus interface 501 provided in the game control microcomputer 560. The numerical data stored in the data may be read out.

また、図25に示すように乱数回路509が遊技制御用マイクロコンピュータ560に外付けされる場合にも、各乱数ラッチフラグの状態(オン/オフ)に応じて、乱数値レジスタR1Dや乱数値レジスタR2Dへの新たな数値データの格納が制限(禁止)あるいは許可されるようにすればよい。図11(B)に示す内蔵レジスタのうち、例えば乱数ラッチ選択レジスタRDLSや乱数割込み制御レジスタRDIC、乱数値取込レジスタRDLT、乱数ラッチフラグレジスタRDFM、乱数列変更レジスタRDSC、乱数値レジスタR1D、乱数値レジスタR2Dといった、乱数回路509が使用する各種レジスタは、遊技制御用マイクロコンピュータ560には内蔵されず、遊技制御用マイクロコンピュータ560に外付けされた乱数回路509に内蔵されるようにしてもよい。この場合、遊技制御用マイクロコンピュータ560のCPU56は、例えば外部バスインタフェース501などを介して、乱数回路509に内蔵された各種レジスタの書き込みや読み出しを行うようにすればよい。   Also, as shown in FIG. 25, when the random number circuit 509 is externally attached to the game control microcomputer 560, the random number value register R1D and the random number value register R2D depending on the state (ON / OFF) of each random number latch flag. It is only necessary to limit (prohibit) or permit storage of new numerical data in the. Among the built-in registers shown in FIG. 11B, for example, the random number latch selection register RDLS, the random number interrupt control register RDIC, the random value fetch register RDLT, the random number latch flag register RDFM, the random number sequence change register RDSC, the random number value register R1D, random Various registers used by the random number circuit 509, such as the numerical register R2D, may not be built in the game control microcomputer 560 but may be built in the random number circuit 509 externally attached to the game control microcomputer 560. . In this case, the CPU 56 of the game control microcomputer 560 may write and read various registers built in the random number circuit 509 via, for example, the external bus interface 501 or the like.

図9に示す遊技制御用マイクロコンピュータ560が備えるPIP510は、例えば6ビット幅の入力専用ポートであり、専用端子となる入力ポートP0〜入力ポートP2と、機能兼用端子となる入力ポートP3〜入力ポートP5とを含んでいる。入力ポートP3は、CPU56等に接続される外部マスカブル割込み端子XINTと兼用される。入力ポートP4は、CPU56等に接続される外部ノンマスカブル割込み端子XNMIと兼用される。入力ポートP5は、シリアル通信回路511が使用する第1チャネル受信端子RXAと兼用される。入力ポートP3〜入力ポートP5の使用設定は、プログラム管理エリアに記憶される機能設定KFCSにより指示される。   The PIP 510 provided in the game control microcomputer 560 shown in FIG. 9 is, for example, a 6-bit input dedicated port. P5 is included. The input port P3 is also used as an external maskable interrupt terminal XINT connected to the CPU 56 or the like. The input port P4 is also used as an external non-maskable interrupt terminal XNMI connected to the CPU 56 and the like. The input port P5 is also used as the first channel reception terminal RXA used by the serial communication circuit 511. The use setting of the input port P3 to the input port P5 is instructed by the function setting KFCS stored in the program management area.

PIP510は、図11(B)に示すような遊技制御用マイクロコンピュータ560が備える内蔵レジスタのうち、入力ポートレジスタPI(アドレス2090H)などを用いて、入力ポートP0〜入力ポートP5の状態管理等を行う。入力ポートレジスタPIは、入力ポートP0〜入力ポートP5のそれぞれに対応して、外部信号の入力状態を示すビット値が格納されるレジスタである。   The PIP 510 uses the input port register PI (address 2090H) among the built-in registers included in the game control microcomputer 560 as shown in FIG. 11 (B) to manage the status of the input port P0 to the input port P5. Do. The input port register PI is a register that stores a bit value indicating the input state of the external signal corresponding to each of the input port P0 to the input port P5.

図26(A)は、入力ポートレジスタPIの構成例を示している。図26(B)は、入力ポートレジスタPIに格納される入力ポートデータの各ビットにおける設定内容の一例を示している。入力ポートレジスタPIのビット番号[5]に格納される入力ポートデータPI5は、第1チャネル受信端子RXAと兼用される入力ポートP5における端子状態(オン/オフ)を示している。入力ポートレジスタPIのビット番号[4]に格納される入力ポートデータPI4は、外部ノンマスカブル割込み端子XNMIと兼用される入力ポートP4における端子状態(オン/オフ)を示している。入力ポートレジスタPIのビット番号[3]に格納される入力ポートデータPI3は、外部マスカブル割込み端子XINTと兼用される入力ポートP3における端子状態(オン/オフ)を示している。入力ポートレジスタPIのビット番号[2]に格納される入力ポートデータPI2は、入力ポートP2における端子状態(オン/オフ)を示している。入力ポートレジスタPIのビット番号[1]に格納される入力ポートデータPI1は、入力ポートP1における端子状態(オン/オフ)を示している。入力ポートレジスタPIのビット番号[0]に格納される入力ポートデータPI0は、入力ポートP0における端子状態(オン/オフ)を示している。   FIG. 26A shows a configuration example of the input port register PI. FIG. 26B shows an example of the setting contents in each bit of the input port data stored in the input port register PI. The input port data PI5 stored in the bit number [5] of the input port register PI indicates the terminal state (ON / OFF) at the input port P5 that is also used as the first channel receiving terminal RXA. The input port data PI4 stored in the bit number [4] of the input port register PI indicates the terminal state (ON / OFF) at the input port P4 that is also used as the external non-maskable interrupt terminal XNMI. The input port data PI3 stored in the bit number [3] of the input port register PI indicates the terminal state (ON / OFF) at the input port P3 that is also used as the external maskable interrupt terminal XINT. The input port data PI2 stored in the bit number [2] of the input port register PI indicates the terminal state (ON / OFF) at the input port P2. The input port data PI1 stored in the bit number [1] of the input port register PI indicates the terminal state (ON / OFF) at the input port P1. The input port data PI0 stored in the bit number [0] of the input port register PI indicates the terminal state (ON / OFF) at the input port P0.

次に、シリアル通信回路511の構成について説明する。シリアル通信回路511は、全二重方式、非同期方式および標準NRZ(ノンリターンゼロ)符号化を用いたデータフォーマットで、各制御基板(例えば、払出制御基板37や演出制御基板80)のマイクロコンピュータとシリアル通信を行う。シリアル通信回路511は、各制御基板のマイクロコンピュータに各種データ(例えば、賞球個数コマンドや演出制御コマンド)を送信する送信部と、各制御基板のマイクロコンピュータからの各種データ(例えば、賞球ACKコマンド)を受信する受信部とを含む。   Next, the configuration of the serial communication circuit 511 will be described. The serial communication circuit 511 is a data format using a full-duplex method, an asynchronous method, and standard NRZ (non-return zero) encoding, and a microcomputer on each control board (for example, the payout control board 37 and the effect control board 80). Perform serial communication. The serial communication circuit 511 transmits a variety of data (for example, prize ball number command and effect control command) to the microcomputer of each control board, and various data (for example, prize ball ACK) from the microcomputer of each control board. Command).

図27は、シリアル通信回路511の送信部の構成例を示すブロック図である。また、図28は、シリアル通信回路511の受信部の構成例を示すブロック図である。シリアル通信回路511は、ボーレートレジスタ702、ボーレート生成回路703、2つのステータスレジスタ705,706、3つの制御レジスタ707,708,709、送信データレジスタ710、受信データレジスタ711、送信用シフトレジスタ712、受信用シフトレジスタ713、割り込み制御回路714、送信フォーマット/パリティ生成回路715および受信フォーマット/パリティチェック回路716を含む。また、図27に示すように、シリアル通信回路511の送信部は、これらの構成要素のうち、ボーレートレジスタ702、ボーレート生成回路703、ステータスレジスタA705、制御レジスタ707,708,709、送信データレジスタ710、送信用シフトレジスタ712、割り込み制御回路714および送信フォーマット/パリティ生成回路715によって構成される。また、図28に示すように、シリアル通信回路511の受信部は、これらの構成要素のうち、ボーレートレジスタ702、ボーレート生成回路703、ステータスレジスタ705,706、制御レジスタ707,708,709、受信データレジスタ711、受信用シフトレジスタ713、割り込み制御回路714および受信フォーマット/パリティチェック回路716によって構成される。   FIG. 27 is a block diagram illustrating a configuration example of the transmission unit of the serial communication circuit 511. FIG. 28 is a block diagram illustrating a configuration example of the receiving unit of the serial communication circuit 511. The serial communication circuit 511 includes a baud rate register 702, a baud rate generation circuit 703, two status registers 705 and 706, three control registers 707, 708, and 709, a transmission data register 710, a reception data register 711, a transmission shift register 712, and a reception Shift register 713, interrupt control circuit 714, transmission format / parity generation circuit 715, and reception format / parity check circuit 716. As shown in FIG. 27, the transmission unit of the serial communication circuit 511 includes a baud rate register 702, a baud rate generation circuit 703, a status register A 705, control registers 707, 708, and 709, a transmission data register 710, among these components. , A transmission shift register 712, an interrupt control circuit 714, and a transmission format / parity generation circuit 715. As shown in FIG. 28, the receiving unit of the serial communication circuit 511 includes a baud rate register 702, a baud rate generation circuit 703, status registers 705 and 706, control registers 707, 708, and 709, received data, among these components. The register 711, the reception shift register 713, the interrupt control circuit 714, and the reception format / parity check circuit 716 are configured.

なお、シリアル通信回路511において、送信部と受信部とは、実際には、共通の回路を用いて構成される。そして、シリアル通信回路511は、上記に示したように、シリアル通信回路511の各構成要素を使い分けて用いることによって、送信回路又は受信回路として機能する。   In the serial communication circuit 511, the transmission unit and the reception unit are actually configured by using a common circuit. As described above, the serial communication circuit 511 functions as a transmission circuit or a reception circuit by properly using each component of the serial communication circuit 511.

まず、シリアル通信回路511が各制御基板が搭載するマイクロコンピュータと送受信するデータのデータフォーマットを説明する。図29は、シリアル通信回路511が各制御基板に搭載されるマイクロコンピュータと送受信するデータのデータフォーマットの例を示す説明図である。図29に示すように、シリアル通信回路511が送受信するデータのデータフォーマットは、スタートビット、データおよびストップビットを1フレームとして構成される。また、シリアル通信回路511が送受信するデータのデータ長は、後述するシリアル通信回路設定処理において初期設定を行えば、8ビットまたは9ビットのいずれかに設定できる。図29(a)は、データ長を8ビットに設定した場合のデータフォーマットの例である。また、図29(b)は、データ長を9ビットに設定した場合のデータフォーマットの例である。   First, the data format of data transmitted and received by the serial communication circuit 511 with the microcomputer mounted on each control board will be described. FIG. 29 is an explanatory diagram showing an example of a data format of data transmitted / received by the serial communication circuit 511 to / from a microcomputer mounted on each control board. As shown in FIG. 29, the data format of data transmitted and received by the serial communication circuit 511 is configured with a start bit, data, and stop bits as one frame. Further, the data length of data transmitted and received by the serial communication circuit 511 can be set to either 8 bits or 9 bits by performing initial setting in a serial communication circuit setting process described later. FIG. 29A shows an example of a data format when the data length is set to 8 bits. FIG. 29B shows an example of the data format when the data length is set to 9 bits.

図29に示すように、シリアル通信回路511が送受信するデータのデータフォーマットは、ハイレベル(論理「1」)のアイドルラインのあとに、1フレームの始まりであることを示すスタートビット(論理「0」)を含む。また、データフォーマットは、スタートビットのあとに、8ビットまたは9ビットの送受信データを含む。そして、データフォーマットは、送受信データのあとに、1フレームの終わりであることを示すストップビット(論理「1」)を含む。   As shown in FIG. 29, the data format of data transmitted / received by the serial communication circuit 511 is a start bit (logic “0”) indicating the start of one frame after an idle line of high level (logic “1”). ")including. The data format includes 8-bit or 9-bit transmission / reception data after the start bit. The data format includes a stop bit (logic “1”) indicating the end of one frame after transmission / reception data.

シリアル通信回路511は、図29に示すデータフォーマットに従って、送受信データの最下位ビット(ビット0)から先にデータを送受信する。また、後述するシリアル通信回路設定処理において初期設定を行えば、送受信データにパリティビットを付加するように設定することもできる。パリティビットを付加するように設定した場合、送受信データの最上位ビットがパリティビット(奇数パリティまたは偶数パリティ)として用いられる。例えば、データ長を8ビットに設定した場合、送受信データのビット7がパリティビットとして用いられる。また、例えば、データ長を9ビットに設定した場合、送受信データのビット8がパリティビットとして用いられる。   The serial communication circuit 511 transmits / receives data first from the least significant bit (bit 0) of the transmission / reception data according to the data format shown in FIG. Further, if initial setting is performed in a serial communication circuit setting process described later, it is possible to set so that a parity bit is added to transmission / reception data. When a setting is made to add a parity bit, the most significant bit of the transmission / reception data is used as a parity bit (odd parity or even parity). For example, when the data length is set to 8 bits, bit 7 of transmission / reception data is used as a parity bit. For example, when the data length is set to 9 bits, bit 8 of transmission / reception data is used as a parity bit.

ボーレート生成回路703は、クロック回路501が出力するクロック信号およびボーレートレジスタ702に設定されている設定値(ボーレート設定値ともいう)にもとづいて、シリアル通信回路511が用いるボーレートを生成する。この場合、ボーレート生成回路703は、クロック信号およびボーレート設定値にもとづいて、所定の計算式を用いてボーレートを求める。例えば、ボーレート生成回路703は、式(1)を用いて、シリアル通信回路511が用いるボーレートを求める。   The baud rate generation circuit 703 generates a baud rate used by the serial communication circuit 511 based on a clock signal output from the clock circuit 501 and a setting value (also referred to as a baud rate setting value) set in the baud rate register 702. In this case, the baud rate generation circuit 703 obtains the baud rate using a predetermined calculation formula based on the clock signal and the baud rate setting value. For example, the baud rate generation circuit 703 obtains the baud rate used by the serial communication circuit 511 using Expression (1).

ボーレート=クロック周波数/(ボーレート設定値×16) 式(1) Baud rate = clock frequency / (baud rate set value x 16) Equation (1)

図30は、ボーレートレジスタ702の例を示す説明図である。ボーレートレジスタ702は、ボーレート生成回路703が生成するボーレートの値を指定するための所定の設定値を設定するレジスタである。例えば、ボーレートレジスタ702が式(1)を用いてボーレートを求めるものとし、クロック周波数が3MHzであるとする。この場合、所望の目標ボーレートが1200bpsであるとすると、ボーレートレジスタ702に設定値「156」を設定する。すると、ボーレート生成回路703は、クロック周波数「3MHz」およびボーレート設定値「156」にもとづいて、式(1)を用いて、ボーレート「1201.92bps」を生成する。ボーレートレジスタ702は、16ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ボーレートレジスタ702は、ビット0〜ビット12が書込および読出ともに可能な状態に構成されている。また、ボーレートレジスタ702は、ビット13〜ビット15が書込および読出ともに不可能な状態に構成されている。したがって、ボーレートレジスタ702のビット13〜ビット15に値を書き込む制御を行っても無効とされ、ビット13〜ビット15から読み出す値は全て「0(=000b)」である。   FIG. 30 is an explanatory diagram showing an example of the baud rate register 702. The baud rate register 702 is a register that sets a predetermined setting value for designating a baud rate value generated by the baud rate generation circuit 703. For example, it is assumed that the baud rate register 702 obtains the baud rate using the equation (1) and the clock frequency is 3 MHz. In this case, if the desired target baud rate is 1200 bps, the setting value “156” is set in the baud rate register 702. Then, the baud rate generation circuit 703 generates the baud rate “1201.92 bps” using the equation (1) based on the clock frequency “3 MHz” and the baud rate set value “156”. The baud rate register 702 is a 16-bit register, and an initial value is set to “0 (= 00h)”. The baud rate register 702 is configured such that bits 0 to 12 can be written and read. Further, the baud rate register 702 is configured such that bits 13 to 15 cannot be written or read. Therefore, even if a control for writing a value to bits 13 to 15 of the baud rate register 702 is performed, it is invalid, and all the values read from the bits 13 to 15 are “0 (= 000b)”.

図31(A)は、制御レジスタA707の例を示す説明図である。制御レジスタA707は、シリアル通信回路511の通信フォーマットを設定するレジスタである。この実施の形態では、制御レジスタA707の各ビットの値が設定されることによって、シリアル通信回路511の通信フォーマットが設定される。制御レジスタA707には、送受信データのデータ形式や各種通信方式等の通信フォーマットを設定するための通信フォーマット設定データが設定される。図31(A)に示すように、制御レジスタA707は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタA707は、ビット0〜ビット4が書込および読出ともに可能な状態に構成されている。また、制御レジスタA707は、ビット5〜ビット7が書込および読出ともに不可能な状態に構成されている。したがって、制御レジスタA707のビット5〜ビット7に値を書き込む制御を行っても無効とされ、ビット5〜ビット7から読み出す値は全て「0(=000b)」である。   FIG. 31A is an explanatory diagram illustrating an example of the control register A707. The control register A 707 is a register for setting the communication format of the serial communication circuit 511. In this embodiment, the communication format of the serial communication circuit 511 is set by setting the value of each bit of the control register A707. In the control register A707, communication format setting data for setting a communication format such as a data format of transmission / reception data and various communication methods is set. As shown in FIG. 31A, the control register A707 is an 8-bit register, and the initial value is set to “0 (= 00h)”. Control register A 707 is configured such that bits 0 to 4 can be written and read. Control register A 707 is configured such that bits 5 to 7 cannot be written or read. Therefore, even if control is performed to write a value to bits 5 to 7 of the control register A707, it is invalid, and all the values read from bits 5 to 7 are “0 (= 000b)”.

図31(B)は、制御レジスタA707に設定される通信フォーマット設定データの一例の説明図である。図31(B)に示すように、制御レジスタA707のビット4(ビット名「M」)には、送受信するデータのデータ長を設定するための設定データが設定される。図31(B)に示すように、ビット4を「0」に設定することによって、送受信データのデータ長が8ビットに設定される。また、ビット4を「1」に設定することによって、送受信データのデータ長が9ビットに設定される。   FIG. 31B is an explanatory diagram of an example of communication format setting data set in the control register A707. As shown in FIG. 31B, setting data for setting the data length of data to be transmitted and received is set in bit 4 (bit name “M”) of the control register A707. As shown in FIG. 31B, by setting bit 4 to “0”, the data length of the transmission / reception data is set to 8 bits. Further, by setting bit 4 to “1”, the data length of the transmission / reception data is set to 9 bits.

制御レジスタA707のビット3(ビット名「WAKE」)には、スタンバイ状態の受信回路(シリアル通信回路511の受信部)をウエイクアップする(オンライン状態にさせる)ウエイクアップ方式を設定するための設定データが設定される。図31(B)に示すように、ビット3を「0」に設定することによって、アイドルラインを認識したときにウエイクアップするアイドルラインウエイクアップ方式が設定される。また、ビット3を「1」に設定することによって、所定のアドレスマークを認識することによってウエイクアップするアドレスマークウエイクアップ方式が設定される。   In bit 3 (bit name “WAKE”) of the control register A707, setting data for setting a wake-up method for waking up the receiver circuit (the receiving unit of the serial communication circuit 511) in the standby state (making it online). Is set. As shown in FIG. 31 (B), by setting bit 3 to “0”, an idle line wakeup method for wakeup when an idle line is recognized is set. In addition, by setting bit 3 to “1”, an address mark wakeup method for wakeup by recognizing a predetermined address mark is set.

制御レジスタA707のビット2(ビット名「ILT」)には、受信データのアイドルラインの検出方式を選択するための設定データが設定される。図31(B)に示すように、ビット2を「0」に設定することによって、受信データに含まれるスタートビットの後からアイドルラインを検出する検出方式が設定される。また、ビット2を「1」に設定することによって、受信データに含まれるストップビットの後からアイドルラインを検出する検出方式が設定される。   In bit 2 (bit name “ILT”) of the control register A707, setting data for selecting an idle line detection method of received data is set. As shown in FIG. 31B, by setting bit 2 to “0”, a detection method for detecting the idle line after the start bit included in the received data is set. In addition, by setting bit 2 to “1”, a detection method for detecting an idle line after a stop bit included in received data is set.

制御レジスタA707のビット1(ビット名「PE」)には、パリティ機能を使用するか否かを設定するための設定データが設定される。図31(B)に示すように、ビット1を「0」に設定することによって、パリティ機能を使用しないように設定される。また、ビット1を「1」に設定することによって、パリティ機能を使用するように設定される。   Setting data for setting whether to use the parity function is set in bit 1 (bit name “PE”) of the control register A707. As shown in FIG. 31B, by setting bit 1 to “0”, the parity function is set not to be used. Further, by setting bit 1 to “1”, the parity function is set to be used.

制御レジスタA707のビット0(ビット名「PT」)には、パリティ機能を使用すると設定した場合のパリティの種類を設定するための設定データが設定される。図31(B)に示すように、ビット0を「0」に設定することによって、パリティの種類として偶数パリティが設定される。また、ビット0を「1」に設定することによって、パリティの種類として奇数パリティが設定される。   Setting data for setting the type of parity when the parity function is used is set in bit 0 (bit name “PT”) of the control register A707. As shown in FIG. 31B, by setting bit 0 to “0”, even parity is set as the parity type. Also, by setting bit 0 to “1”, odd parity is set as the parity type.

図32(A)は、制御レジスタB708の例を示す説明図である。制御レジスタB708は、シリアル通信回路511の割り込み要求を許可するか否かを設定するレジスタである。この実施の形態では、制御レジスタB708の各ビットの値が設定されることによって、シリアル通信回路511からの割り込み要求を許可するか禁止するかが設定される。制御レジスタB708には、各種割り込み要求を許可するか否かを示す割り込み要求設定データが主として設定される。なお、制御レジスタB708には、割り込み要求設定データ以外に、シリアル通信回路511の各種設定を行うための設定データも設定される。図32(A)に示すように、制御レジスタB708は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタB708は、ビット0〜ビット7が書込および読出ともに可能な状態に構成されている。   FIG. 32A is an explanatory diagram illustrating an example of the control register B708. The control register B 708 is a register for setting whether to permit an interrupt request from the serial communication circuit 511. In this embodiment, whether or not an interrupt request from the serial communication circuit 511 is permitted is set by setting the value of each bit of the control register B708. In the control register B708, interrupt request setting data indicating whether or not various interrupt requests are permitted is mainly set. In addition to the interrupt request setting data, setting data for performing various settings of the serial communication circuit 511 is also set in the control register B708. As shown in FIG. 32A, the control register B 708 is an 8-bit register, and its initial value is set to “0 (= 00h)”. Control register B 708 is configured such that bits 0 to 7 can be written and read.

図32(B)は、制御レジスタB708に設定される割り込み要求設定データの一例を示す説明図である。図32(B)に示すように、制御レジスタB708のビット7(ビット名「TIE」)には、データの送信時に行う割り込み要求である送信割り込み要求を許可するか否かを示す設定データが設定される。図32(B)に示すように、ビット7を「0」に設定することによって、送信割り込み要求を禁止するように設定される。また、ビット7を「1」に設定することによって、送信割り込み要求を許可するように設定される。   FIG. 32B is an explanatory diagram showing an example of interrupt request setting data set in the control register B708. As shown in FIG. 32B, setting data indicating whether or not a transmission interrupt request, which is an interrupt request to be performed at the time of data transmission, is permitted is set in bit 7 (bit name “TIE”) of the control register B708. Is done. As shown in FIG. 32B, by setting bit 7 to “0”, the transmission interrupt request is set to be prohibited. Also, by setting bit 7 to “1”, the transmission interrupt request is set to be permitted.

制御レジスタB708のビット6(ビット名「TCIE」)には、データの送信完了時に行う割り込み要求である送信完了割り込み要求を許可するか否かを示す設定データが設定される。図32(B)に示すように、ビット6を「0」に設定することによって、送信完了割り込み要求を禁止するように設定される。また、ビット6を「1」に設定することによって、送信完了割り込み要求を許可するように設定される。   Bit 6 (bit name “TCIE”) of the control register B708 is set with setting data indicating whether or not to permit a transmission completion interrupt request, which is an interrupt request to be made when data transmission is completed. As shown in FIG. 32B, by setting bit 6 to “0”, the transmission completion interrupt request is set to be prohibited. Also, by setting bit 6 to “1”, the transmission completion interrupt request is set to be permitted.

制御レジスタB708のビット5(ビット名「RIE」)には、データの受信時に行う割り込み要求である受信割り込み要求を許可するか否かを示す設定データが設定される。図32(B)に示すように、ビット5を「0」に設定することによって、受信割り込み要求を禁止するように設定される。また、ビット5を「1」に設定することによって、受信割り込み要求を許可するように設定される。   Bit 5 (bit name “RIE”) of the control register B 708 is set with setting data indicating whether or not a reception interrupt request, which is an interrupt request performed when data is received, is permitted. As shown in FIG. 32B, by setting bit 5 to “0”, the reception interrupt request is set to be prohibited. Further, by setting bit 5 to “1”, the reception interrupt request is set to be permitted.

制御レジスタB708のビット4(ビット名「ILIE」)には、受信データのアイドルラインを検出したときに行う割り込み要求であるアイドルライン割り込み要求を許可するか否かを示す設定データが設定される。図32(B)に示すように、ビット4を「0」に設定することによって、アイドルライン割り込み要求を禁止するように設定される。また、ビット4を「1」に設定することによって、アイドルライン割り込み要求を許可するように設定される。   Bit 4 (bit name “ILIE”) of the control register B 708 is set with setting data indicating whether or not to allow an idle line interrupt request, which is an interrupt request when an idle line of received data is detected. As shown in FIG. 32B, by setting bit 4 to “0”, an idle line interrupt request is set to be prohibited. Further, by setting bit 4 to “1”, it is set to permit an idle line interrupt request.

制御レジスタB708のビット3(ビット名「TE」)には、送信回路(シリアル通信回路511の送信部)を使用するか否かを示す設定データが設定される。図32(B)に示すように、ビット3を「0」に設定することによって、送信回路を使用しないように設定される。また、ビット3を「1」に設定することによって、送信回路を使用するように設定される。なお、この実施の形態では、ビット3を「1」に設定することによって、送信回路を使用する設定が行われる。このような設定は、メイン処理の初期設定(例えばステップS15a)において行われる。   In bit 3 (bit name “TE”) of the control register B708, setting data indicating whether or not to use the transmission circuit (the transmission unit of the serial communication circuit 511) is set. As shown in FIG. 32B, by setting bit 3 to “0”, the transmission circuit is set not to be used. Further, by setting bit 3 to “1”, the transmission circuit is set to be used. In this embodiment, setting to use the transmission circuit is performed by setting bit 3 to “1”. Such setting is performed in the initial setting of the main process (for example, step S15a).

制御レジスタB708のビット2(ビット名「RE」)には、受信回路を使用するか否かを示す設定データが設定される。図32(B)に示すように、ビット2を「0」に設定することによって、受信回路を使用しないように設定される。また、ビット2を「1」に設定することによって、受信回路を使用するように設定される。なお、この実施の形態では、ビット2を「1」に設定することによって、受信回路を使用する設定が行われる。このような設定は、メイン処理の初期設定(例えばステップS15a)において行われる。   In bit 2 (bit name “RE”) of the control register B708, setting data indicating whether or not to use the receiving circuit is set. As shown in FIG. 32B, by setting bit 2 to “0”, the receiving circuit is set not to be used. Further, by setting bit 2 to “1”, the receiving circuit is set to be used. In this embodiment, setting to use the receiving circuit is performed by setting bit 2 to “1”. Such setting is performed in the initial setting of the main process (for example, step S15a).

制御レジスタB708のビット1(ビット名「RWU」)には、受信回路のウエイクアップ機能を使用するか否かを示す設定データが設定される。図32(B)に示すように、ビット1を「0」に設定することによって、ウエイクアップ機能を使用しないように設定される。また、ビット1を「1」に設定することによって、ウエイクアップ機能を使用するように設定される。   Setting data indicating whether or not to use the wakeup function of the receiving circuit is set in bit 1 (bit name “RWU”) of the control register B708. As shown in FIG. 32B, by setting bit 1 to “0”, the wakeup function is set not to be used. Further, by setting bit 1 to “1”, the wakeup function is set to be used.

制御レジスタB708のビット0(ビット名「SBK」)には、所定のブレークコード送信機能を使用するか否かを示す設定データが設定される。図32(B)に示すように、ビット1を「0」に設定することによって、ブレークコード送信機能を使用しないように設定される。また、ビット1を「1」に設定することによって、ブレークコード送信機能を使用するように設定される。ビット1を「1」に設定すると、シリアル通信回路511は、ブレークコード(例えば、「0」を連続して含む信号)を制御基板(払出制御基板37や演出制御基板80)が搭載するマイクロコンピュータに送信する。   Setting data indicating whether or not to use a predetermined break code transmission function is set in bit 0 (bit name “SBK”) of the control register B708. As shown in FIG. 32B, by setting bit 1 to “0”, the break code transmission function is set not to be used. Further, by setting bit 1 to “1”, the break code transmission function is set to be used. When bit 1 is set to “1”, the serial communication circuit 511 causes the microcomputer on which the control board (the payout control board 37 and the effect control board 80) is mounted with a break code (for example, a signal including “0” continuously). Send to.

図33(A)は、ステータスレジスタA705の例を示す説明図である。ステータスレジスタA705は、シリアル通信回路511の各種ステータスを確認するためのレジスタである。この実施の形態では、ステータスレジスタA705の各ビットの値を確認することによって、CPU56は、シリアル通信回路511の各種ステータスを確認することができる。図33(A)に示すように、ステータスレジスタA705は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ステータスレジスタA705は、ビット0〜ビット7が読出のみ可能な状態に構成されている。したがって、ステータスレジスタA705のビット0〜ビット7に値を書き込む制御を行っても無効とされる。   FIG. 33A is an explanatory diagram showing an example of the status register A705. The status register A705 is a register for confirming various statuses of the serial communication circuit 511. In this embodiment, the CPU 56 can confirm various statuses of the serial communication circuit 511 by confirming the value of each bit of the status register A705. As shown in FIG. 33A, the status register A705 is an 8-bit register, and the initial value is set to “0 (= 00h)”. In addition, the status register A705 is configured so that bits 0 to 7 can only be read. Therefore, even if control is performed to write a value to bits 0 to 7 of the status register A705, it is invalid.

本実施の形態では、後述するように、送信データレジスタ710に送信データが入っていない状態(送信データエンプティ)となったり、送信用シフトレジスタ712が格納する送信データの送信を完了すると、割り込み制御回路714によって、ステータスレジスタA705の対応するビットがセットされる。そして、CPU56は、ステータスレジスタA705にセットされた各ビットの値を読み出す。   In this embodiment, as will be described later, when transmission data is not stored in the transmission data register 710 (transmission data empty) or transmission of transmission data stored in the transmission shift register 712 is completed, interrupt control is performed. Circuit 714 sets the corresponding bit in status register A705. Then, the CPU 56 reads the value of each bit set in the status register A705.

図33(B)は、ステータスレジスタA705に格納されるステータス確認データの一例を示す図である。図33(B)に示すように、ステータスレジスタA705のビット7(ビット名「TDRE」)には、送信データレジスタ710に送信データが入っていない状態であること(送信データエンプティ)を示す送信データエンプティフラグが格納される。図33(B)に示すように、ビット7に「0」が格納されている場合、送信データレジスタ710から送信用シフトレジスタ712に送信データが未だに転送されておらず、送信データレジスタ710に送信データが格納されたままの状態であることを示す。また、ビット7に「0」が格納されている状態では、送信データレジスタにデータが書き込まれない。例えば、ステップS5211,S52305ではビット7に「0」が格納されていないことを条件に送信データを設定する。また、ビット7に「1」が格納されている場合、送信データレジスタ710から送信用シフトレジスタ712に送信データが転送されており、送信データレジスタ710に送信データが入っていない状態(送信データエンプティ)であることを示す。   FIG. 33B is a diagram showing an example of status confirmation data stored in the status register A705. As shown in FIG. 33B, transmission data indicating that transmission data is not stored in transmission data register 710 in bit 7 (bit name “TDRE”) of status register A705 (transmission data empty). Stores an empty flag. As shown in FIG. 33B, when “0” is stored in bit 7, the transmission data is not yet transferred from the transmission data register 710 to the transmission shift register 712, and transmitted to the transmission data register 710. Indicates that the data is still stored. In addition, when “0” is stored in bit 7, data is not written to the transmission data register. For example, in steps S5211, S52305, transmission data is set on condition that “0” is not stored in bit 7. When “1” is stored in bit 7, the transmission data is transferred from the transmission data register 710 to the transmission shift register 712, and there is no transmission data in the transmission data register 710 (transmission data empty). ).

ステータスレジスタA705のビット6(ビット名「TC」)には、シリアル通信回路511からの送信データの送信を完了した旨を示す送信完了フラグが格納される。図33(B)に示すように、ビット6に「0」が格納されている場合、送信用シフトレジスタ712が格納する送信データの送信中の状態であり、シリアル通信回路511からの送信データの送信が完了していない状態であることを示す。また、ビット6に「1」が格納されている場合、送信用シフトレジスタ712が格納する送信データの転送を完了した状態であり、シリアル通信回路511からの送信データの送信が完了した状態であることを示す。コマンド格納領域がリングバッファ形式の場合には、ビット6に「1」が格納された状態となれば、コマンドの読出ポインタを更新する。   Bit 6 (bit name “TC”) of the status register A 705 stores a transmission completion flag indicating that transmission of transmission data from the serial communication circuit 511 has been completed. As shown in FIG. 33B, when “0” is stored in bit 6, the transmission data stored in the transmission shift register 712 is being transmitted, and the transmission data from the serial communication circuit 511 is transmitted. Indicates that transmission has not been completed. When “1” is stored in bit 6, the transmission data stored in the transmission shift register 712 has been transferred, and the transmission of transmission data from the serial communication circuit 511 has been completed. It shows that. When the command storage area is in the ring buffer format, if “1” is stored in bit 6, the command read pointer is updated.

なお、送信データの送信を完了した状態となり、遊技制御用マイクロコンピュータ560は、送信先のマイクロコンピュータからの受信確認信号の待ち状態となる。この実施の形態では、後述する送信時割込の設定が行われると、シリアル通信回路511は、送信データの送信完了を検出すると、ステータスレジスタA705のビット6を「1」にするとともに、受信確認信号の待ち状態になったものとしてCPU56に割り込み要求(送信時割り込み要求という)を行う。   Note that the transmission of the transmission data is completed, and the game control microcomputer 560 waits for a reception confirmation signal from the transmission destination microcomputer. In this embodiment, when a transmission interrupt is set, which will be described later, the serial communication circuit 511 sets the bit 6 of the status register A 705 to “1” and confirms reception when detecting the completion of transmission of transmission data. An interrupt request (referred to as an interrupt request during transmission) is made to the CPU 56 as a signal waiting state.

ステータスレジスタA705のビット5(ビット名「RDRF」)には、受信データレジスタ711に受信データが格納された状態であること(受信データフル)を示す受信データフルフラグが格納される。図33(B)に示すように、ビット5に「0」が格納されている場合、受信データレジスタ711に受信データが入っていない状態であることを示す。また、ビット5に「1」が格納されている場合、受信用シフトレジスタ713の値が受信データレジスタ711に転送され、受信データレジスタ711に受信データが格納されている状態であること(受信データフル)を示す。払出制御用マイクロコンピュータ370からのコマンドを受信したかどうかは、ビット5に「1」が格納された状態となっているかどうかによって確認される。例えば、ステップS5221,S52401,S52501ではビット5に「0」が格納されていないことを条件にコマンドを受信していると判定する。なお、この実施の形態では、ステータスレジスタA705のビット5(RDRF)は、遊技制御用マイクロコンピュータ560によって受信データレジスタ711から受信データが読み出されるとクリアされる。なお、受信データが読み出されたときにステータスレジスタA705のビット5(RDRF)が自動的にクリアされるように構成されていない場合には、遊技制御用マイクロコンピュータ560は、受信データレジスタ711から受信データを読み出すごとに、ステータスレジスタA705のビット5(RDRF)をクリアする処理を行う必要がある。   Bit 5 (bit name “RDRF”) of status register A 705 stores a reception data full flag indicating that reception data is stored in reception data register 711 (reception data full). As shown in FIG. 33B, when “0” is stored in bit 5, it indicates that the reception data register 711 contains no reception data. When “1” is stored in bit 5, the value of the reception shift register 713 is transferred to the reception data register 711, and reception data is stored in the reception data register 711 (reception data Full). Whether or not the command from the payout control microcomputer 370 has been received is confirmed by whether or not “1” is stored in bit 5. For example, in steps S5221, S52401, and S52501, it is determined that the command is received on condition that “0” is not stored in bit 5. In this embodiment, bit 5 (RDRF) of status register A 705 is cleared when reception data is read from reception data register 711 by game control microcomputer 560. If the bit 5 (RDRF) of the status register A 705 is not automatically cleared when the received data is read, the game control microcomputer 560 reads the received data from the received data register 711. Every time reception data is read, it is necessary to perform processing for clearing bit 5 (RDRF) of the status register A705.

なお、受信データレジスタ711に受信データが格納された状態となると、CPU56は、受信データを受信データレジスタ711から読み込んで受信処理を行える状態となる。この実施の形態では、受信時割込の設定が行われると、シリアル通信回路511は、受信データフルを検出すると、ステータスレジスタA705のビット5を「1」にするとともに、受信処理が可能になったものとしてCPU56に割り込み要求(受信時割り込み要求という)を行う。   When the reception data is stored in the reception data register 711, the CPU 56 is ready to perform reception processing by reading the reception data from the reception data register 711. In this embodiment, when the reception interrupt is set, the serial communication circuit 511 sets the bit 5 of the status register A 705 to “1” when reception data full is detected and enables reception processing. As an example, an interrupt request is made to the CPU 56 (referred to as an interrupt request upon reception).

ステータスレジスタA705のビット4(ビット名「IDLE」)には、受信回路がアイドルラインを検出したことを示すアイドルライン検出フラグが格納される。図33(B)に示すように、ビット4に「0」が格納されている場合、シリアル通信回路511の受信部がアイドルラインを検出していない状態であることを示す。また、ビット4に「1」が格納されている場合、シリアル通信回路511の受信部がアイドルラインを検出した状態であることを示す。   Bit 4 (bit name “IDLE”) of status register A705 stores an idle line detection flag indicating that the receiving circuit has detected an idle line. As shown in FIG. 33B, when “0” is stored in bit 4, it indicates that the receiving unit of the serial communication circuit 511 has not detected an idle line. When “1” is stored in bit 4, it indicates that the receiving unit of the serial communication circuit 511 has detected an idle line.

ステータスレジスタA705のビット3(ビット名「OR」)には、CPU56が受信データレジスタ711が格納する受信データを読み込む前に、受信用シフトレジスタ713が次のデータを受信してしまったこと(オーバーラン)を示すオーバーランフラグが格納される。図33(B)に示すように、ビット3に「0」が格納されている場合、受信回路がオーバーランを検出していない状態であることを示す。また、ビット3に「1」が格納されている場合、受信回路がオーバーランを検出した状態であることを示す。   In bit 3 (bit name “OR”) of the status register A 705, the reception shift register 713 has received the next data before the CPU 56 reads the reception data stored in the reception data register 711 (overload). An overrun flag indicating (run) is stored. As shown in FIG. 33B, when “0” is stored in bit 3, it indicates that the receiving circuit has not detected an overrun. If “1” is stored in bit 3, it indicates that the receiving circuit has detected an overrun.

なお、オーバーランが発生すると、受信データレジスタ711内の受信データが読み込まれる前に受信用シフトレジスタ713に次の受信データが格納されてしまうので、受信データが上書きされてしまいCPU56が受信データを正しく読み込めなくなってしまう。そのため、各制御基板が搭載するマイクロコンピュータと正しく通信を行えなくなり、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路511は、オーバーランを検出すると、ステータスレジスタA705のビット3を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。   If an overrun occurs, the next received data is stored in the receiving shift register 713 before the received data in the received data register 711 is read, so that the received data is overwritten and the CPU 56 receives the received data. It cannot be read correctly. For this reason, communication with the microcomputer mounted on each control board cannot be performed correctly, causing the CPU 56 to malfunction. In this embodiment, when detecting an overrun, the serial communication circuit 511 sets bit 3 of the status register A 705 to “1” and issues an interrupt request to the CPU 56 as an error has occurred during communication.

ステータスレジスタA705のビット2(ビット名「NF」)には、受信データにノイズを検出したことを示すノイズエラーフラグが格納される。図33(B)に示すように、ビット2に「0」が格納されている場合、受信回路が受信データにノイズを検出していない状態であることを示す。また、ビット2に「1」が格納されている場合、受信回路が受信データにノイズを検出した状態であることを示す。   Bit 2 (bit name “NF”) of status register A 705 stores a noise error flag indicating that noise has been detected in the received data. As shown in FIG. 33B, when “0” is stored in bit 2, it indicates that the receiving circuit is not detecting noise in the received data. Further, when “1” is stored in bit 2, it indicates that the receiving circuit has detected noise in the received data.

例えば、シリアル通信回路511は、受信データの各ビットを検出する際に、ボーレート生成回路703が生成したボーレートを用いて、所定ビット長の「1」または「0」を検出する。この場合、検出した「1」または「0」の長さが所定ビット長に満たない場合、シリアル通信回路511は、受信データにノイズが発生したものとしてノイズエラーを検出する。ノイズエラーが発生すると、ノイズによって正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路511は、ノイズエラーを検出すると、ステータスレジスタA705のビット2を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。   For example, when detecting each bit of the received data, the serial communication circuit 511 detects “1” or “0” having a predetermined bit length using the baud rate generated by the baud rate generation circuit 703. In this case, when the detected length of “1” or “0” is less than the predetermined bit length, the serial communication circuit 511 detects a noise error as noise has occurred in the received data. When a noise error occurs, there is a high possibility that correct received data cannot be received due to the noise, which causes the CPU 56 to malfunction. In this embodiment, when detecting a noise error, the serial communication circuit 511 sets bit 2 of the status register A 705 to “1” and issues an interrupt request to the CPU 56 as an error has occurred during communication.

ステータスレジスタA705のビット1(ビット名「FE」)には、受信データのストップビットの位置が「0」(本来、ストップビットは「1」)であることを検出したこと(フレーミングエラー)を示すフレーミングエラーフラグが格納される。図33(B)に示すように、ビット1に「0」が格納されている場合、受信回路が受信データにフレーミングエラーを検出していない状態であることを示す。また、ビット1に「1」が格納されている場合、受信回路がフレーミングエラーを検出した状態であることを示す。   Bit 1 (bit name “FE”) of the status register A 705 indicates that it is detected that the position of the stop bit of the received data is “0” (originally, the stop bit is “1”) (framing error). A framing error flag is stored. As shown in FIG. 33B, when “0” is stored in bit 1, it indicates that the receiving circuit has not detected a framing error in the received data. When “1” is stored in bit 1, it indicates that the receiving circuit has detected a framing error.

フレーミングエラーが発生すると、受信データのストップビットを正しく受信できなかった状態であるので、正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路511は、フレーミングエラーを検出すると、ステータスレジスタA705のビット1を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。   When a framing error occurs, it is in a state where the stop bit of the received data has not been correctly received, and therefore there is a high possibility that correct received data cannot be received, causing the CPU 56 to malfunction. In this embodiment, when detecting a framing error, the serial communication circuit 511 sets bit 1 of the status register A 705 to “1” and issues an interrupt request to the CPU 56 as an error has occurred during communication.

ステータスレジスタA705のビット0(ビット名「PF」)には、受信データから求めたパリティの値と、受信データに含まれるパリティの値とが一致しなかったこと(パリティエラー)を示すパリティエラーフラグが格納される。図33(B)に示すように、ビット0に「0」が格納されている場合、受信回路が受信データにパリティエラーを検出していない状態であることを示す。また、ビット0に「1」が格納されている場合、受信回路がパリティエラーを検出した状態であることを示す。   Bit 0 (bit name “PF”) of the status register A 705 has a parity error flag indicating that the parity value obtained from the received data does not match the parity value included in the received data (parity error). Is stored. As shown in FIG. 33B, when “0” is stored in bit 0, it indicates that the receiving circuit has not detected a parity error in the received data. Further, when “1” is stored in bit 0, it indicates that the receiving circuit has detected a parity error.

パリティエラーが発生すると、受信データの各データビットまたはパリティビットを正しく受信できなかった状態であるので、正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路511は、パリティエラーを検出すると、ステータスレジスタA705のビット0を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。   When a parity error occurs, it is in a state where each data bit or parity bit of the received data has not been correctly received, so there is a high possibility that correct received data cannot be received, causing the CPU 56 to malfunction. In this embodiment, when the serial communication circuit 511 detects a parity error, the serial communication circuit 511 sets bit 0 of the status register A 705 to “1” and issues an interrupt request to the CPU 56 on the assumption that an error has occurred during communication.

図34(A)は、ステータスレジスタB706の例を示す説明図である。ステータスレジスタB706は、シリアル通信回路511の受信状態(受信ステータス)を確認するためのレジスタである。この実施の形態では、ステータスレジスタB706のビットの値を確認することによって、CPU56は、シリアル通信回路511の受信ステータスを確認することができる。図34(B)に示すように、ステータスレジスタB706は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ステータスレジスタB706は、ビット0が読出のみ可能な状態に構成されている。したがって、ステータスレジスタA705のビット0に値を書き込む制御を行っても無効とされる。また、ステータスレジスタB706は、ビット1〜ビット7が書込および読出ともに不可能な状態に構成されている。したがって、ステータスレジスタA705のビット1〜ビット7に値を書き込む制御を行っても無効とされ、ビット1〜ビット7から読み出す値は全て「0(=0000b)」である。   FIG. 34A is an explanatory diagram showing an example of the status register B706. The status register B 706 is a register for confirming the reception state (reception status) of the serial communication circuit 511. In this embodiment, the CPU 56 can confirm the reception status of the serial communication circuit 511 by confirming the value of the bit of the status register B 706. As shown in FIG. 34B, the status register B 706 is an 8-bit register, and the initial value is set to “0 (= 00h)”. Further, the status register B 706 is configured so that bit 0 can only be read. Therefore, even if control is performed to write a value to bit 0 of status register A 705, it is invalid. Status register B 706 is configured such that bits 1 to 7 cannot be written or read. Therefore, even if control is performed to write a value to bits 1 to 7 of the status register A 705, the value is invalid and all the values read from bits 1 to 7 are “0 (= 0000b)”.

図34(B)は、ステータスレジスタB706に格納されるステータス確認データの一例を示す図である。図34(B)に示すように、ステータスレジスタB706のビット0(ビット名「RAF」)には、受信回路が受信データを受信中であること(受信アクティブ)を示す受信アクティブフラグが格納される。図34(B)に示すように、ビット0に「0」が格納されている場合、受信回路が受信データを受信中でないことを示す。また、ビット0に「1」が格納されている場合、受信回路が受信データを受信中であることを示す。また、ビット0に「1」が格納されている場合にも、コマンドデータの書き込みを行わない、もしくはコマンドデータを書き込めなくなっている。なお、シリアル通信回路511は、スタートビットを検出すると、受信データの受信が開始されたものとして、ステータスレジスタB706のビット0を「1」にする。   FIG. 34B is a diagram showing an example of status confirmation data stored in the status register B706. As shown in FIG. 34B, a reception active flag indicating that the reception circuit is receiving reception data (reception active) is stored in bit 0 (bit name “RAF”) of the status register B706. . As shown in FIG. 34B, when “0” is stored in bit 0, it indicates that the reception circuit is not receiving reception data. Further, when “1” is stored in bit 0, it indicates that the reception circuit is receiving reception data. Even when “1” is stored in bit 0, command data is not written or command data cannot be written. When the serial communication circuit 511 detects the start bit, it sets the bit 0 of the status register B 706 to “1” on the assumption that reception of received data has started.

図35(A)は、制御レジスタC709の例を示す説明図である。制御レジスタC709は、シリアル通信回路511の通信エラー時の割り込み要求を許可するか否かを設定するレジスタである。この実施の形態では、制御レジスタC709の各ビットの値が設定されることによって、シリアル通信回路511からの通信時の割り込み要求を許可するか禁止するかが設定される。制御レジスタC709には、通信エラー時の各種割り込み要求を許可するか否かを示すエラー割り込み要求設定データが主として設定される。なお、制御レジスタC709には、エラー割り込み要求設定データ以外に、データ長を9ビットに設定した場合の9ビット目のデータが格納される。シリアル通信回路511の各種設も設定される。図35(A)に示すように、制御レジスタC709は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタC709は、ビット0〜ビット3およびビット6,7が書込および読出ともに可能な状態に構成されている。また、制御レジスタC709は、ビット4,5が書込および読出ともに不可能な状態に構成されている。したがって、制御レジスタC709のビット4,5に値を書き込む制御を行っても無効とされ、ビット4,5から読み出す値は全て「0(=0000b)」である。   FIG. 35A is an explanatory diagram illustrating an example of the control register C709. The control register C709 is a register that sets whether to permit an interrupt request when a communication error occurs in the serial communication circuit 511. In this embodiment, by setting the value of each bit of the control register C709, it is set whether the interrupt request at the time of communication from the serial communication circuit 511 is permitted or prohibited. In the control register C709, error interrupt request setting data indicating whether or not various interrupt requests at the time of a communication error are permitted is mainly set. In addition to the error interrupt request setting data, the control register C709 stores 9th bit data when the data length is set to 9 bits. Various settings of the serial communication circuit 511 are also set. As shown in FIG. 35A, the control register C709 is an 8-bit register, and the initial value is set to “0 (= 00h)”. Control register C709 is configured such that bits 0 to 3 and bits 6 and 7 can be written and read. Further, the control register C709 is configured such that bits 4 and 5 cannot be written or read. Therefore, even if a control for writing a value to bits 4 and 5 of the control register C709 is performed, it is invalid, and all the values read from the bits 4 and 5 are “0 (= 0000b)”.

図35(B)は、制御レジスタC709に設定されるエラー割り込み要求設定データの一例を示す説明図である。図35(B)に示すように、制御レジスタC709のビット7(ビット名「R8」)には、データ長を9ビットに設定した場合の受信データの9ビット目のデータが格納される。また、制御レジスタC709のビット6(ビット名「T8」)には、データ長を9ビットに設定した場合の送信データの9ビット目のデータが格納される。   FIG. 35B is an explanatory diagram showing an example of error interrupt request setting data set in the control register C709. As shown in FIG. 35 (B), the bit 7 (bit name “R8”) of the control register C709 stores the 9th bit data of the received data when the data length is set to 9 bits. Further, bit 6 (bit name “T8”) of the control register C709 stores the 9th bit data of the transmission data when the data length is set to 9 bits.

制御レジスタC709のビット3(ビット名「ORIE」)には、オーバーランを検出した場合に行う割り込み要求であるオーバーランフラグ割り込み要求を許可するか否かを示す設定データが設定される。図35(B)に示すように、ビット3を「0」に設定することによって、オーバーランフラグ割り込み要求を禁止するように設定される。また、ビット3を「1」に設定することによって、オーバーランフラグ割り込み要求を許可するように設定される。   In bit 3 (bit name “ORIE”) of the control register C709, setting data indicating whether or not to permit an overrun flag interrupt request, which is an interrupt request to be performed when an overrun is detected, is set. As shown in FIG. 35B, by setting bit 3 to “0”, the overrun flag interrupt request is set to be prohibited. Further, by setting bit 3 to “1”, the overrun flag interrupt request is set to be permitted.

制御レジスタC709のビット2(ビット名「NEIE」)には、ノイズエラーを検出した場合に行う割り込み要求であるノイズエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図35(B)に示すように、ビット2を「0」に設定することによって、ノイズエラーフラグ割り込み要求を禁止するように設定される。また、ビット2を「1」に設定することによって、ノイズエラーフラグ割り込み要求を許可するように設定される。   Bit 2 (bit name “NEIE”) of the control register C709 is set with setting data indicating whether or not to permit a noise error flag interrupt request, which is an interrupt request to be performed when a noise error is detected. As shown in FIG. 35B, by setting bit 2 to “0”, the noise error flag interrupt request is set to be prohibited. Also, by setting bit 2 to “1”, the noise error flag interrupt request is set to be permitted.

制御レジスタC709のビット1(ビット名「FEIE」)には、フレーミングエラーを検出した場合に行う割り込み要求であるフレーミングエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図35(B)に示すように、ビット1を「0」に設定することによって、フレーミングエラーフラグ割り込み要求を禁止するように設定される。また、ビット1を「1」に設定することによって、フレーミングエラーフラグ割り込み要求を許可するように設定される。   Bit 1 (bit name “FEIE”) of the control register C709 is set with setting data indicating whether or not to permit a framing error flag interrupt request, which is an interrupt request to be performed when a framing error is detected. As shown in FIG. 35B, by setting bit 1 to “0”, the framing error flag interrupt request is set to be prohibited. Further, by setting bit 1 to “1”, the framing error flag interrupt request is set to be permitted.

制御レジスタC709のビット0(ビット名「PEIE」)には、パリティエラーを検出した場合に行う割り込み要求であるパリティエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図35(B)に示すように、ビット0を「0」に設定することによって、パリティエラーフラグ割り込み要求を禁止するように設定される。また、ビット0を「1」に設定することによって、パリティエラーフラグ割り込み要求を許可するように設定される。   Bit 0 (bit name “PEIE”) of the control register C709 is set with setting data indicating whether or not to permit a parity error flag interrupt request which is an interrupt request to be performed when a parity error is detected. As shown in FIG. 35B, by setting bit 0 to “0”, the parity error flag interrupt request is set to be prohibited. Further, by setting bit 0 to “1”, the parity error flag interrupt request is set to be permitted.

図36は、シリアル通信回路511が備えるデータレジスタの例を示す説明図である。データレジスタ701は、シリアル通信回路511が送受信するデータを格納するレジスタである。図36に示すように、データレジスタは、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、データレジスタ701は、ビット0〜ビット7が書込および読出ともに可能な状態に構成されている。   FIG. 36 is an explanatory diagram illustrating an example of a data register included in the serial communication circuit 511. The data register 701 is a register that stores data transmitted and received by the serial communication circuit 511. As shown in FIG. 36, the data register is an 8-bit register, and the initial value is set to “0 (= 00h)”. Data register 701 is configured such that bits 0 to 7 can be written and read.

この実施の形態では、シリアル通信回路511が送信データを送信する場合、データレジスタは、送信データレジスタ710として用いられる。なお、データ長を9ビットに設定した場合、データレジスタおよび制御レジスタC709のビット6が送信データレジスタ710として用いられる。この場合、データレジスタのビット0〜ビット7が送信データレジスタ710のビット0〜ビット7として用いられ、制御レジスタC709のビット6が送信データレジスタ710のビット8として用いられる。   In this embodiment, when the serial communication circuit 511 transmits transmission data, the data register is used as the transmission data register 710. When the data length is set to 9 bits, bit 6 of the data register and control register C709 is used as the transmission data register 710. In this case, bits 0 to 7 of the data register are used as bits 0 to 7 of the transmission data register 710, and bit 6 of the control register C709 is used as bit 8 of the transmission data register 710.

また、シリアル通信回路511が受信データを受信する場合、データレジスタは、受信データレジスタ711として用いられる。なお、データ長を9ビットに設定した場合、データレジスタおよび制御レジスタC709のビット7が受信データレジスタ711として用いられる。この場合、データレジスタのビット0〜ビット7が受信データレジスタ711のビット0〜ビット7として用いられ、制御レジスタC709のビット7が受信データレジスタ711のビット8として用いられる。   When the serial communication circuit 511 receives received data, the data register is used as the received data register 711. When the data length is set to 9 bits, bit 7 of the data register and control register C709 is used as the reception data register 711. In this case, bits 0 to 7 of the data register are used as bits 0 to 7 of the reception data register 711, and bit 7 of the control register C709 is used as bit 8 of the reception data register 711.

割り込み制御回路714は、CPU56に各種割り込み要求を行う。この実施の形態では、割り込み制御回路714は、制御レジスタB708のビット6(TCIE)が「1」に設定されている場合、送信データレジスタ710に送信データの送信を完了した状態となると、CPU56に割り込み信号を出力するとともに、ステータスレジスタA705のビット6(TC)に「1」を設定することによって割り込み要求を行う。なお、ステータスレジスタA705のビットの設定値により割込要因を識別可能とするのでなく、割り込み制御回路714は、割込要因毎に異なる割り込み信号をCPU56に出力するようにしてもよい。   The interrupt control circuit 714 makes various interrupt requests to the CPU 56. In this embodiment, when the bit 6 (TCIE) of the control register B 708 is set to “1”, the interrupt control circuit 714 notifies the CPU 56 when transmission of transmission data to the transmission data register 710 is completed. In addition to outputting an interrupt signal, an interrupt request is made by setting bit 6 (TC) of status register A705 to “1”. The interrupt control circuit 714 may output a different interrupt signal to the CPU 56 for each interrupt factor, instead of making the interrupt factor identifiable by the set value of the bit of the status register A705.

また、割り込み制御回路714は、制御レジスタB708のビット5(RIE)が「1」に設定されている場合、受信データレジスタ711に受信データが格納されている状態になると(受信データフルを検出すると)、CPU56に割り込み信号を出力するとともに、ステータスレジスタA705のビット5(RDRF)に「1」を設定することによって割り込み要求を行う。   In addition, when bit 5 (RIE) of the control register B 708 is set to “1”, the interrupt control circuit 714 enters a state where reception data is stored in the reception data register 711 (when reception data full is detected). ), An interrupt signal is output to the CPU 56, and an interrupt request is made by setting bit 5 (RDRF) of the status register A705 to “1”.

また、割り込み制御回路714は、制御レジスタC709のビット0〜3のいずれかが「1」に設定されている場合、各種通信エラーが発生すると、CPU56に割り込み信号を出力するとともに、通信エラーの種類に応じて、ステータスレジスタA705のビット0〜ビット3に「1」を設定することによって割り込み要求を行う。例えば、制御レジスタC709のビット3(ORIE)が「1」に設定されている場合、オーバーランを検出して割り込み要求を行うときに、ステータスレジスタA705のビット3(OR)に「1」を設定する。また、例えば、制御レジスタC709のビット2(NEIE)が「1」に設定されている場合、ノイズエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット2(NF)に「1」を設定する。また、例えば、制御レジスタC709のビット1(FEIE)が「1」に設定されている場合、フレーミングエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット1(FE)に「1」を設定する。また、例えば、制御レジスタC709のビット0(PEIE)が「1」に設定されている場合、パリティエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット0(PF)に「1」を設定する。なお、複数の通信エラーを検出した場合、割り込み制御回路714は、複数の通信エラーにもとづいて割り込み要求を行うとともに、ステータスレジスタA705の該当するビットをそれぞれ「1」に設定する。   Further, when any of the bits 0 to 3 of the control register C709 is set to “1”, the interrupt control circuit 714 outputs an interrupt signal to the CPU 56 and also indicates the type of communication error. In response to this, an interrupt request is made by setting "1" to bits 0 to 3 of the status register A705. For example, if bit 3 (ORIE) of the control register C709 is set to “1”, “1” is set to bit 3 (OR) of the status register A705 when an overrun is detected and an interrupt request is made. To do. For example, when bit 2 (NEIE) of the control register C709 is set to “1”, when a noise error is detected and an interrupt request is made, “1” is set to bit 2 (NF) of the status register A705. Set. For example, when bit 1 (FEIE) of the control register C709 is set to “1”, when a framing error is detected and an interrupt request is made, “1” is set to bit 1 (FE) of the status register A705. Set. For example, when bit 0 (PEIE) of the control register C709 is set to “1”, when a parity error is detected and an interrupt request is made, “1” is set to bit 0 (PF) of the status register A705. Set. When a plurality of communication errors are detected, the interrupt control circuit 714 makes an interrupt request based on the plurality of communication errors and sets the corresponding bits of the status register A 705 to “1”.

送信フォーマット/パリティ生成回路715は、送信データのデータフォーマットを生成する。この実施の形態では、送信フォーマット/パリティ生成回路715は、送信データレジスタ710に格納される送信データにスタートビットおよびストップビットを付加してデータフォーマットを生成し、送信用シフトレジスタ712に転送する。また、制御レジスタA707のビット1(PE)に「1」が設定され、パリティ機能を使用する旨が設定されている場合、送信フォーマット/パリティ生成回路715は、送信データにパリティビットを付加してデータフォーマットを生成する。   The transmission format / parity generation circuit 715 generates a data format of transmission data. In this embodiment, the transmission format / parity generation circuit 715 generates a data format by adding a start bit and a stop bit to the transmission data stored in the transmission data register 710 and transfers the data format to the transmission shift register 712. If bit 1 (PE) of control register A707 is set to “1” and the parity function is set to be used, the transmission format / parity generation circuit 715 adds a parity bit to the transmission data. Generate a data format.

受信フォーマット/パリティチェック回路716は、受信データのデータフォーマットを検出する。この実施の形態では、受信フォーマット/パリティチェック回路716は、受信用シフトレジスタ713に格納される受信データからスタートビットおよびストップビットを検出し、受信データに含まれるデータ部分を検出して受信データレジスタ711に転送する。また、制御レジスタA707のビット1(PE)に「1」が設定され、パリティ機能を使用する旨が設定されている場合、受信フォーマット/パリティチェック回路716は、受信データのパリティを求め、受信データに含まれるパリティと一致するか否かを検出する。また、求めた値が受信データに含まれるパリティと一致しない場合、受信フォーマット/パリティチェック回路716は、パリティエラーを検出する。なお、後述するシリアル通信回路設定処理において通信エラー時割り込み要求を許可する旨が設定されている場合、割り込み制御回路714は、パリティエラーを検出すると、通信エラーの発生を割込原因としてCPU56に割り込み要求を行う。   The reception format / parity check circuit 716 detects the data format of the reception data. In this embodiment, the reception format / parity check circuit 716 detects the start bit and the stop bit from the reception data stored in the reception shift register 713, detects the data portion included in the reception data, and receives the reception data register. Forward to 711. When bit 1 (PE) of the control register A707 is set to “1” and the parity function is set to be used, the reception format / parity check circuit 716 obtains the parity of the reception data and receives the reception data. It is detected whether or not it matches the parity included in. If the obtained value does not match the parity included in the received data, the reception format / parity check circuit 716 detects a parity error. If it is set in the serial communication circuit setting process to be described later that an interrupt request at the time of communication error is permitted, the interrupt control circuit 714 interrupts the CPU 56 with the occurrence of the communication error as a cause of interruption when detecting a parity error. Make a request.

大当り判定用テーブルメモリ571は、CPU56が特別図柄表示器8の表示結果を大当り図柄とするか否かを判定するために用いる複数の大当り判定テーブルを記憶する。具体的には、大当り判定用テーブルメモリ571は、図37(A)に示すように、確変状態以外の遊技状態(通常状態という)において用いられる通常時大当り判定テーブル571aを記憶する。また、大当り判定用テーブルメモリ571は、図37(B)に示すように、確変状態において用いられる確変時大当り判定テーブル571bを格納する。なお、図37に示す判定テーブルを用いて大当り判定を行う場合、乱数最大値設定レジスタ535に設定された乱数最大値によって大当りと判定する確率が大きく変化することになる。この場合、例えば、設定される乱数最大値が小さすぎると、通常時大当り判定テーブル571aを用いた場合と、確変時大当り判定テーブル571bを用いた場合とで、大当りと判定する確率の差が小さくなってしまい、遊技者の遊技に対する興味を減退させてしまうことになる。そのため、乱数回路509および乱数最大値に対応づけて、複数の判定テーブル(複数の通常時大当り判定用テーブル571aおよび複数の確変時大当り判定用テーブル571b)を大当り判定用テーブルメモリ571に記憶してもよい。そして、CPU56は、大当り判定用テーブルメモリ571が記憶する判定テーブルのうち、使用する乱数回路509および乱数最大値に対応する判定テーブル571a,571bを用いて、表示結果決定プログラム552に従って、特別図柄表示器8の表示結果を大当り図柄とするか否かを判定するようにしてもよい。そのようにすることによって、使用する乱数回路509の種類や乱数最大値が異なっても、大当りと判定する確率がある程度同じになるように制御することができる。   The jackpot determination table memory 571 stores a plurality of jackpot determination tables used by the CPU 56 to determine whether or not the display result of the special symbol display 8 is a jackpot symbol. Specifically, as shown in FIG. 37A, the big hit determination table memory 571 stores a normal time big hit determination table 571a used in a gaming state (referred to as a normal state) other than the probability variation state. Also, the jackpot determination table memory 571 stores a probability change jackpot determination table 571b used in the probability change state, as shown in FIG. Note that, when the big hit determination is performed using the determination table shown in FIG. 37, the probability of determining a big hit depends on the random number maximum value set in the random number maximum value setting register 535. In this case, for example, if the set random number maximum value is too small, the difference in the probability of determining a big hit between the case where the normal big hit determination table 571a is used and the case where the probability variation big hit determination table 571b is used is small. As a result, the player's interest in the game is diminished. Therefore, a plurality of determination tables (a plurality of normal big hit determination tables 571a and a plurality of probability variation big hit determination tables 571b) are stored in the big hit determination table memory 571 in association with the random number circuit 509 and the random number maximum value. Also good. Then, the CPU 56 uses the random number circuit 509 to be used and the determination tables 571a and 571b corresponding to the maximum random number among the determination tables stored in the jackpot determination table memory 571, and displays a special symbol according to the display result determination program 552. It may be determined whether or not the display result of the device 8 is a jackpot symbol. By doing so, even if the type of random number circuit 509 to be used and the maximum random number are different, it is possible to control so that the probability of determining a big hit is somewhat the same.

なお、図37に示す例では、例えば、図37(A)に示す通常時大当り判定テーブルの場合、1020〜1059、13360〜13399、34400〜34439および57700〜57739の4つの範囲に判定値が割り当てられ、図37(B)に示す確変時大当り判定テーブルの場合、1020〜1219、13360〜13559、34400〜34599および57700〜57899の4つの範囲に判定値が割り当てられている場合を示しているが、各大当り判定テーブルにおいて、一連の1つの範囲にまとめて判定値が割り当てられているように構成してもよい。   In the example shown in FIG. 37, for example, in the case of the normal big hit determination table shown in FIG. 37A, determination values are assigned to four ranges of 1020 to 1059, 13360 to 13399, 34400 to 34439, and 57700 to 577739. In the case of the probability change jackpot determination table shown in FIG. 37 (B), the determination values are assigned to four ranges of 1020 to 1219, 13360 to 13559, 34400 to 34599, and 57700 to 57899. In each jackpot determination table, a determination value may be assigned to a series of one range.

図38は、遊技制御手段における出力ポートの割り当ての例を示す説明図である。図38に示すように、出力ポート0からは、払出制御基板37に送信される払出制御信号(本例では、接続信号)が出力される。また、大入賞口を開閉する可変入賞球装置20を開閉するためのソレノイド(大入賞口扉ソレノイド)21、および可変入賞球装置15を開閉するためのソレノイド(普通電動役物ソレノイド)16に対する駆動信号も、出力ポート0から出力される。   FIG. 38 is an explanatory diagram showing an example of output port assignment in the game control means. As shown in FIG. 38, the output port 0 outputs a payout control signal (in this example, a connection signal) transmitted to the payout control board 37. Further, a solenoid (large winning port door solenoid) 21 for opening and closing a variable winning ball device 20 for opening and closing the big winning port, and a solenoid (ordinary electric accessory solenoid) 16 for opening and closing the variable winning ball device 15 are driven. The signal is also output from output port 0.

なお、図38に示された「論理」(例えば1がオン状態)と逆の論理(例えば0がオン状態)を用いてもよいが、特に、接続信号については、主基板31と払出制御基板37との間の信号線において断線が生じた場合やケーブル外れの場合(ケーブル未接続を含む)等に、払出制御用マイクロコンピュータ370では必ずオフ状態と検知されるように「論理」が定められる。具体的には、一般に、断線やケーブル外れが生ずると信号の受信側ではハイレベルが検知されるので、主基板31と払出制御基板37との間の信号線でのハイレベルが、遊技制御手段における出力ポートにおいてオフ状態になるように「論理」が定められる。従って、必要であれば、主基板31において出力ポートの外側に、信号を論理反転させる出力バッファ回路が設置される。   Note that the logic (for example, 0 is on) opposite to the “logic” (for example, 1 is on) shown in FIG. 38 may be used. In particular, for the connection signal, the main board 31 and the payout control board. The “logic” is determined so that the payout control microcomputer 370 always detects the off state when the signal line to the terminal 37 is disconnected or when the cable is disconnected (including no cable connection). . Specifically, generally, when disconnection or cable disconnection occurs, a high level is detected on the signal receiving side, so the high level on the signal line between the main board 31 and the payout control board 37 is the game control means. The “logic” is determined to be in the off state at the output port at. Therefore, if necessary, an output buffer circuit for logically inverting the signal is provided outside the output port on the main board 31.

そして、出力ポート1から、ターミナル基板160を介して、外部装置(例えば、ホールコンピュータ)に対して、種情報出力用信号すなわち制御に関わる情報(例えば、始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、セキュリティ信号)の出力データが出力される。なお、この実施の形態では、後述する賞球信号1(賞球払出を1個検出するごとに出力される信号)や、遊技機エラー状態信号(遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す信号)も、ターミナル基板160を介して外部装置に出力される。この場合、払出制御基板37側において、賞球払出や遊技機のエラー状態が検出され、賞球信号1や遊技機エラー状態信号が主基板31に入力される。そして、主基板31に入力された賞球信号1や遊技機エラー状態信号は、遊技制御用マイクロコンピュータ560を経由することなく、主基板31上をそのまま経由してターミナル基板160を介して外部出力される。なお、主基板31に入力された賞球信号1や遊技機エラー状態信号は、遊技制御用マイクロコンピュータ560を一旦経由してから、ターミナル基板160を介して外部出力されるようにしてもよい。   Then, from the output port 1 to the external device (for example, hall computer) via the terminal board 160, a seed information output signal, that is, information related to the control (for example, start port signal, symbol determination number 1 signal, jackpot 1 signal, 2 jackpots, 3 jackpots, short time signal, security signal) are output. In this embodiment, a prize ball signal 1 (a signal that is output every time one prize ball payout is detected) or a gaming machine error status signal (a gaming machine is in an error status (in this example, a ball is out of ball). An error state or a full tank error state) is also output to the external device via the terminal board 160. In this case, on the payout control board 37 side, a prize ball payout or an error state of the gaming machine is detected, and a prize ball signal 1 or a gaming machine error state signal is input to the main board 31. The prize ball signal 1 and the gaming machine error status signal input to the main board 31 are output via the terminal board 160 via the main board 31 as they are without passing through the game control microcomputer 560. Is done. The prize ball signal 1 and the gaming machine error state signal input to the main board 31 may be output to the outside via the terminal board 160 after temporarily passing through the gaming control microcomputer 560.

なお、ターミナル基板160を介して外部出力される信号は、この実施の形態で示したものに限られない。例えば、ガラス扉枠2が開放状態であることを示す扉開放信号や、機構板が開放状態であることを示す機構板開放信号、賞球の払出を10個検出するごとに出力される賞球情報も、ターミナル基板160を介して外部装置に出力されるようにしてもよい。この場合、払出制御基板37側において、ガラス扉枠2が開放状態であることや、機構板が開放状態であること、賞球の払出も検出され、扉開放信号や機構板開放信号、賞球情報が主基板31に入力される。そして、主基板31に入力された扉開放信号や機構板開放信号、賞球情報は、遊技制御用マイクロコンピュータ560を経由することなく、主基板31上をそのまま経由してターミナル基板160を介して外部出力される。だたし、扉開放信号、機構板開放信号および賞球情報は、主基板31上で分岐され、遊技制御用マイクロコンピュータ560にも入力されるものとする。なお、この場合も、主基板31に入力された扉開放信号や機構板開放信号、賞球情報は、遊技制御用マイクロコンピュータ560を一旦経由してから、ターミナル基板160を介して外部出力されるようにしてもよい。   Note that signals output to the outside via the terminal board 160 are not limited to those shown in this embodiment. For example, a door opening signal indicating that the glass door frame 2 is in an open state, a mechanism plate opening signal indicating that the mechanism plate is in an open state, and a prize ball that is output every time ten award balls are detected. Information may also be output to an external device via the terminal board 160. In this case, it is detected on the payout control board 37 side that the glass door frame 2 is in the open state, the mechanism plate is in the open state, and the payout of the prize ball is detected. Information is input to the main board 31. Then, the door opening signal, mechanism plate opening signal, and prize ball information input to the main board 31 do not pass through the game control microcomputer 560 but pass through the main board 31 as they are through the terminal board 160. Output externally. However, it is assumed that the door opening signal, the mechanism plate opening signal, and the prize ball information are branched on the main board 31 and input to the game control microcomputer 560. Also in this case, the door opening signal, the mechanism plate opening signal, and the prize ball information input to the main board 31 are output to the outside via the terminal board 160 after passing through the game control microcomputer 560 once. You may do it.

また、例えば、遊技機が第1始動入賞口と第2始動入賞口との2つの始動入賞口を備え、第1特別図柄と第2特別図柄との2つの特別図柄を変動表示可能に構成されている場合には、特別図柄の変動回数を通知するための図柄確定回数信号として図柄確定回数1信号に加えて図柄確定回数2信号も、ターミナル基板160を介して外部出力するようにしてもよい。この場合、例えば、第1特別図柄の変動回数のみを通知するための信号として図柄確定回数2信号を外部出力するようにし、第1特別図柄および第2特別図柄の両方の変動回数を通知するための信号として図柄確定回数1信号を外部出力するように構成すればよい。そのように構成すれば、ホールコンピュータなどの外部装置側において、第1特別図柄のみの変動回数に加えて、第1特別図柄および第2特別図柄合計の変動回数や、第2特別図柄のみの変動回数も把握することができる。   In addition, for example, the gaming machine has two start winning ports, a first start winning port and a second starting winning port, and is configured to be capable of variably displaying two special symbols, a first special symbol and a second special symbol. In this case, the symbol determination frequency signal 2 may be externally output via the terminal board 160 in addition to the symbol determination frequency signal 1 as a symbol determination frequency signal for notifying the number of times of variation of the special symbol. . In this case, for example, in order to notify the number of fluctuations of both the first special symbol and the second special symbol by externally outputting the symbol determination number 2 signal as a signal for notifying only the number of fluctuations of the first special symbol. The signal may be configured to be externally output as a signal of the number of symbol determinations. With such a configuration, on the external device side such as a hall computer, in addition to the number of fluctuations of only the first special symbol, the number of fluctuations of the first special symbol and the second special symbol, or the fluctuation of only the second special symbol The number of times can also be grasped.

図39は、遊技制御手段における入力ポートのビット割り当ての例を示す説明図である。図39に示すように、入力ポート0のビット0〜7には、それぞれ、カウントスイッチ23、ゲートスイッチ32a、入賞口スイッチ29a,30a、磁石センサ信号1、磁石センサ信号2、賞球情報が入力される。なお、この実施の形態では、磁石を用いた不正行為を検出するための磁石センサ(図示せず)が2個設けられており、それぞれの磁石センサからの検出信号も入力ポート0から入力される。また、入力ポート1のビット0には、始動口スイッチ14aの検出信号が入力される。また、入力ポート1のビット3,4には、それぞれ、電源基板910からの電源断信号およびクリアスイッチの検出信号が入力される。また、入力ポート1のビット6,7には、それぞれ、払出制御基板37を介して機構板開放信号および扉開放信号が入力される。   FIG. 39 is an explanatory diagram showing an example of bit assignment of input ports in the game control means. As shown in FIG. 39, the count switch 23, the gate switch 32a, the winning opening switches 29a and 30a, the magnet sensor signal 1, the magnet sensor signal 2, and the prize ball information are input to the bits 0 to 7 of the input port 0, respectively. Is done. In this embodiment, two magnet sensors (not shown) for detecting fraud using a magnet are provided, and detection signals from the respective magnet sensors are also input from the input port 0. . Further, the detection signal of the start port switch 14a is input to bit 0 of the input port 1. In addition, the power-off signal and the clear switch detection signal from the power supply board 910 are input to the bits 3 and 4 of the input port 1, respectively. Further, the mechanism plate opening signal and the door opening signal are input to the bits 6 and 7 of the input port 1 via the payout control board 37, respectively.

次に、遊技機の動作について説明する。遊技機に対して電源が投入され電力供給が開始されると、リセット信号が入力されるリセット端子の入力レベルがハイレベルになり、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、ROM54から読み出したセキュリティチェックプログラム54Aにもとづいて、プログラムの内容が正当か否か確認するための処理であるセキュリティチェック処理を実行する。このとき、遊技制御用マイクロコンピュータ560は、セキュリティモードとなり、ROM54に記憶されているゲーム制御用のユーザプログラムは未だ実行されない状態となる。   Next, the operation of the gaming machine will be described. When power is supplied to the gaming machine and power supply is started, the input level of the reset terminal to which the reset signal is input becomes high level, and the gaming control microcomputer 560 (specifically, the CPU 56) Based on the security check program 54A read from the ROM 54, a security check process, which is a process for confirming whether the contents of the program are valid, is executed. At this time, the game control microcomputer 560 is in the security mode, and the game control user program stored in the ROM 54 is not yet executed.

図40は、主基板31における遊技制御用マイクロコンピュータ560が実行するセキュリティチェック処理を示すフローチャートである。セキュリティチェック処理を開始すると、CPU56は、まず、セキュリティチェック処理が実行されることにより遊技制御用マイクロコンピュータ560がセキュリティモードとなる時間(セキュリティ時間)を決定するための処理を実行する。このとき、CPU56は、ROM54のプログラム管理エリアに記憶されるセキュリティ時間設定KSESのビット番号[2−0]におけるビット値を読み出す(ステップS1001)。そして、この読出値が“000”であるか否かを判定する(ステップS1002)。   FIG. 40 is a flowchart showing a security check process executed by the game control microcomputer 560 on the main board 31. When the security check process is started, the CPU 56 first executes a process for determining a time (security time) when the game control microcomputer 560 is in the security mode by executing the security check process. At this time, the CPU 56 reads the bit value in the bit number [2-0] of the security time setting KSES stored in the program management area of the ROM 54 (step S1001). Then, it is determined whether or not the read value is “000” (step S1002).

ステップS1002にて読出値が“000”と判定された場合には(ステップS1002のY)、定常設定時間を既定の固定時間に設定する(ステップS1003)。ここで、定常設定時間は、セキュリティ時間のうち、パチンコ遊技機1におけるシステムリセットの発生等にもとづくセキュリティチェック処理の実行回数(遊技制御用マイクロコンピュータ560がセキュリティモードとなる回数)に関わりなく、一定となる時間成分である。また、固定時間は、セキュリティ時間のうち、遊技制御用マイクロコンピュータ560の仕様などにもとづいてあらかじめ定められた不変時間成分であり、例えばセキュリティ時間として設定可能な最小値となるものであればよい。   If it is determined in step S1002 that the read value is “000” (Y in step S1002), the steady set time is set to a predetermined fixed time (step S1003). Here, the regular setting time is constant regardless of the number of times security check processing is executed based on the occurrence of a system reset or the like in the pachinko gaming machine 1 (the number of times that the game control microcomputer 560 is in the security mode). Is a time component. The fixed time is an invariant time component determined in advance based on the specifications of the game control microcomputer 560 in the security time, and may be any minimum value that can be set as the security time, for example.

ステップS1002にて読出値が“000”以外と判定された場合には(ステップS1002のN)、その読出値に対応して、固定時間に加えて図14(D)に示す設定内容により選択される延長時間を、定常設定時間に設定する(ステップS1004)。こうして、セキュリティ時間設定KSESのビット番号[2−0]におけるビット値が“000”以外の値である場合には、セキュリティチェック処理の実行時間であるセキュリティ時間を、固定時間に加えてあらかじめ選択可能な複数の延長時間のいずれかに設定することができる。   If it is determined in step S1002 that the read value is other than “000” (N in step S1002), the read value is selected according to the set content shown in FIG. 14D in addition to the fixed time. The extended time is set to the steady set time (step S1004). Thus, when the bit value in the bit number [2-0] of the security time setting KSES is a value other than “000”, the security time that is the execution time of the security check process can be selected in advance in addition to the fixed time. It can be set to any one of a plurality of extension times.

ステップS1003,S1004の処理のいずれかを実行した後には、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値を読み出す(ステップS1005)。そして、この読出値が“00”であるか否かを判定する(ステップS1006)。   After executing any of the processes in steps S1003 and S1004, the bit value in the bit number [4-3] of the security time setting KSES is read (step S1005). Then, it is determined whether or not the read value is “00” (step S1006).

ステップS1006にて読出値が“00”と判定された場合には(ステップS1006のY)、定常設定時間をセキュリティ時間に設定する(ステップS1007)。これに対して、読出値が “00”以外と判定された場合には(ステップS1006のN)、その読出値に対応して決定される可変設定時間を、定常設定時間に加算してセキュリティ時間に設定する(ステップS1008)。ここで、可変設定時間は、セキュリティ時間のうち、セキュリティチェック処理が実行されるごとに変化する時間成分であり、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値が“01”(ショートモード)であるか“10”(ロングモード)であるかに応じて異なる所定の時間範囲で変化する。例えば、システムリセットの発生時に、所定のフリーランカウンタにおけるカウント値が遊技制御用マイクロコンピュータ560に内蔵された可変セキュリティ時間用レジスタに格納される場合には、ステップS1008の処理において、可変セキュリティ時間用レジスタの格納値をそのまま用いること、あるいは、その格納値を所定の演算関数(例えばハッシュ関数)に代入して得られた値を用いることなどにより、可変設定時間がシステムリセット毎に所定の時間範囲でランダムに変化するように決定されればよい。こうして、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値が“00”以外の値である場合には、セキュリティチェック処理の実行時間であるセキュリティ時間を、システムリセットの発生等にもとづくセキュリティチェック処理が実行されるごとに所定の時間範囲で変化させることができる。   If it is determined in step S1006 that the read value is “00” (Y in step S1006), the steady setting time is set as the security time (step S1007). On the other hand, if it is determined that the read value is other than “00” (N in step S1006), the variable setting time determined in accordance with the read value is added to the steady setting time to obtain the security time. (Step S1008). Here, the variable setting time is a time component that changes every time the security check process is executed, and the bit value in the bit number [4-3] of the security time setting KSES is “01” (short). Mode) or “10” (long mode), and changes in different predetermined time ranges. For example, when the count value in a predetermined free-run counter is stored in the variable security time register built in the game control microcomputer 560 at the occurrence of a system reset, in the process of step S1008, for the variable security time By using the stored value of the register as it is, or by using the value obtained by substituting the stored value for a predetermined arithmetic function (for example, a hash function), the variable setting time is within a predetermined time range for each system reset. It may be determined so as to change randomly. Thus, when the bit value in the bit number [4-3] of the security time setting KSES is a value other than “00”, the security time that is the execution time of the security check process is set as the security based on the occurrence of a system reset or the like. Each time the check process is executed, it can be changed within a predetermined time range.

ここで、セキュリティ時間設定KSESのビット番号[2−0]におけるビット値が“000”以外の値であり、なおかつ、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値が“00”以外の値である場合には、ステップS1004にて設定される延長時間と、ステップS1008にて設定される可変設定時間との双方が、固定時間に加算されて、セキュリティ時間が決定されることになる。   Here, the bit value in the bit number [2-0] of the security time setting KSES is a value other than “000”, and the bit value in the bit number [4-3] of the security time setting KSES is other than “00”. In this case, both the extension time set in step S1004 and the variable setting time set in step S1008 are added to the fixed time to determine the security time. .

ステップS1007,S1008の処理のいずれかを実行した後には、ROM54の所定領域に記憶されたセキュリティコードを読み出す(ステップS1009)。ここで、ROM54の所定領域には、記憶内容のデータを所定の演算式によって演算した演算結果のセキュリティコードがあらかじめ記憶されている。セキュリティコードの生成方法としては、例えばハッシュ関数を用いてハッシュ値を生成するもの、エラー検出コード(CRCコード)を用いるもの、エラー訂正コード(ECCコード)を用いるもののいずれかといった、あらかじめ定められた生成方法を使用すればよい。また、ROM54のセキュリティコード記憶領域とは異なる所定領域には、セキュリティコードを演算により特定するための演算式が、暗号化してあらかじめ記憶されている。   After executing one of the processes in steps S1007 and S1008, the security code stored in the predetermined area of the ROM 54 is read (step S1009). Here, in a predetermined area of the ROM 54, a security code as a calculation result obtained by calculating the data of the stored content by a predetermined arithmetic expression is stored in advance. As a method for generating a security code, for example, a hash value is generated using a hash function, an error detection code (CRC code) is used, or an error correction code (ECC code) is used. A generation method may be used. In a predetermined area different from the security code storage area of the ROM 54, an arithmetic expression for specifying the security code by calculation is encrypted and stored in advance.

ステップS1009の処理に続いて、暗号化された演算式を復号化して元に戻す(ステップS1010)。その後、ステップS1010で復号化した演算式により、ROM54の所定領域における記憶データを演算してセキュリティコードを特定する(ステップS1011)。このときセキュリティコードを特定するための演算に用いる記憶データは、例えばROM54の記憶データのうち、セキュリティチェックプログラム54Aとは異なるユーザプログラムの全部または一部に相当するプログラムデータ、あるいは、所定のテーブルデータを構成する固定データの全部または一部であればよい。そして、ステップS1009にて読み出したセキュリティコードと、ステップS1011にて特定されたセキュリティコードとを比較する(ステップS1012)。このときには、比較結果においてセキュリティコードが一致したか否かを判定する(ステップS1013)。   Following the processing in step S1009, the encrypted arithmetic expression is decrypted and restored (step S1010). Thereafter, the storage code in the predetermined area of the ROM 54 is calculated by the arithmetic expression decrypted in step S1010 to specify the security code (step S1011). At this time, the storage data used for the calculation for specifying the security code is, for example, program data corresponding to all or part of the user program different from the security check program 54A in the storage data of the ROM 54, or predetermined table data May be all or a part of the fixed data constituting the. Then, the security code read in step S1009 is compared with the security code specified in step S1011 (step S1012). At this time, it is determined whether or not the security codes match in the comparison result (step S1013).

ステップS1013にてセキュリティコードが一致しない場合には(ステップS1013のN)、ROM54に不正な変更が加えられたと判断して、CPU56の動作を停止状態(HALT)へ移行させる。これに対して、ステップS1013にてセキュリティコードが一致した場合には(ステップS1013のY)、ステップS1007やステップS1008の処理で設定されたセキュリティ時間が経過したか否かを判定する(ステップS1014)。そして、セキュリティ時間が経過していなければ(ステップS1014のN)、ステップS1014の処理を繰り返し実行して、セキュリティ時間が経過するまで待機する。その一方で、ステップS1014にてセキュリティ時間が経過したと判定された場合には(ステップS1014のY)、例えばCPU56に内蔵されたプログラムカウンタの値をROM54におけるユーザプログラムの先頭アドレス(アドレス0000H)に設定することなどにより、遊技制御メイン処理の実行を開始する。このときには、ROM54に記憶されたユーザプログラムを構成する制御コードの先頭から遊技制御の実行が開始されることにより、遊技制御用マイクロコンピュータ560の動作状態がセキュリティモードからユーザモードへと移行し、遊技制御メイン処理の実行が開始されることになる。   If the security codes do not match in step S1013 (N in step S1013), it is determined that an unauthorized change has been made to the ROM 54, and the operation of the CPU 56 is shifted to a halt state (HALT). On the other hand, if the security codes match in step S1013 (Y in step S1013), it is determined whether the security time set in the processing in step S1007 or step S1008 has elapsed (step S1014). . If the security time has not elapsed (N in step S1014), the processing in step S1014 is repeatedly executed, and the process waits until the security time elapses. On the other hand, if it is determined in step S1014 that the security time has elapsed (Y in step S1014), for example, the value of the program counter built in the CPU 56 is set to the start address (address 0000H) of the user program in the ROM 54. The execution of the game control main process is started by setting or the like. At this time, the execution of the game control is started from the head of the control code constituting the user program stored in the ROM 54, so that the operation state of the game control microcomputer 560 shifts from the security mode to the user mode. Execution of the control main process is started.

図41および図42は、遊技機に対して電力供給が開始され遊技制御用マイクロコンピュータ560へのリセット信号がハイレベルになったことに応じて遊技制御用マイクロコンピュータ560のCPU56が実行するメイン処理を示すフローチャートである。リセット信号が入力されるリセット端子の入力レベルがハイレベルになると、遊技制御用マイクロコンピュータ560のCPU56は、プログラムの内容が正当か否かを確認するための処理であるセキュリティチェック処理を実行した後、ステップS1以降のメイン処理を開始する。メイン処理において、CPU56は、まず、必要な初期設定を行う。   41 and 42 show main processing executed by the CPU 56 of the game control microcomputer 560 in response to the start of power supply to the game machine and the reset signal to the game control microcomputer 560 becoming high level. It is a flowchart which shows. When the input level of the reset terminal to which the reset signal is input becomes a high level, the CPU 56 of the game control microcomputer 560 executes a security check process that is a process for confirming whether the contents of the program are valid. The main processing after step S1 is started. In the main process, the CPU 56 first performs necessary initial settings.

初期設定処理において、CPU56は、まず、割込禁止に設定する(ステップS1)。次に、マスク可能割込の割込モードを設定し(ステップS2)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS3)。なお、ステップS2では、遊技制御用マイクロコンピュータ560の特定レジスタ(Iレジスタ)の値(1バイト)と内蔵デバイスが出力する割込ベクタ(1バイト:最下位ビット0)から合成されるアドレスが、割込番地を示すモードに設定する。また、マスク可能な割込が発生すると、CPU56は、自動的に割込禁止状態に設定するとともに、プログラムカウンタの内容をスタックにセーブする。   In the initial setting process, the CPU 56 first sets the interrupt prohibition (step S1). Next, an interrupt mode for maskable interrupts is set (step S2), and a stack pointer designation address is set for the stack pointer (step S3). In step S2, the address synthesized from the value (1 byte) of the specific register (I register) of the game control microcomputer 560 and the interrupt vector (1 byte: least significant bit 0) output from the built-in device is Set to the mode indicating the interrupt address. When a maskable interrupt occurs, the CPU 56 automatically sets the interrupt disabled state and saves the contents of the program counter in the stack.

次いで、CPU56は、払出制御用マイクロコンピュータ370に対して、接続信号の出力を開始する(ステップS4)。なお、CPU56は、ステップS4で接続信号の出力を開始すると、遊技機の電源供給が停止したり、何らかの通信エラーが生じて出力不能とならないかぎり、払出制御用マイクロコンピュータ370に対して接続信号を継続して出力する。   Next, the CPU 56 starts outputting a connection signal to the payout control microcomputer 370 (step S4). When the CPU 56 starts outputting the connection signal in step S4, the CPU 56 sends a connection signal to the payout control microcomputer 370 unless the power supply of the gaming machine is stopped or output is impossible due to some communication error. Output continuously.

次いで、内蔵デバイスレジスタの設定(初期化)を行う(ステップS5)。ステップS5の処理によって、内蔵デバイス(内蔵周辺回路)であるCTC(カウンタ/タイマ)およびPIO(パラレル入出力ポート)の設定(初期化)がなされる。   Next, the built-in device register is set (initialized) (step S5). By the processing in step S5, the CTC (counter / timer) and PIO (parallel input / output port) which are built-in devices (built-in peripheral circuits) are set (initialized).

この実施の形態で用いられる遊技制御用マイクロコンピュータ560は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)504も内蔵している。   The game control microcomputer 560 used in this embodiment also incorporates an I / O port (PIO) and a timer / counter circuit (CTC) 504.

次いで、CPU56は、RAM55をアクセス可能状態に設定し(ステップS6)、クリア信号のチェック処理に移行する。   Next, the CPU 56 sets the RAM 55 in an accessible state (step S6), and proceeds to a clear signal check process.

なお、遊技の進行を制御する遊技装置制御処理(遊技制御処理)の開始タイミングをソフトウェアで遅らせるためのソフトウェア遅延処理を実行するようにしてもよい。そのようなソフトウェア遅延処理によって、ソフトウェア遅延処理を実行しない場合に比べて、遊技制御処理の開始タイミングを遅延させることができる。遅延処理を実行したときには、他の制御基板(例えば、払出制御基板37)に対して、遊技制御基板(主基板31)が送信するコマンドを他の制御基板のマイクロコンピュータが受信できないという状況が発生することを防止できる。   Note that a software delay process for delaying the start timing of the game device control process (game control process) for controlling the progress of the game by software may be executed. By such software delay processing, the start timing of the game control processing can be delayed as compared with the case where the software delay processing is not executed. When the delay process is executed, a situation occurs in which the microcomputer of the other control board cannot receive the command transmitted from the game control board (main board 31) to the other control board (for example, the payout control board 37). Can be prevented.

次いで、CPU56は、クリアスイッチがオンされているか否か確認する(ステップS7)。なお、CPU56は、入力ポート0を介して1回だけクリア信号の状態を確認するようにしてもよいが、複数回クリア信号の状態を確認するようにしてもよい。例えば、クリア信号の状態がオフ状態であることを確認したら、所定時間(例えば、0.1秒)の遅延時間をおいた後、クリア信号の状態を再確認する。そのときにクリア信号の状態がオン状態であることを確認したら、クリア信号がオン状態になっていると判定する。また、このときにクリア信号の状態がオフ状態であることを確認したら、所定時間の遅延時間をおいた後、再度、クリア信号の状態を再確認するようにしてもよい。ここで、再確認の回数は、1回または2回に限られず、3回以上であってもよい。また、2回チェックして、チェック結果が一致していなかったときにもう一度確認するようにしてもよい。   Next, the CPU 56 checks whether or not the clear switch is turned on (step S7). Note that the CPU 56 may confirm the state of the clear signal only once via the input port 0, but may confirm the state of the clear signal a plurality of times. For example, if it is confirmed that the state of the clear signal is an off state, after a delay time of a predetermined time (for example, 0.1 seconds), the state of the clear signal is reconfirmed. If it is confirmed that the clear signal is in the on state at that time, it is determined that the clear signal is in the on state. Further, at this time, if it is confirmed that the state of the clear signal is the off state, after a delay time of a predetermined time, the state of the clear signal may be confirmed again. Here, the number of reconfirmations is not limited to once or twice, but may be three or more times. It is also possible to check twice and check again when the check results do not match.

ステップS7でクリアスイッチがオンでありクリアスイッチからの操作信号が入力されている場合には、CPU56は、機構板開放センサ155Bからの機構板開放信号がオン状態であるか否かを確認する(ステップS7a)。機構板開放信号がオン状態であれば(すなわち、機構板が開放状態となっていれば)、ステップS10以降の初期化処理に移行する。機構板開放信号がオン状態でなければ(すなわち、機構板が閉鎖状態となっていれば)、CPU56は、不正に初期化処理が行われようとしている可能性を報知することを指定する初期化不正報知コマンドを演出制御用マイクロコンピュータ100に送信する制御を行い(ステップS7b)、ループ処理に移行する。   If the clear switch is on and an operation signal is input from the clear switch in step S7, the CPU 56 checks whether or not the mechanism plate opening signal from the mechanism plate opening sensor 155B is on ( Step S7a). If the mechanism plate open signal is in the on state (that is, if the mechanism plate is in the open state), the process proceeds to an initialization process after step S10. If the mechanism plate open signal is not in the on state (that is, if the mechanism plate is in the closed state), the CPU 56 designates initialization for notifying the possibility that the initialization process is improperly performed. Control to transmit the fraud notification command to the production control microcomputer 100 is performed (step S7b), and the process proceeds to loop processing.

一般に、遊技店の開店時などに遊技機への電源を投入する場合、クリアスイッチ921は遊技機内部の電源基板910に搭載されているので、遊技店員などは、機構板を開放状態にしなければ、クリアスイッチ921を押下しながら遊技機への電源を投入することはできず、初期化された状態で遊技機を起動させることはできない。従って、正規の手順に従って遊技機を起動させる場合、遊技機への電源供給開始時にクリアスイッチ921がオン状態となっていれば同時に機構板開放信号もオン状態となっている筈である。ステップS7でクリアスイッチのオン状態が検出されたにもかかわらず、ステップS7aで機構板開放信号のオン状態が検出されなかったということは、機構板が閉鎖状態のままでクリアスイッチ921が押下されて電源投入が行われたということである。そのため、遊技中に遊技機の隙間から器具を差し込んで不正にクリアスイッチ921をオンにした状態で電源をリセットする行為が行われている可能性が高い。そこで、この実施の形態では、ステップS7でクリアスイッチのオン状態が検出されたにもかかわらず、ステップS7aで機構板開放信号のオン状態が検出されなかった場合には、不正に初期化処理が行われようとしている可能性が高いと判断して、初期化不正報知コマンドを送信して報知を行うとともに、ループ処理に移行して図45の遊技制御処理に移行しないように制御する。すなわち、遊技の進行を不能動化して遊技を行うことができないようにする。そのように制御することによって、この実施の形態では、不正に初期化処理が実行されることを防止し、不正行為を防止している。   Generally, when turning on the power to the gaming machine when the game shop is opened, the clear switch 921 is mounted on the power supply board 910 inside the gaming machine. Therefore, the game clerk or the like must open the mechanism board. The game machine cannot be turned on while the clear switch 921 is pressed, and the game machine cannot be activated in the initialized state. Therefore, when starting the gaming machine according to a regular procedure, if the clear switch 921 is in an on state at the start of power supply to the gaming machine, the mechanism plate opening signal should be in an on state at the same time. The fact that the ON state of the mechanism plate opening signal is not detected in step S7a even though the ON state of the clear switch is detected in step S7 means that the clear switch 921 is pressed while the mechanism plate remains closed. This means that the power was turned on. For this reason, there is a high possibility that an action of resetting the power supply in a state where the clear switch 921 is turned on illegally by inserting an instrument from the gap of the gaming machine during the game is performed. Therefore, in this embodiment, if the ON state of the mechanism plate opening signal is not detected in step S7a even though the ON state of the clear switch is detected in step S7, the initialization process is illegally performed. It is determined that there is a high possibility that it is going to be performed, and an initialization fraud notification command is transmitted to perform notification, and control is performed so as to shift to the loop processing and not shift to the game control processing of FIG. That is, the progress of the game is disabled so that the game cannot be performed. By controlling in such a manner, in this embodiment, it is possible to prevent the initialization process from being executed illegally and to prevent illegal acts.

なお、ループ処理に移行して遊技の進行が不能動化された場合には、その不能動化された状態を解除するためには、正規の手順に従って、機構板を開放状態にしてからクリアスイッチ921を押下しながら遊技機への電源を再投入しなければならない。なお、電源の再投入までしなくても、例えば、ステップS7bの初期化不正報知コマンドの送信処理の後のループ処理において、クリアスイッチがオン状態であるとともに機構板開放信号がオン状態に変化したか否かを確認するようにし、オン状態であれば、ステップS10以降の初期化処理に移行して、遊技制御処理が開始されるようにしてもよい。   In addition, when the progress of the game is disabled due to the transition to the loop process, in order to cancel the disabled state, the clear switch is set after the mechanism plate is opened according to a normal procedure. The power to the gaming machine must be turned on again while pressing 921. Even if the power is not turned on again, for example, in the loop processing after the initialization fraud notification command transmission processing in step S7b, the clear switch is on and the mechanism plate open signal is turned on. If it is in an on state, the game control process may be started by proceeding to an initialization process after step S10.

ステップS7でクリアスイッチがオンでない場合には、遊技機への電力供給が停止したときにバックアップRAM領域のデータ保護処理(例えばパリティデータの付加等の電力供給停止時処理)が行われたか否か確認する(ステップS8)。この実施の形態では、電力供給の停止が生じた場合には、バックアップRAM領域のデータを保護するための処理が行われている。そのような電力供給停止時処理が行われていたことを確認した場合には、CPU56は、電力供給停止時処理が行われた、すなわち電力供給停止時の制御状態が保存されていると判定する。電力供給停止時処理が行われていないことを確認した場合には、CPU56は初期化処理を実行する。   If the clear switch is not turned on in step S7, whether or not data protection processing of the backup RAM area (for example, power supply stop processing such as addition of parity data) has been performed when power supply to the gaming machine is stopped Confirm (step S8). In this embodiment, when power supply is stopped, a process for protecting data in the backup RAM area is performed. When it is confirmed that such power supply stop processing has been performed, the CPU 56 determines that the power supply stop processing has been performed, that is, the control state at the time of power supply stop is stored. . When it is confirmed that the power supply stop process is not performed, the CPU 56 executes an initialization process.

電力供給停止時処理が行われていたか否かは、電力供給停止時処理においてバックアップRAM領域に保存されるバックアップ監視タイマの値が、電力供給停止時処理を実行したことに応じた値(例えば2)になっているか否かによって確認される。なお、そのような確認の仕方は一例であって、例えば、電力供給停止時処理においてバックアップフラグ領域に電力供給停止時処理を実行したことを示すフラグをセットし、ステップS8において、そのフラグがセットされていることを確認したら電力供給停止時処理が行われたと判定してもよい。   Whether or not the power supply stop process has been performed is determined by the value of the backup monitoring timer stored in the backup RAM area in the power supply stop process corresponding to the execution of the power supply stop process (for example, 2). ) Is confirmed by whether or not. Note that such a confirmation method is an example. For example, a flag indicating that the power supply stop process has been executed is set in the backup flag area in the power supply stop process, and the flag is set in step S8. If it is confirmed that the power supply is stopped, it may be determined that the power supply stop process has been performed.

電力供給停止時の制御状態が保存されていると判定したら、CPU56は、バックアップRAM領域のデータチェック(この例ではパリティチェック)を行う(ステップS9)。この実施の形態では、クリアデータ(00)をチェックサムデータエリアにセットし、チェックサム算出開始アドレスをポインタにセットする。また、チェックサムの対象になるデータ数に対応するチェックサム算出回数をセットする。そして、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和を演算する。演算結果をチェックサムデータエリアにストアするとともに、ポインタの値を1増やし、チェックサム算出回数の値を1減算する。以上の処理が、チェックサム算出回数の値が0になるまで繰り返される。チェックサム算出回数の値が0になったら、CPU56は、チェックサムデータエリアの内容の各ビットの値を反転し、反転後のデータをチェックサムにする。   If it is determined that the control state at the time of stopping power supply is stored, the CPU 56 performs data check (parity check in this example) in the backup RAM area (step S9). In this embodiment, clear data (00) is set in the checksum data area, and the checksum calculation start address is set in the pointer. Also, the number of checksum calculations corresponding to the number of data to be checksum is set. Then, the exclusive OR of the contents of the checksum data area and the contents of the RAM area pointed to by the pointer is calculated. The calculation result is stored in the checksum data area, the pointer value is incremented by 1, and the checksum calculation count value is decremented by 1. The above processing is repeated until the value of the checksum calculation count becomes zero. When the value of the checksum calculation count becomes 0, the CPU 56 inverts the value of each bit of the contents of the checksum data area and uses the inverted data as the checksum.

電力供給停止時処理において、上記の処理と同様の処理によってチェックサムが算出され、チェックサムはバックアップRAM領域に保存されている。ステップS9では、算出したチェックサムと保存されているチェックサムとを比較する。不測の停電等の電力供給停止が生じた後に復旧した場合には、バックアップRAM領域のデータは保存されているはずであるから、チェック結果(比較結果)は正常(一致)になる。チェック結果が正常でないということは、バックアップRAM領域のデータが、電力供給停止時のデータとは異なっている可能性があることを意味する。そのような場合には、内部状態を電力供給停止時の状態に戻すことができないので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理(ステップS10〜S14の処理)を実行する。   In the power supply stop process, a checksum is calculated by the same process as described above, and the checksum is stored in the backup RAM area. In step S9, the calculated checksum is compared with the stored checksum. When the power supply is stopped after an unexpected power failure or the like, the data in the backup RAM area should be saved, so the check result (comparison result) is normal (matched). That the check result is not normal means that the data in the backup RAM area may be different from the data when the power supply is stopped. In such a case, since the internal state cannot be returned to the state when the power supply is stopped, the initialization process (the process of steps S10 to S14) executed when the power is turned on, not when the power supply is stopped is stopped. Run.

チェック結果が正常であれば、CPU56は、遊技制御手段の内部状態と演出制御手段等の電気部品制御手段の制御状態を電力供給停止時の状態に戻すための遊技状態復旧処理を行う。具体的には、ROM54に格納されているバックアップ時設定テーブルの先頭アドレスをポインタに設定し(ステップS91)、バックアップ時設定テーブルの内容を順次作業領域(RAM55内の領域)に設定する(ステップS92)。作業領域はバックアップ電源によって電源バックアップされている。バックアップ時設定テーブルには、作業領域のうち初期化してもよい領域についての初期化データが設定されている。ステップS91およびS92の処理によって、作業領域のうち初期化してはならない部分については、保存されていた内容がそのまま残る。初期化してはならない部分とは、例えば、電力供給停止前の遊技状態を示すデータ(特別図柄プロセスフラグなど)、出力ポートの出力状態が保存されている領域(出力ポートバッファ)、未払出賞球数を示すデータが設定されている部分などである。   If the check result is normal, the CPU 56 performs a game state restoration process for returning the internal state of the game control means and the control state of the electrical component control means such as the effect control means to the state when the power supply is stopped. Specifically, the start address of the backup setting table stored in the ROM 54 is set as a pointer (step S91), and the contents of the backup setting table are sequentially set in the work area (area in the RAM 55) (step S92). ). The work area is backed up by a backup power source. In the backup setting table, initialization data for an area that may be initialized in the work area is set. As a result of the processing in steps S91 and S92, the saved contents of the work area that should not be initialized remain. The parts that should not be initialized include, for example, data indicating the gaming state before the power supply is stopped (special symbol process flag, etc.), the area where the output state of the output port is saved (output port buffer), unpaid prize balls This is the part where data indicating the number is set.

また、CPU56は、ROM54に格納されているバックアップ時コマンド送信テーブルの先頭アドレスをポインタに設定し(ステップS93)、ステップS14aに移行する。なお、ステップS93で設定された後、後述するステップS15aのシリアル通信回路設定処理が行われてからバックアップコマンドが送信されることになる。   Further, the CPU 56 sets the head address of the backup command transmission table stored in the ROM 54 as a pointer (step S93), and proceeds to step S14a. In addition, after setting in step S93, a backup command is transmitted after serial communication circuit setting processing in step S15a described later is performed.

初期化処理では、CPU56は、まず、RAMクリア処理を行う(ステップS10)。なお、RAM55の全領域を初期化せず、所定のデータをそのままにしてもよい。また、ROM54に格納されている初期化時設定テーブルの先頭アドレスをポインタに設定し(ステップS11)、初期化時設定テーブルの内容を順次業領域に設定する(ステップS12)。   In the initialization process, the CPU 56 first performs a RAM clear process (step S10). Note that the predetermined data may be left as it is without initializing the entire area of the RAM 55. Also, the initial address of the initialization setting table stored in the ROM 54 is set as a pointer (step S11), and the contents of the initialization setting table are sequentially set in the work area (step S12).

ステップS11およびS12の処理によって、例えば、普通図柄判定用乱数カウンタ、普通図柄判定用バッファ、特別図柄バッファ、特別図柄プロセスフラグ、賞球中フラグ、球切れフラグなど制御状態に応じて選択的に処理を行うためのフラグに初期値が設定される。   By the processing of steps S11 and S12, for example, a normal symbol determination random number counter, a normal symbol determination buffer, a special symbol buffer, a special symbol process flag, a winning ball flag, a ball-out flag, and the like are selectively processed according to the control state. An initial value is set in a flag for performing the above.

また、CPU56は、ROM54に格納されている初期化時コマンド送信テーブルの先頭アドレスをポインタに設定し(ステップS13)、その内容に従ってサブ基板を初期化するための初期化コマンドをサブ基板に送信する処理を実行する(ステップS14)。初期化コマンドとして、演出表示装置9に表示される初期図柄を示すコマンドや払出制御基板37への初期化コマンド等を使用することができる。なお、ステップS13で設定された後、後述するステップS15aのシリアル通信回路設定処理が行われてから初期化コマンドが送信されることになる。   Further, the CPU 56 sets the start address of the initialization command transmission table stored in the ROM 54 as a pointer (step S13), and transmits an initialization command for initializing the sub board according to the contents to the sub board. Processing is executed (step S14). As an initialization command, a command indicating an initial symbol displayed on the effect display device 9, an initialization command to the payout control board 37, or the like can be used. After setting in step S13, an initialization command is transmitted after serial communication circuit setting processing in step S15a described later is performed.

ステップS91〜S93の処理を実行して電断前の遊技状態を復旧した後や、ステップS10〜S14の初期化処理を実行した後には、ROM54のプログラム管理エリアにおける記憶データにもとづき、遊技制御用マイクロコンピュータ560に内蔵された各種回路の動作設定を行う(ステップS14a)。一例として、ステップS14aの処理内では、プログラム管理エリアに記憶されている第1乱数初期設定KRS1や第2乱数初期設定KRS2を読み出して乱数回路設定処理が実行される。   After the processing of steps S91 to S93 is executed to restore the gaming state before the power interruption, or after the initialization processing of steps S10 to S14, the game control is performed based on the stored data in the program management area of the ROM 54. Operation settings of various circuits built in the microcomputer 560 are performed (step S14a). As an example, in the process of step S14a, the first random number initial setting KRS1 and the second random number initial setting KRS2 stored in the program management area are read and the random number circuit setting process is executed.

図43は、乱数回路設定処理の一例を示すフローチャートである。乱数回路設定処理において、CPU56は、まず、第1乱数初期設定KRS1のビット番号[3]におけるビット値にもとづき、乱数回路509を使用するための設定を行う(ステップS5001)。この実施の形態では、第1乱数初期設定KRS1のビット番号[3]におけるビット値があらかじめ“1”とされており、このビット値に対応して乱数回路509を使用する設定が行われる。続いて、第1乱数初期設定KRS1のビット番号[2]におけるビット値にもとづき、乱数回路509における乱数更新クロックRGKの設定を行う(ステップS5002)。例えば、第1乱数初期設定KRS1のビット番号[2]におけるビット値があらかじめ“1”とされていることに対応して、乱数用クロック生成回路112で生成された乱数用クロックRCLKを2分周して乱数更新クロックRGKとする設定が行われる。   FIG. 43 is a flowchart illustrating an example of random number circuit setting processing. In the random number circuit setting process, the CPU 56 first performs setting for using the random number circuit 509 based on the bit value in the bit number [3] of the first random number initial setting KRS1 (step S5001). In this embodiment, the bit value in the bit number [3] of the first random number initial setting KRS1 is set to “1” in advance, and setting to use the random number circuit 509 is performed corresponding to this bit value. Subsequently, the random number update clock RGK is set in the random number circuit 509 based on the bit value in the bit number [2] of the first random number initial setting KRS1 (step S5002). For example, in response to the bit value [2] of the first random number initial setting KRS1 being set to “1” in advance, the random number clock RCLK generated by the random number clock generation circuit 112 is divided by two. As a result, the random number update clock RGK is set.

ステップS5002での設定を行った後には、第1乱数初期設定KRS1のビット番号[1−0]におけるビット値にもとづき、乱数回路509における乱数更新規則の設定を行う(ステップS5003)。例えば、第1乱数初期設定KRS1のビット番号[1−0]におけるビット値があらかじめ“00”とされている場合には、乱数列RSNにおける乱数値となる数値データの更新順を指定する乱数更新規則を2周目以降も変更しない設定がなされる。また、第1乱数初期設定KRS1のビット番号[1−0]におけるビット値があらかじめ“01”とされている場合には、乱数列RSNにおける乱数更新規則を2周目以降はソフトウェアで変更する設定がなされる。さらに、第1乱数初期設定KRS1のビット番号[1−0]におけるビット値があらかじめ“10”とされている場合には、乱数列RSNにおける乱数更新規則を2周目以降は自動で変更する設定がなされる。   After the setting in step S5002, the random number update rule is set in the random number circuit 509 based on the bit value in the bit number [1-0] of the first random number initial setting KRS1 (step S5003). For example, when the bit value in the bit number [1-0] of the first random number initial setting KRS1 is set to “00” in advance, the random number update designating the update order of the numerical data that becomes the random value in the random number sequence RSN The rule is set so as not to change after the second round. Further, when the bit value [1-0] of the first random number initial setting KRS1 is set to “01” in advance, the random number update rule in the random number sequence RSN is set to be changed by software after the second round. Is made. Further, when the bit value in the bit number [1-0] of the first random number initial setting KRS1 is set to “10” in advance, the random number update rule in the random number sequence RSN is automatically changed after the second round. Is made.

続いて、第2乱数初期設定KRS2のビット番号[1]におけるビット値にもとづき、乱数値となる数値データにおける起動時スタート値を決定する(ステップS5004S)。例えば、第2乱数初期設定KRS2のビット番号[1]におけるビット値があらかじめ“0”とされている場合には、乱数のスタート値をデフォルト値「0000H」とする設定がなされる。また、第2乱数初期設定KRS2のビット番号[1]におけるビット値があらかじめ“1”とされている場合には、乱数のスタート値をIDナンバーにもとづく値とする設定がなされる。   Subsequently, based on the bit value in the bit number [1] of the second random number initial setting KRS2, a start value at start-up in numerical data to be a random value is determined (step S5004S). For example, when the bit value [1] of the second random number initial setting KRS2 is set to “0” in advance, the random value start value is set to the default value “0000H”. When the bit value [1] of the second random number initial setting KRS2 is set to “1” in advance, the random number start value is set to a value based on the ID number.

さらに、第2乱数初期設定KRS2のビット番号[0]におけるビット値にもとづき、乱数値となる数値データのスタート値をシステムリセット毎に変更するか否かの設定を行う(ステップS5005)。例えば、第2乱数初期設定KRS2のビット番号[0]におけるビット値があらかじめ“0”とされている場合には、パチンコ遊技機1の電源初期投入時(バックアップ無効後の起動)における起動であるか、システムリセットによる再起動であるかに関わりなく、ステップS5004にて設定した起動時スタート値をそのまま用いて、スタート値設定回路554は、乱数回路509におけるスタート値とすればよい。また、第2乱数初期設定KRS2のビット番号[0]におけるビット値があらかじめ“1”とされている場合には、乱数のスタート値をシステムリセット毎に変更する設定がなされる。例えば、システムリセットの発生時といった所定タイミングにて、例えばフリーランカウンタ554Aといった所定のフリーランカウンタにおけるカウント値が遊技制御用マイクロコンピュータ560に内蔵された乱数スタート値用レジスタに格納される場合には、ステップS5005の処理において、乱数スタート値用レジスタの格納値をそのまま用いること、あるいは、その格納値を所定の演算関数(例えばハッシュ関数)に代入して得られた値を用いることなどにより、乱数のスタート値がシステムリセット毎に所定の数値範囲(例えば乱数生成回路553にて生成されるカウント値順列RCNに含まれる数値データの全部または一部を含む範囲)でランダムに変化するように決定されればよい。   Further, based on the bit value in the bit number [0] of the second random number initial setting KRS2, it is set whether or not to change the start value of the numerical data serving as the random value every time the system is reset (step S5005). For example, when the bit value in the bit number [0] of the second random number initial setting KRS2 is set to “0” in advance, the pachinko gaming machine 1 is activated when the power is initially turned on (activation after backup is disabled). The start value setting circuit 554 may be used as the start value in the random number circuit 509 using the start value at the start set in step S5004 as it is, regardless of whether the system is restarted by a system reset. Further, when the bit value [0] of the second random number initial setting KRS2 is set to “1” in advance, a setting for changing the start value of the random number at every system reset is made. For example, when a count value in a predetermined free run counter such as the free run counter 554A is stored in a random number start value register built in the game control microcomputer 560 at a predetermined timing such as when a system reset occurs. In the process of step S5005, a random number can be obtained by using the stored value of the random number start value register as it is or by using a value obtained by substituting the stored value into a predetermined arithmetic function (for example, a hash function). Is determined so as to randomly change in a predetermined numerical range (for example, a range including all or part of the numerical data included in the count value permutation RCN generated by the random number generation circuit 553) at each system reset. Just do it.

ステップS5005の処理を実行した後には、例えば乱数値レジスタR1Dや乱数値レジスタR2Dに格納されている数値データを読み出すことなどにより、乱数ラッチフラグレジスタRDFMのビット番号[1]やビット番号[0]に格納される乱数ラッチフラグデータRDFM1や乱数ラッチフラグデータRDFM0のビット値を“0”として、各乱数ラッチフラグをオフ状態にクリアする(ステップS5006)。一例として、乱数ラッチフラグデータRDFM1と乱数ラッチフラグデータRDFM0について、それぞれの値が“1”であるか“0”であるかを判定し、その値が“1”であれば、対応する乱数値レジスタの読み出しを行うことにより、乱数ラッチフラグをオフ状態とすればよい。あるいは、乱数ラッチフラグデータRDFM1や乱数ラッチフラグデータRDFM0の値にかかわらず、乱数値レジスタR1Dと乱数値レジスタR2Dの読み出しを行うことにより、各乱数ラッチフラグをオフ状態としてもよい。なお、ステップS5006の処理により乱数値レジスタR1Dや乱数値レジスタR2Dから読み出された数値データは、特図表示結果を「大当り」として大当り遊技状態に制御するか否かの判定処理などには使用せず、そのまま破棄(消去)すればよい。こうしたステップS5006の処理による設定が完了すると、乱数回路509では乱数値の生成動作が開始されればよい。   After the processing of step S5005 is executed, the bit number [1] or bit number [0] of the random number latch flag register RDFM is read by reading the numerical data stored in the random value register R1D or the random value register R2D, for example. The bit values of the random number latch flag data RDFM1 and the random number latch flag data RDFM0 stored in are set to “0”, and each random number latch flag is cleared to an off state (step S5006). As an example, for the random number latch flag data RDFM1 and the random number latch flag data RDFM0, it is determined whether each value is “1” or “0”, and if the value is “1”, the corresponding random value The random number latch flag may be turned off by reading the register. Alternatively, each random number latch flag may be turned off by reading the random number value register R1D and the random number value register R2D regardless of the values of the random number latch flag data RDFM1 and the random number latch flag data RDFM0. Note that the numerical data read from the random value register R1D or the random value register R2D in the process of step S5006 is used for determining whether to control the big hit gaming state with the special figure display result as “big hit”. It can be discarded (erased) as it is. When the setting by the processing in step S5006 is completed, the random number circuit 509 may start the random value generation operation.

なお、乱数回路設定処理による設定の一部または全部は、CPU56の処理が介在することなく、乱数回路509がプログラム管理エリアの記憶データにもとづき自律的に行うようにしてもよい。この場合、乱数回路509は、遊技制御用マイクロコンピュータ560がセキュリティモードとなっているときには初期設定を行わず、乱数値の生成動作が行われないようにしてもよい。そして、遊技制御用マイクロコンピュータ560にてCPU56がROM54に記憶されたユーザプログラムを読み出して遊技制御メイン処理の実行が開始されたときに、例えばCPU56から乱数回路509に対して初期設定を指示する制御信号が伝送されたことなどに応答して、乱数回路509が初期設定を行ってから乱数値の生成動作を開始するようにしてもよい。あるいは、特に乱数回路509が遊技制御用マイクロコンピュータ560に外付けされる場合などには、遊技制御用マイクロコンピュータ560がセキュリティモードとなっているときでも、乱数回路509がCPU56における処理とは独立して、プログラム管理エリアの記憶データにもとづく初期設定を行ってから、乱数値の生成動作を開始するようにしてもよい。また、図41に示すステップS14aの処理には、プログラム管理エリアに記憶されている割込み初期設定KIISを読み出して、リセット/割込みコントローラ504におけるマスカブル割込み要因の優先制御に関する設定を行う処理などが含まれてもよい。マスカブル割込み要因の優先順位を設定する際には、割込み初期設定KIISのビット番号[3−0]におけるビット値に対応して、最優先割込みの設定が行われる。例えば、割込み初期設定KIISのビット番号[3−0]のビット値をあらかじめ「04H」および「05H」のいずれかとしておくことにより、シリアル通信回路511で発生した割込み要因による割込み処理を最優先で実行することができる。こうして、割込み初期設定KIISのビット番号[3−0]におけるビット値に応じたマスカブル割込み要因の優先制御を行うことにより、割込み処理の優先順位を任意に設定可能とし、設計の自由度を増大させることができる。   Note that part or all of the setting by the random number circuit setting process may be performed autonomously by the random number circuit 509 based on the data stored in the program management area without the processing of the CPU 56 being involved. In this case, the random number circuit 509 may be configured not to perform the initial setting when the game control microcomputer 560 is in the security mode and to prevent the random number value generation operation from being performed. Then, when the CPU 56 reads out the user program stored in the ROM 54 in the game control microcomputer 560 and the execution of the game control main process is started, the CPU 56 instructs the random number circuit 509 to make an initial setting, for example. In response to the signal being transmitted, the random number circuit 509 may perform the initial setting and then start the random value generation operation. Alternatively, particularly when the random number circuit 509 is externally attached to the game control microcomputer 560, the random number circuit 509 is independent of the processing in the CPU 56 even when the game control microcomputer 560 is in the security mode. Thus, the random number generation operation may be started after initial setting based on the stored data in the program management area. Further, the process of step S14a shown in FIG. 41 includes a process of reading the interrupt initial setting KIIS stored in the program management area and setting the priority control of the maskable interrupt factor in the reset / interrupt controller 504. May be. When setting the priority order of the maskable interrupt factor, the highest priority interrupt is set according to the bit value in the bit number [3-0] of the interrupt initial setting KIIS. For example, by setting the bit value [3-0] of the interrupt initial setting KIIS to either “04H” or “05H” in advance, the interrupt processing due to the interrupt factor generated in the serial communication circuit 511 has the highest priority. Can be executed. Thus, by performing priority control of maskable interrupt factors according to the bit value in bit number [3-0] of interrupt initial setting KIIS, the priority order of interrupt processing can be arbitrarily set, and the degree of freedom of design is increased. be able to.

ステップS14aでの設定を行った後には、乱数回路509における動作異常の有無を検査するための乱数回路異常検査処理を実行する(ステップS14b)。図44は、ステップS14bにて実行される乱数回路異常検査処理の一例を示すフローチャートである。   After the setting in step S14a, random number circuit abnormality inspection processing for inspecting the presence or absence of operation abnormality in the random number circuit 509 is executed (step S14b). FIG. 44 is a flowchart showing an example of the random number circuit abnormality inspection process executed in step S14b.

図44に示す乱数回路異常検査処理において、CPU56は、まず、例えばRAM55などに設けられた乱数用クロック異常判定カウンタをクリアして、そのカウント値である乱数用クロック異常判定カウント値を「0」に初期化する(ステップS561)。続いて、内部情報レジスタCIFのビット番号[4]に格納されている内部情報データCIF4を読み出す(ステップS562)。そして、ステップS562での読出値が“1”であるか否かを判定する(ステップS563)。乱数回路509が備える周波数監視回路551では、乱数用外部クロック端子ERCにおける乱数用クロックRCLKの入力状態を、内部システムクロックSCLKと比較する。そして、乱数用クロックRCLKの入力状態に、図14(B)で示したような設定内容に応じた周波数異常が検出されたときには、内部情報データCIF4としてビット値“1”が書き込まれる。   In the random number circuit abnormality inspection process shown in FIG. 44, the CPU 56 first clears a random number clock abnormality determination counter provided in, for example, the RAM 55 and sets the random number clock abnormality determination count value, which is the count value, to “0”. (Step S561). Subsequently, the internal information data CIF4 stored in the bit number [4] of the internal information register CIF is read (step S562). Then, it is determined whether or not the read value in step S562 is “1” (step S563). The frequency monitoring circuit 551 provided in the random number circuit 509 compares the input state of the random number clock RCLK at the random number external clock terminal ERC with the internal system clock SCLK. Then, when a frequency abnormality corresponding to the setting content as shown in FIG. 14B is detected in the input state of the random number clock RCLK, the bit value “1” is written as the internal information data CIF4.

そこで、ステップS563にて読出値が“1”と判定された場合には(ステップS563のY)、乱数用クロック異常判定カウント値を1加算するように更新する(ステップS564)。このときには、ステップS564での更新後におけるカウント値が所定のクロック異常判定値に達したか否かを判定する(ステップS565)。ここで、クロック異常判定値は、周波数監視回路551により乱数用クロックRCLKの周波数異常が連続して検知された場合にクロック異常と判定するためにあらかじめ定められた数値であればよい。ステップS565にてクロック異常判定値に達していなければ、ステップS562の処理に戻り、再び内部情報データCIF4のビット値にもとづく判定を行う。   Therefore, when it is determined in step S563 that the read value is “1” (Y in step S563), the random number clock abnormality determination count value is updated to be incremented by 1 (step S564). At this time, it is determined whether or not the count value after the update in step S564 has reached a predetermined clock abnormality determination value (step S565). Here, the clock abnormality determination value may be a numerical value determined in advance to determine that the clock abnormality is detected when the frequency monitoring circuit 551 continuously detects the frequency abnormality of the random number clock RCLK. If the clock abnormality determination value has not been reached in step S565, the process returns to step S562, and determination based on the bit value of the internal information data CIF4 is performed again.

ステップS565にてクロック異常判定値に達した場合には(ステップS565のY)、所定の乱数用クロックエラー時処理を実行してから(ステップS566)、乱数回路異常検査処理を終了する。なお、乱数用クロックエラー時処理では、例えば演出制御基板80に対して所定の演出制御コマンドを送信するための設定を行って、演出装置により乱数用クロックRCLKの周波数異常が検知されたことを報知させるとともに、所定のエラー解除手順(例えばシステムリセットやエラー解除スイッチの操作など)がとられるまでは、以後の処理には進まないようにしてもよく、あるいは、乱数用クロックエラー時処理の終了とともに乱数回路異常検査処理を終了して、以後は乱数用クロックエラー時処理を実行しない通常時とほぼ同様の遊技制御などが実行されるようにしてもよい。ここで、ステップS566にて乱数用クロックエラー時処理を実行した後に遊技制御などが実行される場合には、乱数用クロックエラー時処理の実行に対応したエラーの発生状態を記憶しておき、例えば、客待ちデモ指定コマンドを送信するときなどに、そのエラーの発生状態を通知する客待ちデモ指定コマンドを送信するようにしてもよい。また、乱数用クロックエラー時処理を実行することなく、CPU56の動作を停止状態(HALT)へ移行させてもよい。   If the clock abnormality determination value is reached in step S565 (Y in step S565), a predetermined random number clock error process is executed (step S566), and the random number circuit abnormality inspection process is terminated. In the random number clock error process, for example, a setting for transmitting a predetermined effect control command to the effect control board 80 is performed, and notification that the effect device has detected a frequency abnormality of the random number clock RCLK is notified. In addition, the processing may not be continued until a predetermined error canceling procedure (for example, system reset, error canceling switch operation, etc.) is taken, or at the end of random number clock error processing After the random number circuit abnormality inspection process is finished, the game control or the like that is almost the same as the normal time when the random number clock error process is not executed may be executed. Here, when the game control or the like is executed after executing the random number clock error process in step S566, the error occurrence state corresponding to the execution of the random number clock error process is stored, for example, When a customer waiting demonstration designation command is transmitted, a customer waiting demonstration designation command for notifying the occurrence state of the error may be transmitted. Further, the operation of the CPU 56 may be shifted to the halt state (HALT) without executing the random number clock error process.

ステップS563にて読出値が“0”と判定された場合には(ステップS563のN)、例えばRAM55などに設けられた乱数値異常判定カウンタをクリアして、そのカウント値である乱数値異常判定カウント値を「0」に初期化する(ステップS567)。なお、ステップS563の処理では、ステップS562にて読み出した内部情報データCIF4のビット値が複数回(例えば2回など)連続して“0”となったときに、読出値が“0”であると判定してもよい。   If it is determined in step S563 that the read value is “0” (N in step S563), for example, the random value abnormality determination counter provided in the RAM 55 or the like is cleared, and the random value abnormality determination that is the count value is performed. The count value is initialized to “0” (step S567). In the process of step S563, the read value is “0” when the bit value of the internal information data CIF4 read in step S562 continuously becomes “0” a plurality of times (for example, twice). May be determined.

ステップS567の処理に続いて、乱数値における異常の有無をチェックするために用いるチェック値を、初期値「0000H」に設定する(ステップS568)。そして、乱数回路509が備える乱数値レジスタR1Dとなる乱数値レジスタ559Aや乱数値レジスタR2Dとなる乱数値レジスタ559Bから、格納されている乱数値となる数値データを読み出す(ステップS569)。例えば、ステップS569の処理では、乱数ラッチ選択レジスタRDLSのビット番号[1]やビット番号[0]に格納される乱数ラッチ選択データRDLS1や乱数ラッチ選択データRDLS0のビット値を“0”として、ソフトウェアによる乱数値の取り込みを指定する。続いて、乱数値取込指定レジスタRDLTのビット番号[1]やビット番号[0]に格納される乱数値取込指定データRDLT1や乱数値取込指定データRDLT0のビット値を“1”として、乱数値レジスタR2Dや乱数値レジスタR1Dへの取り込みを指定する。なお、乱数値取込指定レジスタRDLTのビット番号[1]やビット番号[0]におけるビット値を“1”とすることは、CPU56から乱数回路509に対して数値データの取り込み(ラッチ)を指示するラッチ信号を出力することに相当する。その後、乱数値レジスタR2Dに供給するレジスタリード信号RRS2をオン状態とすることや、乱数値レジスタR1Dに供給するレジスタリード信号RRS1をオン状態とすることにより、格納されている乱数値となる数値データを読み出すようにすればよい。なお、乱数値レジスタR2Dと乱数値レジスタR1Dのそれぞれに格納された数値データを、同時に読み出して乱数値における異常の有無をチェックしてもよいし、一方のレジスタについて異常の有無をチェックしてから、他方のレジスタについて異常の有無をチェックするようにしてもよい。   Following the processing in step S567, a check value used for checking whether there is an abnormality in the random number value is set to an initial value “0000H” (step S568). Then, the stored numeric data as the random value is read from the random value register 559A serving as the random value register R1D and the random value register 559B serving as the random value register R2D included in the random number circuit 509 (step S569). For example, in the process of step S569, the bit values of the random number latch selection data RDLS1 and the random number latch selection data RDLS0 stored in the bit number [1] and the bit number [0] of the random number latch selection register RDLS are set to “0”. Specifies fetching random values by. Subsequently, the bit values of the random number acquisition specification data RDLT1 and the random value acquisition specification data RDLT0 stored in the bit number [1] and the bit number [0] of the random value acquisition specification register RDLT are set to “1”. Specifying loading into the random value register R2D or the random value register R1D. Note that setting the bit value in the bit number [1] or bit number [0] of the random value fetch specification register RDLT to “1” instructs the CPU 56 to fetch (latch) numerical data to the random number circuit 509. This corresponds to outputting a latch signal. After that, by turning on the register read signal RRS2 supplied to the random value register R2D or turning on the register read signal RRS1 supplied to the random value register R1D, the numerical data that becomes the stored random value May be read out. Note that the numerical data stored in each of the random value register R2D and the random value register R1D may be read simultaneously to check whether there is an abnormality in the random number value, or after checking whether there is an abnormality in one of the registers. The other register may be checked for abnormality.

ステップS569にて数値データを読み出した後には、その読出値を乱数検査基準値に設定する(ステップS570)。続けて、さらに乱数値レジスタ559Aや乱数値レジスタ559Bから乱数値となる数値データを読み出す(ステップS571)。なお、ステップS571での読出動作は、ステップS569での読出動作と同様の手順で行われればよい。また、ステップS569での読出動作と、ステップS571での読出動作との間には、乱数回路509で生成される乱数列RSNにおける数値データが変化するために十分な遅延時間を設けるとよい。ステップS571にて数値データを読み出した後には、乱数検査基準値と、ステップS571での読出値との排他的論理和演算を実行する(ステップS572)。また、ステップS572での演算結果と、チェック値との論理和演算を実行し、演算結果を新たなチェック値とするように更新させる(ステップS573)。例えば、チェック値はRAM55の所定領域に記憶しておき、ステップS573の処理が実行される毎に、その処理で得られた演算結果を新たなチェック値として保存すればよい。これにより、乱数値レジスタ559Aや乱数値レジスタ559Bから読み出した数値データにおける全ビットの変化が記録され、複数回の読出中に少なくとも1回は値が変化したビットであれば、チェック値において対応するビット値が“1”となる。   After the numerical data is read in step S569, the read value is set as a random number inspection reference value (step S570). Subsequently, numerical data that becomes a random value is read from the random value register 559A and the random value register 559B (step S571). Note that the reading operation in step S571 may be performed in the same procedure as the reading operation in step S569. In addition, a sufficient delay time may be provided between the read operation in step S569 and the read operation in step S571 so that the numerical data in the random number sequence RSN generated by the random number circuit 509 changes. After the numerical data is read in step S571, an exclusive OR operation is performed between the random number inspection reference value and the read value in step S571 (step S572). Further, a logical sum operation between the calculation result in step S572 and the check value is executed, and the calculation result is updated so as to be a new check value (step S573). For example, the check value may be stored in a predetermined area of the RAM 55, and each time the process of step S573 is executed, the calculation result obtained by the process may be saved as a new check value. As a result, changes in all the bits in the numerical data read from the random value register 559A and the random value register 559B are recorded, and if the bit has changed at least once during a plurality of times of reading, it corresponds in the check value. The bit value is “1”.

そこで、チェック値が「FFFFH」となったか否かを判定し(ステップS574)、なっていれば(ステップS574のY)、全ビットについてビット値の変化が認められることから、乱数値が正常に更新されていると判断して、乱数回路異常検査処理を終了する。なお、乱数値が正常に更新されていることを確認できた場合には、乱数ラッチ選択レジスタRDLSのビット番号[1]やビット番号[0]に格納される乱数ラッチ選択データRDLS1や乱数ラッチ選択データRDLS0のビット値を“1”として、入力ポートP1への信号入力に応じた乱数値レジスタR2Dへの乱数値取込や、入力ポートP0への信号入力に応じた乱数値レジスタR1Dへの乱数値取込を、指示するようにしてもよい。この実施の形態では、入力ポートP0に始動口スイッチ14aからの始動入賞信号SSを伝送する配線が接続され、入力ポートP1にも始動口スイッチ14aからの始動入賞信号SSを伝送する配線が接続される。これにより、始動入賞信号SSがオン状態となったときに乱数値レジスタR1Dへの乱数値取込を行うことができるとともに、始動入賞信号SSがオン状態となったときに乱数値レジスタR2Dへの乱数値取込を行うことができる。   Therefore, it is determined whether or not the check value is “FFFFH” (step S574), and if it is (Y in step S574), a change in the bit value is recognized for all bits, so that the random number value is normal. The random number circuit abnormality inspection process is terminated by determining that the number has been updated. When it is confirmed that the random number value has been updated normally, the random number latch selection data RDLS1 and the random number latch selection stored in the bit number [1] and the bit number [0] of the random number latch selection register RDLS are selected. The bit value of the data RDLS0 is set to “1”, the random value is taken into the random value register R2D according to the signal input to the input port P1, and the random value register R1D according to the signal input to the input port P0 You may make it instruct | indicate numerical value acquisition. In this embodiment, a wiring for transmitting the start winning signal SS from the start port switch 14a is connected to the input port P0, and a wiring for transmitting the start winning signal SS from the start port switch 14a is also connected to the input port P1. The Thereby, when the start winning signal SS is turned on, the random number value can be taken into the random value register R1D, and when the start winning signal SS is turned on, the random number value register R2D is loaded. Random value acquisition can be performed.

ステップS574にてチェック値が「FFFFH」以外と判定された場合には(ステップS574のN)、乱数値異常判定カウント値を1加算するように更新する(ステップS575)。このときには、ステップS575での更新後におけるカウント値が所定の乱数値異常判定値に達したか否かを判定する(ステップS576)。ここで、乱数値異常判定値は、乱数回路509が正常動作していれば、乱数値レジスタ559Aや乱数値レジスタ559Bから読み出される数値データの全ビットが少なくとも1回は変化するのに十分な判定回数となるように、あらかじめ定められた数値であればよい。ステップS576にて乱数値異常判定値に達していなければ、ステップS571の処理に戻り、再び乱数回路509から乱数値となる数値データを読み出して異常の有無をチェックするための判定などを行う。   If it is determined in step S574 that the check value is other than “FFFFH” (N in step S574), the random number abnormality determination count value is updated to be incremented by 1 (step S575). At this time, it is determined whether or not the count value after the update in step S575 has reached a predetermined random value abnormality determination value (step S576). Here, the random value abnormality determination value is determined so that all bits of the numerical data read from the random value register 559A and the random value register 559B change at least once if the random number circuit 509 is operating normally. It may be a predetermined numerical value so as to be the number of times. If the random number abnormality determination value has not been reached in step S576, the process returns to step S571, and numerical data that becomes a random number value is read again from the random number circuit 509, and determination for checking the presence or absence of abnormality is performed.

ステップS576にて乱数値異常判定値に達した場合には(ステップS576のY)、所定の乱数値エラー時処理を実行してから(ステップS577)、乱数回路異常検査処理を終了する。なお、乱数値エラー時処理では、例えば演出制御基板80に対して所定の演出制御コマンドを送信するための設定を行って、演出装置により乱数値の異常が検知されたことを報知させるとともに、所定のエラー解除手順(例えばシステムリセットやエラー解除スイッチの操作など)がとられるまでは、以後の処理には進まないようにしてもよく、あるいは、乱数値エラー時処理の終了とともに乱数回路異常検査処理を終了して、以後は乱数値エラー時処理を実行しない通常時とほぼ同様の遊技制御などが実行されるようにしてもよい。ここで、ステップS577にて乱数値エラー時処理を実行した後に遊技制御などが実行される場合には、乱数値エラー時処理の実行に対応したエラーの発生状態を記憶しておき、例えば、客待ちデモ指定コマンドを送信するときなどに、そのエラーの発生状態を通知する客待ちデモ指定コマンドを送信するようにしてもよい。また、乱数値エラー時処理を実行することなく、CPU56の動作を停止状態(HALT)へ移行させてもよい。   If the random value abnormality determination value is reached in step S576 (Y in step S576), a predetermined random value error process is executed (step S577), and the random circuit abnormality inspection process is terminated. In the random value error processing, for example, a setting for transmitting a predetermined effect control command to the effect control board 80 is performed to notify that an abnormality in the random number value is detected by the effect device, Until the error release procedure (for example, system reset, error release switch operation, etc.) is taken, the subsequent processing may not proceed, or the random number circuit error check processing will be performed at the end of the random number error processing. After that, game control or the like that is almost the same as the normal time when the random number error process is not executed may be executed. Here, when the game control or the like is executed after executing the random value error process in step S577, the error occurrence state corresponding to the execution of the random value error process is stored. When transmitting a waiting demonstration designation command, a customer waiting demonstration designation command for notifying the occurrence state of the error may be transmitted. Further, the operation of the CPU 56 may be shifted to the stop state (HALT) without executing the process at the time of the random value error.

このように、乱数回路異常検査処理では、例えばステップS571の処理を繰り返し実行することなどにより、乱数回路509の乱数値レジスタR1D(559A)や乱数値レジスタR2D(559B)に格納された数値データを複数回読み出す。そして、ステップS572〜ステップS574の処理を実行することなどにより読み出した数値データの全ビットを監視して、変化しないビットデータの有無にもとづき、ステップS576にて乱数回路509の動作状態に異常が発生したか否かを判定する。これにより、乱数回路509の動作状態に異常が発生していることを確実かつ容易に検知して、不正行為を防止することができる。   As described above, in the random number circuit abnormality inspection process, for example, the numerical data stored in the random value register R1D (559A) or the random value register R2D (559B) of the random number circuit 509 is obtained by repeatedly executing the process of step S571. Read multiple times. Then, all the bits of the numerical data read out by executing the processing of step S572 to step S574 are monitored, and an abnormality occurs in the operation state of the random number circuit 509 in step S576 based on the presence or absence of bit data that does not change. Determine whether or not. As a result, it is possible to reliably and easily detect that an abnormality has occurred in the operating state of the random number circuit 509 and prevent fraud.

なお、ステップS14bの乱数回路異常検査処理は、CPU56が実行するものに限定されず、CPU56以外の遊技制御用マイクロコンピュータ560における内蔵回路により乱数回路異常検査処理が実行されてもよい。一例として、乱数回路509が乱数回路異常検査処理を実行する機能を有し、乱数用クロックRCLKの周波数異常が検知されたときや、乱数値の異常が検知されたときに、エラーの発生をCPU56に通知するようにしてもよい。また、乱数回路異常検査処理は、ステップS14bのみにて実行されるものに限定されず、例えば遊技制御用マイクロコンピュータ560にてタイマ割込みが発生する毎に、後述する遊技制御用タイマ割込み処理(図45参照)にて乱数回路異常検査処理の一部または全部が実行されるようにしてもよい。すなわち、ステップS14bの乱数回路異常検査処理は、図41に示すステップS16の処理を実行した後に、実行される処理としてもよい。一例として、遊技制御用タイマ割込み処理にて乱数回路異常検査処理が実行される場合には、例えば図44に示すステップS561〜ステップS566の処理を実行する一方で、ステップS567〜ステップS577の処理は実行されないようにしてもよい。ステップS567〜ステップS577の処理は、例えばステップS569の処理を繰り返し実行して乱数回路509から数値データを繰り返し読み出すためなどに、長い処理時間を要することがあり、遊技制御用タイマ割込み処理において処理落ちが発生するおそれがある。そこで、この場合にはステップS561〜ステップS566の処理のみを実行することで、遊技制御用タイマ割込み処理における処理量を軽減し、処理落ちの発生を防止することができる。   Note that the random number circuit abnormality inspection process in step S14b is not limited to that executed by the CPU 56, and the random number circuit abnormality inspection process may be executed by a built-in circuit in the game control microcomputer 560 other than the CPU 56. As an example, the random number circuit 509 has a function of executing a random number circuit abnormality inspection process. When a frequency abnormality of the random number clock RCLK is detected, or when an abnormality of a random number value is detected, the CPU 56 detects the occurrence of an error. May be notified. Further, the random number circuit abnormality inspection process is not limited to that executed only in step S14b. For example, every time a timer interrupt occurs in the game control microcomputer 560, a game control timer interrupt process (see FIG. 45), part or all of the random number circuit abnormality inspection process may be executed. That is, the random number circuit abnormality inspection process in step S14b may be executed after the process in step S16 shown in FIG. 41 is executed. As an example, when the random number circuit abnormality inspection process is executed in the game control timer interrupt process, for example, the processes of steps S561 to S566 shown in FIG. 44 are executed, while the processes of steps S567 to S577 are executed. It may not be executed. The processing from step S567 to step S577 may take a long processing time, for example, to repeatedly execute the processing of step S569 to repeatedly read numerical data from the random number circuit 509. May occur. Therefore, in this case, by executing only the processing from step S561 to step S566, the processing amount in the game control timer interrupt processing can be reduced, and the occurrence of processing failure can be prevented.

また、CPU56は、シリアル通信回路511を初期設定するシリアル通信回路設定処理を実行する(ステップS15a)。この場合、CPU56は、シリアル通信回路設定プログラムに従ってROM54の所定領域に格納されているデータをシリアル通信回路511に設定することによって、シリアル通信回路511に払出制御用マイクロコンピュータとシリアル通信させるための設定を行う。   Further, the CPU 56 executes a serial communication circuit setting process for initial setting of the serial communication circuit 511 (step S15a). In this case, the CPU 56 sets the data stored in the predetermined area of the ROM 54 in the serial communication circuit 511 in accordance with the serial communication circuit setting program, so that the serial communication circuit 511 performs serial communication with the payout control microcomputer. I do.

シリアル通信回路511を初期設定すると、CPU56は、シリアル通信回路511の割り込み要求に応じて実行する割込処理の優先順位を初期設定する(ステップS15b)。この場合、CPU56は、割込優先順位設定プログラムに従って処理を実行することによって、割込処理の優先順位を初期設定する。   When the serial communication circuit 511 is initialized, the CPU 56 initializes the priority of interrupt processing executed in response to the interrupt request from the serial communication circuit 511 (step S15b). In this case, the CPU 56 initializes the priority of interrupt processing by executing processing according to the interrupt priority setting program.

例えば、CPU56は、各割込処理のデフォルトの優先順位を含む所定の割込処理優先順位テーブルに従って、各割込処理の優先順位を初期設定する。この実施の形態では、CPU56は、割込処理優先順位テーブルに従って、シリアル通信回路511において通信エラーが発生したことを割込原因とする割込処理を優先して実行するように初期設定する。この場合、例えば、CPU56は、通信エラーが発生したことを割込原因とする割込処理を優先して実行する旨を示す通信エラー時割込優先実行フラグをセットする。   For example, the CPU 56 initializes the priority of each interrupt process according to a predetermined interrupt process priority table including the default priority of each interrupt process. In this embodiment, the CPU 56 performs initialization according to the interrupt processing priority table so as to preferentially execute an interrupt process that causes an interrupt to occur in the serial communication circuit 511. In this case, for example, the CPU 56 sets an interrupt priority execution flag at the time of communication error indicating that priority is given to an interrupt process whose cause is an interrupt.

なお、この実施の形態では、タイマ割込とシリアル通信回路511からの割り込み要求とが同時に発生した場合、CPU56は、タイマ割込による割込処理を優先して行う。   In this embodiment, when a timer interrupt and an interrupt request from the serial communication circuit 511 occur at the same time, the CPU 56 preferentially performs an interrupt process by the timer interrupt.

また、ユーザによって各割込処理のデフォルトの優先順位を変更することもできる。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された割込処理を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、割込処理の優先順位を設定する。   In addition, the default priority of each interrupt process can be changed by the user. For example, the game control microcomputer 560 stores specification information for specifying an interrupt process set by a user (for example, a game machine manufacturer) in a predetermined storage area of the ROM 54 in advance. Then, the CPU 56 sets the priority of interrupt processing according to the designation information stored in a predetermined storage area of the ROM 54.

なお、ステップS15a〜S15bだけでなく、シリアル通信回路511の設定処理の一部は、ステップS5の処理においても実行される。例えば、ステップS5において、内蔵デバイスレジスタとして、シリアル通信回路511のボーレートレジスタや通信設定レジスタ、割込制御レジスタ、ステータスレジスタに、初期値を設定する処理が実行される。   In addition to steps S15a to S15b, a part of the setting process of the serial communication circuit 511 is also executed in the process of step S5. For example, in step S5, processing for setting initial values in the baud rate register, communication setting register, interrupt control register, and status register of the serial communication circuit 511 is executed as the built-in device register.

例えば、内蔵デバイスレジスタの設定において、CPU56は、シリアル通信回路511のボーレートを設定する。この場合、CPU56は、シリアル通信回路511のボーレートレジスタ702に、設定するボーレートに対応する設定値を書き込む。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された設定値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、設定値をボーレートレジスタ702に書き込む。例えば、CPU56によってボーレート設定値「156」が設定された場合、ボーレート生成回路703によって、式(1)およびクロック周波数「3MHz」を用いてボーレート「1201.92bps」が生成される。   For example, in setting the internal device register, the CPU 56 sets the baud rate of the serial communication circuit 511. In this case, the CPU 56 writes a setting value corresponding to the baud rate to be set in the baud rate register 702 of the serial communication circuit 511. For example, the game control microcomputer 560 stores specification information for specifying a set value set by a user (for example, a game machine manufacturer) in a predetermined storage area of the ROM 54 in advance. Then, the CPU 56 writes the setting value in the baud rate register 702 according to the designation information stored in a predetermined storage area of the ROM 54. For example, when the baud rate set value “156” is set by the CPU 56, the baud rate “1201.92 bps” is generated by the baud rate generation circuit 703 using the equation (1) and the clock frequency “3 MHz”.

また、例えば、CPU56は、シリアル通信回路511が送受信するデータのデータフォーマットを設定する。この場合、CPU56は、制御レジスタA707の各ビットの値を設定することによって、送受信データのデータ長(8ビットまたは9ビット)、パリティ機能の使用の有無を設定する。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された制御レジスタA707の各ビットの値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、制御レジスタA707の各ビットの値を設定する。   For example, the CPU 56 sets the data format of data transmitted and received by the serial communication circuit 511. In this case, the CPU 56 sets the data length (8 bits or 9 bits) of the transmission / reception data and the use / nonuse of the parity function by setting the value of each bit of the control register A707. For example, the game control microcomputer 560 stores specification information for specifying the value of each bit of the control register A707 set by the user (for example, the manufacturer of the game machine) in a predetermined storage area of the ROM 54 in advance. Yes. Then, the CPU 56 sets the value of each bit of the control register A707 according to the designation information stored in a predetermined storage area of the ROM 54.

また、例えば、CPU56は、シリアル通信回路511が発生する各割込要求を許可するか否かを設定する。この場合、CPU56は、制御レジスタB708のビット5,6,7の値を設定することによって、送信時割り込み要求(データの送信時に行う割り込み要求である送信割り込み要求や、送信完了時に行う送信完了割り込み要求)および受信時割り込み要求を許可するか否かを設定する。なお、CPU56は、送信時割り込み要求と受信時割り込み要求との両方を許可するように設定することも可能であり、送信時割り込み要求と受信時割り込み要求とのいずれか一方のみを許可するように設定することも可能である。また、CPU56は、制御レジスタC709のビット0〜3の値を設定することによって、各通信エラー時割り込み要求を許可するか否かを設定する。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された制御レジスタB708および制御レジスタC709の各ビットの値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、制御レジスタB708および制御レジスタC709の各ビットの値を設定する。   Further, for example, the CPU 56 sets whether to permit each interrupt request generated by the serial communication circuit 511. In this case, the CPU 56 sets the value of bits 5, 6, and 7 of the control register B708 to thereby send an interrupt request at the time of transmission (a transmission interrupt request that is an interrupt request when transmitting data, or a transmission completion interrupt that is performed when transmission is completed). Request) and whether or not to accept interrupt request at reception. The CPU 56 can also be set to allow both a transmission interrupt request and a reception interrupt request, and allows only one of a transmission interrupt request and a reception interrupt request. It is also possible to set. Further, the CPU 56 sets whether or not to permit an interrupt request at the time of each communication error by setting the values of the bits 0 to 3 of the control register C709. For example, the game control microcomputer 560 stores in advance a designation information for designating values of each bit of the control register B 708 and the control register C 709 set by a user (for example, a manufacturer of the gaming machine) in a predetermined storage area of the ROM 54. I remember it. Then, the CPU 56 sets the value of each bit of the control register B 708 and the control register C 709 according to the designation information stored in a predetermined storage area of the ROM 54.

また、メイン処理の初期化処理において、後述する賞球不足エラーや賞球過剰エラーを検出するために用いられる賞球個数カウンタに初期値として「250」が設定される処理も実行される。なお、賞球個数カウンタに初期値を設定する処理を、例えば、ステップS92,S12の作業領域に各初期値を順次設定する処理において実行してもよく、ステップS17〜S19の処理に移行するまでの間に実行していればよい。   In the initialization process of the main process, a process of setting “250” as an initial value to a prize ball number counter used for detecting a prize ball shortage error or a prize ball excess error, which will be described later, is also executed. The process for setting the initial value in the prize ball number counter may be executed, for example, in the process for sequentially setting each initial value in the work area in steps S92 and S12 until the process proceeds to steps S17 to S19. It only has to be executed during

そして、CPU56は、所定時間(例えば4ms)ごとに定期的にタイマ割込がかかるように遊技制御用マイクロコンピュータ560に内蔵されているCTCのレジスタの設定を行うタイマ割込設定処理を実行する(ステップS16)。すなわち、初期値として例えば4msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。この実施の形態では、4msごとに定期的にタイマ割込がかかるとする。   Then, the CPU 56 executes a timer interrupt setting process for setting a CTC register built in the game control microcomputer 560 so that a timer interrupt is periodically taken every predetermined time (for example, 4 ms) ( Step S16). That is, a value corresponding to, for example, 4 ms is set as an initial value in a predetermined register (time constant register). In this embodiment, it is assumed that a timer interrupt is periodically taken every 4 ms.

タイマ割込の設定が完了すると、CPU56は、まず、割込禁止状態にして(ステップS17)、初期値用乱数更新処理(ステップS18a)と表示用乱数更新処理(ステップS18b)を実行して、再び割込許可状態にする(ステップS19)。すなわち、CPU56は、初期値用乱数更新処理および表示用乱数更新処理が実行されるときには割込禁止状態にして、初期値用乱数更新処理および表示用乱数更新処理の実行が終了すると割込許可状態にする。   When the timer interrupt setting is completed, the CPU 56 first disables the interrupt (step S17), executes the initial value random number update process (step S18a) and the display random number update process (step S18b), The interrupt is permitted again (step S19). That is, the CPU 56 sets the interrupt disabled state when the initial value random number update process and the display random number update process are executed, and interrupts enable state when the initial value random number update process and the display random number update process are finished. To.

なお、初期値用乱数更新処理とは、初期値用乱数を発生するためのカウンタのカウント値を更新する処理である。初期値用乱数とは、大当りの種類を決定するための判定用乱数(例えば、大当りを発生させる特別図柄を決定するための大当り図柄決定用乱数や、遊技状態を確変状態に移行させるかを決定するための確変決定用乱数、普通図柄にもとづく当りを発生させるか否かを決定するための普通図柄当たり判定用乱数)を発生するためのカウンタ(判定用乱数発生カウンタ)等のカウント値の初期値を決定するための乱数である。後述する遊技制御処理(遊技制御用マイクロコンピュータが、遊技機に設けられている演出表示装置9、可変入賞球装置15、球払出装置97等の遊技用の装置を、自身で制御する処理、または他のマイクロコンピュータに制御させるために指令信号を送信する処理、遊技装置制御処理ともいう)において、判定用乱数発生カウンタのカウント値が1周すると、そのカウンタに初期値が設定される。   The initial value random number update process is a process for updating the count value of the counter for generating the initial value random number. The initial value random number is a random number for determining the type of jackpot (for example, a jackpot symbol determining random number for determining a special symbol for generating a jackpot or whether to shift the gaming state to a probable state) Initial value of the count value such as a counter (determination random number generation counter) for generating a probability variation determining random number for generating, a normal random number for determining whether or not to generate a hit based on a normal symbol It is a random number for determining the value. A game control process described later (a process in which a game control microcomputer controls itself a game device such as an effect display device 9, a variable winning ball device 15, a ball payout device 97 provided in the gaming machine, or When the count value of the determination random number generation counter makes one round in a process of transmitting a command signal to cause another microcomputer to control, or a gaming apparatus control process), an initial value is set in the counter.

また、表示用乱数とは、特別図柄表示器8の表示を決定するための乱数である。この実施の形態では、表示用乱数として、特別図柄の変動パターンを決定するための変動パターン決定用乱数や、大当りを発生させない場合にリーチとするか否かを決定するためのリーチ判定用乱数が用いられる。また、表示用乱数更新処理とは、表示用乱数を発生するためのカウンタのカウント値を更新する処理である。   The display random number is a random number for determining the display of the special symbol display 8. In this embodiment, as a display random number, a random number for determining a variation pattern for determining a variation pattern of a special symbol, or a random number for determining a reach for determining whether or not to reach when a big hit is not generated, is used. Used. The display random number update process is a process for updating the count value of the counter for generating the display random number.

また、表示用乱数更新処理が実行されるときに割込禁止状態にされるのは、表示用乱数更新処理および初期値用乱数更新処理が後述するタイマ割込処理でも実行される(すなわち、タイマ割込処理のステップS26,S27でも同じ処理が実行される)ことから、タイマ割込処理における処理と競合してしまうのを避けるためである。すなわち、ステップS18a,S18bの処理中にタイマ割込が発生してタイマ割込処理中で初期値用乱数や表示用乱数を発生するためのカウンタのカウント値を更新してしまったのでは、カウント値の連続性が損なわれる場合がある。しかし、ステップS18a,S18bの処理中では割込禁止状態にしておけば、そのような不都合が生ずることはない。   In addition, when the display random number update process is executed, the interrupt disabled state is executed by the display random number update process and the initial value random number update process also in the timer interrupt process described later (that is, the timer This is because the same process is executed in steps S26 and S27 of the interrupt process), so as to avoid conflict with the process in the timer interrupt process. That is, if a timer interrupt is generated during the processing of steps S18a and S18b and the count value of the counter for generating the initial value random number and the display random number is updated during the timer interrupt processing, The continuity of values may be impaired. However, such an inconvenience does not occur if the interrupt is prohibited during the processing of steps S18a and S18b.

ステップS19で割込許可状態に設定されると、次にステップS17の処理が実行されて割込禁止状態とされるまで、タイマ割込またはシリアル通信回路511からの割り込み要求を許可する状態となる。そして、割込許可状態に設定されている間に、タイマ割込が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、後述するタイマ割込処理を実行する。また、割込許可状態に設定されている間に、シリアル通信回路511から割り込み要求が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、後述する各割込処理(通信エラー割込処理や、受信時割込処理、送信完了割込処理)を実行する。また、本実施の形態では、ステップS17からステップS19までのループ処理の前にステップS15bを実行することによって、タイマ割込または割り込み要求を許可する状態に設定される前に、割込処理の優先順位を設定または変更する処理が行われる。   When the interrupt enabled state is set in step S19, the timer interrupt or the interrupt request from the serial communication circuit 511 is permitted until the processing in step S17 is executed and the interrupt disabled state is set next time. . When a timer interrupt occurs while the interrupt permission state is set, the CPU 56 of the game control microcomputer 560 executes a timer interrupt process to be described later. When an interrupt request is generated from the serial communication circuit 511 while the interrupt permission state is set, the CPU 56 of the game control microcomputer 560 causes each interrupt process (communication error interrupt process and reception Execute time interruption processing and transmission completion interruption processing). In this embodiment, priority is given to the interrupt process before the timer interrupt or the interrupt request is set to be permitted by executing step S15b before the loop process from step S17 to step S19. Processing for setting or changing the order is performed.

次に、タイマ割込処理について説明する。図45は、タイマ割込処理を示すフローチャートである。メイン処理の実行中に、具体的には、ステップS17〜S19のループ処理の実行中における割込許可になっている期間において、タイマ割込が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、タイマ割込の発生に応じて起動されるタイマ割込処理を実行する。タイマ割込処理において、CPU56は、まず、電源断信号が出力されたか否か(オン状態になったか否か)を検出する電源断処理(電源断検出処理)を実行する(ステップS20)。そして、CPU56は、スイッチ回路58を介して、ゲートスイッチ32a、始動口スイッチ14a、カウントスイッチ23および入賞口スイッチ29a,30a等のスイッチの検出信号を入力し、各スイッチの入力を検出する(スイッチ処理:ステップS21)。具体的には、各スイッチの検出信号を入力する入力ポートの状態がオン状態であれば、各スイッチに対応して設けられているスイッチタイマの値を+1する。   Next, the timer interrupt process will be described. FIG. 45 is a flowchart showing the timer interrupt process. When a timer interrupt occurs during execution of the main process, specifically, in a period during which interruption is permitted during execution of the loop process of steps S17 to S19, the CPU 56 of the game control microcomputer 560 A timer interrupt process that is activated in response to the occurrence of a timer interrupt is executed. In the timer interrupt process, the CPU 56 first executes a power-off process (power-off detection process) for detecting whether or not a power-off signal is output (whether the power-on signal is turned on) (step S20). Then, the CPU 56 inputs detection signals of switches such as the gate switch 32a, the start port switch 14a, the count switch 23, and the winning port switches 29a and 30a via the switch circuit 58, and detects the input of each switch (switches) Process: Step S21). Specifically, if the state of the input port for inputting the detection signal of each switch is ON, the value of the switch timer provided corresponding to each switch is incremented by one.

次に、CPU56は、特別図柄表示器8、普通図柄表示器10、特別図柄保留記憶表示器18、普通図柄保留記憶表示器41の表示制御を行う表示制御処理を実行する(ステップS22)。特別図柄表示器8および普通図柄表示器10については、ステップS36,S37で設定される出力バッファの内容に応じて各表示器に対して駆動信号を出力する制御を実行する。   Next, the CPU 56 executes display control processing for performing display control of the special symbol display 8, the normal symbol display 10, the special symbol hold storage display 18, and the normal symbol hold storage display 41 (step S22). For the special symbol display 8 and the normal symbol display 10, control for outputting a drive signal to each display is executed according to the contents of the output buffer set in steps S36 and S37.

次いで、CPU56は、磁石センサから検出信号を入力したことにもとづいて磁石センサエラー報知を行う磁石センサエラー報知処理を実行する(ステップS24)。   Next, the CPU 56 executes magnet sensor error notification processing for performing magnet sensor error notification based on the detection signal input from the magnet sensor (step S24).

次いで、CPU56は、遊技制御に用いられる普通図柄当り判定用乱数等の各判定用乱数を生成するための各カウンタのカウント値を更新する処理を行う(判定用乱数更新処理:ステップS25)。また、CPU56は、初期値用乱数を発生するためのカウンタのカウント値を更新する処理を行う(初期値用乱数更新処理:ステップS26)。さらに、CPU56は、表示用乱数を生成するためのカウンタのカウント値を更新する処理を行う(表示用乱数更新処理:ステップS27)。   Next, the CPU 56 performs a process of updating the count value of each counter for generating a random number for determination such as a random number for determination per ordinary symbol used for game control (determination random number update process: step S25). Further, the CPU 56 performs a process of updating the count value of the counter for generating the initial value random number (initial value random number update process: step S26). Further, the CPU 56 performs a process of updating the count value of the counter for generating the display random number (display random number update process: step S27).

次いで、CPU56は、特別図柄プロセス処理を行う(ステップS28)。特別図柄プロセス処理では、遊技状態に応じてパチンコ遊技機1を所定の順序で制御するための特別図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、特別図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。また、普通図柄プロセス処理を行う(ステップS29)。普通図柄プロセス処理では、普通図柄表示器10の表示状態を所定の順序で制御するための普通図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、普通図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。   Next, the CPU 56 performs special symbol process processing (step S28). In the special symbol process, the corresponding process is selected and executed according to a special symbol process flag for controlling the pachinko gaming machine 1 in a predetermined order according to the gaming state. The value of the special symbol process flag is updated during each process according to the gaming state. Further, normal symbol process processing is performed (step S29). In the normal symbol process, the corresponding process is selected and executed according to the normal symbol process flag for controlling the display state of the normal symbol display 10 in a predetermined order. The value of the normal symbol process flag is updated during each process according to the gaming state.

次いで、CPU56は、特別図柄の変動に同期する演出図柄に関する演出制御コマンドをシリアル通信回路511の送信データレジスタに設定して演出制御コマンドを送出する処理を行う(演出図柄コマンド制御処理:ステップS30)。なお、演出図柄の変動が特別図柄の変動に同期するとは、変動時間(可変表示期間)が同じであることを意味する。   Next, the CPU 56 performs a process of setting the effect control command related to the effect symbol synchronized with the change of the special symbol in the transmission data register of the serial communication circuit 511 and sending the effect control command (effect symbol command control process: step S30). . It should be noted that the fact that the variation of the effect symbol is synchronized with the variation of the special symbol means that the variation time (variable display period) is the same.

次いで、CPU56は、例えばホール管理用コンピュータに供給される始動口信号、図柄確定回数1信号、大当り1〜3信号、時短信号、セキュリティ信号などのデータを出力する情報出力処理を行う(ステップS31)。   Next, the CPU 56 performs information output processing for outputting data such as a start port signal supplied to the hall management computer, a symbol determination number of times 1 signal, a jackpot 1 to 3 signal, a time reduction signal, a security signal, and the like (step S31). ).

次いで、CPU56は、シリアル通信回路511を介して、払出制御用マイクロコンピュータ370と信号を送受信(入出力)する処理を実行するとともに、入賞が発生した場合には入賞口スイッチ29a,30a等の検出信号にもとづく賞球個数の設定などを行う賞球処理を実行する(ステップS32)。なお、この実施の形態では、入賞口スイッチ29a,30a等がオンしたことにもとづく入賞検出に応じて、賞球個数コマンドの下位4ビットを異ならせることにより賞球個数を示すデータを賞球個数コマンドに設定し、当該設定した賞球個数コマンドをシリアル通信回路511を介して払出制御用マイクロコンピュータ370に出力する。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、賞球個数を示すデータが設定された賞球個数コマンドの受信に応じて球払出装置97を駆動する。   Next, the CPU 56 executes processing for transmitting / receiving (input / output) signals to / from the payout control microcomputer 370 via the serial communication circuit 511, and when a winning occurs, detection of the winning opening switches 29a, 30a, etc. Prize ball processing is performed for setting the number of prize balls based on the signal (step S32). In this embodiment, data indicating the number of winning balls is obtained by changing the lower 4 bits of the winning ball number command in response to detection of winning based on the winning opening switch 29a, 30a being turned on. The command is set to a command, and the set prize ball number command is output to the payout control microcomputer 370 via the serial communication circuit 511. The payout control microcomputer 370 mounted on the payout control board 37 drives the ball payout device 97 in response to receiving a prize ball number command in which data indicating the number of prize balls is set.

また、遊技機の制御状態を遊技機外部で確認できるようにするための試験信号を出力する処理である試験端子処理を実行する(ステップS33)。また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポートバッファ)が設けられているのであるが、CPU56は、出力ポート0のRAM領域における接続信号に関する内容およびソレノイドに関する内容を出力ポートに出力する(ステップS34:出力処理)。そして、CPU56は、保留記憶数の増減をチェックする記憶処理を実行する(ステップS35)。   In addition, a test terminal process, which is a process for outputting a test signal for enabling the control state of the gaming machine to be confirmed outside the gaming machine, is executed (step S33). In this embodiment, a RAM area (output port buffer) corresponding to the output state of the output port is provided. However, the CPU 56 relates to the connection signal and the contents related to the solenoid in the RAM area of the output port 0. Is output to the output port (step S34: output processing). And CPU56 performs the memory | storage process which checks the increase / decrease in a pending | holding memory | storage number (step S35).

また、CPU56は、特別図柄プロセスフラグの値に応じて特別図柄の演出表示を行うための特別図柄表示制御データを特別図柄表示制御データ設定用の出力バッファに設定する特別図柄表示制御処理を行う(ステップS36)。さらに、CPU56は、普通図柄プロセスフラグの値に応じて普通図柄の演出表示を行うための普通図柄表示制御データを普通図柄表示制御データ設定用の出力バッファに設定する普通図柄表示制御処理を行う(ステップS37)。   Further, the CPU 56 performs special symbol display control processing for setting special symbol display control data for effect display of the special symbol in the output buffer for setting the special symbol display control data according to the value of the special symbol process flag ( Step S36). Further, the CPU 56 performs a normal symbol display control process for setting normal symbol display control data for effect display of the normal symbol in an output buffer for setting the normal symbol display control data according to the value of the normal symbol process flag ( Step S37).

次いで、CPU56は、各状態表示灯の表示を行うための状態表示制御データを状態表示制御データ設定用の出力バッファに設定する状態表示灯表示処理を行う(ステップS38)。この場合、遊技状態が時短状態である場合には、時短状態であることを示す状態表示灯の表示を行うための状態表示制御データを出力バッファに設定する。なお、遊技状態が高確率状態(例えば、確変状態)にも制御される場合には、高確率状態であることを示す状態表示灯の表示を行うための状態表示制御データを出力バッファに設定するようにしてもよい。   Next, the CPU 56 performs a status display lamp display process for setting status display control data for displaying each status display lamp in an output buffer for setting the status display control data (step S38). In this case, when the gaming state is the short time state, the state display control data for displaying the state indicator lamp indicating the short time state is set in the output buffer. When the gaming state is also controlled to a high probability state (for example, a probability variation state), state display control data for displaying a state indicator lamp indicating the high probability state is set in the output buffer. You may do it.

次いで、CPU56は、遊技機のエラー状態などを表示させるために遊技機のエラー状態などを示す情報が設定された枠状態表示コマンドを演出制御用マイクロコンピュータ100に対して送信する枠状態出力処理を実行する(ステップS39)。   Next, the CPU 56 performs frame state output processing for transmitting a frame state display command in which information indicating the error state of the gaming machine is set to display the error state of the gaming machine to the production control microcomputer 100. Execute (Step S39).

その後、割込許可状態に設定し(ステップS40)、処理を終了する。   Thereafter, the interrupt permission state is set (step S40), and the process ends.

以上の制御によって、この実施の形態では、遊技制御処理は4ms毎に起動されることになる。なお、遊技制御処理は、タイマ割込処理におけるステップS21〜S39(ステップS31,S33を除く。)の処理に相当する。また、この実施の形態では、タイマ割込処理で遊技制御処理が実行されているが、タイマ割込処理では例えば割込が発生したことを示すフラグのセットのみがなされ、遊技制御処理はメイン処理において実行されるようにしてもよい。   With the above control, in this embodiment, the game control process is started every 4 ms. The game control process corresponds to the processes of steps S21 to S39 (except for steps S31 and S33) in the timer interrupt process. In this embodiment, the game control process is executed by the timer interrupt process. However, in the timer interrupt process, for example, only a flag indicating that an interrupt has occurred is set, and the game control process is performed by the main process. May be executed.

図46および図47は、ステップS20の電源断処理の一例を示すフローチャートである。電源断処理において、遊技制御用マイクロコンピュータ560は、まず、電源断信号が出力されているか否か(オン状態になっているか否か)確認する(ステップS450)。オン状態でなければ、RAM55に形成されているバックアップ監視タイマの値を0クリアする(ステップS451)。オン状態であれば、バックアップ監視タイマの値を1増やす(ステップS452)。そして、バックアップ監視タイマの値が判定値(例えば2)と一致すれば(ステップS453)、ステップS454以降の電力供給停止時処理すなわち電力の供給停止のための準備処理を実行する。つまり、遊技の進行を制御する状態から遊技状態を保存させるための電力供給停止時処理(電源断時制御処理)を実行する状態に移行する。なお、「RAMに形成されている」とは、RAM内の領域であることを意味する。   46 and 47 are flowcharts illustrating an example of the power-off process in step S20. In the power-off process, the game control microcomputer 560 first checks whether or not a power-off signal is output (whether or not it is turned on) (step S450). If not on, the value of the backup monitoring timer formed in the RAM 55 is cleared to 0 (step S451). If it is on, the value of the backup monitoring timer is incremented by 1 (step S452). If the value of the backup monitoring timer matches the determination value (for example, 2) (step S453), the power supply stop processing after step S454, that is, the preparation processing for power supply stop is executed. That is, the state shifts from the state in which the progress of the game is controlled to the state in which the power supply stop process (the power-off control process) for saving the game state is executed. Note that “formed in the RAM” means an area in the RAM.

バックアップ監視タイマと判定値とを用いることによって、判定値に相当する時間だけ電源断信号のオン状態が継続したら、電力供給停止時処理が開始される。すなわち、ノイズ等で一瞬電源断信号のオン状態が発生しても、誤って電力供給停止時処理が開始されるようなことはない。なお、バックアップ監視タイマの値は、遊技機への電力供給が停止しても、所定期間はバックアップ電源によって保存される。従って、メイン処理におけるステップS8では、バックアップ監視タイマの値が判定値と同じ値になっていることによって、電力供給停止時処理の処理結果が保存されていることを確認できる。   By using the backup monitoring timer and the determination value, if the power-off signal is kept on for a time corresponding to the determination value, the power supply stop process is started. That is, even when the power-off signal is turned on for a moment due to noise or the like, the power supply stop process is not erroneously started. Note that the value of the backup monitoring timer is stored by the backup power source for a predetermined period even when power supply to the gaming machine is stopped. Therefore, in step S8 in the main process, it can be confirmed that the process result of the power supply stop process is stored because the value of the backup monitoring timer is the same as the determination value.

電力供給停止時処理において、遊技制御用マイクロコンピュータ560は、パリティデータを作成する(ステップS454〜S463)。すなわち、まず、クリアデータ(00)をチェックサムデータエリアにセットし(ステップS454)、電力供給停止時でも内容が保存されるべきRAM領域の先頭アドレスに相当するチェックサム算出開始アドレスをポインタにセットする(ステップS455)。また、電力供給停止時でも内容が保存されるべきRAM領域の最終アドレスに相当するチェックサム算出回数をセットする(ステップS456)。   In the power supply stop process, the game control microcomputer 560 creates parity data (steps S454 to S463). That is, first, clear data (00) is set in the checksum data area (step S454), and the checksum calculation start address corresponding to the start address of the RAM area in which the contents are to be stored even when power supply is stopped is set in the pointer. (Step S455). Further, the number of checksum calculations corresponding to the final address of the RAM area where the contents are to be stored even when the power supply is stopped is set (step S456).

次いで、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和を演算する(ステップS457)。演算結果をチェックサムデータエリアにストアするとともに(ステップS458)、ポインタの値を1増やし(ステップS459)、チェックサム算出回数の値を1減算する(ステップS460)。そして、ステップS457〜S460の処理を、チェックサム算出回数の値が0になるまで繰り返す(ステップS461)。   Next, an exclusive OR of the contents of the checksum data area and the contents of the RAM area pointed to by the pointer is calculated (step S457). The calculation result is stored in the checksum data area (step S458), the pointer value is incremented by 1 (step S459), and the checksum calculation count value is decremented by 1 (step S460). Then, the processes in steps S457 to S460 are repeated until the value of the checksum calculation count becomes 0 (step S461).

チェックサム算出回数の値が0になったら、遊技制御用マイクロコンピュータ560は、チェックサムデータエリアの内容の各ビットの値を反転する(ステップS462)。そして、反転後のデータをチェックサムデータエリアにストアする(ステップS463)。このデータが、電源投入時にチェックされるパリティデータになる。次いで、RAMアクセスレジスタにアクセス禁止値を設定する(ステップS471)。以後、内蔵RAM55のアクセスができなくなる。   When the value of the checksum calculation count becomes 0, the game control microcomputer 560 inverts the value of each bit of the contents of the checksum data area (step S462). Then, the inverted data is stored in the checksum data area (step S463). This data becomes parity data to be checked when the power is turned on. Next, an access prohibition value is set in the RAM access register (step S471). Thereafter, the built-in RAM 55 cannot be accessed.

さらに、遊技制御用マイクロコンピュータ560は、ROM54に格納されているポートクリア設定テーブルの先頭アドレスをポインタにセットする(ステップS472)。ポートクリア設定テーブルにおいて、先頭アドレスには処理数(クリアすべき出力ポートの数)が設定され、次いで、出力ポートのアドレスおよび出力値データ(クリアデータ:出力ポートの各ビットのオフ状態の値)が、処理数分の出力ポートについて順次設定されている。   Further, the game control microcomputer 560 sets the head address of the port clear setting table stored in the ROM 54 as a pointer (step S472). In the port clear setting table, the number of processes (the number of output ports to be cleared) is set to the first address, and then the output port address and output value data (clear data: the value of the off state of each bit of the output port) However, the output ports for the number of processes are sequentially set.

遊技制御用マイクロコンピュータ560は、ポインタが指すアドレスのデータ(すなわち処理数)をロードする(ステップS473)。また、ポインタの値を1増やし(ステップS474)、ポインタが指すアドレスのデータ(すなわち出力ポートのアドレス)をロードする(ステップS475)。さらに、ポインタの値を1増やし(ステップS476)、ポインタが指すアドレスのデータ(すなわち出力値データ)をロードする(ステップS477)。そして、出力値データを出力ポートに出力する(ステップS478)。その後、処理数を1減らし(ステップS479)、処理数が0でなければステップS474に戻る。処理数が0であれば、すなわち、クリアすべき出力ポートを全てクリアしたら、タイマ割込を停止し(ステップS481)、ループ処理に入る。なお、出力ポートをクリアする処理をチェックサムデータを作成する処理の前に実行してもよい。例えば、CPU56は、ステップS453でYと判定した後、直ちにステップS472〜S480の出力ポートクリアの処理を実行するようにしてもよい。   The game control microcomputer 560 loads data at the address pointed to by the pointer (that is, the number of processes) (step S473). Further, the value of the pointer is incremented by 1 (step S474), and the data of the address pointed to by the pointer (that is, the address of the output port) is loaded (step S475). Further, the value of the pointer is incremented by 1 (step S476), and the data of the address pointed to by the pointer (that is, output value data) is loaded (step S477). Then, the output value data is output to the output port (step S478). Thereafter, the number of processes is reduced by 1 (step S479), and if the number of processes is not 0, the process returns to step S474. If the number of processes is 0, that is, if all the output ports to be cleared are cleared, the timer interrupt is stopped (step S481) and the loop process is started. Note that the process of clearing the output port may be executed before the process of creating checksum data. For example, the CPU 56 may execute the output port clear processing in steps S472 to S480 immediately after determining Y in step S453.

ループ処理では、電源断信号がオフ状態になったか否かを監視する(ステップS482)。そして、電源断信号がオン状態の間は(ステップS482のY)、ステップS482の処理を繰り返し実行して待機する。これに対して、ステップS482にて電源断信号がオフ状態となったときには(ステップS482のY)、乱数ラッチフラグをクリアするための処理を実行する。   In the loop processing, it is monitored whether or not the power-off signal is turned off (step S482). Then, while the power-off signal is in the ON state (Y in step S482), the process in step S482 is repeatedly executed to stand by. In contrast, when the power-off signal is turned off in step S482 (Y in step S482), processing for clearing the random number latch flag is executed.

すなわち、乱数ラッチフラグレジスタRDFMのビット番号[0]に格納される乱数ラッチフラグデータRDFM0のビット値が“1”であるか否かに応じて、乱数値レジスタR1Dに対応する乱数ラッチフラグがオンであるか否かを判定する(ステップS483)。そして、この乱数ラッチフラグがオンであれば(ステップS483のY)、乱数値レジスタR1Dの読み出しを行うことにより、乱数ラッチフラグデータRDFM0のビット値を“0”にクリアして、対応する乱数ラッチフラグをオフ状態とする(ステップS484)。また、ステップS483にて乱数ラッチフラグデータRDFM0で指定される乱数ラッチフラグがオフである場合や(ステップS483のN)、ステップS484の処理を実行した後には、乱数ラッチフラグレジスタRDFMのビット番号[1]に格納される乱数ラッチフラグデータRDFM1のビット値が“1”であるか否かに応じて、乱数値レジスタR2Dに対応する乱数ラッチフラグがオンであるか否かを判定する(ステップS485)。このとき、乱数ラッチフラグがオンであれば(ステップS485のY)、乱数値レジスタR2Dの読み出しを行うことにより、乱数ラッチフラグデータRDFM1のビット値を“0”にクリアして、対応する乱数ラッチフラグをオフ状態とする(ステップS486)。こうしたステップS484やステップS486の処理により、乱数ラッチフラグがオフ状態とされて、乱数値レジスタR1Dや乱数値レジスタR2Dに新たな数値データの格納が許可された状態に設定できる。なお、ステップS484やステップS486の処理により乱数値レジスタR1Dや乱数値レジスタR2Dから読み出された数値データは、特図表示結果を「大当り」として大当り遊技状態に制御するか否かの判定処理などには使用せず、そのまま破棄(消去)すればよい。また、ステップS483〜ステップS486の処理に代えて、乱数ラッチフラグデータRDFM0や乱数ラッチフラグデータRDFM1の値にかかわらず、乱数値レジスタR1Dと乱数値レジスタR2Dの読み出しを行うことにより、各乱数ラッチフラグをオフ状態とする処理が実行されてもよい。なお、この実施の形態では、始動入賞口が1つであるので、乱数値レジスタR1D,R2Dのうちの一方のみを使用するようにし、一方の乱数値レジスタの読み出しのみを行うようにしてもよい。また、例えば、遊技機を3以上の始動入賞口を備えるように構成してもよく、始動入賞口が3つある場合には3つの乱数値レジスタの読み出しを行うようにしてもよい。そのように、使用されている乱数値レジスタ全ての読み込みを行い、それぞれ乱数ラッチフラグがクリアされるように構成されていればよい。   That is, the random number latch flag corresponding to the random value register R1D is turned on according to whether or not the bit value of the random number latch flag data RDFM0 stored in the bit number [0] of the random number latch flag register RDFM is “1”. It is determined whether or not there is (step S483). If this random number latch flag is on (Y in step S483), the random value register R1D is read to clear the bit value of the random number latch flag data RDFM0 to “0”, and the corresponding random number latch flag is set. An off state is set (step S484). If the random number latch flag specified by the random number latch flag data RDFM0 is OFF in step S483 (N in step S483) or after executing the processing in step S484, the bit number [1 of the random number latch flag register RDFM is set. ], It is determined whether or not the random number latch flag corresponding to the random number register R2D is on (step S485). At this time, if the random number latch flag is ON (Y in step S485), the random value register R2D is read to clear the bit value of the random number latch flag data RDFM1 to “0”, and the corresponding random number latch flag is set. An off state is set (step S486). Through the processing in step S484 and step S486, the random number latch flag is turned off, and the random number value register R1D and the random number value register R2D can be set in a state where storage of new numerical data is permitted. Note that the numerical data read from the random value register R1D or the random value register R2D by the processing in step S484 or step S486 is a process for determining whether or not to control the big hit gaming state with the special figure display result as “big hit”. It can be discarded (erased) as it is. Further, instead of the processing of step S483 to step S486, the random number latch flag is set by reading the random number value register R1D and the random number value register R2D regardless of the values of the random number latch flag data RDFM0 and the random number latch flag data RDFM1. Processing to turn off may be performed. In this embodiment, since there is one start winning opening, only one of the random number registers R1D and R2D may be used, and only one of the random number registers may be read. . Further, for example, the gaming machine may be configured to include three or more start winning ports, and when there are three start winning ports, three random number value registers may be read. As such, it is only necessary to read all the random value registers that are used and clear the random number latch flags.

ステップS485にて乱数ラッチフラグデータRDFM1で指定される乱数ラッチフラグがオフであるときや(ステップS485のN)、ステップS486の処理を実行した後には、所定の電断復旧時における設定を行った後(ステップS487)、図41に示すメイン処理の先頭にリターンする。一例として、ステップS487の処理では、CPU56に内蔵されたスタックポインタに電源断復旧時ベクタテーブルの記憶アドレスを格納し、遊技制御用タイマ割込み処理から復帰(リターン)させる。ここで、電源断復旧時ベクタテーブルは、ROM54に記憶された制御コード(遊技制御プログラム)の先頭アドレスを指定するものであればよい。図45に示すタイマ割込処理のような割込処理から復帰(リターン)するときには、スタックポインタで指定されるアドレスの記憶データが復帰アドレスとして読み出される。こうして、ステップS487の処理を実行した後には、CPU56により、ROM54に記憶されている制御コードの先頭から、遊技制御の実行を開始(再開)させることができる。   When the random number latch flag specified by the random number latch flag data RDFM1 is OFF in step S485 (N in step S485) or after performing the process in step S486, after setting for a predetermined power failure recovery is performed. (Step S487), the process returns to the top of the main process shown in FIG. As an example, in the process of step S487, the storage address of the power-off recovery vector table is stored in the stack pointer built in the CPU 56, and the game control timer interrupt process is returned (returned). Here, the power-off recovery vector table may be any table that specifies the head address of the control code (game control program) stored in the ROM 54. When returning from an interrupt process such as the timer interrupt process shown in FIG. 45, the stored data at the address specified by the stack pointer is read as the return address. Thus, after executing the processing of step S487, the CPU 56 can start (restart) the execution of the game control from the head of the control code stored in the ROM 54.

以上の処理によって、電力供給が停止する場合には、ステップS454〜S481の電力供給停止時処理が実行され、電力供給停止時処理が実行されたことを示すデータ(判定値になっているバックアップ監視タイマのおよびチェックサム)がバックアップRAMへストアされ、RAMアクセスが禁止状態にされ、出力ポートがクリアされ、かつ、遊技制御処理を実行するためのタイマ割込が禁止状態に設定される。   When the power supply is stopped by the above processing, the power supply stop processing in steps S454 to S481 is executed, and data indicating that the power supply stop processing has been executed (backup monitoring having a determination value). Timer and checksum) are stored in the backup RAM, RAM access is disabled, the output port is cleared, and timer interrupt for executing the game control process is set to disabled.

この実施の形態では、RAM55がバックアップ電源によって電源バックアップ(遊技機への電力供給が停止しても所定期間はRAM55の内容が保存されこと)されている。この例では、ステップS452〜S479の処理によって、バックアップ監視タイマの値とともに、電源断信号が出力されたときのRAM55の内容にもとづくチェックサムもRAM55のバックアップ領域に保存される。遊技機への電力供給が停止した後、所定期間内に電力供給が復旧したら、遊技制御手段は、上述したステップS41〜S44の処理によって、RAM55に保存されているデータ(電力供給が停止した直前の遊技制御手段による制御状態である遊技状態を示すデータ(例えば、プロセスフラグの状態、大当り中フラグの状態、確変フラグの状態、出力ポートの出力状態等)を含む)に従って、遊技状態を、電力供給が停止した直前の状態に戻すことができる。なお、電力供給停止の期間が所定期間を越えたらバックアップ監視タイマの値とチェックサムとが正規の値とは異なるはずであるから、その場合には、ステップS10〜S13の初期化処理が実行される。   In this embodiment, the RAM 55 is backed up by a backup power source (the contents of the RAM 55 are preserved for a predetermined period even when the power supply to the gaming machine is stopped). In this example, the checksum based on the content of the RAM 55 when the power-off signal is output is stored in the backup area of the RAM 55 together with the value of the backup monitoring timer by the processing of steps S452 to S479. After the power supply to the gaming machine is stopped, when the power supply is restored within a predetermined period, the game control means performs the data stored in the RAM 55 (immediately before the power supply is stopped) by the processing of steps S41 to S44 described above. In accordance with the data indicating the game state that is the control state by the game control means (for example, including the process flag state, the big hit flag state, the probability change flag state, the output port output state, etc.) It is possible to return to the state immediately before the supply is stopped. If the power supply stop period exceeds the predetermined period, the value of the backup monitoring timer and the checksum should be different from the regular values. In this case, the initialization process of steps S10 to S13 is executed. The

以上のように、電力供給停止時処理(電力の供給停止のための準備処理)によって、遊技状態を電力供給が停止した直前の状態に戻すためのデータが確実に変動データ記憶手段(この例ではRAM55の一部の領域)に保存される。よって、停電等による電源断が生じても、所定期間内に電源が復旧すれば、遊技状態を電力供給が停止した直前の状態に戻すことができる。   As described above, the power supply stop process (preparation process for stopping the power supply) ensures that the data for returning the gaming state to the state immediately before the power supply stopped is the fluctuation data storage means (in this example) Stored in a part of the RAM 55). Therefore, even if the power is cut off due to a power failure or the like, if the power is restored within a predetermined period, the gaming state can be returned to the state immediately before the power supply is stopped.

また、電源断信号がオフ状態になった場合には、ステップS1に戻る。その場合、電力供給停止時処理が実行されたことを示すデータが設定されているので、ステップS91〜S93の復旧処理が実行される。よって、電力供給停止時処理を実行した後に払出制御基板37からの電源断信号がオフ状態になったときには、遊技の進行を制御する状態に戻る。従って、電源瞬断等が生じても、遊技制御処理が停止してしまうようなことはなく、自動的に、遊技制御処理が続行される。   If the power-off signal is turned off, the process returns to step S1. In this case, since data indicating that the power supply stop process has been executed is set, the recovery process of steps S91 to S93 is executed. Therefore, when the power-off signal from the payout control board 37 is turned off after executing the power supply stop process, the process returns to the state of controlling the progress of the game. Therefore, even if a power interruption or the like occurs, the game control process does not stop, and the game control process is automatically continued.

次に、メイン処理における賞球処理(ステップS32)を説明する。まず、主基板31と払出制御基板37との間で送受信される払出制御信号(接続信号、賞球情報)および払出制御コマンドについて説明する。   Next, the prize ball process (step S32) in the main process will be described. First, payout control signals (connection signals, prize ball information) and payout control commands transmitted and received between the main board 31 and the payout control board 37 will be described.

図48は、遊技制御手段から払出制御手段に対して出力される制御信号の内容の一例を示す説明図である。この実施の形態では、払出制御等に関する各種の制御を行うために、主基板31と払出制御基板37との間で制御信号として接続信号および賞球情報が送受信される。図48に示すように、接続信号は、主基板31の立ち上がり時(遊技制御手段が遊技制御処理を開始したとき)に出力され、払出制御基板37に対して主基板31が立ち上がったことを通知するための信号(主基板31の接続信号)である。また、接続信号は、賞球払出が可能な状態であることを示す。なお、接続信号は、遊技制御用マイクロコンピュータ560のI/Oポート57および出力回路67Aを介して出力され、払出制御用マイクロコンピュータ370の入力回路373AおよびI/Oポート372eを介して払出制御用マイクロコンピュータ370に入力される。接続信号は、1ビットのデータであり、1本の信号線によって送信される。なお、接続信号は、電源投入時に実行されるステップS4の処理によって出力ポート0の接続信号に対応するビットに初期値が設定されることによって出力可能な状態となる(具体的にはステップS34の処理によって出力されるが、ステップS4のタイミングで出力されるようにしてもよい)。また、賞球情報は、払出制御基板37側において賞球の払出を1個検出するごとに、主基板31に対して、10個の賞球払出を検出したことを通知するための情報である。なお、賞球情報は、払出制御用マイクロコンピュータ370のI/Oポート372aおよび出力回路373Bを介して出力され、遊技制御用マイクロコンピュータ560の入力回路67BおよびI/Oポート57を介して遊技制御用マイクロコンピュータ560に入力される。賞球情報は、1ビットのデータであり、1本の信号線によって送信される。   FIG. 48 is an explanatory diagram showing an example of the contents of a control signal output from the game control means to the payout control means. In this embodiment, a connection signal and prize ball information are transmitted and received as control signals between the main board 31 and the payout control board 37 in order to perform various controls relating to payout control and the like. As shown in FIG. 48, the connection signal is output when the main board 31 rises (when the game control means starts the game control process), and notifies the payout control board 37 that the main board 31 has risen. This is a signal (connection signal for the main board 31). The connection signal indicates that the prize ball can be paid out. The connection signal is output via the I / O port 57 and the output circuit 67A of the game control microcomputer 560, and is used for payout control via the input circuit 373A and the I / O port 372e of the payout control microcomputer 370. It is input to the microcomputer 370. The connection signal is 1-bit data and is transmitted through one signal line. Note that the connection signal is ready to be output by setting an initial value to the bit corresponding to the connection signal of the output port 0 by the process of step S4 executed when the power is turned on (specifically, in step S34). Although it is output by processing, it may be output at the timing of step S4). The prize ball information is information for notifying the main board 31 that ten prize balls have been detected each time one prize ball has been detected on the payout control board 37 side. . The prize ball information is output via the I / O port 372a and the output circuit 373B of the payout control microcomputer 370, and the game control is performed via the input circuit 67B and the I / O port 57 of the game control microcomputer 560. To the microcomputer 560. The prize ball information is 1-bit data and is transmitted through one signal line.

払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560と同様に、シリアル通信回路380を内蔵する。また、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路511と、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380との間で、各種払出制御コマンドが送受信される。なお、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380の構成及び機能は、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路511の構成及び機能と同様である。   Similarly to the game control microcomputer 560, the payout control microcomputer 370 includes a serial communication circuit 380. Various payout control commands are transmitted and received between the serial communication circuit 511 built in the game control microcomputer 560 and the serial communication circuit 380 built in the payout control microcomputer 370. The configuration and function of the serial communication circuit 380 built in the payout control microcomputer 370 are the same as the configuration and function of the serial communication circuit 511 built in the game control microcomputer 560.

図49は、遊技制御手段と払出制御手段との間で送受信される制御コマンドの内容の一例を示す説明図である。この実施の形態では、払出制御等に関する各種の制御を行うために、主基板31と払出制御基板37とのマイクロコンピュータの間で各種払出制御コマンドが送受信される。   FIG. 49 is an explanatory diagram showing an example of the contents of control commands transmitted and received between the game control means and the payout control means. In this embodiment, various payout control commands are transmitted and received between the microcomputers of the main board 31 and the payout control board 37 in order to perform various controls related to payout control and the like.

上述したように、払出制御コマンドは、8ビットのデータ(2進8桁のデータ)によって構成され、設定された8ビットのデータの内容によって所定の内容を示す制御コマンドとして出力される。   As described above, the payout control command is composed of 8-bit data (binary 8-digit data), and is output as a control command indicating predetermined contents depending on the contents of the set 8-bit data.

接続確認コマンドは、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続状態が正常であるか否かを確認するために一定間隔(1s)毎に遊技制御用マイクロコンピュータ560から送信される制御コマンドである。接続確認コマンドのデータの内容は「A0(H)」すなわち「10100000」とされている。   The connection confirmation command is sent from the game control microcomputer 560 at regular intervals (1 s) in order to confirm whether or not the connection state between the game control microcomputer 560 and the payout control microcomputer 370 is normal. Control command to be sent. The data content of the connection confirmation command is “A0 (H)”, that is, “10100000”.

接続OKコマンドは、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続状態が正常であることを通知するための制御コマンドであって、払出制御用マイクロコンピュータ370が接続確認コマンドの受信に応じて応答信号として送信する制御コマンドである。接続OKコマンドのデータの内容は「8x(H)」すなわち「1000xxxx」とされている。ここで、接続OKコマンドの2バイト目の「xxxx」については、図50に示すように、賞球エラー(入賞にもとづく賞球払出動作や球貸し要求にもとづく球貸払出動作が正常に行えない状態になった異常状態:具体的には、図96に示す主制御未接続エラーや、払出スイッチ異常検知エラー1、払出スイッチ異常検知エラー2、払出ケースエラー、主制御通信エラー)が発生した場合には、1ビット目(ビット0)の「x」に「1」が設定される。また、満タンエラーが発生した場合には、2ビット目(ビット1)の「x」に「1」が設定される。また、球切れエラーが発生した場合には、3ビット目(ビット2)の「x」に「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが発生した場合には、4ビット目(ビット3)の「x」に「1」が設定される。このようにして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続確認を行っている最中に、払出制御用マイクロコンピュータ370における所定のエラーの発生を遊技制御用マイクロコンピュータ560に通知することができる。なお、図50に示す例では、接続OKコマンドに、制御状態として払い出しに関するエラー(賞球エラーや、満タンエラー、球切れエラー、払出個数異常エラー)を示す値を設定する場合を示したが、エラー以外の制御状態を接続OKコマンドに設定するようにしてもよい。例えば、払出制御用マイクロコンピュータ370は、賞球払出動作中である旨や貸し球払出動作中である旨を示す値を制御状態として接続OKコマンドにセットして、遊技制御用マイクロコンピュータ560に送信するようにしてもよい。   The connection OK command is a control command for notifying that the connection state between the game control microcomputer 560 and the payout control microcomputer 370 is normal, and the payout control microcomputer 370 issues a connection confirmation command. Is a control command that is transmitted as a response signal in response to the reception of. The data content of the connection OK command is “8x (H)”, that is, “1000xxxx”. Here, with regard to “xxxx” in the second byte of the connection OK command, as shown in FIG. 50, a winning ball error (a winning ball paying operation based on winning or a ball lending paying operation based on a ball lending request cannot be normally performed. 96: When the main control unconnected error shown in FIG. 96, payout switch abnormality detection error 1, payout switch abnormality detection error 2, payout case error, main control communication error) occur. In this case, “1” is set to “x” of the first bit (bit 0). When a full tank error occurs, “1” is set to “x” of the second bit (bit 1). When a ball break error occurs, “1” is set to “x” of the third bit (bit 2). In addition, when a payout number abnormality error occurs when the cumulative value of the number of payouts of prize balls and rental balls, which will be described later, reaches a predetermined value (for example, 2000), the fourth bit (bit 3) “1” is set to “x” of In this way, during the confirmation of the connection between the game control microcomputer 560 and the payout control microcomputer 370, the occurrence of a predetermined error in the payout control microcomputer 370 is detected. 560 can be notified. In the example shown in FIG. 50, a case has been shown in which a value indicating a payout error (award ball error, full tank error, out of ball error, payout number error error) is set as a control state in the connection OK command. A control state other than an error may be set in the connection OK command. For example, the payout control microcomputer 370 sets a value indicating that a prize ball payout operation or a lending ball payout operation is in a control state to the connection OK command, and transmits it to the game control microcomputer 560. You may make it do.

賞球個数コマンドは、払出要求を行う遊技球の個数(0〜15個)を通知するための制御コマンドであって、遊技制御用マイクロコンピュータ560が入賞の発生にもとづいて送信する制御コマンドである。賞球個数コマンドのデータの内容は「5x(H)」すなわち「0101xxxx」とされている。この実施の形態では、始動口スイッチ14aで遊技球が検出されると3個の賞球払出を行い、入賞口スイッチ29a,30aのいずれかで遊技球が検出されると10個の賞球払出を行い、カウントスイッチ23で遊技球が検出されると15個の賞球払出を行う。よって、始動口スイッチ14aで遊技球が検出された場合、賞球数3個を通知するための賞球個数コマンド「01010011」が送信され、入賞口スイッチ29a,30aのいずれかで遊技球が検出された場合、賞球数10個を通知するための賞球個数コマンド「01011010」が送信され、カウントスイッチ23で遊技球が検出された場合、賞球数15個を通知するための賞球個数コマンド「01011111」が送信される。   The award ball number command is a control command for notifying the number (0 to 15) of game balls for which a payout request is made, and is a control command transmitted by the game control microcomputer 560 based on the occurrence of a win. . The content of the prize ball number command data is “5x (H)”, that is, “0101xxx”. In this embodiment, three game balls are paid out when a game ball is detected by the start port switch 14a, and 10 game balls are paid out when a game ball is detected by any of the game port switches 29a and 30a. When a game ball is detected by the count switch 23, 15 prize balls are paid out. Therefore, when a game ball is detected by the start port switch 14a, a prize ball number command “01010011” for notifying the number of prize balls of 3 is transmitted, and the game ball is detected by one of the winning port switches 29a and 30a. If a prize ball number command “01011010” for notifying 10 prize balls is transmitted and a game ball is detected by the count switch 23, the number of prize balls for notifying 15 prize balls is sent. The command “0101111” is transmitted.

賞球個数受付コマンドは、賞球個数コマンドで指定された賞球個数を受け付けたことを通知するための制御コマンドであって、払出制御用マイクロコンピュータ370が賞球個数コマンドの受信に応じて応答信号として送信する制御コマンドである。賞球個数受付コマンドのデータの内容は「70(H)」すなわち、「01110000」とされている。   The prize ball number acceptance command is a control command for notifying that the prize ball number specified by the prize ball quantity command has been accepted, and the payout control microcomputer 370 responds upon receipt of the prize ball quantity command. It is a control command transmitted as a signal. The content of the prize ball number reception command data is “70 (H)”, that is, “01110000”.

賞球終了コマンドは、賞球動作(賞球払出動作)が終了したことを示す制御コマンドであって、払出制御用マイクロコンピュータ370が賞球動作の終了にもとづいて送信する制御コマンドである。賞球終了コマンドのデータの内容は「50(H)」すなわち「01010000」とされている。   The award ball end command is a control command indicating that the award ball operation (award ball payout operation) has ended, and is a control command that the payout control microcomputer 370 transmits based on the end of the award ball operation. The data content of the winning ball end command is “50 (H)”, that is, “01010000”.

賞球準備中コマンドは、賞球動作に時間がかかっている場合や、貸し球動作中であったり所定のエラーが発生したりして賞球動作が終了していないことを通知する制御コマンドである。賞球準備中コマンドのデータの内容は「4x(H)」すなわち「0100xxxx」とされている。ここで、賞球準備中コマンドの2バイト目の「xxxx」については、図50に示すように、賞球エラーが発生した場合には、1ビット目(ビット0)の「x」に「1」が設定される。また、満タンエラーが発生した場合には、2ビット目(ビット1)の「x」に「1」が設定される。また、球切れエラーが発生した場合には、3ビット目(ビット2)の「x」に「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが発生した場合には、4ビット目(ビット3)の「x」に「1」が設定される。このようにして、払出制御用マイクロコンピュータ370から、賞球動作に時間がかかっている場合や、貸し球動作中であったり賞球動作の実行中に所定のエラーが発生したりして賞球動作が終了していないことを遊技制御用マイクロコンピュータ560に通知することができるとともに、エラーの内容も遊技制御用マイクロコンピュータ560に通知することができる。賞球準備中コマンドは、接続OKコマンドと同様に、下位4ビットの内容をエラー状態に応じて異ならせる(所定ビットを異ならせる)ことによって所定のエラーが発生したことを通知している。なお、賞球準備中コマンドは、エラーが発生して賞球動作が実行できない状態のみならず、貸し球払出動作中であるために賞球の払出動作を直ちに開始できない状態や、賞球動作の実行中の状態(賞球個数コマンドで指定された賞球個数の払出動作を完了していない状態)においても出力されるコマンド(信号)である。なお、図50に示す例では、賞球準備中コマンドに、制御状態として払い出しに関するエラー(賞球エラーや、満タンエラー、球切れエラー、払出個数異常エラー)を示す値を設定する場合を示したが、エラー以外の制御状態を接続OKコマンドに設定するようにしてもよい。例えば、払出制御用マイクロコンピュータ370は、賞球払出動作中である旨や貸し球払出動作中である旨を示す値を制御状態として賞球準備中コマンドにセットして、遊技制御用マイクロコンピュータ560に送信するようにしてもよい。   The command for preparing a prize ball is a control command for notifying that a prize ball movement has not been completed due to a long time for a prize ball movement, a rental ball movement or a predetermined error. is there. The contents of the data of the winning ball preparation command are “4x (H)”, that is, “0100xxxx”. Here, with regard to “xxxx” of the second byte of the command for preparing a prize ball, as shown in FIG. 50, when a prize ball error occurs, “1” is set to “x” of the first bit (bit 0). Is set. When a full tank error occurs, “1” is set to “x” of the second bit (bit 1). When a ball break error occurs, “1” is set to “x” of the third bit (bit 2). In addition, when a payout number abnormality error occurs when the cumulative value of the number of payouts of prize balls and rental balls, which will be described later, reaches a predetermined value (for example, 2000), the fourth bit (bit 3) “1” is set to “x” of In this way, the payout control microcomputer 370 receives a prize ball when the prize ball operation takes a long time, or during a lending ball operation or when a predetermined error occurs during the execution of the prize ball operation. It is possible to notify the game control microcomputer 560 that the operation has not ended, and to notify the game control microcomputer 560 of the content of the error. As in the case of the connection OK command, the award ball preparation command notifies that a predetermined error has occurred by changing the contents of the lower 4 bits in accordance with the error state (by changing the predetermined bits). Note that the command for preparing a prize ball is not only in a state where an error occurs and the prize ball operation cannot be executed, but also in a state where the prize ball payout operation cannot be started immediately because the ball rental operation is in progress, This command (signal) is output even in the running state (the state in which the payout operation for the number of prize balls specified by the prize ball number command has not been completed). In the example shown in FIG. 50, a case in which a value indicating a payout error (award ball error, full tank error, out of ball error, payout number error error) is set as a control state in the command for preparing a prize ball is shown. However, a control state other than an error may be set in the connection OK command. For example, the payout control microcomputer 370 sets a value indicating that the prize ball payout operation or the lending ball payout operation is in the control state in the award ball preparation command, and the game control microcomputer 560. You may make it transmit to.

なお、この実施の形態では、接続確認信号は払出制御コマンドのうちの接続確認コマンドによって実現され、応答信号は接続OKコマンドによって実現され、払出数信号は賞球個数コマンドによって実現され、受付信号は賞球個数受付コマンドによって実現され、払出終了信号は賞球終了コマンドによって実現され、払出中信号は賞球準備中コマンドによって実現される。   In this embodiment, the connection confirmation signal is realized by a connection confirmation command of the payout control command, the response signal is realized by a connection OK command, the payout number signal is realized by a prize ball number command, and the acceptance signal is It is realized by a prize ball number acceptance command, a payout end signal is realized by a prize ball end command, and a payout signal is realized by a prize ball preparation command.

図51は、図48に示す制御信号および図49に示す制御コマンドの送受信に用いられる信号線等を示すブロック図である。図51に示すように、接続信号は、遊技制御用マイクロコンピュータ560によって出力回路67Aを介して出力され、入力回路373Aを介して払出制御用マイクロコンピュータ370に入力される。また、賞球情報は、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力される。なお、後述する賞球信号1や遊技機エラー状態信号も、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力されるようにしてもよい。また、扉開放信号や機構板開放信号も、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力されるようにしてもよい。   51 is a block diagram showing signal lines and the like used for transmission / reception of the control signal shown in FIG. 48 and the control command shown in FIG. As shown in FIG. 51, the connection signal is output by the game control microcomputer 560 via the output circuit 67A, and is input to the payout control microcomputer 370 via the input circuit 373A. The prize ball information is output by the payout control microcomputer 370 via the output circuit 373B, and input to the game control microcomputer 560 via the input circuit 67B. A prize ball signal 1 and a gaming machine error state signal, which will be described later, are also output by the payout control microcomputer 370 via the output circuit 373B and input to the game control microcomputer 560 via the input circuit 67B. May be. The door opening signal and the mechanism plate opening signal may also be output by the payout control microcomputer 370 via the output circuit 373B and input to the game control microcomputer 560 via the input circuit 67B.

また、制御コマンドのうちの接続確認コマンドおよび賞球個数コマンドは、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路511から出力され、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380に入力される。制御コマンドのうちの接続OKコマンド、賞球個数受付コマンド、賞球終了コマンドおよび賞球準備中コマンドは、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380から出力され、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路511に入力される。なお、図51では、シリアル通信を行うための信号線として2本の信号線(遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370側にコマンドを送信するための信号線と払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560側にコマンドを送信するための信号線)を示しているが、実際は1本の信号線で払出制御コマンドを送受信する。なお、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370側にコマンドを送信するための信号線と、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560側にコマンドを送信するための信号線とを、別々の信号線として構成するようにしてもよい。   Of the control commands, the connection confirmation command and the prize ball number command are output from the serial communication circuit 511 built in the game control microcomputer 560 and input to the serial communication circuit 380 built in the payout control microcomputer 370. The Of the control commands, the connection OK command, the winning ball number acceptance command, the winning ball end command, and the winning ball preparation command are output from the serial communication circuit 380 built in the payout control microcomputer 370, and the gaming control microcomputer 560. Is input to the serial communication circuit 511 incorporated therein. In FIG. 51, two signal lines (signal lines for sending commands from the game control microcomputer 560 to the payout control microcomputer 370 side and payout control microcomputers) are used as signal lines for serial communication. 370 shows a signal line for transmitting a command from 370 to the game control microcomputer 560 side. A signal line for transmitting a command from the game control microcomputer 560 to the payout control microcomputer 370 side, and a signal line for transmitting a command from the payout control microcomputer 370 to the game control microcomputer 560 side. May be configured as separate signal lines.

次に、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの払出制御コマンドの送受信について説明する。この実施の形態では、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370には接続確認コマンドと賞球個数コマンドとが送信され、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560には接続OKコマンドと賞球個数受付コマンドと賞球終了コマンドと賞球準備中コマンドとが送信される。   Next, transmission / reception of a payout control command between the game control microcomputer and the payout control microcomputer during normal operation will be described. In this embodiment, a connection confirmation command and a prize ball number command are transmitted from the game control microcomputer 560 to the payout control microcomputer 370, and the payout control microcomputer 370 is connected to the game control microcomputer 560. An OK command, a prize ball number reception command, a prize ball end command, and a prize ball preparation command are transmitted.

図52は、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。図52に示すように、遊技制御用マイクロコンピュータ560は、シリアル通信回路511を介して、払出制御用マイクロコンピュータ370との間の信号線の接続が切れていないかどうかを確認するために、接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、接続確認コマンドをシリアル通信回路380を介して受信すると、接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。遊技制御用マイクロコンピュータ560は、接続OKコマンドを受信すると、受信した時点から1s(1秒)経過後に接続確認コマンドを送信する。遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370は、接続状態が正常である限り、上記のような接続確認の通信処理を繰り返し実行する。   FIG. 52 is a sequence diagram showing signal transmission / reception between the game control microcomputer and the payout control microcomputer during normal operation. As shown in FIG. 52, the game control microcomputer 560 is connected to the payout control microcomputer 370 via the serial communication circuit 511 to confirm whether or not the signal line is disconnected. A confirmation command is transmitted to the payout control microcomputer 370. When the payout control microcomputer 370 receives the connection confirmation command via the serial communication circuit 380, the payout control microcomputer 370 transmits a connection OK command to the game control microcomputer 560. When the game control microcomputer 560 receives the connection OK command, the game control microcomputer 560 transmits a connection confirmation command after 1 s (1 second) has elapsed since the reception. As long as the connection state is normal, the game control microcomputer 560 and the payout control microcomputer 370 repeatedly execute the connection confirmation communication process as described above.

図53および図54は、賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。図53および図54に示すように、入賞が発生して賞球払出動作を実行するときに、遊技制御用マイクロコンピュータ560は、シリアル通信回路511を介して、賞球個数を示すデータが設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。なお、この場合、遊技制御用マイクロコンピュータ560は、前回送信した接続確認コマンドに対して受信した接続OKコマンドの下位4ビットにエラーを示す値が設定されておらず(図50参照)、かつ当該接続OK信号を受信してから1秒が経過するまでの間に始動入賞していることを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。   53 and 54 are sequence diagrams showing transmission and reception of signals between the game control microcomputer and the payout control microcomputer during the prize ball movement. As shown in FIGS. 53 and 54, when a winning occurs and a winning ball payout operation is executed, the game control microcomputer 560 is set with data indicating the number of winning balls via the serial communication circuit 511. The prize ball number command is transmitted to the payout control microcomputer 370. In this case, the game control microcomputer 560 does not set a value indicating an error in the lower 4 bits of the received connection OK command with respect to the previously transmitted connection confirmation command (see FIG. 50), and A winning ball number command is transmitted to the payout control microcomputer 370 on the condition that the winning prize is received after the connection OK signal is received until 1 second elapses.

次いで、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、直ちに賞球動作の実行が可能であれば(すなわち、貸し球の払出動作中でなくエラーも発生していなければ)、賞球個数を受け付けたことを示す賞球個数受付コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。なお、賞球個数受付コマンドを送信した時点から1s(1秒)以内に賞球払出が完了しない場合には、賞球個数受付コマンドを送信した時点から1s(1秒)経過後に賞球準備中コマンドを送信する。そして、以後、賞球払出が完了するまでの間、賞球準備中コマンドを送信した時点から1s(1秒)経過するごとに繰り返し賞球準備中コマンドを送信する。また、賞球個数コマンドで指定された個数の賞球の払出動作を実行し、賞球払出動作が終了すると、賞球払出動作の終了を示す賞球終了コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。   Next, when the payout control microcomputer 370 receives the award ball number command, if the award ball operation can be executed immediately (that is, if the lending ball is not being dispensed and no error has occurred), the award A prize ball number reception command indicating that the number of balls has been received is transmitted to the game control microcomputer 560 via the serial communication circuit 380. If the prize ball payout is not completed within 1 s (1 second) from the time when the prize ball number acceptance command is transmitted, the prize ball is being prepared after 1 s (1 second) has elapsed since the prize ball number acceptance command is transmitted. Send a command. Thereafter, until the completion of the payout of the winning ball, the winning ball preparation command is repeatedly transmitted every 1 s (1 second) from the time when the winning ball preparation command is transmitted. Also, a payout operation for the number of prize balls specified by the prize ball number command is executed, and when the prize ball payout operation is completed, a prize ball end command indicating the end of the prize ball payout operation is played via the serial communication circuit 380. It transmits to the control microcomputer 560.

次いで、遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信したときに、図53に示すように、次に払い出すべき賞球個数がまだ記憶されていない場合には、賞球終了コマンドを受信した時点から1s(1秒)経過後に新たな接続確認コマンドの送信を再開する。一方、図54に示すように、次に払い出すべき賞球個数が既に記憶されている場合には、1s(1秒)待つことなく、直ちに次の賞球個数を指定する賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。なお、この場合にも、遊技制御用マイクロコンピュータ560は、前回受信した接続OKコマンドまたは賞球準備中コマンドの下位4ビットにエラーを示す値が設定されておらず(図50参照)、かつ賞球終了コマンドを受信してから1秒が経過するまでの間に始動入賞していることを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。以降、同様のシーケンスに従って制御コマンドの送受信が繰り返される。   Next, when the game control microcomputer 560 receives the prize ball end command, as shown in FIG. 53, if the number of prize balls to be paid out is not yet stored, the game control microcomputer 560 issues a prize ball end command. Transmission of a new connection confirmation command is resumed after 1 s (1 second) has elapsed from the time of reception. On the other hand, as shown in FIG. 54, when the number of winning balls to be paid out is already stored, a winning ball number command for designating the next winning ball number is immediately issued without waiting for 1 s (1 second). This is sent to the payout control microcomputer 370. Also in this case, the gaming control microcomputer 560 does not set a value indicating an error in the lower 4 bits of the previously received connection OK command or the winning ball preparation command (see FIG. 50), and The award ball number command is transmitted to the payout control microcomputer 370 on the condition that the winning prize is received from the reception of the ball end command until 1 second elapses. Thereafter, transmission and reception of control commands are repeated according to the same sequence.

図55は、直ちに賞球動作を実行できない場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信しても、貸し球の払出動作中である場合や、エラー状態である場合には、受信した賞球個数コマンドで指定された賞球個数の賞球払出の動作を開始できない。このような場合には、図55に示すように、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信しても、直ちに賞球個数受付コマンドを送信せず、賞球払出動作が終了していないことを通知する賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、貸し球の払出動作を終了して賞球動作を開始可能な状態となるか、エラーが解除されない限り、一定間隔で(1s毎に)賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。   FIG. 55 is a sequence diagram showing signal transmission / reception between the game control microcomputer and the payout control microcomputer when the winning ball operation cannot be executed immediately. Even if the payout control microcomputer 370 receives the award ball number command, if the lending ball is being paid out or is in an error state, the award ball number specified by the received award ball number command. Unable to start the prize ball payout operation. In such a case, as shown in FIG. 55, even when the payout control microcomputer 370 receives the prize ball number command, it does not immediately send the prize ball number acceptance command, and the prize ball payout operation is completed. A command for preparing a prize ball for notifying that the game has not been sent is transmitted to the game control microcomputer 560. In this case, the payout control microcomputer 370 is in a state of preparing a prize ball at regular intervals (every 1 s) unless the payout operation of the lending ball is completed and the award ball action can be started or the error is not canceled. The command is transmitted to the game control microcomputer 560.

次いで、払出制御用マイクロコンピュータ370は、貸し球の払出動作を終了して次の賞球動作を開始可能な状態となるか、エラーが解除されると、賞球個数を受け付けたことを示す賞球個数受付コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。なお、賞球個数受付コマンドを送信した時点から1s(1秒)以内に賞球払出が完了しない場合には、賞球個数受付コマンドを送信した時点から1s(1秒)経過後に賞球準備中コマンドを送信する。そして、以後、賞球払出が完了するまでの間、賞球準備中コマンドを送信した時点から1s(1秒)経過するごとに繰り返し賞球準備中コマンドを送信する。また、賞球個数コマンドで指定された個数の賞球の払出動作を実行し、賞球払出動作が終了すると、賞球払出動作の終了を示す賞球終了コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。   Next, the payout control microcomputer 370 finishes the lending ball payout operation and becomes ready to start the next prize ball operation, or when the error is canceled, the prize indicating that the number of prize balls has been received is received. The ball number acceptance command is transmitted to the game control microcomputer 560 via the serial communication circuit 380. If the prize ball payout is not completed within 1 s (1 second) from the time when the prize ball number acceptance command is transmitted, the prize ball is being prepared after 1 s (1 second) has elapsed since the prize ball number acceptance command is transmitted. Send a command. Thereafter, until the completion of the payout of the winning ball, the winning ball preparation command is repeatedly transmitted every 1 s (1 second) from the time when the winning ball preparation command is transmitted. Also, a payout operation for the number of prize balls specified by the prize ball number command is executed, and when the prize ball payout operation is completed, a prize ball end command indicating the end of the prize ball payout operation is played via the serial communication circuit 380. It transmits to the control microcomputer 560.

図56は、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図56に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信すると、払出制御用マイクロコンピュータ370から送信される接続OKコマンドを受信する。遊技制御用マイクロコンピュータ560は、接続OKコマンドを受信すると、受信した時点から1s(1秒)経過後に接続確認コマンドを再び送信する。遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370は、接続状態が正常である限り、上記のような接続確認の通信処理を繰り返し実行する。   FIG. 56 is a timing chart showing signal transmission / reception between the game control microcomputer and the payout control microcomputer during normal operation. As shown in FIG. 56, when the game control microcomputer 560 transmits the connection confirmation command to the payout control microcomputer 370, the game control microcomputer 560 receives the connection OK command transmitted from the payout control microcomputer 370. When the game control microcomputer 560 receives the connection OK command, the game control microcomputer 560 transmits the connection confirmation command again after 1 s (1 second) has elapsed since the reception. As long as the connection state is normal, the game control microcomputer 560 and the payout control microcomputer 370 repeatedly execute the connection confirmation communication process as described above.

接続確認の通信処理を実行していないとき(接続OKコマンドを受信してから次の接続確認コマンドを送信するまでの間)に入賞があった場合には、遊技制御用マイクロコンピュータ560は、接続確認コマンドを繰り返し送信する制御を中断し、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、遊技制御用マイクロコンピュータ560は、賞球個数受付コマンドを受信したことにもとづいて、賞球個数記憶を減算する処理を行う(具体的には、後述する賞球コマンド出力カウンタを1減算する処理を行う。ステップS52404参照)。そして、払出制御用マイクロコンピュータ370は、賞球個数コマンドで指定された個数の賞球の払い出しを行い、賞球の払い出し(賞球払出動作)が終了すると、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、前述したように、賞球払出動作に時間がかかる場合には、賞球払出動作が完了するまで、払出制御用マイクロコンピュータ370は、1s(1秒)経過するごとに賞球準備中コマンドを繰り返し送信する。遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信すると、次に払い出すべき賞球個数がまだ記憶されていない場合には、受信した時点から1s(1秒)経過後に接続確認コマンドを送信する。   If there is a prize when the connection confirmation communication process is not executed (between receiving the connection OK command and transmitting the next connection confirmation command), the game control microcomputer 560 The control for repeatedly transmitting the confirmation command is interrupted, data indicating the number of winning balls is set in the lower 4 bits of the winning ball number command, and the set winning ball number command is transmitted to the payout control microcomputer 370. Upon receiving the prize ball number command, the payout control microcomputer 370 transmits a prize ball number reception command to the game control microcomputer 560. In this case, the game control microcomputer 560 performs a process of subtracting the prize ball number storage based on the reception of the prize ball number reception command (specifically, 1 is subtracted from a prize ball command output counter described later). (See step S52404). Then, the payout control microcomputer 370 pays out the number of prize balls specified by the prize ball number command, and when the prize ball payout (prize ball payout operation) is completed, the prize ball end command is sent to the game control microcomputer. Send to computer 560. As described above, when the winning ball payout operation takes a long time, the payout control microcomputer 370 waits for 1 s (1 second) until the winning ball payout operation is completed. Is sent repeatedly. When the game control microcomputer 560 receives the prize ball end command, if the number of prize balls to be paid out is not yet stored, the game control microcomputer 560 transmits a connection confirmation command after 1 s (1 second) has elapsed since the reception. To do.

接続確認の通信処理の実行中(接続確認コマンドを送信してから接続OKコマンドを受信するまでの間)に入賞があった場合は、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との接続状態が確認できていない段階であるので、賞球個数コマンドを直ちに送信せずに、接続OKコマンドの受信を確認できるまで待つ。そして、払出制御用マイクロコンピュータ370からの接続OKコマンドを受信すると、遊技制御用マイクロコンピュータ560は、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。そして、払出制御用マイクロコンピュータ370は、以下同様の処理を実行し、賞球個数コマンドで指定された個数の賞球の払い出しを行い、賞球の払い出し(賞球払出動作)が終了すると、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。   If there is a prize during the execution of the connection confirmation communication process (between sending the connection confirmation command and receiving the connection OK command), the game control microcomputer 560 and the payout control microcomputer 370 Since the connection state is not confirmed, the award ball number command is not immediately transmitted, but the process waits until the connection OK command can be confirmed. When the connection OK command is received from the payout control microcomputer 370, the game control microcomputer 560 sets data indicating the number of winning balls in the lower 4 bits of the winning ball number command, and sets the set number of winning balls. The command is transmitted to the payout control microcomputer 370. Upon receiving the prize ball number command, the payout control microcomputer 370 transmits a prize ball number reception command to the game control microcomputer 560. Then, the payout control microcomputer 370 performs the same processing, pays out the number of prize balls designated by the prize ball number command, and when the prize ball is paid out (prize ball payout operation), The ball end command is transmitted to the game control microcomputer 560.

なお、賞球終了コマンドを受信した後、遊技制御用マイクロコンピュータ560は、前回受信した接続OKコマンドまたは賞球準備中コマンドの下位4ビットにエラーを示す値が設定されておらず(図50参照)、かつ賞球終了コマンドを受信してから1秒が経過するまでの間に始動入賞している場合にも、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。すなわち、この実施の形態では、遊技制御用マイクロコンピュータ560は、エラーを示す値が設定されていない接続OK信号を受信してから1秒が経過するまでの間と、賞球終了コマンドを受信してから1秒を経過するまでの間とに、賞球個数コマンドを送信可能な状態になっている。   After receiving the winning ball end command, the game control microcomputer 560 does not set a value indicating an error in the lower 4 bits of the previously received connection OK command or winning ball preparation command (see FIG. 50). In addition, even when the start winning prize is received from the reception of the winning ball end command until 1 second elapses, the winning ball number command is transmitted to the payout control microcomputer 370. In other words, in this embodiment, the game control microcomputer 560 receives a prize ball end command from when a connection OK signal in which a value indicating an error is not set until one second elapses. The award ball number command can be transmitted until 1 second has elapsed.

図57は、賞球中にエラーが発生した場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図57に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信すると、払出制御用マイクロコンピュータ370から送信される接続OKコマンドを受信する。接続確認の通信処理を実行していないときに入賞があった場合は、遊技制御用マイクロコンピュータ560は、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。そして、払出制御用マイクロコンピュータ370は、賞球個数コマンドで指定された個数の賞球の払い出しを行う。賞球個数コマンドで指定された個数の賞球の払出動作を実行しているときに、所定のエラー(例えば、払出個数異常エラー、球貸し、満タン、球切れのエラー)が発生し、賞球払出動作ができない状態(異常状態、エラー状態)になった場合は、払出制御用マイクロコンピュータ370は、エラーが発生し賞球払出動作が終了していないことを通知する賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、発生したエラーが解除されない限り、一定間隔で(1s毎に)賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。所定のエラー状態が解除(解消)されて賞球払出動作が終了すると、払出制御用マイクロコンピュータ370は、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、賞球準備中コマンドは、賞球個数受付コマンドを送信した後、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に1s毎に送信されることになる。また、遊技制御用マイクロコンピュータ560が賞球準備中コマンドを受信している間には、接続確認コマンドを送信しないように制御される。具体的には、払出制御用マイクロコンピュータ370は賞球払出動作が終了したことにもとづいて賞球終了コマンドを出力するようにし、遊技制御用マイクロコンピュータ560は当該賞球終了コマンドを受信したことにもとづいて、所定周期(1S)毎に接続確認コマンドを出力する状態に復帰するように制御する。   FIG. 57 is a timing chart showing signal transmission / reception between the game control microcomputer and the payout control microcomputer when an error occurs in the winning ball. As shown in FIG. 57, when the game control microcomputer 560 transmits the connection confirmation command to the payout control microcomputer 370, the game control microcomputer 560 receives the connection OK command transmitted from the payout control microcomputer 370. If there is a win when the communication process for confirming the connection is not executed, the game control microcomputer 560 sets the data indicating the number of winning balls in the lower 4 bits of the winning ball number command, and the set winning prize is set. The ball number command is transmitted to the payout control microcomputer 370. Upon receiving the prize ball number command, the payout control microcomputer 370 transmits a prize ball number reception command to the game control microcomputer 560. Then, the payout control microcomputer 370 pays out the number of prize balls specified by the prize ball number command. When executing the payout operation for the number of prize balls specified by the prize ball number command, a predetermined error (for example, an abnormal payout number error, a ball lending, a full tank, or an out of ball error) occurs. When the ball payout operation cannot be performed (abnormal state, error state), the payout control microcomputer 370 issues a prize ball preparing command for notifying that an error has occurred and the prize ball payout operation has not ended. It transmits to the game control microcomputer 560. In this case, the payout control microcomputer 370 transmits a prize ball preparing command to the game control microcomputer 560 at regular intervals (every 1 s) unless the generated error is canceled. When the predetermined error state is canceled (resolved) and the winning ball payout operation ends, the payout control microcomputer 370 transmits a winning ball end command to the game control microcomputer 560. The award ball preparation command is transmitted from the payout control microcomputer 370 to the game control microcomputer 560 every 1 s after the award ball number acceptance command is transmitted. Further, while the game control microcomputer 560 is receiving a command for preparing a prize ball, the game control microcomputer 560 is controlled not to transmit a connection confirmation command. Specifically, the payout control microcomputer 370 outputs a prize ball end command based on the completion of the prize ball payout operation, and the game control microcomputer 560 receives the prize ball end command. Based on this, control is performed so as to return to a state in which a connection confirmation command is output every predetermined period (1S).

図58は、接続確認中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図58に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信したが、払出制御用マイクロコンピュータ370からの接続OKコマンドを受信していない場合、つまり、接続状態の異常(通信エラー)が発生した場合には、接続確認コマンドを送信した時点から10s(10秒)経過後に再度、接続確認コマンドを送信する。すなわち、接続OKコマンドを受信できない場合に接続確認コマンドを1s(1秒)ごとに送信する処理を継続したのでは、通信状態が不安定な状態であるにもかかわらず接続確認コマンドの送信回数が無駄に多くなってしまうので、接続確認コマンドの送信間隔を10s(10秒)に広げて、通信状態が回復するまで必要最低限の送信回数の接続確認コマンドを送信する制御に切り替える。通信エラーが発生しているときに入賞が発生した場合には、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から接続OKコマンドを受信するまでは、新たな入賞が発生しても、賞球個数コマンドを送信せずに、一定間隔(10s)毎に接続確認コマンドを送信し続ける。通信エラーが解除(解消)され、払出制御用マイクロコンピュータ370から接続OKコマンドが送信されると、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信する。   FIG. 58 is a timing chart showing signal transmission / reception between the game control microcomputer and the payout control microcomputer when a communication error occurs during connection confirmation. As shown in FIG. 58, the game control microcomputer 560 has transmitted the connection confirmation command to the payout control microcomputer 370, but has not received the connection OK command from the payout control microcomputer 370, that is, When a connection state abnormality (communication error) occurs, the connection confirmation command is transmitted again after 10 s (10 seconds) have elapsed since the connection confirmation command was transmitted. In other words, if the process of transmitting the connection confirmation command every 1 s (1 second) when the connection OK command cannot be received is continued, the number of connection confirmation command transmissions is increased even though the communication state is unstable. Since it increases in vain, the transmission interval of the connection confirmation command is extended to 10 s (10 seconds), and the control is switched to transmitting the connection confirmation command with the minimum necessary number of transmissions until the communication state is recovered. If a winning occurs when a communication error has occurred, the game control microcomputer 560 will receive a connection OK command from the payout controlling microcomputer 370, even if a new winning occurs. Without transmitting the award ball number command, the connection confirmation command is continuously transmitted at regular intervals (10 s). When the communication error is canceled (resolved) and a connection OK command is transmitted from the payout control microcomputer 370, the game control microcomputer 560 transmits a prize ball number command.

図59は、賞球個数通知中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図59に示すように、遊技制御用マイクロコンピュータ560は、入賞が発生したことにもとづいて賞球個数コマンドを送信したが、払出制御用マイクロコンピュータ370からの賞球個数受付コマンドを受信していない場合、つまり、接続状態の異常(通信エラー)が発生した場合には、賞球個数コマンドを送信した時点から10s(10秒)経過後に、接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。そして、通信状態が回復するまで10s(10秒)経過ごとに接続確認コマンドを繰り返し送信する。その後、通信エラーが解除(解消)され、払出制御用マイクロコンピュータ370から接続OKコマンドを受信した場合には、賞遊技制御用マイクロコンピュータ560は、通常(正常時)の動作に戻り、賞球個数コマンドを払出制御用マイクロコンピュータ370に再送信(リトライ)する。なお、具体的には、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信しても賞球個数受付コマンドを受信できなかった場合には、賞球個数記憶を減算しないようにし(後述するステップS52403でNであればステップS52404の賞球コマンド出力カウンタの値を1減算しないようにし)、次に賞球個数コマンドの送信を行うときに賞球コマンド出力カウンタの値がそのまま維持されていることにもとづいて賞球個数コマンドを再送信する(後述するステップS52301〜S52035参照)。   FIG. 59 is a timing chart showing signal transmission / reception between the game control microcomputer and the payout control microcomputer at the time of a communication error during prize ball number notification. As shown in FIG. 59, the game control microcomputer 560 has transmitted a prize ball number command based on the occurrence of a win, but has not received a prize ball number acceptance command from the payout control microcomputer 370. In this case, that is, when a connection state abnormality (communication error) occurs, a connection confirmation command is transmitted to the payout control microcomputer 370 after 10 seconds (10 seconds) have elapsed since the prize ball number command was transmitted. Then, the connection confirmation command is repeatedly transmitted every 10 s (10 seconds) until the communication state is recovered. Thereafter, when the communication error is canceled (resolved) and the connection OK command is received from the payout control microcomputer 370, the award game control microcomputer 560 returns to the normal (normal) operation, and the number of winning balls The command is retransmitted (retryed) to the payout control microcomputer 370. Specifically, the game control microcomputer 560 does not subtract the prize ball number storage if it does not receive the prize ball number acceptance command even after sending the prize ball number command (described later). If N in step S52403, the value of the prize ball command output counter in step S52404 is not subtracted by 1), and the value of the prize ball command output counter is maintained as it is when the prize ball number command is transmitted next time. The prize ball number command is retransmitted based on that (see steps S52301 to S52035 described later).

次に、賞球処理(ステップS32)について説明する。図60は、ステップS32の賞球処理の一例を示すフローチャートである。賞球処理において、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球コマンド出力カウンタ加算処理(ステップS501)、賞球制御処理(ステップS502)および賞球カウンタ減算処理(ステップS503)を実行する。   Next, the prize ball process (step S32) will be described. FIG. 60 is a flowchart showing an example of the prize ball processing in step S32. In the prize ball process, the game control microcomputer 560 (specifically, the CPU 56), the prize ball command output counter addition process (step S501), the prize ball control process (step S502), and the prize ball counter subtraction process (step S503). ).

賞球コマンド出力カウンタ加算処理では、図61に示す賞球個数テーブルが使用される。賞球個数テーブルは、ROM54に設定されている。賞球個数テーブルの先頭アドレスには処理数(この例では「4」)が設定され、その後に、スイッチオンバッファの下位アドレスと、賞球コマンド出力カウンタと、賞球数を指定する賞球指定データとが、順次設定されている。賞球コマンド出力カウンタとは、入賞口への入賞数をカウントするカウンタであり、例えば、ROM54に設定される。また、遊技制御用マイクロコンピュータ560は、賞球数(0〜15個)毎に、対応する賞球コマンド出力カウンタを備える。この実施の形態では、遊技制御用マイクロコンピュータ560は、賞球数「15」に対応する賞球コマンド出力カウンタ1と、賞球数「10」に対応する賞球コマンド出力カウンタ2,3(2つの普通入賞口29,30に対応)と、賞球数「3」に対応する賞球コマンド出力カウンタ4とを備える。なお、各賞球コマンド出力カウンタは、後述するように、賞球コマンド出力カウンタ加算処理でカウントアップされる。CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1が0でなければ、賞球数(15個)を指定する賞球指定データにもとづいて賞球個数(15個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1の値が0であり、賞球コマンド出力カウンタ2,3の値が0でなければ、賞球数(10個)を指定する賞球指定データにもとづいて賞球個数(10個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1および賞球コマンド出力カウンタ2,3の値が0であり、賞球コマンド出力カウンタ4の値が0でなければ、賞球数(3個)を指定する賞球指定データにもとづいて賞球個数(3個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、図61において、スイッチオンバッファ1は入力ポート0に対応しており、スイッチオンバッファ2は入力ポート2に対応している。   In the prize ball command output counter addition process, a prize ball number table shown in FIG. 61 is used. The prize ball number table is set in the ROM 54. The number of processes (in this example, “4”) is set to the start address of the prize ball number table, and then the lower address of the switch-on buffer, the prize ball command output counter, and the prize ball designation for designating the number of prize balls Data is set sequentially. The prize ball command output counter is a counter that counts the number of prizes received in the prize opening, and is set in the ROM 54, for example. The game control microcomputer 560 includes a corresponding prize ball command output counter for each number of prize balls (0 to 15). In this embodiment, the game control microcomputer 560 includes a prize ball command output counter 1 corresponding to the prize ball number “15” and prize ball command output counters 2, 3 (2) corresponding to the prize ball number “10”. Corresponding to the normal winning ports 29 and 30) and a prize ball command output counter 4 corresponding to the number of prize balls “3”. Each prize ball command output counter is counted up by prize ball command output counter addition processing, as will be described later. If the prize ball command output counter 1 set in the prize ball number table is not 0, the CPU 56 indicates the number of prize balls (15) based on the prize ball designation data for designating the number of prize balls (15). The data is set in the lower 4 bits of the prize ball number command, and the set prize ball number command is transmitted to the payout control microcomputer 370. The CPU 56 determines the number of prize balls (10) if the value of the prize ball command output counter 1 set in the prize ball number table is 0 and the value of the prize ball command output counters 2 and 3 is not 0. Is set in the lower 4 bits of the winning ball number command, and the set winning ball number command is transmitted to the payout control microcomputer 370. To do. Further, the CPU 56 determines that the values of the prize ball command output counter 1 and the prize ball command output counters 2 and 3 set in the prize ball number table are 0 and the value of the prize ball command output counter 4 is not 0. Based on the prize ball designation data for designating the number of prize balls (3), data indicating the number of prize balls (3) is set in the lower 4 bits of the prize ball number command, and the set prize ball number command is issued. It transmits to the control microcomputer 370. In FIG. 61, the switch-on buffer 1 corresponds to the input port 0, and the switch-on buffer 2 corresponds to the input port 2.

図62は、ステップS501の賞球コマンド出力カウンタ加算処理を示すフローチャートである。賞球コマンド出力カウンタ加算処理において、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球個数テーブルの先頭アドレスをポインタにセットする(ステップS5101)。そして、ポインタが指すアドレスのデータ(この場合には処理数)をロードする(ステップS5102)。   FIG. 62 is a flowchart showing the prize ball command output counter addition processing in step S501. In the prize ball command output counter addition process, the game control microcomputer 560 (specifically, the CPU 56) sets the start address of the prize ball number table as a pointer (step S5101). Then, the data at the address pointed to by the pointer (in this case, the number of processes) is loaded (step S5102).

次いで、CPU56は、ポインタの値を1増やし(ステップS5103)、ポインタが指すスイッチオンバッファの下位アドレスをポインタバッファの下位バイトにロードし(ステップS5104)、ポインタバッファの指すスイッチオンバッファをレジスタにロードする(ステップS5105)。次いで、CPU56は、ポインタの値を1増やし(ステップS5106)、ポインタが指す賞球コマンド出力カウンタの下位アドレスをポインタバッファの下位バイトにロードする(ステップS5107)。次いで、CPU56は、ポインタの値を1増やし(ステップS5108)、レジスタにロードしたスイッチオンバッファの内容と、ポインタが指す賞球指定データとの論理積をとる(ステップS5109)。   Next, the CPU 56 increments the pointer value by 1 (step S5103), loads the lower address of the switch-on buffer pointed to by the pointer into the lower byte of the pointer buffer (step S5104), and loads the switch-on buffer pointed by the pointer buffer into the register. (Step S5105). Next, the CPU 56 increments the value of the pointer by 1 (step S5106), and loads the lower address of the prize ball command output counter pointed to by the pointer into the lower byte of the pointer buffer (step S5107). Next, the CPU 56 increments the value of the pointer by 1 (step S5108), and calculates the logical product of the contents of the switch-on buffer loaded in the register and the prize ball designation data pointed to by the pointer (step S5109).

ステップS5109における演算結果が0であれば(ステップS5110のY)、すなわち、検査対象のスイッチの検出信号がオン状態でなければ、処理数を1減らし(ステップS5114)、処理数が0であれば処理を終了し、処理数が0でなければステップS5103に戻る(ステップS5115)。   If the calculation result in step S5109 is 0 (Y in step S5110), that is, if the detection signal of the switch to be inspected is not on, the number of processes is reduced by 1 (step S5114), and if the number of processes is 0 The process ends, and if the number of processes is not 0, the process returns to step S5103 (step S5115).

ステップS5109における演算結果が0でなければ(ステップS5110のN)、すなわち、検査対象のスイッチの検出信号がオン状態であれば、CPU56は、ポインタが指す賞球コマンド出力カウンタの値を1加算する(ステップS5111)。ただし、CPU56は、加算の結果、賞球コマンド出力カウンタの値に桁上げが発生した場合には、賞球コマンド出力カウンタの値を1減算し元に戻す(ステップS5112,S5113)。そしてステップS5114の処理に移行する。   If the calculation result in step S5109 is not 0 (N in step S5110), that is, if the detection signal of the switch to be inspected is on, the CPU 56 adds 1 to the value of the prize ball command output counter pointed to by the pointer. (Step S5111). However, when a carry occurs in the value of the prize ball command output counter as a result of the addition, the CPU 56 subtracts 1 from the value of the prize ball command output counter and restores the original value (steps S5112, S5113). Then, the process proceeds to step S5114.

図63は、ステップS502の賞球制御処理を示すフローチャートである。賞球制御処理では、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球プロセスコードの値に応じて、ステップS521〜S525のいずれかの処理を実行する。   FIG. 63 is a flowchart showing the prize ball control processing in step S502. In the prize ball control process, the game control microcomputer 560 (specifically, the CPU 56) executes any one of steps S521 to S525 in accordance with the value of the prize ball process code.

図64は、賞球プロセスコードの値が0の場合に実行される賞球送信処理1(ステップS521)を示すフローチャートである。CPU56は、賞球送信処理1において、接続確認コマンドを払出制御用マイクロコンピュータに送信する制御を行う(ステップS5211)。具体的には、CPU56は、シリアル通信回路511の送信データレジスタに接続確認コマンドを出力する処理を行う。そして、CPU56は、賞球プロセスコードに賞球接続確認処理を示す値「1」をセットし(ステップS5212)、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS5213)。なお、ステップS5213でセットされた接続確認時間2にもとづいて、接続確認コマンドを送信した後、10秒を経過しても接続OKコマンドを受信できなかった場合には、以後、接続確認コマンドを送信する間隔を10秒に広げるように制御される。具体的には、ステップS5213でセットされた賞球プロセスタイマは、後述するステップS5229の処理で計測され、接続OKコマンドを受信することなく10秒が経過してタイムアウトしステップS5227でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS5228,S5211参照)。   FIG. 64 is a flowchart showing the prize ball transmission process 1 (step S521) executed when the value of the prize ball process code is zero. In the prize ball transmission process 1, the CPU 56 performs control to transmit a connection confirmation command to the payout control microcomputer (step S5211). Specifically, the CPU 56 performs processing for outputting a connection confirmation command to the transmission data register of the serial communication circuit 511. Then, the CPU 56 sets a value “1” indicating a prize ball connection confirmation process in the prize ball process code (step S5212), and sets a connection confirmation time 2 (for example, 10 seconds) in the prize ball process timer (step S5213). . If a connection OK command is not received even after 10 seconds have elapsed after transmitting the connection confirmation command based on the connection confirmation time 2 set in step S5213, the connection confirmation command is transmitted thereafter. It is controlled so as to extend the interval to 10 seconds. Specifically, the prize ball process timer set in step S5213 is measured in the process of step S5229, which will be described later, 10 seconds elapses without receiving a connection OK command, and the determination is Y in step S5227. Then, it returns to the prize ball transmission process 1 and the next connection confirmation command is transmitted (see steps S5228 and S5211).

なお、賞球プロセスタイマには、遊技制御用マイクロコンピュータ560で実行されるタイマ割込処理における割込周期も考慮した値(例えば、割込周期の整数倍)がセットされる。このことは、遊技制御用マイクロコンピュータ560や、払出制御用マイクロコンピュータ370、演出制御用マイクロコンピュータ100で用いられる他のタイマ(例えば、主制御通信制御タイマや、払出制御タイマ、再払出待ちタイマ、賞球情報出力タイマ、賞球信号1出力タイマ)についても同様である。   The prize ball process timer is set to a value (for example, an integer multiple of the interrupt period) in consideration of the interrupt period in the timer interrupt process executed by the game control microcomputer 560. This is because other timers used in the game control microcomputer 560, the payout control microcomputer 370, and the effect control microcomputer 100 (for example, main control communication control timer, payout control timer, re-payout waiting timer, The same applies to the prize ball information output timer and prize ball signal 1 output timer.

図65は、賞球プロセスコードの値が1の場合に実行される賞球接続確認処理(ステップS522)を示すフローチャートである。CPU56は、賞球接続確認処理において、まず、シリアル通信回路511の受信データレジスタにデータがあるか否かを確認する(ステップS5221)。具体的には、CPU56は、シリアル通信回路511のステータスレジスタAのビット5の値を確認するようにすればよい(図33参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS5227に移行する。   FIG. 65 is a flowchart showing a prize ball connection confirmation process (step S522) executed when the value of the prize ball process code is 1. In the winning ball connection confirmation process, the CPU 56 first confirms whether there is data in the reception data register of the serial communication circuit 511 (step S5221). Specifically, the CPU 56 may confirm the value of bit 5 of the status register A of the serial communication circuit 511 (see FIG. 33). If there is no data in the reception data register (that is, if no command is received), the process proceeds to step S5227.

受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路511のエラーが発生しているか否かを確認する(ステップS5222)。具体的には、CPU56は、シリアル通信回路511のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図33参照)。エラーが発生していれば、ステップS5227に移行する。   If there is data in the reception data register (that is, if a command is received), the CPU 56 checks whether or not an error has occurred in the serial communication circuit 511 (step S5222). Specifically, the CPU 56 may confirm whether or not any error bit value of bits 0 to 4 of the status register A of the serial communication circuit 511 is set (see FIG. 33). If an error has occurred, the process proceeds to step S5227.

シリアル通信回路511のエラーも発生していなければ、CPU56は、シリアル通信回路511の受信データレジスタからコマンドを読み出し、受信したコマンドが接続OKコマンドであるか否かを確認する(ステップS5223)。接続OKコマンドでなければ、ステップS5227に移行する。   If no error has occurred in the serial communication circuit 511, the CPU 56 reads the command from the reception data register of the serial communication circuit 511, and checks whether the received command is a connection OK command (step S5223). If it is not a connection OK command, the process proceeds to step S5227.

接続OKコマンドを受信していれば、CPU56は、接続OKコマンドの下位4ビットに設定されているエラー情報(図50参照)を枠状態表示バッファに格納する(ステップS5224)。   If the connection OK command has been received, the CPU 56 stores the error information (see FIG. 50) set in the lower 4 bits of the connection OK command in the frame state display buffer (step S5224).

次いで、CPU56は、賞球プロセスコードに賞球送信処理2を示す値「2」をセットし(ステップS5225)、賞球プロセスタイマに接続確認時間1(例えば1秒)をセットする(ステップS5226)。なお、ステップS5226でセットされた接続確認時間1にもとづいて、接続OKコマンドの受信後に1秒経過するごとに次の接続確認コマンドを繰り返し送信する制御が行われる。具体的には、ステップS5226でセットされた賞球プロセスタイマは、後述するステップS52315の処理で計測され、賞球個数コマンドを送信することなく1秒が経過してタイムアウトしステップS52313でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52314,S5211参照)。   Next, the CPU 56 sets a value “2” indicating the prize ball transmission process 2 in the prize ball process code (step S5225), and sets a connection confirmation time 1 (for example, 1 second) in the prize ball process timer (step S5226). . Note that, based on the connection confirmation time 1 set in step S5226, control is performed to repeatedly transmit the next connection confirmation command every time one second elapses after reception of the connection OK command. Specifically, the prize ball process timer set in step S5226 is measured in the process of step S52315 described later, and a timeout occurs after 1 second has passed without sending a prize ball number command, and it is determined as Y in step S52313. Then, the process returns to the prize ball transmission process 1 and the next connection confirmation command is transmitted (see steps S52314 and S5211).

ステップS5227では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、接続確認コマンドを送信した後、10秒を経過しても接続OKコマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS5228)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS5229)。   In step S5227, the CPU 56 checks whether or not the prize ball process timer has timed out. If the winning ball process timer has timed out (that is, if the connection OK command has not been received even after 10 seconds have passed after sending the connection confirmation command), the CPU 56 sends a winning ball to the winning ball process code. A value “0” indicating the process 1 is set (step S5228), and the process ends. If the winning ball process timer has not timed out, the CPU 56 subtracts 1 from the value of the winning ball process timer (step S5229).

図66は、賞球プロセスコードの値が2の場合に実行される賞球送信処理2(ステップS523)を示すフローチャートである。CPU56は、賞球送信処理2において、賞球コマンド出力カウンタ1〜4の中にカウント値が0でないものがあるか否かを確認する(ステップS52301)。カウント値が0でないものがなければ、ステップS52313に移行する。   FIG. 66 is a flowchart showing the prize ball transmission process 2 (step S523) executed when the value of the prize ball process code is 2. In the prize ball transmission process 2, the CPU 56 checks whether or not any prize ball command output counters 1 to 4 have a count value other than 0 (step S52301). If there is no count value other than 0, the process proceeds to step S52313.

賞球コマンド出力カウンタ1〜4の中にカウント値が0でないものがある場合には(すなわち、カウント値が1以上のものがある場合には)、CPU56は、枠状態表示バッファの内容をロードし、枠状態表示バッファの内容が0であるか否かを確認する(ステップS52302)。枠状態表示バッファの内容が0でなければ、そのまま処理を終了する。そのように制御することによって、エラー情報が設定された接続OKコマンドを受信し、払出制御用マイクロコンピュータ370側で払出停止状態に制御されている場合には、ステップS52303以降の処理に移行しないようし、賞球個数コマンドの送信を保留するように制御する。   If any of the prize ball command output counters 1 to 4 has a count value other than 0 (that is, if the count value is 1 or more), the CPU 56 loads the contents of the frame state display buffer. Then, it is confirmed whether or not the content of the frame state display buffer is 0 (step S5232). If the content of the frame state display buffer is not 0, the processing is terminated as it is. By performing such control, when the connection OK command in which the error information is set is received and the payout control microcomputer 370 is controlled to be in the payout stop state, the process does not proceed to step S52303 and subsequent steps. Then, control is made so that transmission of the prize ball number command is suspended.

枠状態表示バッファの内容が0であれば(すなわち、払出に関するエラーが発生していなければ)、払出制御用CPU371は、そのカウント値が0でない賞球コマンド出力カウンタに対応する賞球個数を個数バッファにセットする(ステップS52303)。具体的には、ステップS52301において、CPU56は、まず、賞球コマンド出力カウンタ1のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ1のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数15個をセットする。また、ステップS52301において、CPU56は、賞球コマンド出力カウンタ1のカウント値が0であった場合には、賞球コマンド出力カウンタ2,3のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ2,3のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数10個をセットする。さらに、ステップS52301において、CPU56は、賞球コマンド出力カウンタ2,3のカウント値も0であった場合には、賞球コマンド出力カウンタ4のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ4のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数3個をセットする。   If the contents of the frame state display buffer are 0 (that is, if no error relating to payout has occurred), the payout control CPU 371 determines the number of prize balls corresponding to the prize ball command output counter whose count value is not 0. It is set in the buffer (step S52303). Specifically, in step S52301, the CPU 56 first checks whether or not the count value of the prize ball command output counter 1 is zero. If the count value of the prize ball command output counter 1 is 1 or more, in step S52303, the CPU 56 sets 15 prize balls in the number buffer. In step S52301, if the count value of the prize ball command output counter 1 is 0, the CPU 56 checks whether the count values of the prize ball command output counters 2 and 3 are 0 or not. If the count value of the prize ball command output counters 2 and 3 is 1 or more, the CPU 56 sets the number of prize balls in the number buffer in step S52303. In step S52301, if the count value of the prize ball command output counters 2 and 3 is also 0, the CPU 56 checks whether the count value of the prize ball command output counter 4 is 0 or not. If the count value of the prize ball command output counter 4 is 1 or more, in step S52303, the CPU 56 sets the number of prize balls to 3 in the number buffer.

また、CPU56は、そのカウント値が0でない賞球コマンド出力カウンタに対応する賞球個数を賞球個数コマンドにセットする(ステップS52304)とともに、賞球個数をセットした賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する制御を行う(ステップS52305)。具体的には、CPU56は、シリアル通信回路511の送信データレジスタに、賞球個数をセットした賞球個数コマンドを出力する処理を行う。   In addition, the CPU 56 sets the number of prize balls corresponding to the prize ball command output counter whose count value is not 0 in the prize ball number command (step S52304), and uses the prize ball number command in which the number of prize balls is set for payout control. Control to transmit to the microcomputer 370 is performed (step S52305). Specifically, the CPU 56 performs a process of outputting a prize ball number command in which the prize ball number is set in the transmission data register of the serial communication circuit 511.

なお、ステップS52301,S52305の処理が実行されることによって、この実施の形態では、接続確認コマンドの送信タイミングにかかわりなく、賞球コマンド出力カウンタの中にカウント値が0でないものがあれば(すなわち、賞球個数記憶があり、所定の払出条件が成立していれば)、賞球個数コマンドが払出制御用マイクロコンピュータ370に送信される。   By executing the processing of steps S52301 and S52305, in this embodiment, if there is a prize ball command output counter whose count value is not 0 regardless of the connection confirmation command transmission timing (ie, If there is a prize ball number storage and a predetermined payout condition is established), a prize ball number command is transmitted to the payout control microcomputer 370.

そして、CPU56は、賞球プロセスコードに賞球受領確認処理を示す値「3」をセットし(ステップS52306)、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52307)。なお、ステップS52307でセットされた接続確認時間2にもとづいて、賞球個数コマンドを送信した後、10秒以内に賞球個数受付コマンドや賞球準備中コマンドを受信したか否かが確認される。具体的には、ステップS52307でセットされた賞球プロセスタイマは、後述するステップS52411の処理で計測され、賞球個数受付コマンドや賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52409でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52410,S5211参照)。   Then, the CPU 56 sets a value “3” indicating the prize ball reception confirmation process in the prize ball process code (step S52306), and sets a connection confirmation time 2 (for example, 10 seconds) in the prize ball process timer (step S52307). . It should be noted that, based on the connection confirmation time 2 set in step S52307, after transmitting the prize ball number command, it is confirmed whether a prize ball number acceptance command or a prize ball preparation command is received within 10 seconds. . Specifically, the prize ball process timer set in step S52307 is measured in the process of step S52411 to be described later, and 10 seconds elapses without receiving a prize ball number acceptance command or a prize ball preparation command. If it is determined as Y in step S52409, the process returns to the prize ball transmission process 1 and the next connection confirmation command is transmitted (see steps S52410 and S5211).

なお、ステップS52306の処理が実行されることによってステップS52305で賞球個数コマンドが送信されると、接続確認コマンドの送信処理を含む賞球送信処理1に戻ることなく、賞球受領確認処理に移行される。従って、この実施の形態では、賞球個数コマンドを送信するまでは所定時間(例えば1秒)ごとに繰り返し接続確認コマンドを送信する処理が実行されているのであるが、賞球個数コマンドを送信したことにもとづいて接続確認コマンドを送信する制御が停止される(より具体的には、賞球個数コマンドを送信した後、後述する賞球個数受付コマンドを受信したことにより賞球終了確認処理に移行する(ステップS52403〜S52405参照)ことによって、または賞球準備中コマンドを受信したことにより賞球受領確認処理を繰り返す(ステップS52406〜S52408参照)ことによって、賞球送信処理1に戻ることなく、接続確認コマンドを送信する制御が停止される。この場合、払出制御用マイクロコンピュータ370側から何も払出制御コマンドが返信されないという異常状態が発生しない限り、賞球個数コマンドを送信した後、賞球払出動作を終了して賞球終了コマンドを受信するまで、遊技制御用マイクロコンピュータ560から接続確認コマンドが送信されることはない。   If the prize ball number command is transmitted in step S52305 by executing the process of step S52306, the process proceeds to the prize ball reception confirmation process without returning to the prize ball transmission process 1 including the connection confirmation command transmission process. Is done. Therefore, in this embodiment, the process of repeatedly transmitting the connection confirmation command is executed every predetermined time (for example, 1 second) until the prize ball number command is transmitted, but the prize ball number command is transmitted. In particular, the control for transmitting the connection confirmation command is stopped (more specifically, after the prize ball number command is transmitted, the process proceeds to the prize ball end confirmation process by receiving the prize ball number acceptance command described later. Connection (without returning to the prize ball transmission process 1) by repeating the prize ball receipt confirmation process (see steps S52403 to S52405) or by receiving the prize ball preparation command (see steps S52406 to S52408). In this case, the control for sending the confirmation command is stopped. Unless an abnormal state occurs in which no payout control command is returned, after the prize ball number command is transmitted, the game control microcomputer 560 is connected until the prize ball payout operation is finished and the prize ball end command is received. A confirmation command is never sent.

次いで、CPU56は、ステップS52303でセットした個数バッファの値を賞球個数カウンタに加算し(ステップS52308)、加算後のカウント値が所定の賞球不足判定値(例えば501)以上であるか否かを確認する(ステップS52309)。この実施の形態において、賞球個数カウンタは、遊技制御用マイクロコンピュータ560側で未払い出しの賞球数を把握するために用いられるカウンタであり、賞球個数コマンドを送信する際に賞球個数コマンドで指定される賞球個数が加算され、賞球払出を10球検出するごとに払出制御用マイクロコンピュータ370から出力される賞球情報にもとづいて10ずつ減算される。また、前述したように、賞球個数カウンタには、メイン処理の初期設定処理において初期値として「250」がセットされている。そして、賞球個数カウンタのカウント値が所定の賞球不足判定値(例えば501)以上に達する場合には、未払い出しの賞球数が異常に多すぎるのであるから、賞球不足の事態が生じていると判定することができる。また、賞球個数カウンタのカウント値が所定の賞球過剰判定値(例えば0)未満となった場合には、本来払い出されるべき数を超えて異常に多くの遊技球が払い出されているのであるから、賞球過剰の事態が生じていると判定することができる。   Next, the CPU 56 adds the value of the number buffer set in step S52303 to the prize ball number counter (step S52308), and whether or not the added count value is equal to or greater than a predetermined prize ball shortage determination value (eg, 501). Is confirmed (step S52309). In this embodiment, the prize ball number counter is a counter used for grasping the number of prize balls that have not been paid out on the game control microcomputer 560 side, and when the prize ball number command is transmitted, The number of prize balls designated in (1) is added, and every time ten prize balls are paid out, 10 is subtracted based on the prize ball information output from the payout control microcomputer 370. Further, as described above, the prize ball number counter is set to “250” as an initial value in the initial setting process of the main process. When the count value of the prize ball counter reaches a predetermined prize ball shortage determination value (for example, 501) or more, the number of prize balls that have not been paid out is excessively large. Can be determined. Further, when the count value of the prize ball number counter is less than a predetermined prize ball excess determination value (for example, 0), an abnormally large number of game balls are paid out in excess of the number to be paid out originally. Therefore, it can be determined that an excessive number of prize balls has occurred.

なお、この実施の形態では、賞球個数コマンドを送信(ステップS52305参照)した直後に、賞球個数カウンタの加算処理(ステップS52308参照)する場合を示しているが、賞球個数コマンドが送信されるタイミングで加算するものであれば、例えば、まず賞球個数カウンタの加算処理を実行してから、その直後に賞球個数コマンドを送信するようにしてもよい。   In this embodiment, the prize ball number counter is added (see step S52308) immediately after the prize ball number command is transmitted (see step S52305). However, the prize ball number command is transmitted. For example, a prize ball number command may be transmitted immediately after the addition process of the prize ball number counter is executed.

また、賞球不足と判定される場合には、払出制御用マイクロコンピュータ370側に何らかの障害が生じて払出動作を正常に行えない場合の他、賞球情報を出力する信号線が断線している場合も考えられる。また、逆に、賞球過剰と判定される場合には、払出制御用マイクロコンピュータ370側に何らかの障害が生じて払出動作が必要以上に行われている場合の他、賞球個数コマンドを送信するコマンド線に何らかの不正が施されて不正に賞球個数コマンドが払出制御用マイクロコンピュータ370に入力されている場合も考えられる。   When it is determined that there is a shortage of prize balls, the signal line for outputting the prize ball information is disconnected in addition to the case where some trouble occurs on the payout control microcomputer 370 side and the payout operation cannot be performed normally. Cases are also conceivable. On the other hand, when it is determined that the number of prize balls is excessive, a prize ball number command is transmitted in addition to the case where some kind of trouble occurs on the payout control microcomputer 370 side and the payout operation is performed more than necessary. It is also conceivable that some injustice is applied to the command line and the award ball number command is illegally input to the payout control microcomputer 370.

賞球個数カウンタのカウント値が所定の賞球不足判定値(例えば501)以上であった場合には、CPU56は、賞球不足や賞球過剰が発生していることを示す賞球エラーフラグが既にセットされているか否かを確認する(ステップS52310)。既に賞球エラーフラグがセットされていれば、そのまま処理を終了する。賞球エラーフラグがセットされていなければ、CPU56は、賞球エラーフラグをセットする(ステップS52311)とともに、賞球不足エラーコマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS52312)。具体的には、CPU56は、賞球不足エラーコマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS52312で賞球不足エラーコマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路511の送信データレジスタに賞球不足エラーコマンドが出力され、賞球不足エラーコマンドが演出制御用マイクロコンピュータ100に送信される。なお、賞球エラーフラグは、一度セットされると、遊技機への電力供給が停止された後、遊技機へ電源が再投入されるまで、クリアされずに維持される。また、この実施の形態では、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータ100との間の通信に関しては、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータ100に対してコマンドが送信されるのみで、その逆はない。そのため、遊技制御用マイクロコンピュータ560には、演出制御用マイクロコンピュータ100との通信に関しては、送信専用のシリアル通信回路が搭載されていてもよい。   When the count value of the prize ball number counter is equal to or greater than a predetermined prize ball shortage determination value (for example, 501), the CPU 56 displays a prize ball error flag indicating that a prize ball shortage or a prize ball excess has occurred. It is confirmed whether it has already been set (step S52310). If the prize ball error flag has already been set, the process is terminated. If the prize ball error flag is not set, the CPU 56 sets a prize ball error flag (step S52311) and controls to send a prize ball shortage error command to the effect control microcomputer 100 (step S52312). Specifically, the CPU 56 performs a process of setting the address of the winning ball shortage error command transmission table as a pointer. Then, based on the fact that the address of the winning ball shortage error command transmission table is set in the pointer in step S52312, the serial communication circuit of the transmission / reception channel with the effect control board 80 in the effect symbol command control processing in step S30. The prize ball shortage error command is output to the transmission data register 511, and the prize ball shortage error command is transmitted to the production control microcomputer 100. Note that once the prize ball error flag is set, it is maintained without being cleared until the power supply to the gaming machine is turned on again after the power supply to the gaming machine is stopped. In this embodiment, regarding the communication between the game control microcomputer 560 and the effect control microcomputer 100, a command is transmitted from the game control microcomputer 560 to the effect control microcomputer 100. Only, not the other way around. Therefore, the game control microcomputer 560 may be equipped with a transmission-only serial communication circuit for communication with the effect control microcomputer 100.

なお、この実施の形態では、賞球不足エラーコマンドや、後述する賞球過剰エラーコマンドを受信したことにもとづいて、演出制御用マイクロコンピュータ100によって賞球不足や賞球過剰のエラー報知が行われるのであるが(ステップS625〜S628参照)、賞球不足や賞球過剰のエラー報知は、報知開始から所定期間を経過したときに復旧するようにしてもよい。また、例えば、賞球個数カウンタの値が所定の賞球不足判定値(例えば501)や所定の賞球過剰判定値(例えば0)の範囲内に復帰したときに、賞球不足や賞球過剰のエラー報知から復旧するようにしてもよい。   In this embodiment, based on the reception of a prize ball shortage error command or a prize ball excess error command described later, the effect control microcomputer 100 performs an error notification of prize ball shortage or prize ball excess. (Refer to Steps S625 to S628) However, the error notification of insufficient prize balls or excessive prize balls may be recovered when a predetermined period has elapsed from the start of notification. Further, for example, when the value of the prize ball number counter returns to a range of a predetermined prize ball shortage determination value (for example, 501) or a predetermined prize ball excess determination value (for example, 0), the prize ball shortage or the prize ball is excessive. It is also possible to recover from the error notification.

なお、この実施の形態では、ステップS52308において、賞球個数コマンドを送信したタイミングで賞球個数カウンタに賞球個数を加算する場合を示したが、賞球個数カウンタのカウントアップの仕方は、この実施の形態で示したものにかぎらず、例えば、逆に賞球個数を減算するようにしてもよい。この場合、例えば、後述するステップS5311の処理において、賞球情報を入力したことにもとづいて賞球個数カウンタの値に逆に10加算するようにすればよい。そして、ステップS52309の処理では賞球個数カウンタの値が0未満であれば賞球不足エラーと判定するようにし、後述するステップS5312の処理では賞球個数カウンタの値が501以上であれば賞球過剰エラーと判定するようにすればよい。   In this embodiment, the case where the prize ball number is added to the prize ball number counter at the timing at which the prize ball number command is transmitted in step S52308 is shown. For example, the number of prize balls may be subtracted instead of the one shown in the embodiment. In this case, for example, in the process of step S5311 to be described later, on the contrary, 10 may be added to the value of the winning ball counter based on the input of winning ball information. In the process of step S52309, if the value of the prize ball number counter is less than 0, it is determined that there is a prize ball shortage error. What is necessary is just to determine with an excess error.

ステップS52313では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、接続OKコマンドを受信した後、1秒を経過するまでに、賞球個数の記憶もなく、新たな入賞も発生しなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52314)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52315)。   In step S52313, the CPU 56 checks whether or not the prize ball process timer has timed out. If the winning ball process timer has timed out (that is, if no winning ball has been stored and no new winning has occurred by the time one second has elapsed after receiving the connection OK command), the CPU 56 Then, the value “0” indicating the prize ball transmission process 1 is set in the prize ball process code (step S52314), and the process ends. If the winning ball process timer has not timed out, the CPU 56 subtracts 1 from the value of the winning ball process timer (step S52315).

図67は、賞球プロセスコードの値が3の場合に実行される賞球受領確認処理(ステップS524)を示すフローチャートである。CPU56は、賞球受領確認処理において、まず、シリアル通信回路511の受信データレジスタにデータがあるか否かを確認する(ステップS52401)。具体的には、CPU56は、シリアル通信回路511のステータスレジスタAのビット5の値を確認するようにすればよい(図33参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS52409に移行する。   FIG. 67 is a flowchart showing the winning ball reception confirmation process (step S524) executed when the value of the winning ball process code is 3. In the winning ball receipt confirmation process, the CPU 56 first confirms whether there is data in the reception data register of the serial communication circuit 511 (step S52401). Specifically, the CPU 56 may confirm the value of bit 5 of the status register A of the serial communication circuit 511 (see FIG. 33). If there is no data in the reception data register (that is, if no command is received), the process proceeds to step S52409.

受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路511のエラーが発生しているか否かを確認する(ステップS52402)。具体的には、CPU56は、シリアル通信回路511のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図33参照)。エラーが発生していれば、ステップS52409に移行する。   If there is data in the reception data register (that is, if a command is received), the CPU 56 checks whether or not an error has occurred in the serial communication circuit 511 (step S52402). Specifically, the CPU 56 may confirm whether or not any error bit value of bits 0 to 4 of the status register A of the serial communication circuit 511 is set (see FIG. 33). If an error has occurred, the process proceeds to step S52409.

シリアル通信回路511のエラーも発生していなければ、CPU56は、シリアル通信回路511の受信データレジスタからコマンドを読み出し、受信したコマンドが賞球個数受付コマンドであるか否かを確認する(ステップS52403)。賞球個数受付コマンドを受信していれば、CPU56は、送信した賞球個数コマンドで設定した賞球個数に対応する賞球コマンド出力カウンタの値を1減算する(ステップS52404)。また、CPU56は、賞球プロセスコードに賞球終了確認処理を示す値「4」をセットし(ステップS52405)、ステップS52408に移行する。   If no error has occurred in the serial communication circuit 511, the CPU 56 reads the command from the reception data register of the serial communication circuit 511, and confirms whether or not the received command is a prize ball number acceptance command (step S52403). . If the winning ball number reception command has been received, the CPU 56 subtracts 1 from the value of the winning ball command output counter corresponding to the winning ball number set by the transmitted winning ball number command (step S52404). In addition, the CPU 56 sets a value “4” indicating a prize ball end confirmation process in the prize ball process code (step S52405), and proceeds to step S52408.

受信したコマンドが賞球個数受付コマンドでなければ、CPU56は、受信したコマンドが賞球準備中コマンドであるか否かを確認する(ステップS52406)。賞球準備中コマンドでもなければ、ステップS52409に移行する。   If the received command is not a prize ball number acceptance command, the CPU 56 checks whether or not the received command is a prize ball preparation command (step S52406). If it is not a prize ball preparation command, the process advances to step S52409.

賞球準備中コマンドを受信していれば、CPU56は、賞球準備中コマンドの下位4ビットに設定されているエラー情報(図50参照)を枠状態表示バッファに格納する(ステップS52407)。そして、CPU56は、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52408)。なお、ステップS52408でセットされた接続確認時間2にもとづいて、賞球準備中コマンドを受信した後、10秒を経過しても賞球個数受付コマンドも次の賞球準備中コマンドも受信できなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52408でセットされた賞球プロセスタイマは、後述するステップS52409,S52411の処理で計測され、賞球個数受付コマンドや次の賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52409でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52410,S5211参照)。   If the winning ball preparation command has been received, the CPU 56 stores the error information (see FIG. 50) set in the lower 4 bits of the winning ball preparation command in the frame state display buffer (step S52407). Then, the CPU 56 sets the connection confirmation time 2 (for example, 10 seconds) in the prize ball process timer (step S52408). In addition, after receiving the prize ball preparation command based on the connection confirmation time 2 set in step S52408, neither the prize ball number acceptance command nor the next prize ball preparation command can be received after 10 seconds. If it is, the process returns to the control for transmitting the connection confirmation command. Specifically, the prize ball process timer set in step S52408 is measured in the processing of steps S52409 and S52411 described later, and 10 seconds are received without receiving a prize ball number acceptance command or a next prize ball preparation command. If time elapses and it is determined as Y in step S52409, the process returns to the prize ball transmission process 1 and the next connection confirmation command is transmitted (see steps S52410 and S5211).

ステップS52409では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、賞球個数コマンドを送信した後、10秒を経過しても賞球個数受付コマンドや賞球準備中コマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52410)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52411)。   In step S52409, the CPU 56 checks whether or not the prize ball process timer has timed out. If the prize ball process timer has timed out (that is, if no prize ball number acceptance command or prize ball preparation command is received after 10 seconds have passed since the prize ball number command was transmitted), the CPU 56 Then, the value “0” indicating the prize ball transmission process 1 is set in the prize ball process code (step S52410), and the process ends. If the winning ball process timer has not timed out, the CPU 56 subtracts 1 from the value of the winning ball process timer (step S52411).

図68は、賞球プロセスコードの値が4の場合に実行される賞球終了確認処理(ステップS525)を示すフローチャートである。CPU56は、賞球終了確認処理において、まず、シリアル通信回路511の受信データレジスタにデータがあるか否かを確認する(ステップS52501)。具体的には、CPU56は、シリアル通信回路511のステータスレジスタAのビット5の値を確認するようにすればよい(図33参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS52509に移行する。   FIG. 68 is a flowchart showing the winning ball end confirmation process (step S525) executed when the value of the winning ball process code is 4. In the winning ball end confirmation process, the CPU 56 first confirms whether or not there is data in the reception data register of the serial communication circuit 511 (step S52501). Specifically, the CPU 56 may confirm the value of bit 5 of the status register A of the serial communication circuit 511 (see FIG. 33). If there is no data in the reception data register (that is, if no command is received), the process proceeds to step S52509.

受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路511のエラーが発生しているか否かを確認する(ステップS52502)。具体的には、CPU56は、シリアル通信回路511のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図33参照)。エラーが発生していれば、ステップS52509に移行する。   If there is data in the reception data register (that is, if a command is received), the CPU 56 checks whether or not an error has occurred in the serial communication circuit 511 (step S52502). Specifically, the CPU 56 may confirm whether or not any error bit value of bits 0 to 4 of the status register A of the serial communication circuit 511 is set (see FIG. 33). If an error has occurred, the process proceeds to step S52509.

シリアル通信回路511のエラーも発生していなければ、CPU56は、シリアル通信回路511の受信データレジスタからコマンドを読み出し、受信したコマンドが賞球終了コマンドであるか否かを確認する(ステップS52503)。賞球終了コマンドを受信していれば、CPU56は、賞球プロセスコードに賞球送信処理2を示す値「2」をセットし(ステップS52504)、賞球プロセスタイマに接続確認時間1(例えば1秒)をセットする(ステップS52505)。なお、ステップS52505でセットされた接続確認時間1にもとづいて、賞球終了コマンドを受信した後、1秒を経過しても始動入賞が発生しなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52505でセットされた賞球プロセスタイマは、ステップS52313,S52315の処理で計測され、新たな始動入賞が発生せず賞球個数コマンドを送信することなく1秒が経過してタイムアウトしステップS52313でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52314,S5211参照)。   If no error has occurred in the serial communication circuit 511, the CPU 56 reads a command from the reception data register of the serial communication circuit 511, and checks whether the received command is a prize ball end command (step S52503). If the winning ball end command has been received, the CPU 56 sets a value “2” indicating the winning ball transmission process 2 in the winning ball process code (step S52504), and the connection check time 1 (for example, 1) is set in the winning ball process timer. Second) is set (step S52505). It should be noted that, based on the connection confirmation time 1 set in step S52505, the control for transmitting the connection confirmation command when the start winning prize does not occur even after one second has elapsed after receiving the winning ball end command. Return to. Specifically, the prize ball process timer set in step S52505 is measured by the processing in steps S52313 and S52315, and one second has elapsed without sending a prize ball number command without generating a new start prize. If time-out occurs and it is determined as Y in step S52313, the process returns to the prize ball transmission process 1 and the next connection confirmation command is transmitted (see steps S52314 and S5211).

なお、ステップS52504の処理が実行されることによって、賞球終了コマンドを受信した場合にはまず賞球送信処理2に移行されるので、賞球個数の記憶が溜まっている場合には直ちに次の賞球個数コマンドが送信されるように制御される。一方で、賞球送信処理2に移行された後、賞球個数の記憶もなく、ステップS52505でセットされた接続確認時間1(例えば1秒)が経過するまでの間に新たな入賞も発生しなかった場合には、さらに賞球送信処理1に移行され、接続確認コマンドを繰り返し送信する処理が再開される。   Since the process of step S52504 is executed, when a prize ball end command is received, the process first proceeds to prize ball transmission process 2. Therefore, when the number of prize balls is stored, the next is immediately performed. Control is performed so that a winning ball number command is transmitted. On the other hand, after the transition to the prize ball transmission process 2, there is no memorization of the number of prize balls, and a new prize is generated until the connection confirmation time 1 (for example, 1 second) set in step S52505 has elapsed. If not, the process further proceeds to a prize ball transmission process 1, and the process of repeatedly transmitting the connection confirmation command is resumed.

受信したコマンドが賞球終了コマンドでなければ、CPU56は、受信したコマンドが賞球準備中コマンドであるか否かを確認する(ステップS52506)。賞球準備中コマンドでもなければ、ステップS52509に移行する。   If the received command is not a prize ball end command, the CPU 56 checks whether or not the received command is a prize ball preparation command (step S52506). If it is not a prize ball preparation command, the process advances to step S52509.

賞球準備中コマンドを受信していれば、CPU56は、賞球準備中コマンドの下位4ビットに設定されているエラー情報(図50参照)を枠状態表示バッファに格納する(ステップS52507)。そして、CPU56は、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52508)。なお、ステップS52508でセットされた接続確認時間2にもとづいて、賞球準備中コマンドを受信した後、10秒を経過しても賞球終了コマンドも次の賞球準備中コマンドも受信できなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52508でセットされた賞球プロセスタイマは、後述するステップS52511の処理で計測され、賞球終了コマンドや次の賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52509でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52510,S5211参照)。   If the winning ball preparation command has been received, the CPU 56 stores the error information (see FIG. 50) set in the lower 4 bits of the winning ball preparation command in the frame state display buffer (step S52507). Then, the CPU 56 sets the connection confirmation time 2 (for example, 10 seconds) in the prize ball process timer (step S52508). In addition, after receiving the winning ball preparation command based on the connection confirmation time 2 set in step S52508, neither the winning ball end command nor the next winning ball preparation command could be received after 10 seconds. In this case, the process returns to the control for transmitting the connection confirmation command. Specifically, the prize ball process timer set in step S52508 is measured in the process of step S52511 described later, and 10 seconds have elapsed without receiving a prize ball end command or a next prize ball preparation command. If time-out occurs and it is determined as Y in step S52509, the process returns to the prize ball transmission process 1 and the next connection confirmation command is transmitted (see steps S52510 and S5211).

ステップS52509では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、賞球個数受付コマンドや賞球準備中コマンドを受信した後、10秒を経過しても賞球終了コマンドや賞球準備中コマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52510)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52511)。   In step S52509, the CPU 56 checks whether or not the prize ball process timer has timed out. If the prize ball process timer has timed out (that is, the prize ball end command or the prize ball preparation command cannot be received even after 10 seconds have passed since the prize ball number acceptance command or prize ball preparation command is received) In this case, the CPU 56 sets a value “0” indicating the prize ball transmission process 1 in the prize ball process code (step S52510), and ends the process. If the winning ball process timer has not timed out, the CPU 56 subtracts 1 from the value of the winning ball process timer (step S52511).

図69は、ステップS503の賞球カウンタ減算処理を示すフローチャートである。CPU56は、賞球カウンタ減算処理において、まず、賞球情報入力無効タイマがタイムアウトしたか否かを確認する(ステップS5301)。なお、賞球情報入力無効タイマは、賞球情報の入力を確認した後、次の賞球情報の入力を確認するまでの間にインターバル期間を設けるために計測されるタイマである。タイムアウトしていなければ、CPU56は、賞球情報入力無効タイマの値を1減算して(ステップS5302)、処理を終了する。   FIG. 69 is a flowchart showing the prize ball counter subtraction process in step S503. In the prize ball counter subtraction process, the CPU 56 first checks whether or not the prize ball information input invalid timer has timed out (step S5301). The prize ball information input invalid timer is a timer that is measured in order to provide an interval period after confirming the input of prize ball information until confirming the input of the next prize ball information. If not timed out, the CPU 56 subtracts 1 from the value of the prize ball information input invalid timer (step S5302) and ends the process.

賞球情報入力無効タイマがタイムアウトしていれば、CPU56は、入力ポート0の内容を入力し(ステップS5303)、賞球情報のビットがオン状態であるか否かを確認する(ステップS5304)。賞球情報のビットがオン状態であれば、ステップS5305に移行する。   If the prize ball information input invalid timer has timed out, the CPU 56 inputs the contents of the input port 0 (step S5303), and checks whether or not the bit of the prize ball information is on (step S5304). If the bit of the prize ball information is on, the process proceeds to step S5305.

ステップS5305では、CPU56は、処理数として所定の賞球情報確認回数(例えば8)をセットする(ステップS5305)。そして、CPU56は、賞球情報を入力しているか否かを確認し、賞球情報の入力を確認できれば賞球情報オンカウンタの値を1加算する処理を、処理数(本例では8)を終了するまで繰り返し実行する(ステップS5306〜S5308)。   In step S5305, the CPU 56 sets a predetermined prize ball information confirmation count (for example, 8) as the number of processes (step S5305). Then, the CPU 56 confirms whether or not the prize ball information is input, and if the input of the prize ball information can be confirmed, the CPU 56 adds the value of the prize ball information on counter to 1 and the number of processes (8 in this example). The process is repeated until the process is completed (steps S5306 to S5308).

次いで、CPU56は、賞球情報オンカウンタの値が6以上であるか否かを確認する(ステップS5309)。賞球情報オンカウンタの値が6以上であれば、CPU56は、賞球情報入力無効タイマに所定時間(例えば0.8秒)をセットする(ステップS5310)とともに、賞球個数カウンタの値を10減算する(ステップS5311)。   Next, the CPU 56 checks whether or not the value of the prize ball information on counter is 6 or more (step S5309). If the value of the prize ball information on counter is 6 or more, the CPU 56 sets a predetermined time (for example, 0.8 seconds) in the prize ball information input invalid timer (step S5310) and sets the value of the prize ball number counter to 10 Subtraction is performed (step S5311).

以上の処理が実行されることによって、この実施の形態では、賞球情報の入力を8回の確認処理中6回以上確認したことを条件として賞球情報を入力したと判定し、10個の賞球払出が行われたものとして賞球個数カウンタの値を10減算している。そのような処理によって、この実施の形態では、誤って賞球情報を入力したと判定する事態を低減し、遊技制御用マイクロコンピュータ560側で未払い出しの賞球数を適切に把握できなくなる事態を防止している。   By executing the above processing, in this embodiment, it is determined that the prize ball information has been inputted on the condition that the prize ball information has been inputted 6 times or more out of the 8 confirmation processes, and 10 pieces of prize ball information are entered. The value of the prize ball number counter is decremented by 10 assuming that the prize ball has been paid out. By such processing, in this embodiment, the situation where it is determined that the prize ball information is erroneously input is reduced, and the game control microcomputer 560 side cannot properly grasp the number of prize balls that have not been paid out. It is preventing.

次いで、CPU56は、減算後のカウント値が所定の賞球過剰判定値(例えば0)未満であるか否かを確認する(ステップS5312)。賞球個数カウンタのカウント値が所定の賞球過剰判定値(例えば0)未満であった場合には、CPU56は、賞球エラーフラグが既にセットされているか否かを確認する(ステップS5313)。既に賞球エラーフラグがセットされていれば、そのまま処理を終了する。賞球エラーフラグがセットされていなければ、CPU56は、賞球エラーフラグをセットする(ステップS5314)とともに、賞球過剰エラーコマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS5315)。具体的には、CPU56は、賞球過剰エラーコマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS5315で賞球過剰エラーコマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路511の送信データレジスタに賞球過剰エラーコマンドが出力され、賞球過剰エラーコマンドが演出制御用マイクロコンピュータ100に送信される。   Next, the CPU 56 checks whether or not the count value after subtraction is less than a predetermined prize ball excess determination value (for example, 0) (step S5312). When the count value of the prize ball number counter is less than a predetermined prize ball excess determination value (for example, 0), the CPU 56 checks whether or not the prize ball error flag is already set (step S5313). If the prize ball error flag has already been set, the process is terminated. If the prize ball error flag is not set, the CPU 56 sets the prize ball error flag (step S5314) and controls to send a prize ball excess error command to the effect control microcomputer 100 (step S5315). Specifically, the CPU 56 performs a process of setting the address of the winning ball excessive error command transmission table as a pointer. Then, based on the fact that the address of the winning ball excess error command transmission table is set in the pointer in step S5315, in the effect symbol command control process in step S30, the serial communication circuit of the transmission / reception channel with the effect control board 80 is performed. A prize ball excess error command is output to the transmission data register 511, and the prize ball excess error command is transmitted to the production control microcomputer 100.

次に、枠状態出力処理(ステップS39)について説明する。図70は、ステップS39の枠状態出力処理の一例を示すフローチャートである。CPU56は、枠状態出力処理において、まず、枠状態表示バッファの内容をロードする(ステップS391)。次いで、CPU56は、入力ポート1の内容を入力する(ステップS392)とともに、入力した入力ポート1の内容を所定の扉開放信号確認用のマスク値(具体的には、10000000)と論理積をとる(ステップS393)。さらに、CPU56は、論理積をとった演算結果と、ステップS391でロードした枠状態表示バッファの内容との論理積をとる(ステップS394)。以上の処理が実行されることによって、枠状態表示バッファの内容にさらに扉開放信号の入力状態が付加された演算結果が得られる。   Next, the frame state output process (step S39) will be described. FIG. 70 is a flowchart illustrating an example of the frame state output process in step S39. In the frame state output process, the CPU 56 first loads the contents of the frame state display buffer (step S391). Next, the CPU 56 inputs the contents of the input port 1 (step S392) and logically ANDs the input contents of the input port 1 with a predetermined door opening signal confirmation mask value (specifically, 10000000). (Step S393). Further, the CPU 56 calculates the logical product of the operation result obtained by the logical product and the contents of the frame state display buffer loaded in step S391 (step S394). By executing the above processing, a calculation result is obtained in which the door opening signal input state is further added to the contents of the frame state display buffer.

次いで、CPU56は、演算結果と前回枠状態表示バッファの内容とを比較する(ステップS395)。なお、前回枠状態表示バッファには、前回のタイマ割込によって枠状態出力処理が実行されたときに算出されたステップS394の演算結果が格納されている。演算結果が前回枠状態表示バッファの内容と異なる場合には(ステップS396のY)、CPU56は、前回枠状態表示バッファにステップS394で算出した演算結果を格納して前回枠状態表示バッファを更新する(ステップS397)とともに、ステップS394で算出した演算結果をそのまま枠状態表示コマンドのEXTデータとして設定して、枠状態表示コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS398)。具体的には、CPU56は、枠状態表示コマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS398で枠状態表示コマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路511の送信データレジスタに枠状態表示コマンドが出力され、枠状態表示コマンドが演出制御用マイクロコンピュータ100に送信される。   Next, the CPU 56 compares the calculation result with the contents of the previous frame state display buffer (step S395). The previous frame state display buffer stores the calculation result of step S394 calculated when the frame state output processing is executed by the previous timer interrupt. When the calculation result is different from the content of the previous frame state display buffer (Y in step S396), the CPU 56 stores the calculation result calculated in step S394 in the previous frame state display buffer and updates the previous frame state display buffer. Along with (Step S397), the calculation result calculated in Step S394 is set as it is as EXT data of the frame state display command, and control is performed to transmit the frame state display command to the effect control microcomputer 100 (Step S398). Specifically, the CPU 56 performs processing for setting the address of the frame state display command transmission table in the pointer. Then, based on the fact that the address of the frame state display command transmission table is set in the pointer in step S398, in the effect symbol command control processing in step S30, the serial communication circuit 511 of the channel for transmission and reception with the effect control board 80 is performed. The frame state display command is output to the transmission data register, and the frame state display command is transmitted to the production control microcomputer 100.

図71は、枠状態表示コマンドに設定されるEXTデータの具体例を示す説明図である。図71に示すように、賞球エラー(入賞にもとづく賞球払出動作や球貸し要求にもとづく球貸払出動作が正常に行えない状態になった異常状態:具体的には、図96に示す主制御未接続エラーや、払出スイッチ異常検知エラー1、払出スイッチ異常検知エラー2、払出ケースエラー、主制御通信エラー)が検出されている場合には、1ビット目(ビット0)の賞球エラービットに「1」が設定される。また、満タンエラーが検出されている場合には、2ビット目(ビット1)の満タンエラービットに「1」が設定される。また、球切れエラーが検出されている場合には、3ビット目(ビット2)の球切れエラービットに「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが検出されている場合には、4ビット目(ビット3)の払出個数異常エラービットに「1」が設定される。また、ガラス扉枠2が開放状態であることが検出されている場合には、8ビット目(ビット7)の扉開放異常エラービットに「1」が設定される。   FIG. 71 is an explanatory diagram of a specific example of EXT data set in the frame state display command. As shown in FIG. 71, a prize ball error (abnormal state in which a prize ball payout operation based on a winning or a ball lending payout operation based on a ball lending request cannot be normally performed: If a control unconnected error, payout switch error detection error 1, payout switch error detection error 2, payout case error, main control communication error) is detected, the first bit (bit 0) winning ball error bit Is set to “1”. When a full tank error is detected, “1” is set in the second tank (bit 1) full tank error bit. When a ball break error is detected, “1” is set to the third bit (bit 2) ball break error bit. If a payout quantity abnormality error is detected when the cumulative value of the number of prize balls or rental balls to be paid, which will be described later, reaches a predetermined value (for example, 2000), the fourth bit (bit) “1” is set in the payout number error error bit of 3). When it is detected that the glass door frame 2 is in the open state, “1” is set in the door opening abnormality error bit of the eighth bit (bit 7).

なお、機構板が開放状態であることが検出されていることを示す情報も枠状態表示コマンドに設定して送信できるようにしてもよい。この場合、例えば、図71において、機構板が開放状態であることが検出されている場合には、7ビット目(ビット6)の機構板開放異常エラービットに「1」が設定されるようにしてもよい。   Note that information indicating that the mechanism plate is detected to be in the open state may also be set in the frame state display command and transmitted. In this case, for example, when it is detected in FIG. 71 that the mechanism plate is in the open state, “1” is set to the mechanism plate open error error bit of the seventh bit (bit 6). May be.

以上の処理が実行されることによって、払出制御用マイクロコンピュータ560から接続OKコマンドや賞球準備中コマンドで設定されたエラー情報(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラー)の内容や扉開放信号の入力状態が枠状態表示コマンドに設定されて、演出制御用マイクロコンピュータ100に送信される。   By executing the above processing, the error information set by the connection OK command or the winning ball preparation command from the payout control microcomputer 560 (the payout number error error, the ball running out error, the full tank error, the winning ball error) And the door open signal input state are set in the frame state display command and transmitted to the effect control microcomputer 100.

次に、メイン処理における特別図柄プロセス処理(ステップS28)を説明する。図72は、遊技制御用マイクロコンピュータ560のCPU56が実行する特別図柄プロセス処理のプログラムの一例を示すフローチャートである。遊技制御用マイクロコンピュータ560のCPU56は、遊技盤6に設けられている始動入賞口14に遊技球が入賞したことを検出するための始動口スイッチ14aがオンしていたら、すなわち遊技球が始動入賞口14に入賞し、入賞検出信号SSが始動口スイッチ14aから入力されていたら(ステップS311)、始動口スイッチ通過処理(ステップS312)を行った後に、内部状態に応じて、ステップS300〜S306のうちのいずれかの処理を行う。   Next, the special symbol process (step S28) in the main process will be described. FIG. 72 is a flowchart showing an example of a special symbol process processing program executed by the CPU 56 of the game control microcomputer 560. The CPU 56 of the game control microcomputer 560 has the start opening switch 14a for detecting that the game ball has won the start winning opening 14 provided in the game board 6 being turned on, that is, the game ball is starting start winning. If a winning is received at the opening 14 and the winning detection signal SS is input from the start opening switch 14a (step S311), after the start opening switch passing process (step S312) is performed, the processing of steps S300 to S306 is performed according to the internal state. Do one of these processes.

特別図柄通常処理(ステップS300):特別図柄の可変表示を開始できる状態(例えば、特別図柄表示器8において図柄の変動がなされておらず、特別図柄表示器8における前回の図柄変動が終了してから所定期間が経過しており、かつ、大当り遊技中でもない状態)になるのを待つ。特別図柄の可変表示が開始できる状態になると、特別図柄についての始動入賞記憶数を確認する。始動入賞記憶数が0でなければ、特図保留メモリに記憶されている乱数回路509が発生したランダムRにもとづいて、特別図柄の可変表示の結果を大当りとするか否か決定する。また、大当りとすると決定した場合には、さらに、確変大当りとするか否かなど大当り種別を決定し、決定した表示結果を特定可能な表示結果指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS301に移行するように更新する。   Special symbol normal processing (step S300): A state where variable symbol special display can be started (for example, the symbol variation has not been made in the special symbol display 8, and the previous symbol variation in the special symbol display 8 has ended) Waits for a predetermined period of time to elapse, and not a big hit game). When the special symbol variable display can be started, the start winning memory number for the special symbol is confirmed. If the number of start winning prizes is not 0, it is determined whether or not the result of variable symbol special display is a big hit based on the random R generated by the random number circuit 509 stored in the special figure holding memory. Further, when it is determined to be a big hit, control for transmitting a display result designation command capable of specifying the determined display result to the microcomputer 100 for effect control is further determined, such as whether or not to make a probable big hit. I do. Then, the internal state (special symbol process flag) is updated so as to shift to step S301.

変動時間設定処理(ステップS301):変動パターンを決定し、その変動パターンにおける変動時間(可変表示時間:可変表示を開始してから表示結果が導出表示(停止表示)するまでの時間)を特別図柄の可変表示の変動時間とすることに決定する。また、決定した変動パターンを指定する変動パターンコマンドを演出制御用マイクロコンピュータ100に送信する制御を行うとともに、決定した特別図柄の変動時間を計測する変動時間タイマをスタートさせる。そして、内部状態(特別図柄プロセスフラグ)をステップS302に移行するように更新する。   Fluctuation time setting process (step S301): A variation pattern is determined, and the variation time in the variation pattern (variable display time: time from the start of variable display until the display result is derived and displayed (stop display)) is a special symbol. It is determined to be a variable display variable time. In addition, control is performed to transmit a variation pattern command specifying the determined variation pattern to the effect control microcomputer 100, and a variation time timer for measuring the variation time of the determined special symbol is started. Then, the internal state (special symbol process flag) is updated so as to shift to step S302.

特別図柄変動処理(ステップS302):所定時間(ステップS301の変動時間タイマで示された時間)が経過すると、内部状態(特別図柄プロセスフラグ)をステップS303に移行するように更新する。   Special symbol variation processing (step S302): When a predetermined time (the time indicated by the variation time timer in step S301) elapses, the internal state (special symbol process flag) is updated to shift to step S303.

特別図柄停止処理(ステップS303):演出制御基板80に対して、演出図柄の停止を指示するための演出図柄停止コマンドを送信する。また、特別図柄表示器8における特別図柄を停止させる。そして、特別図柄の停止図柄が大当り図柄である場合には、内部状態(特別図柄プロセスフラグ)をステップS304に移行するように更新する。そうでない場合には、内部状態をステップS300に移行するように更新する。なお、演出図柄停止コマンドを送信しない構成としてもよい。この場合、演出制御基板80は、主基板31から受信した変動パターンコマンドにもとづいて変動時間タイマに変動時間を設定するとともに、その変動時間タイマを更新していくことで演出図柄の変動時間を独自に監視し、その変動時間が経過したと判定したときに演出図柄を停止する処理を行うようにすればよい。   Special symbol stop process (step S303): An effect symbol stop command for instructing stop of the effect symbol is transmitted to the effect control board 80. Moreover, the special symbol in the special symbol display 8 is stopped. If the stop symbol of the special symbol is a jackpot symbol, the internal state (special symbol process flag) is updated to shift to step S304. If not, the internal state is updated to shift to step S300. In addition, it is good also as a structure which does not transmit an effect design stop command. In this case, the effect control board 80 sets the change time to the change time timer based on the change pattern command received from the main board 31 and updates the change time timer to uniquely change the change time of the effect symbol. Monitoring, and when it is determined that the fluctuation time has elapsed, a process of stopping the effect design may be performed.

大入賞口開放前処理(ステップS304):大入賞口を開放する制御を開始する。具体的には、カウンタ(例えば大入賞口に入った遊技球数をカウントするカウンタ)やフラグ(入賞口への入賞を検出する際に用いられるフラグ)を初期化するとともに、ソレノイド21を駆動して大入賞口を開放する。また、プロセスタイマによって大入賞口開放中処理の実行時間を設定し、大当り中フラグをセットする。そして、内部状態(特別図柄プロセスフラグ)をステップS305に移行するように更新する。   Preliminary winning opening opening process (step S304): Control for opening the large winning opening is started. Specifically, a counter (for example, a counter that counts the number of game balls that have entered the grand prize opening) and a flag (a flag used when detecting winning in the prize opening) are initialized, and the solenoid 21 is driven. Open the big prize opening. Also, the process timer sets the execution time of the big prize opening opening process and sets the big hit flag. Then, the internal state (special symbol process flag) is updated so as to shift to step S305.

大入賞口開放中処理(ステップS305):大入賞口ラウンド表示の演出制御コマンドを演出制御基板80に送出する制御や大入賞口の閉成条件(例えば、大入賞口に所定個数(例えば10個)の遊技球が入賞したこと)の成立を確認する処理等を行う。大入賞口の閉成条件が成立したら、まだ残りラウンドがある場合には、内部状態をステップS304に移行するように更新する。また、全てのラウンドを終えた場合には、内部状態をステップS306に移行するように更新する。   Processing for opening a special prize opening (step S305): Control for sending a presentation control command for round display of the special prize opening to the production control board 80 and closing conditions for the special prize opening (for example, a predetermined number (for example, ten) for the special prize opening ) To confirm that the game ball has won a prize). When the closing condition for the big prize opening is satisfied, if there are still rounds, the internal state is updated to shift to step S304. When all the rounds have been completed, the internal state is updated to shift to step S306.

大当り終了処理(ステップS306):大当り遊技状態が終了したことを遊技者に報知する表示制御を演出制御手段に行わせるための制御を行う。そして、内部状態をステップS300に移行するように更新する。   Big hit end processing (step S306): Control for causing the effect control means to perform display control for notifying the player that the big hit gaming state has ended. Then, the internal state is updated so as to shift to step S300.

図73は、始動口スイッチ通過処理(ステップS312)を示すフローチャートである。始動口スイッチ通過処理において、遊技制御用マイクロコンピュータ560のCPU56は、始動入賞記憶カウンタが示す始動入賞記憶数(または特図保留メモリが記憶している始動入賞記憶数)が最大値である4に達しているかどうか確認する(ステップS321)。始動入賞記憶数が4に達していなければ、CPU56は、大当り判定用乱数(ランダムR)となる数値データの読出元となる乱数値レジスタを特定する(ステップS322A)。この実施の形態では、CPU56は、乱数値レジスタR1Dを数値データの読出元として特定する。   FIG. 73 is a flowchart showing the start port switch passing process (step S312). In the start-port switch passing process, the CPU 56 of the game control microcomputer 560 sets the start-winning memory number indicated by the start-winning memory counter (or the start-winning memory number stored in the special figure holding memory) to 4 which is the maximum value. It is confirmed whether it has reached (step S321). If the start winning memorized number has not reached 4, the CPU 56 specifies a random value register from which numerical data to be a big hit determination random number (random R) is read (step S322A). In this embodiment, the CPU 56 specifies the random number value register R1D as a numerical data reading source.

なお、例えば、遊技機が2つの始動入賞口を備えている場合には、遊技球が一方の始動入賞口を通過(進入)した場合には、乱数値レジスタR1Dを数値データの読出元として特定し、遊技球が他方の始動入賞口を通過(進入)した場合には、乱数値レジスタR2Dを数値データの読出元として特定するようにしてもよい。   For example, in the case where the gaming machine has two start winning openings, when the game ball passes (enters) one start winning opening, the random value register R1D is specified as the reading source of the numerical data. When the game ball passes (enters) the other start winning opening, the random value register R2D may be specified as the reading source of the numerical data.

次いで、CPU56は、特定した乱数回路509の乱数値レジスタから数値データを抽出するとともに、ソフトウェア乱数を生成するためのカウンタから値を抽出し(ステップS322B)、それらを、始動入賞記憶数の値に対応した保存領域(特別図柄判定用バッファ(特図保留メモリ))に格納する(ステップS323)。   Next, the CPU 56 extracts numerical data from the specified random number value register of the random number circuit 509 and also extracts values from a counter for generating software random numbers (step S322B), and sets them to the value of the start winning memory number. The data is stored in the corresponding storage area (special symbol determination buffer (special symbol holding memory)) (step S323).

ステップS322Bでは、ステップS322Aの処理で乱数値レジスタR1Dが読出元と特定したことにもとづいて、乱数回路509が備える乱数値レジスタR1Dとしての乱数値レジスタ559Aから、数値データを読み出して抽出する。この場合、数値データが読み出された乱数値レジスタR1Dに対応する乱数ラッチフラグがオフ状態になる。すなわち、ステップS322Aの処理で乱数値レジスタR1Dが読出元と特定されると、ステップS322Bの処理による数値データの読み出しにより乱数ラッチフラグデータRDFM0のビット値が“1”から“0”へと更新され、乱数値レジスタR1Dと対応付けられた乱数ラッチフラグがオフ状態となる。   In step S322B, numerical data is read and extracted from the random value register 559A as the random value register R1D included in the random number circuit 509 based on the fact that the random value register R1D has been identified as the read source in the process of step S322A. In this case, the random number latch flag corresponding to the random number value register R1D from which the numerical data has been read is turned off. That is, when the random value register R1D is specified as the reading source in the process of step S322A, the bit value of the random number latch flag data RDFM0 is updated from “1” to “0” by reading the numerical data by the process of step S322B. The random number latch flag associated with the random value register R1D is turned off.

なお、乱数値レジスタR1Dから読み出された数値データは、そのまま大当り判定用乱数(ランダムR)として特図保留メモリに記憶されてもよいし、所定の加工処理を施してから記憶されるようにしてもよい。一例として、乱数回路509から抽出された数値データは、CPU56が有する16ビットの汎用レジスタなどに一旦格納される。続いて、CPU56に内蔵されたリフレッシュレジスタの格納値であるリフレッシュレジスタ値を、加工用の乱数値となる数値データとして読み出す。このときには、汎用レジスタにおける上位バイトにリフレッシュレジスタ値を加算する一方で、下位バイトはそのままにしておいてもよい。ここで、リフレッシュレジスタ値を加算することに代えて、減算、論理和、論理積といった、所定の演算処理を実行するようにしてもよい。あるいは、リフレッシュレジスタ値を汎用レジスタにおける下位バイトに加算などするようにしてもよい。また、乱数回路509から抽出された数値データの上位バイトと下位バイトとを入れ替えて、汎用レジスタにおける上位バイトや下位バイトとして格納してもよい。さらに、汎用レジスタにおける上位バイトもしくは下位バイトにリフレッシュレジスタ値を加算などした後に、あるいは、汎用レジスタにおける上位バイトや下位バイトに加算などの演算処理を行うことなく、上位バイトと下位バイトとを入れ替えるようにしてもよい。乱数回路509から抽出された数値データの上位バイトと下位バイトとのうち、特定のビットのデータを、他のビットのデータと入れ替えるようにしてもよい。この場合には、例えば乱数回路509における乱数値レジスタR1Dと、汎用レジスタの上位バイトや下位バイトとを接続するバスにおいて、特定のビットのデータを他のビットのデータと入れ替えるように、配線をクロスさせるなどすればよい。その後、CPU56は、汎用レジスタの格納値と所定の論理値(例えば「FFFFH」など)とを論理積演算して、あるいは、汎用レジスタの格納値をそのまま出力して、RAM55の所定領域に格納することなどにより、16ビットの乱数値MR1を示す数値データを設定すればよい。なお、例えば14ビットの乱数値を示す数値データを設定する場合などには、汎用レジスタの格納値と「7F7FH」とを論理積演算するなどして、14ビット値を取得できるようにすればよい。また、論理積演算に代えて、論理和演算が実行されてもよい。   The numerical data read from the random value register R1D may be stored as it is in the special figure reservation memory as a big hit determination random number (random R), or may be stored after a predetermined processing. May be. As an example, the numerical data extracted from the random number circuit 509 is temporarily stored in a 16-bit general-purpose register included in the CPU 56. Subsequently, a refresh register value that is a stored value of a refresh register built in the CPU 56 is read as numerical data that becomes a random number value for processing. In this case, the refresh register value may be added to the upper byte in the general-purpose register, while the lower byte may be left as it is. Here, instead of adding the refresh register value, predetermined arithmetic processing such as subtraction, logical sum, and logical product may be executed. Alternatively, the refresh register value may be added to the lower byte in the general-purpose register. Also, the upper byte and lower byte of the numerical data extracted from the random number circuit 509 may be exchanged and stored as the upper byte or lower byte in the general-purpose register. Furthermore, after the refresh register value is added to the high-order byte or low-order byte in the general-purpose register, or without performing arithmetic processing such as addition to the high-order byte or low-order byte in the general-purpose register, the high-order byte and the low-order byte are switched. It may be. Of the upper byte and lower byte of the numerical data extracted from the random number circuit 509, the data of a specific bit may be replaced with the data of other bits. In this case, for example, in the bus connecting the random number value register R1D in the random number circuit 509 and the upper byte or lower byte of the general-purpose register, the wiring is crossed so that the data of a specific bit is replaced with the data of another bit. You can do it. Thereafter, the CPU 56 performs an AND operation on the stored value of the general-purpose register and a predetermined logical value (for example, “FFFFH”), or outputs the stored value of the general-purpose register as it is and stores it in a predetermined area of the RAM 55. Thus, numerical data indicating the 16-bit random value MR1 may be set. For example, when setting numerical data indicating a 14-bit random number value, a 14-bit value can be acquired by performing an AND operation on the stored value of the general-purpose register and “7F7FH”. . Further, a logical sum operation may be executed instead of the logical product operation.

また、汎用レジスタの格納値にもとづき、加算値決定用の乱数値を示す数値データを設定してもよい。一例として、加算値決定用の乱数値を示す数値データが「0」〜「7」の範囲の値をとる場合には、汎用レジスタの格納値と「C0C0H」などとを論理積演算して、RAM55の所定領域に格納することなどにより、4ビットの乱数値を示す数値データを設定すればよい。   Further, numerical data indicating a random value for determining the addition value may be set based on the stored value of the general-purpose register. As an example, when the numerical data indicating the random value for determining the addition value takes a value in the range of “0” to “7”, the stored value of the general-purpose register and “C0C0H” or the like are ANDed. Numerical data indicating a 4-bit random value may be set by storing it in a predetermined area of the RAM 55 or the like.

なお、この実施の形態では、乱数回路509が備える乱数値レジスタのうち乱数値レジスタR1Dから数値データを読み出して、大当り判定用乱数(ランダムR)として用いる場合を示しているが、この実施の形態で示したものにかぎらず、例えば、乱数値レジスタR2Dから数値データを読み出して、大当り判定用乱数(ランダムR)として用いてもよい。また、例えば、乱数値レジスタR1Dと乱数値レジスタR2Dとから交互に数値データを読み出して、大当り判定用乱数(ランダムR)として用いてもよい。   In this embodiment, a case is shown in which numerical data is read from the random value register R1D among the random value registers provided in the random number circuit 509 and used as a big hit determination random number (random R). For example, numerical data may be read from the random value register R2D and used as a jackpot determination random number (random R). Further, for example, numerical data may be read alternately from the random value register R1D and the random value register R2D and used as a big hit determination random number (random R).

次いで、CPU56は、所定のバッファ領域に格納したランダムRの値を特図保留メモリの空エントリの先頭にセットし(ステップS324)、始動入賞カウンタのカウント数を1加算することで始動入賞記憶数を1増やす(ステップS325)。   Next, the CPU 56 sets the value of the random R stored in the predetermined buffer area to the head of the empty entry in the special figure reservation memory (step S324), and adds 1 to the count number of the start prize counter so that the start prize storage number is increased. Is increased by 1 (step S325).

なお、ステップS321において始動入賞記憶するが最大値である4に達している場合には、CPU56は、乱数値レジスタの読み出しにより乱数ラッチフラグをクリアしてから(ステップS326)、始動口スイッチ通過処理を終了する。なお、ステップS326の処理では、遊技球が始動入賞口14を通過(進入)した場合に対応して、乱数値レジスタR1Dに格納された数値データを読み出す。   Note that if the start prize is stored in step S321 but the maximum value of 4 is reached, the CPU 56 clears the random number latch flag by reading the random value register (step S326), and then performs the start port switch passing process. finish. In the process of step S326, the numerical data stored in the random value register R1D is read in correspondence with the case where the game ball has passed (entered) the start winning opening 14.

次に、特別図柄プロセス処理における特別図柄通常処理(ステップS300)について説明する。図74は、特別図柄通常処理を示すフローチャートである。特別図柄通常処理において、遊技制御用マイクロコンピュータ560のCPU56は、特別図柄の変動を開始することができる状態のとき(例えば特別図柄プロセスフラグの値がステップS300を示す値となっている場合)には(ステップS380)、特図保留メモリから保留番号「1」に対応して格納されているランダムRの値を読み出す(ステップS381)。この場合、CPU56は、始動入賞カウンタのカウント数を1減算することで保留記憶数を1減らし、且つ、特図保留メモリの第2〜第4エントリ(保留番号「2」〜「4」)に格納されたランダムRの値を1エントリずつ上位にシフトする(ステップS382)。   Next, the special symbol normal process (step S300) in the special symbol process will be described. FIG. 74 is a flowchart showing special symbol normal processing. In the special symbol normal process, the CPU 56 of the game control microcomputer 560 can start the variation of the special symbol (for example, when the value of the special symbol process flag is a value indicating step S300). (Step S380), the random R value stored in correspondence with the hold number “1” is read from the special figure hold memory (step S381). In this case, the CPU 56 subtracts 1 from the count number of the start winning counter, thereby reducing the number of reserved memories by 1 and assigns to the second to fourth entries (holding numbers “2” to “4”) of the special figure reservation memory. The stored random R value is shifted up by one entry (step S382).

また、CPU56は、確変フラグがセットされているか否かを確認する(ステップS383)。すなわち、CPU56は、遊技状態が確変状態に制御されているか否かを確認する。確変フラグがセットされていない場合、CPU56は、遊技状態が確変状態以外の通常状態であると判断し、特別図柄表示器8の表示結果を大当り図柄とするか否かを判定するために用いるテーブルとして、通常時大当り判定テーブル571a(図37(A)参照)を設定する(ステップS384)。また、確変フラグがセットされている場合、CPU56は、遊技状態が確変状態であると判断し、特別図柄表示器8の表示結果を大当り図柄とするか否かを判定するために用いるテーブルとして、確変時大当り判定テーブル571b(図37(B)参照)を設定する(ステップS385)。   Further, the CPU 56 checks whether or not the probability variation flag is set (step S383). That is, the CPU 56 confirms whether or not the gaming state is controlled to the certain change state. When the probability variation flag is not set, the CPU 56 determines that the gaming state is a normal state other than the probability variation state, and is a table used to determine whether or not the display result of the special symbol display 8 is a jackpot symbol. The normal big hit determination table 571a (see FIG. 37A) is set (step S384). Further, when the probability change flag is set, the CPU 56 determines that the gaming state is a probability change state, and as a table used to determine whether or not the display result of the special symbol display 8 is a jackpot symbol. A probability change big hit determination table 571b (see FIG. 37B) is set (step S385).

CPU56は、始動口スイッチ通過処理において所定のバッファ領域に格納したランダムRの値にもとづいて、特別図柄表示器8の表示結果を大当り図柄とするか否かを判定する(ステップS386)。この場合、CPU56は、ステップS384で設定した通常時大当り判定テーブル571aまたはステップS385で設定した確変時大当り判定テーブル571bを用いて、大当りとするか否かを判定する。   The CPU 56 determines whether or not the display result of the special symbol display 8 is a big hit symbol based on the random R value stored in the predetermined buffer area in the start port switch passing process (step S386). In this case, the CPU 56 uses the normal-time big hit determination table 571a set in step S384 or the probability change big hit determination table 571b set in step S385 to determine whether or not to win.

特別図柄表示器8の表示結果を大当り図柄とすると決定すると、CPU56は、大当り状態であることを示す大当りフラグをオン状態にする(ステップS387)。また、特別図柄表示器8の表示結果を大当り図柄としないと決定すると、CPU56は、大当りフラグをオフ状態にする(ステップS388)。そして、CPU56は、特別図柄プロセスフラグの値を変動時間設定処理に対応した値に更新する(ステップS389)。   If it is determined that the display result of the special symbol display 8 is a jackpot symbol, the CPU 56 turns on a jackpot flag indicating that it is a jackpot state (step S387). If it is determined that the display result of the special symbol display 8 is not a big hit symbol, the CPU 56 turns off the big hit flag (step S388). Then, the CPU 56 updates the value of the special symbol process flag to a value corresponding to the variation time setting process (step S389).

なお、図74では記載を省略しているが、特別図柄通常処理において、特別図柄表示器8の表示結果を大当り図柄とすること(大当りとすること)に決定した場合には、CPU56は、大当り種別決定用乱数にもとづいて、大当り種別(例えば、確変大当りや通常大当り、突然確変大当り)も決定する。そして、CPU56は、大当り判定の結果や大当り種別の決定結果に応じた値を、RAM55に形成された大当り図柄判定バッファにセットする。例えば、通常大当りである場合には「1」をセットし、確変大当りである場合には「2」をセットし、突然確変大当りである場合には「3」をセットするものとする。また、CPU56は、決定した表示結果を特定可能な表示結果指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う。   Although omitted in FIG. 74, in the special symbol normal process, if it is determined that the display result of the special symbol display 8 is to be a big hit symbol (to make a big hit), the CPU 56 Based on the type determination random number, a big hit type (for example, a probable big hit, a normal big hit, or a sudden probable big hit) is also determined. Then, the CPU 56 sets a value corresponding to the result of the jackpot determination or the determination result of the jackpot type in the jackpot symbol determination buffer formed in the RAM 55. For example, “1” is set for a normal big hit, “2” is set for a probable big hit, and “3” is set for a sudden probable big hit. Further, the CPU 56 performs control to transmit a display result designation command capable of specifying the determined display result to the effect control microcomputer 100.

次に、タイマ割込処理におけるスイッチ処理(ステップS21)を説明する。この実施の形態では、入賞検出またはゲート通過に関わる各スイッチの検出信号のオン状態が所定時間継続すると、確かにスイッチがオンしたと判定されスイッチオンに対応した処理が開始される。図75は、スイッチ処理で使用されるRAM55に形成される各2バイトのバッファを示す説明図である。前回ポートバッファは、前回(例えば4ms前)のスイッチオン/オフの判定結果が格納されるバッファである。ポートバッファは、今回入力したポート0,1の内容が格納されるバッファである。スイッチオンバッファは、スイッチのオンが検出された場合に対応ビットが1に設定され、スイッチのオフが検出された場合に対応ビットが0に設定されるバッファである。なお、図75に示す前回ポートバッファ、ポートバッファ、およびスイッチオンバッファは、入力ポート0,1ごとに用意される。例えば、この実施の形態では、2つのスイッチオンバッファ1,2が用意されており、入力ポート0のスイッチの状態がスイッチオンバッファ1に設定され、入力ポート1のスイッチの状態がスイッチオンバッファ2に設定される。   Next, the switch process (step S21) in the timer interrupt process will be described. In this embodiment, when the ON state of the detection signal of each switch related to winning detection or gate passage continues for a predetermined time, it is determined that the switch is surely turned on, and processing corresponding to the switch on is started. FIG. 75 is an explanatory diagram showing each 2-byte buffer formed in the RAM 55 used in the switching process. The previous port buffer is a buffer in which the previous switch-on / off determination result (for example, 4 ms before) is stored. The port buffer is a buffer for storing the contents of the ports 0 and 1 input this time. The switch-on buffer is a buffer in which the corresponding bit is set to 1 when switch on is detected and the corresponding bit is set to 0 when switch off is detected. The previous port buffer, port buffer, and switch-on buffer shown in FIG. 75 are prepared for each of the input ports 0 and 1. For example, in this embodiment, two switch-on buffers 1 and 2 are prepared, the switch state of the input port 0 is set to the switch-on buffer 1, and the switch state of the input port 1 is the switch-on buffer 2. Set to

図76は、遊技制御処理におけるステップS21のスイッチ処理の処理例を示すフローチャートである。スイッチ処理において、遊技制御用マイクロコンピュータ560は、まず、入力ポート0,1(図39参照)に入力されているデータを入力し(ステップS101)、入力したデータをポートバッファにセットする(ステップS102)。   FIG. 76 is a flowchart showing a processing example of the switch processing in step S21 in the game control processing. In the switch process, the game control microcomputer 560 first inputs data input to the input ports 0 and 1 (see FIG. 39) (step S101), and sets the input data in the port buffer (step S102). ).

次いで、RAM55に形成されるウェイトカウンタの初期値をセットし(ステップS103)、ウェイトカウンタの値が0になるまで、ウェイトカウンタの値を1ずつ減算する(ステップS104,S105)。   Next, the initial value of the weight counter formed in the RAM 55 is set (step S103), and the value of the weight counter is decremented by 1 until the value of the weight counter becomes 0 (steps S104 and S105).

ウェイトカウンタの値が0になると、再度、入力ポート0,1のデータを入力し(ステップS106)、入力したデータとポートバッファにセットされているデータとの間で、ビット毎に論理積をとる(ステップS107)。そして、論理積の演算結果を、ポートバッファにセットする(ステップS108)。ステップS103〜S108の処理によって、ほぼ[ウェイトカウンタの初期値×(ステップS104,S105の処理時間)]の時間間隔を置いて入力ポート0から入力した2回の入力データのうち、2回とも「1」になっているビットのみが、ポートバッファにおいて「1」になる。つまり、所定期間としての[ウェイトカウンタの初期値×(ステップS104,S105の処理時間)]だけスイッチの検出信号のオン状態が継続すると、ポートバッファにおける対応するビットが「1」になる。   When the value of the wait counter reaches 0, the data of the input ports 0 and 1 are input again (step S106), and a logical product is obtained for each bit between the input data and the data set in the port buffer. (Step S107). Then, the logical product operation result is set in the port buffer (step S108). Of the two input data input from the input port 0 with a time interval of approximately [initial value of weight counter × (processing time of steps S104, S105)] by the processing of steps S103 to S108, both “ Only the bits that are “1” will be “1” in the port buffer. In other words, if the ON state of the switch detection signal continues for a predetermined period [initial value of wait counter × (processing time of steps S104 and S105)], the corresponding bit in the port buffer becomes “1”.

さらに、遊技制御用マイクロコンピュータ560は、前回ポートバッファにセットされているデータとポートバッファにセットされているデータとの間で、ビット毎に排他的論理和をとる(ステップS109)。排他的論理和の演算結果において、前回(例えば4ms前)のスイッチオン/オフの判定結果と、今回オンと判定されたスイッチオン/オフの判定結果とが異なっているスイッチに対応したビットが「1」になる。遊技制御用マイクロコンピュータ560は、さらに、排他的論理和の演算結果と、ポートバッファにセットされているデータとの間で、ビット毎に論理積をとる(ステップS110)。この結果、前回のスイッチオン/オフの判定結果と今回オンと判定されたスイッチオン/オフの判定結果とが異なっているスイッチに対応したビット(排他的論理和演算結果による)のうち、今回オンと判定されたスイッチに対応したビット(論理積演算による)のみが「1」として残る。   Further, the game control microcomputer 560 performs exclusive OR for each bit between the data previously set in the port buffer and the data set in the port buffer (step S109). In the result of the exclusive OR operation, the bit corresponding to the switch for which the previous switch-on / off determination result (for example, 4 ms before) differs from the switch-on / off determination result determined to be on this time is “ 1 ”. The game control microcomputer 560 further performs a logical product for each bit between the exclusive OR operation result and the data set in the port buffer (step S110). As a result, of the bits corresponding to the switches for which the previous switch on / off determination result and the switch on / off determination result determined to be on this time are different (according to the exclusive OR operation result), the current on Only the bit corresponding to the switch determined to be (by AND operation) remains as “1”.

そして、遊技制御用マイクロコンピュータ560は、ステップS110における論理積の演算結果をスイッチオンバッファにセットし(ステップS111)、ステップS108における演算結果がセットされているポートバッファの内容を前回ポートバッファにセットする(ステップS112)。   Then, the game control microcomputer 560 sets the logical product calculation result in step S110 in the switch-on buffer (step S111), and sets the contents of the port buffer in which the calculation result in step S108 is set in the previous port buffer. (Step S112).

以上の処理によって、所定期間継続してオン状態であったスイッチのうち、前回(例えば4ms前)のスイッチオン/オフの判定結果がオフであったスイッチ、すなわち、オフ状態からオン状態に変化したスイッチに対応したビットが、スイッチオンバッファにおいて「1」になっている。   By the above processing, among the switches that have been on for a predetermined period of time, the switch on / off determination result of the previous time (for example, 4 ms ago) was off, that is, the switch changed from the off state to the on state. The bit corresponding to the switch is “1” in the switch-on buffer.

次に、払出制御手段(払出制御用マイクロコンピュータ370)の動作を説明する。図77は、払出制御手段における出力ポートの割り当ての例を示す説明図である。図77に示すように、出力ポート0からは、ステッピングモータによる払出モータ289に供給される各相の信号が出力される。また、出力ポート0からは、カードユニット50に対してPRDY信号やEXS信号が出力されるとともに、遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す遊技機エラー状態信号や、賞球払出を検出したことを示す賞球信号1も出力される。また、出力ポート1からは、7セグメントLEDによるエラー表示LED374の各セグメント出力信号が出力される。また、出力ポート1からは、賞球払出を10球検出したことを示す賞球情報も出力される。   Next, the operation of the payout control means (the payout control microcomputer 370) will be described. FIG. 77 is an explanatory diagram showing an example of output port assignment in the payout control means. As shown in FIG. 77, each phase signal supplied to the payout motor 289 by the stepping motor is output from the output port 0. In addition, a PRDY signal or an EXS signal is output from the output port 0 to the card unit 50, and a game indicating that the gaming machine is in an error state (in this example, a ball-out error state or a full tank error state). A machine error state signal and a prize ball signal 1 indicating that a prize ball payout has been detected are also output. Further, from the output port 1, each segment output signal of the error display LED 374 by 7 segment LED is output. The output port 1 also outputs prize ball information indicating that ten prize ball payouts have been detected.

図78は、払出制御手段における入力ポートのビット割り当ての例を示す説明図である。図78に示すように、入力ポート0のビット0〜2には、それぞれ、カードユニット50からのVL信号、BRDY信号、およびBRQ信号が入力される。また、入力ポート0のビット4には、主基板31からの接続信号が入力される。また、入力ポート0のビット5〜7には、それぞれ、満タンスイッチ48の検出信号、球切れスイッチ187の検出信号、および払出モータ位置センサ295の検出信号が入力される。また、入力ポート1のビット0,1には、それぞれ、エラー解除スイッチ375からの操作信号、および払出個数カウントスイッチ301の検出信号が入力される。また、入力ポート1のビット7には、機構板開放センサ155Bからの機構板開放信号が入力される。   FIG. 78 is an explanatory diagram showing an example of bit assignment of input ports in the payout control means. As shown in FIG. 78, the VL signal, the BRDY signal, and the BRQ signal from the card unit 50 are input to bits 0 to 2 of the input port 0, respectively. A connection signal from the main board 31 is input to bit 4 of the input port 0. In addition, the detection signal of the full switch 48, the detection signal of the ball break switch 187, and the detection signal of the payout motor position sensor 295 are input to the bits 5 to 7 of the input port 0, respectively. In addition, the operation signal from the error release switch 375 and the detection signal of the payout number count switch 301 are input to the bits 0 and 1 of the input port 1, respectively. Further, the mechanism plate opening signal from the mechanism plate opening sensor 155B is input to the bit 7 of the input port 1.

次に、払出制御手段の動作について説明する。図79は、払出制御手段が実行するメイン処理を示すフローチャートである。メイン処理では、払出制御用マイクロコンピュータ370の払出制御用CPU371は、まず、必要な初期設定を行う。すなわち、払出制御用CPU371は、まず、割込禁止に設定する(ステップS701)。次に、割込モードを割込モード2に設定し(ステップS702)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS703)。   Next, the operation of the payout control means will be described. FIG. 79 is a flowchart showing a main process executed by the payout control means. In the main process, the payout control CPU 371 of the payout control microcomputer 370 first performs necessary initial settings. That is, the payout control CPU 371 first sets the interruption prohibition (step S701). Next, the interrupt mode is set to interrupt mode 2 (step S702), and a stack pointer designation address is set to the stack pointer (step S703).

次いで、払出制御用CPU371は、内蔵デバイスレジスタの設定を行う(ステップS704)。ステップS704の内蔵デバイスレジスタの設定の処理では、払出制御用CPU371は、CTCの設定を行う。また、この実施の形態では、内蔵CTCのうちの一つのチャネルがタイマモードで使用される。そのため、払出制御用CPU371は、使用するチャネルをタイマモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定を行う。そして、そのチャネルによる割込がタイマ割込として用いられる。タイマ割込を例えば1ms毎に発生させたい場合は、初期値として1msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。   Next, the payout control CPU 371 sets a built-in device register (step S704). In the process of setting the internal device register in step S704, the payout control CPU 371 sets the CTC. In this embodiment, one channel of the built-in CTC is used in the timer mode. Therefore, the payout control CPU 371 performs register setting for setting the channel to be used to timer mode, register setting for permitting interrupt generation, and register setting for setting an interrupt vector. The interrupt by the channel is used as a timer interrupt. For example, when it is desired to generate a timer interrupt every 1 ms, a value corresponding to 1 ms is set as an initial value in a predetermined register (time constant register).

また、ステップS704において、払出制御用CPU371は、シリアル通信回路380の割り込み要求に応じて実行する割込処理の優先順位を初期設定する。この場合、この場合、払出制御用CPU371は、遊技制御用マイクロコンピュータ560のCPU56が行う優先順位の初期設定処理(ステップS15b参照)と同様の処理に従って、割込処理の優先順位を初期設定する。   In step S704, the payout control CPU 371 initializes the priority of interrupt processing to be executed in response to the interrupt request from the serial communication circuit 380. In this case, in this case, the payout control CPU 371 initializes the priority order of the interrupt process according to the same process as the priority order initial setting process (see step S15b) performed by the CPU 56 of the game control microcomputer 560.

また、ステップS704において、払出制御用CPU371は、シリアル通信回路380の設定を行う。この場合、払出制御用CPU371は、受信回路のボーレートの設定、受信モード(8ビットまたは9ビットのデータフォーマットのいずれにするか)の設定、パリティ設定(パリティの有無や、偶数パリティまたは奇数パリティの設定)を行う。また、受信回路の各制御レジスタを初期化するとともに、各ステータスレジスタを初期化する。また、払出制御用CPU371は、送信回路のボーレートの設定、送信モード(8ビットまたは9ビットのデータフォーマットのいずれにするか)の設定、パリティ設定(パリティの有無や、偶数パリティまたは奇数パリティの設定)を行う。また、送信回路の各制御レジスタを初期化する。   In step S <b> 704, the payout control CPU 371 sets the serial communication circuit 380. In this case, the payout control CPU 371 sets the baud rate of the receiving circuit, sets the receiving mode (either 8-bit or 9-bit data format), and sets the parity (the presence or absence of parity, even parity or odd parity). Set). In addition, the control registers of the receiving circuit are initialized and the status registers are initialized. Also, the payout control CPU 371 sets the baud rate of the transmission circuit, sets the transmission mode (either 8-bit or 9-bit data format), and sets the parity (the presence / absence of parity, even parity or odd parity) )I do. Also, each control register of the transmission circuit is initialized.

なお、タイマモードに設定されたチャネル(この実施の形態ではチャネル3)に設定される割込ベクタは、タイマ割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでタイマ割込処理の先頭アドレスが特定される。タイマ割込処理では、払出手段を制御する払出制御処理(少なくとも主基板からの賞球払出に関する指令信号に応じて球払出装置97を駆動する処理を含み、球貸し要求に応じて球払出装置97を駆動する処理が含まれていてもよい。)が実行される。   The interrupt vector set for the channel set to the timer mode (channel 3 in this embodiment) corresponds to the start address of the timer interrupt process. Specifically, the start address of the timer interrupt process is specified by the value set in the I register and the interrupt vector. The timer interruption process includes a payout control process for controlling the payout means (including a process for driving the ball payout device 97 at least in response to a command signal relating to award ball payout from the main board, and a ball payout device 97 in response to a ball lending request. A process for driving the program may be included.

また、この実施の形態では、払出制御用マイクロコンピュータ370でも割込モード2が設定される。従って、内蔵CTCのカウントアップにもとづく割込処理を使用することができる。また、CTCが送出した割込ベクタに応じた割込処理開始アドレスを設定することができる。CTCのチャネル3(CH3)のカウントアップにもとづく割込は、CPUの内部クロック(システムクロック)をカウントダウンしてレジスタ値が「0」になったら発生する割込であり、タイマ割込として用いられる。   In this embodiment, the interruption mode 2 is also set in the payout control microcomputer 370. Therefore, an interrupt process based on counting up the built-in CTC can be used. Also, an interrupt processing start address can be set according to the interrupt vector sent by the CTC. The interrupt based on CTC channel 3 (CH3) count-up is an interrupt that occurs when the CPU internal clock (system clock) counts down and the register value becomes “0”, and is used as a timer interrupt. .

次いで、払出制御用CPU371は、RAMをアクセス可能状態に設定し(ステップS705)、RAMクリア処理を行う(ステップS706)。また、RAM領域のフラグやカウンタなどに初期値を設定する(ステップS707)。なお、ステップS707の処理には、未払出個数カウンタ初期値を未払出個数カウンタにセットする処理が含まれる。また、ステップS707の処理では、払出制御用CPU371は、払出個数異常エラーや満タンエラー、球切れエラーの検出状態を示すエラーフラグをクリアする処理も行う。なお、この実施の形態では、払出個数異常エラーと判定されてエラーフラグの払出個数異常エラー指定ビットがセットされた場合には、電源リセットがされるまで払出個数異常エラー指定ビットがクリアされず払出個数異常エラーから復旧しないのであるが、具体的には、電源投入時にステップS707の処理が実行されることによって、エラーフラグの払出個数異常エラー指定ビットがクリアされ、払出個数異常エラーから復旧する。   Next, the payout control CPU 371 sets the RAM in an accessible state (step S705), and performs a RAM clear process (step S706). In addition, initial values are set in the flags and counters of the RAM area (step S707). Note that the processing in step S707 includes processing for setting the unpaid-off number counter initial value in the unpaid-out number counter. In the process of step S707, the payout control CPU 371 also performs a process of clearing an error flag indicating a detection state of a payout number abnormality error, a full tank error, and a ball breakage error. In this embodiment, when it is determined that there is a payout number error and the payout number error error specification bit is set in the error flag, the payout number error error specification bit is not cleared until the power is reset. Although it does not recover from the number abnormality error, specifically, when the process of step S707 is executed when the power is turned on, the payout number abnormality error designation bit in the error flag is cleared and the payout number abnormality error is recovered.

また、払出制御用CPU371は、シリアル通信回路380を初期設定するシリアル通信回路設定処理を実行する(ステップS708)。この場合、払出制御用CPU371は、遊技制御用マイクロコンピュータ560のCPU56が行うシリアル通信回路設定処理(ステップS15a参照)と同様の処理に従って、シリアル通信回路380に遊技制御用マイクロコンピュータ560とシリアル通信させるための設定を行う。また、前述したように、シリアル通信回路380の初期設定の一部は、ステップS704の内蔵デバイスレジスタの設定処理において実行される。なお、シリアル通信回路380の全ての設定処理をステップS708のシリアル通信回路設定処理で行うようにしてもよい。   The payout control CPU 371 executes serial communication circuit setting processing for initial setting of the serial communication circuit 380 (step S708). In this case, the payout control CPU 371 causes the serial communication circuit 380 to serially communicate with the game control microcomputer 560 according to the same process as the serial communication circuit setting process (see step S15a) performed by the CPU 56 of the game control microcomputer 560. Make settings for Further, as described above, a part of the initial setting of the serial communication circuit 380 is executed in the built-in device register setting process in step S704. Note that all the setting processing of the serial communication circuit 380 may be performed by the serial communication circuit setting processing in step S708.

そして、初期設定処理のステップS701において割込禁止とされているので、初期化処理を終える前に割込が許可される(ステップS709)。その後、タイマ割込の発生を監視するループ処理に入る。   Since interruption is prohibited in step S701 of the initial setting process, interruption is permitted before the initialization process is completed (step S709). Thereafter, a loop process for monitoring the occurrence of a timer interrupt is entered.

上記のように、この実施の形態では、払出制御用マイクロコンピュータ370の内蔵CTCが繰り返しタイマ割込を発生するように設定される。そして、タイマ割込が発生すると、払出制御用マイクロコンピュータ370の払出制御用CPU371は、タイマ割込処理を実行する。   As described above, in this embodiment, the built-in CTC of the payout control microcomputer 370 is set so as to repeatedly generate a timer interrupt. When a timer interrupt occurs, the payout control CPU 371 of the payout control microcomputer 370 executes a timer interrupt process.

図80は、払出制御手段が実行するタイマ割込処理の例を示すフローチャートである。タイマ割込処理にて、払出制御用マイクロコンピュータ370の払出制御用CPU371は、以下の処理を実行する。まず、払出制御用CPU371は、スイッチチェック処理を行う(ステップS751)。スイッチチェック処理では、払出制御用CPU371は、入力ポート1の入力にもとづいて、払出個数カウントスイッチ301およびエラー解除スイッチ375のオン/オフ状態を確認する処理を行う。次いで、払出制御用CPU371は、入力判定処理を行う(ステップS752)。入力判定処理は、入力ポート0のビット0〜7(図78参照)の状態を検出して検出結果をRAMの所定の1バイト(センサ入力状態フラグと呼ぶ。)に反映する処理である。なお、払出制御用CPU371は、入力ポート0のビット0〜7の状態にもとづいて制御を行う場合には、直接入力ポートの状態をチェックするのではなく、センサ入力状態フラグの状態をチェックする。   FIG. 80 is a flowchart showing an example of timer interrupt processing executed by the payout control means. In the timer interrupt process, the payout control CPU 371 of the payout control microcomputer 370 executes the following process. First, the payout control CPU 371 performs a switch check process (step S751). In the switch check process, the payout control CPU 371 performs a process of confirming the on / off state of the payout number count switch 301 and the error release switch 375 based on the input of the input port 1. Next, the payout control CPU 371 performs an input determination process (step S752). The input determination process is a process for detecting the state of bits 0 to 7 (see FIG. 78) of the input port 0 and reflecting the detection result in a predetermined 1 byte of the RAM (referred to as a sensor input state flag). The payout control CPU 371 checks the state of the sensor input state flag instead of directly checking the state of the input port when performing control based on the state of bits 0 to 7 of the input port 0.

次いで、払出制御用CPU371は、カードユニット50と通信を行うプリペイドカードユニット制御処理を実行する(ステップS753)。次いで、払出制御用CPU371は、主基板31の遊技制御手段と通信を行う主制御通信処理を実行する(ステップS754)。次いで、払出制御用CPU371は、カードユニット50からの球貸し要求に応じて貸し球を払い出す制御を行い、また、主基板31からの賞球個数コマンドが示す個数の賞球を払い出す制御を行う払出制御処理を実行する(ステップS755)。   Next, the payout control CPU 371 executes a prepaid card unit control process for communicating with the card unit 50 (step S753). Next, the payout control CPU 371 executes main control communication processing for communicating with the game control means of the main board 31 (step S754). Next, the payout control CPU 371 performs control for paying out the lent balls in response to a ball lending request from the card unit 50, and performs control for paying out the number of prize balls indicated by the prize ball number command from the main board 31. A payout control process to be executed is executed (step S755).

次に、払出制御用CPU371は、払出モータ制御処理を実行する(ステップS756)。払出モータ制御処理では、払出モータ289を駆動すべきときには、払出モータφ1〜φ4のパターンを出力ポート0に出力するための処理を行う。   Next, the payout control CPU 371 executes a payout motor control process (step S756). In the payout motor control process, when the payout motor 289 is to be driven, a process for outputting the patterns of the payout motors φ1 to φ4 to the output port 0 is performed.

次いで、払出制御用CPU371は、各種のエラーを検出するエラー処理を実行する(ステップS757)。次いで、払出制御用CPU371は、カードユニット50のエラー制御を行うプリペイドカードユニットエラー制御処理を実行する(ステップS758)。次いで、払出制御用CPU371は、主基板31に対して賞球情報を出力したり、賞球信号1や遊技機エラー状態信号を外部出力するための情報出力処理を実行する(ステップS759)。また、エラー処理の結果に応じてエラー表示LED374に所定の表示を行う表示制御処理を実行する(ステップS760)。   Next, the payout control CPU 371 executes error processing for detecting various errors (step S757). Next, the payout control CPU 371 executes a prepaid card unit error control process for performing error control of the card unit 50 (step S758). Next, the payout control CPU 371 executes information output processing for outputting prize ball information to the main board 31 and outputting the prize ball signal 1 and the gaming machine error state signal to the outside (step S759). Further, display control processing for performing a predetermined display on the error display LED 374 according to the result of the error processing is executed (step S760).

本実施の形態では、後述するエラー処理において各種エラー(例えば、払出個数異常エラーや、満タンエラー、球切れエラー、プリペイドカードユニット未接続エラー)が検出されると、検出されたエラーに対応するエラービットがセットされる。そして、ステップS760の表示制御処理において、エラービットがセットされていることにもとづいて、払出制御用CPU371は、エラー表示LED374に所定の表示を行う。   In the present embodiment, when various errors (for example, a payout number error error, a full tank error, a ball shortage error, a prepaid card unit unconnected error) are detected in error processing to be described later, an error corresponding to the detected error is detected. Bit is set. Then, in the display control process of step S760, the payout control CPU 371 performs a predetermined display on the error display LED 374 based on the fact that the error bit is set.

また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポート0バッファ、出力ポート1バッファ)が設けられているのであるが、払出制御用CPU371は、出力ポート0バッファおよび出力ポート1バッファの内容を出力ポートに出力する(ステップS761:出力処理)。出力ポート0バッファおよび出力ポート1バッファは、払出モータ制御処理(ステップS756)、プリペイドカード制御処理(ステップS753)、主制御通信処理(ステップS754)、情報出力処理(ステップS759)および表示制御処理(ステップS760)で更新される。   In this embodiment, a RAM area (output port 0 buffer, output port 1 buffer) corresponding to the output state of the output port is provided. However, the payout control CPU 371 includes an output port 0 buffer and an output port. The contents of the port 1 buffer are output to the output port (step S761: output processing). The output port 0 buffer and the output port 1 buffer include a payout motor control process (step S756), a prepaid card control process (step S753), a main control communication process (step S754), an information output process (step S759), and a display control process ( It is updated in step S760).

図81は、ステップS754の主制御通信処理を示すフローチャートである。主制御通信処理では、払出制御用マイクロコンピュータ370(具体的には、払出制御用CPU371)は、主制御コマンド受信処理(ステップS740)を実行する。そして、払出制御用CPU371は、主制御通信制御コードの値に応じて、ステップS741〜S744のいずれかの処理を実行する。   FIG. 81 is a flowchart showing the main control communication process in step S754. In the main control communication process, the payout control microcomputer 370 (specifically, the payout control CPU 371) executes a main control command reception process (step S740). Then, the payout control CPU 371 executes one of steps S741 to S744 according to the value of the main control communication control code.

図82は、主制御通信処理におけるステップS740の主制御コマンド受信処理を示すフローチャートである。払出制御用CPU371は、主制御コマンド受信処理において、まず、接続信号を入力しているか否かを確認する(ステップS74001)。接続信号を入力していなければ、払出制御用CPU101は、シリアル通信回路380の送信回路および受信回路の初期化を行う(ステップS74002)。このように、接続信号を受信できない場合にシリアル通信回路380の送信回路および受信回路を初期化することによって、主基板31との接続状態が異常な状態下であるにもかかわらずコマンドを送信データレジスタや受信データレジスタに格納してしまう事態を防止することができる。次いで、払出制御用CPU371は、主制御通信制御コードの値をロードし(ステップS74003)、主制御通信制御コードの値が主制御接続確認処理を示す値「0」となっているか否かを確認する(ステップS74004)。   FIG. 82 is a flowchart showing the main control command reception process of step S740 in the main control communication process. In the main control command receiving process, the payout control CPU 371 first checks whether or not a connection signal is input (step S74001). If no connection signal is input, the payout control CPU 101 initializes the transmission circuit and the reception circuit of the serial communication circuit 380 (step S74002). As described above, when the connection signal cannot be received, the transmission circuit and the reception circuit of the serial communication circuit 380 are initialized, so that the command is transmitted even though the connection state with the main board 31 is abnormal. It is possible to prevent a situation in which data is stored in the register or the reception data register. Next, the payout control CPU 371 loads the value of the main control communication control code (step S74003), and checks whether the value of the main control communication control code is a value “0” indicating the main control connection confirmation processing. (Step S74004).

この実施の形態では、主制御通信処理において、遊技機への電源供給が開始されてから遊技制御用マイクロコンピュータ560からの接続信号の入力が開始され、最初の接続確認コマンドの受信を確認できるまでステップS741の主制御接続確認処理が実行される。そして、接続確認コマンドの受信を確認できると、ステップS742以降の処理に移行し、各種払出制御コマンドの送受信の処理が実行される。また、以降、遊技制御用マイクロコンピュータ560との間の通信状態が正常に維持されていれば、ステップS742〜S744のいずれかの処理が実行され、ステップS741の主制御接続確認処理は原則として遊技機への電源投入時にのみ実行されることになる。ステップS74004において、主制御通信制御コードの値が主制御接続確認処理以外の値を示しているということは、ステップS742以降の処理に移行した後に、何らかの通信エラーが生じて接続信号を入力不能となった場合である。そのため、払出制御用CPU371は、ステップS74004で主制御通信制御コードの値が主制御接続確認処理以外の値を示している場合には、エラーフラグの主制御通信エラー指定ビット(遊技制御用マイクロコンピュータ560との間の通信状態に異常が生じたことを示すビット)をセットする(ステップS74005)。なお、エラーフラグは、各種賞球エラーがセットされるフラグであり、払出制御用マイクロコンピュータ370が備えるRAMに形成されている。そして、払出制御用CPU371は、主制御通信制御コードに主制御接続確認処理を示す値「0」をセットする(ステップS74006)。なお、ステップS74004で主制御通信制御コードの値が主制御接続確認処理を示す値「0」となっていれば、そのままステップS74006)に移行する。   In this embodiment, in the main control communication process, input of a connection signal from the game control microcomputer 560 is started after power supply to the gaming machine is started, and reception of the first connection confirmation command can be confirmed. The main control connection confirmation process in step S741 is executed. Then, when the reception of the connection confirmation command can be confirmed, the process proceeds to step S742 and subsequent steps, and transmission / reception processing of various payout control commands is executed. Thereafter, if the communication state with the game control microcomputer 560 is maintained normally, one of the processes of steps S742 to S744 is executed, and the main control connection confirmation process of step S741 is basically a game. It will be executed only when the machine is powered on. In step S74004, the fact that the value of the main control communication control code indicates a value other than the main control connection confirmation processing means that after shifting to the processing after step S742, some communication error occurs and the connection signal cannot be input. This is the case. Therefore, if the value of the main control communication control code indicates a value other than the main control connection confirmation process in step S74004, the payout control CPU 371 determines the main control communication error designation bit (game control microcomputer) of the error flag. A bit indicating that an abnormality has occurred in the communication state with 560) is set (step S74005). The error flag is a flag in which various prize ball errors are set, and is formed in a RAM provided in the payout control microcomputer 370. The payout control CPU 371 sets a value “0” indicating main control connection confirmation processing in the main control communication control code (step S74006). If the value of the main control communication control code is “0” indicating the main control connection confirmation process in step S74004, the process proceeds to step S74006).

なお、ステップS741の主制御確認処理は、遊技機への電源投入時以降であっても例外的に実行される場合がある。具体的には、上記したように、ステップS74001で接続信号を入力していないと判定した後、ステップS74004で主制御接続確認処理の実行中でなければ、遊技機への電源投入後に接続信号が切断されてしまった可能性があると判断して主制御接続確認処理に戻り(ステップS74006参照)、再び遊技制御用マイクロコンピュータ560との接続状態を確認する(具体的には、接続確認コマンドを受信できることを確認。ステップS7412参照。)。また、後述する主制御通信通常処理において、接続OKコマンドを送信してから所定期間(本例では1050ms)を経過しても、遊技制御用マイクロコンピュータ560から接続確認コマンドも賞球個数コマンドも受信していない場合には、何らかの通信異常が生じたものとして主制御接続確認処理に戻り(ステップS74202,S74203参照)、再び遊技制御用マイクロコンピュータ560との接続状態を確認する(具体的には、接続確認コマンドを受信できることを確認。ステップS7412参照。)。   Note that the main control confirmation process in step S741 may be executed exceptionally even after the power is turned on to the gaming machine. Specifically, as described above, after determining that the connection signal is not input in step S74001, if the main control connection confirmation process is not being executed in step S74004, the connection signal is not displayed after the game machine is turned on. It is determined that there is a possibility of being disconnected, and the process returns to the main control connection confirmation process (see step S74006), and again confirms the connection state with the game control microcomputer 560 (specifically, a connection confirmation command is issued). Confirm that it can be received (see step S7412). Further, in the main control communication normal processing described later, even if a predetermined period (1050 ms in this example) has elapsed since the connection OK command was transmitted, the connection confirmation command and the prize ball number command are received from the game control microcomputer 560. If not, it is determined that some communication abnormality has occurred, and the process returns to the main control connection confirmation process (see steps S74202 and S74203), and the connection state with the game control microcomputer 560 is confirmed again (specifically, Confirm that the connection confirmation command can be received (see step S7412).

接続信号を入力していれば、払出制御用CPU371は、シリアル通信回路380のステータスレジスタに受信エラーフラグがセットされているか否かを確認する(ステップS74007)。例えば、払出制御用CPU371は、シリアル通信回路380のステータスレジスタにパリティエラーや、フレーミングエラー、ノイズエラー、オーバーランエラー、アイドルラインエラーを示すフラグがセットされていれば、シリアル通信回路380の受信エラー状態であると判定する。   If the connection signal is input, the payout control CPU 371 checks whether or not the reception error flag is set in the status register of the serial communication circuit 380 (step S74007). For example, if a flag indicating a parity error, a framing error, a noise error, an overrun error, or an idle line error is set in the status register of the serial communication circuit 380, the payout control CPU 371 receives a reception error of the serial communication circuit 380. It is determined that it is in a state.

受信エラーフラグがセットされていれば、払出制御用CPU371は、シリアル通信回路380の受信回路を初期化する(ステップS74008)。このように、受信エラー状態である場合にシリアル通信回路380の受信回路を初期化することによって、何らかの受信異常が生じているにもかかわらず受信コマンドを受信データレジスタに格納してしまう事態を防止することができる。そして、払出制御用CPU371は、エラーフラグの主制御通信エラー指定ビットをセットする(ステップS74009)。   If the reception error flag is set, the payout control CPU 371 initializes the reception circuit of the serial communication circuit 380 (step S74008). In this way, by initializing the receiving circuit of the serial communication circuit 380 in the case of a reception error state, it is possible to prevent a situation in which a reception command is stored in the reception data register even though some reception abnormality has occurred. can do. Then, the payout control CPU 371 sets the main control communication error designation bit of the error flag (step S74009).

受信エラーフラグもセットされていなければ、払出制御用CPU371は、受信バッファの内容をロードし(ステップS74010)、接続確認コマンドを受信しているか否かを確認する(ステップS74011)。具体的には、払出制御用CPU371は、ロードした受信バッファの内容が「A0(H)」であるか否か(図49参照)を確認する。接続確認コマンドを受信していれば、払出制御用CPU371は、ステップS74014に移行する。   If the reception error flag is not set, the payout control CPU 371 loads the contents of the reception buffer (step S74010) and checks whether or not a connection confirmation command is received (step S74011). Specifically, the payout control CPU 371 checks whether or not the content of the loaded reception buffer is “A0 (H)” (see FIG. 49). If the connection confirmation command has been received, the payout control CPU 371 proceeds to step S74014.

接続確認コマンドを受信していなければ、払出制御用CPU371は、賞球個数コマンドを受信しているか否かを確認する。この実施の形態では、図49に示すように、接続個数コマンドの内容は、少なくとも「51(H)」以上、「60(H)」未満の値となる筈である。従って、払出制御用CPU371は、まず、ロードした受信バッファの内容が賞球個数コマンド最小値「51(H)」以上であるか否かを確認する(ステップS74012)。次いで、賞球個数コマンド最小判定値「51(H)」以上であれば、払出制御用CPU371は、ロードした受信バッファの内容が賞球個数コマンド最大判定値「60(H)」未満であるか否かを確認する(ステップS74013)。賞球個数コマンド最大判定値「60(H)」未満であれば、払出制御用CPU371は、賞球個数コマンドを受信していると判定し、ステップS74014に移行する。   If a connection confirmation command has not been received, the payout control CPU 371 checks whether or not a prize ball number command has been received. In this embodiment, as shown in FIG. 49, the contents of the connection number command should be at least “51 (H)” and less than “60 (H)”. Accordingly, the payout control CPU 371 first checks whether or not the content of the loaded reception buffer is equal to or greater than the minimum prize ball number command value “51 (H)” (step S74012). Next, if the prize ball number command minimum judgment value is “51 (H)” or more, the payout control CPU 371 determines whether the content of the loaded reception buffer is less than the prize ball number command maximum judgment value “60 (H)”. It is confirmed whether or not (step S74013). If it is less than the winning ball number command maximum determination value “60 (H)”, the payout control CPU 371 determines that a winning ball number command has been received, and proceeds to step S74014.

そして、ステップS74014では、払出制御用CPU371は、受信バッファの内容(接続確認コマンド、賞球個数コマンド)を主制御通信受信バッファに格納する。なお、主制御通信受信バッファは、1バイトで構成され、1度に1つの受信コマンドのみを格納することができる。このように構成しても、この実施の形態では、払出制御用マイクロコンピュータ370におけるタイマ割込の周期(本例では1ms)は、遊技制御用マイクロコンピュータ560におけるタイマ割込の周期(本例では4ms)より短いので、1回のタイマ割込内で複数の払出制御コマンドが受信される事態が生じることはなく、不都合は生じない。また、万一、遊技機への電源投入後、誤処理などにより、最初の接続確認コマンドを受信する前に賞球個数コマンドを受信してしまった場合であっても、その後、接続確認コマンドを受信すれば主制御通信受信バッファに上書きで格納されるので、後述する主制御接続確認処理(ステップS741)で接続確認コマンドを全く確認できず主制御通信通常処理に移行できなくなる事態が生じることを防止することができる。   In step S74014, the payout control CPU 371 stores the contents of the reception buffer (connection confirmation command, prize ball number command) in the main control communication reception buffer. The main control communication reception buffer is composed of 1 byte and can store only one reception command at a time. Even with this configuration, in this embodiment, the timer interrupt period (1 ms in this example) in the payout control microcomputer 370 is equal to the timer interrupt period (in this example, the game control microcomputer 560). 4 ms), a situation in which a plurality of payout control commands are received within one timer interrupt does not occur, and there is no inconvenience. In addition, even if the award ball number command is received before receiving the first connection confirmation command due to erroneous processing after turning on the power to the gaming machine, the connection confirmation command is subsequently issued. If it is received, it is overwritten and stored in the main control communication reception buffer. Therefore, there is a situation in which the connection confirmation command cannot be confirmed at all in the main control connection confirmation process (step S741) described later, and it becomes impossible to shift to the main control communication normal process. Can be prevented.

図83は、主制御通信制御コードの値が0の場合に実行される主制御接続確認処理(ステップS741)を示すフローチャートである。主制御接続確認処理において、払出制御用CPU371は、主制御通信受信バッファの内容をロードし(ステップS7411)、接続確認コマンドを受信しているか否かを確認する(ステップS7412)。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS7413)、主制御送信コマンド変換処理を実行する(ステップS7414)。なお、ステップS7414の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS7415)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。   FIG. 83 is a flowchart showing main control connection confirmation processing (step S741) executed when the value of the main control communication control code is zero. In the main control connection confirmation process, the payout control CPU 371 loads the contents of the main control communication reception buffer (step S7411), and confirms whether or not a connection confirmation command is received (step S7412). If a connection confirmation command has been received, the payout control CPU 371 sets a connection OK command (step S7413) and executes main control transmission command conversion processing (step S7414). In the main control transmission command conversion process in step S7414, a process of setting a control state (an error state such as a payout number error error, a ball runout error, a full tank error, a prize ball error, etc.) in the lower 4 bits of the connection OK command is performed. Done. Then, the payout control CPU 371 performs control to transmit the converted connection OK command to the game control microcomputer 560 (step S7415). Specifically, the payout control CPU 371 performs processing for outputting a connection OK command to the transmission register of the serial communication circuit 380.

なお、払出制御用CPU371は、ステップS7415で接続OKコマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   The payout control CPU 371 clears the main control communication reception buffer when transmitting the connection OK command in step S7415. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS7416)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS7417)。   Next, the payout control CPU 371 sets a value “1” indicating the main control communication normal process in the main control communication control code (step S7416). Then, the payout control CPU 371 sets a predetermined value (1050 ms in this example) in the main control communication control timer (step S7417).

図84および図85は、主制御通信制御コードの値が1の場合に実行される主制御通信通常処理(ステップS742)を示すフローチャートである。主制御通信通常処理において、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74201)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74202)。   84 and 85 are flowcharts showing main control communication normal processing (step S742) executed when the value of the main control communication control code is 1. In the main control communication normal process, the payout control CPU 371 subtracts 1 from the value of the main control communication control timer (step S74201), and checks whether the main control communication control timer has timed out (step S74202).

この実施の形態では、前述したように、払出制御用マイクロコンピュータ370から接続OKコマンドを受信して1秒経過するごとに、遊技制御用マイクロコンピュータ560から次の接続確認コマンドが送信される。従って、ステップS74202において主制御通信制御タイマがタイムアウトしたということは、接続OKコマンドの送信後1秒を遙かに超えて1050ms(ステップS7417,S74209参照)を経過しても次の接続確認コマンドを受信できなかった場合である。そのため、払出制御用CPU371は、主制御通信制御コードに主制御接続確認処理を示す値「0」をセットして(ステップS74203)、主制御接続確認処理に戻り通信状態の回復を待つように制御する。   In this embodiment, as described above, every time one second elapses after the connection OK command is received from the payout control microcomputer 370, the next connection confirmation command is transmitted from the game control microcomputer 560. Therefore, if the main control communication control timer has timed out in step S74202, it means that the next connection confirmation command is issued even if 1050 ms (see steps S7417 and S74209) elapses more than 1 second after the transmission of the connection OK command. This is a case where reception was not possible. Therefore, the payout control CPU 371 sets a value “0” indicating the main control connection confirmation process in the main control communication control code (step S74203), returns to the main control connection confirmation process, and waits for the recovery of the communication state. To do.

なお、払出制御用CPU371は、ステップS74202で主制御通信制御タイマがタイムアウトしていれば、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   If the main control communication control timer has timed out in step S74202, the payout control CPU 371 clears the main control communication reception buffer. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74204)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74205)。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74206)、主制御送信コマンド変換処理を実行する(ステップS74207)。なお、ステップS74207の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74208)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。   If the main control communication control timer has not timed out, the payout control CPU 371 checks whether or not a reception command is stored in the main control communication reception buffer (step S74204). If a reception command is stored in the main control communication reception buffer, the payout control CPU 371 checks whether or not the received command is a connection confirmation command (step S74205). If a connection confirmation command has been received, the payout control CPU 371 sets a connection OK command (step S74206) and executes main control transmission command conversion processing (step S74207). In the main control transmission command conversion process in step S74207, a process for setting a control state (an error state such as a payout number error error, a ball out error, a full tank error, a prize ball error) in the lower 4 bits of the connection OK command is performed. Done. Then, the payout control CPU 371 performs control to transmit the converted connection OK command to the game control microcomputer 560 (step S74208). Specifically, the payout control CPU 371 performs processing for outputting a connection OK command to the transmission register of the serial communication circuit 380.

なお、払出制御用CPU371は、ステップS74208で接続OKコマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   The payout control CPU 371 clears the main control communication reception buffer when the connection OK command is transmitted in step S74208. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74209)。   Then, the payout control CPU 371 sets a predetermined value (1050 ms in this example) in the main control communication control timer (step S74209).

ステップS74205で受信したコマンドが接続確認コマンドでなければ、賞球個数コマンドを受信していることになる。この場合、払出制御用CPU371は、エラーフラグの値が0であるか否かを確認する(ステップS74210)。エラーフラグの値が0でなければ(すなわち、エラー状態であり、いずれかのエラービットがセットされていれば)、ステップS74219に移行する。エラーフラグの値が0であれば(すなわち、エラー状態となっておらず、いずれのエラービットもセットされていなければ)、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS74211)。BRDY信号を入力していれば、ステップS74219に移行する。   If the command received in step S74205 is not a connection confirmation command, it means that a prize ball number command has been received. In this case, the payout control CPU 371 checks whether or not the value of the error flag is 0 (step S74210). If the value of the error flag is not 0 (that is, if it is an error state and any error bit is set), the process proceeds to step S74219. If the value of the error flag is 0 (that is, if no error state is set and no error bit is set), the payout control CPU 371 checks whether a BRDY signal is input. (Step S74211). If the BRDY signal is input, the process proceeds to step S74219.

BRDY信号も入力していなければ、払出制御用CPU371は、払出制御状態を示す払出制御状態フラグをロードし(ステップS74212)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS74213)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビット(賞球払出動作中であることを示すビット)または球貸し払出動作中指定ビット(球貸し払出動作中であることを示すビット)がセットされているか否かを確認する。賞球払出動作中または球貸し払出動作中であれば、ステップS74219に移行する。なお、この実施の形態では、賞球払出動作を終了して賞球終了コマンドを受信してから次の賞球個数コマンドが送信されるので、通信エラーなどの異常が発生していないかぎり、ステップS74213において賞球払出動作中であると判定されることはない。   If no BRDY signal is input, the payout control CPU 371 loads a payout control state flag indicating the payout control state (step S74212), and confirms whether the winning ball payout operation or the ball lending payout operation is in progress. (Step S74213). Specifically, the payout control CPU 371 specifies a prize ball payout operation designation bit (bit indicating that a prize ball payout operation is in progress) or a ball lending payout operation designation bit (in a ball lending payout operation) in the payout control state flag. It is confirmed whether or not a bit indicating that is set. If the winning ball payout operation or the ball lending payout operation is being performed, the process proceeds to step S74219. In this embodiment, since the next prize ball number command is transmitted after the prize ball payout operation is finished and the prize ball end command is received, the step is performed unless an abnormality such as a communication error occurs. In S74213, it is not determined that the prize ball payout operation is in progress.

賞球払出動作中でも球貸し払出動作中でもなければ、受信した賞球個数コマンドにもとづく賞球払出動作を直ちに開始できる場合である。この場合、払出制御用CPU371は、主制御通信受信バッファの下位4ビット(すなわち、賞球個数コマンドにセットされた賞球個数)を未払出個数カウンタにセットする(ステップS74214)。なお、未払出個数カウンタは、賞球や貸し球の未払出数をカウントするためのカウンタである。   If neither the winning ball payout operation nor the ball lending payout operation is in progress, the winning ball payout operation based on the received winning ball number command can be started immediately. In this case, the payout control CPU 371 sets the lower 4 bits of the main control communication reception buffer (that is, the number of winning balls set in the winning ball number command) in the unpaid-out number counter (step S74214). The unpaid-out number counter is a counter for counting the number of unpaid out prize balls and rental balls.

次いで、払出制御用CPU371は、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74215)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球個数受付コマンドを出力する処理を行う。   Next, the payout control CPU 371 performs control to transmit a prize ball number acceptance command to the game control microcomputer 560 (step S74215). Specifically, the payout control CPU 371 performs processing for outputting a prize ball number acceptance command to the transmission register of the serial communication circuit 380.

なお、払出制御用CPU371は、ステップS74215で賞球個数受付コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   The payout control CPU 371 clears the main control communication reception buffer when it transmits a prize ball number acceptance command in step S74215. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信終了処理を示す値「3」をセットする(ステップS74216)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74218)。なお、ステップS74218でセットされた値にもとづいて、賞球個数受付コマンドを送信した後、1秒経過後に賞球払出動作を完了していなければ賞球準備中コマンドが送信されることになる。   Next, the payout control CPU 371 sets a value “3” indicating the main control communication end process in the main control communication control code (step S74216). Then, the payout control CPU 371 sets a predetermined value (1 second in this example) in the main control communication control timer (step S74218). It should be noted that if a prize ball payout operation is not completed after one second has elapsed after the prize ball number acceptance command is transmitted based on the value set in step S74218, a prize ball preparation command is transmitted.

ステップS74219では、払出制御用CPU371は、主制御通信受信バッファの下位4ビット(すなわち、賞球個数コマンドのセットされた賞球個数)を主制御通信賞球個数バッファに格納する。すなわち、この場合、何らかのエラー状態が発生していたり、賞球払出動作中や球貸し払出動作中、球貸し準備中の場合であるので、受信した賞球個数コマンドにもとづく賞球払出動作を直ちに開始することはできない。そのため、払出制御用CPU371は、賞球個数受付コマンドの返信を保留するとともに、賞球個数コマンドにセットされた賞球個数を主制御通信賞球個数バッファに一旦退避する。   In step S74219, the payout control CPU 371 stores the lower 4 bits of the main control communication reception buffer (that is, the number of prize balls set with the prize ball number command) in the main control communication prize ball number buffer. That is, in this case, an error state has occurred, or during the winning ball payout operation, the ball lending payout operation, or during the ball lending preparation, the winning ball payout operation based on the received winning ball number command is immediately performed. Can't start. Therefore, the payout control CPU 371 suspends the reply of the prize ball number acceptance command and temporarily saves the prize ball number set in the prize ball number command in the main control communication prize ball number buffer.

次いで、払出制御用CPU371は、賞球準備中コマンドをセットし(ステップS74220)、主制御送信コマンド変換処理を実行する(ステップS74221)。なお、ステップS74221の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74222)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。   Next, the payout control CPU 371 sets a prize ball preparing command (step S74220) and executes main control transmission command conversion processing (step S74221). In the main control transmission command conversion process in step S74221, a control state (error state such as a payout number error error, a ball runout error, a full tank error, a prize ball error, etc.) is set in the lower 4 bits of the command for preparing a prize ball. Processing is performed. Then, the payout control CPU 371 performs control to transmit the converted prize ball preparing command to the game control microcomputer 560 (step S74222). Specifically, the payout control CPU 371 performs processing for outputting a prize ball preparing command to the transmission register of the serial communication circuit 380.

なお、払出制御用CPU371は、ステップS74222で賞球準備中コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   Note that the payout control CPU 371 clears the main control communication reception buffer when the award ball preparing command is transmitted in step S74222. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信中処理を示す値「2」をセットする(ステップS74223)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74224)。なお、ステップS74224でセットされた値にもとづいて、賞球準備中コマンドを送信した後、1秒経過後にまだ賞球払出動作を開始できる状態になっていなければ次の賞球準備中コマンドが送信されることになる。   Next, the payout control CPU 371 sets a value “2” indicating the main control communication process to the main control communication control code (step S74223). Then, the payout control CPU 371 sets a predetermined value (1 second in this example) to the main control communication control timer (step S74224). It should be noted that, after the command for preparing a prize ball is transmitted based on the value set in step S74224, the command for preparing the next prize ball is transmitted if it is not ready to start the prize ball payout operation after one second has elapsed. Will be.

図86および図87は、主制御通信制御コードの値が2の場合に実行される主制御通信中処理(ステップS743)を示すフローチャートである。主制御通信中処理において、払出制御用CPU371は、まず、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74301)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74302)。接続確認コマンドでなければ、ステップS74306に移行する。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74303)、主制御送信コマンド変換処理を実行する(ステップS74304)。なお、ステップS74304の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74305)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。そして、ステップS74306に移行する。   86 and 87 are flowcharts showing main control communication in-process (step S743) executed when the value of the main control communication control code is 2. In the main control communication process, the payout control CPU 371 first checks whether or not a reception command is stored in the main control communication reception buffer (step S74301). If a reception command is stored in the main control communication reception buffer, the payout control CPU 371 checks whether or not the received command is a connection confirmation command (step S 74302). If it is not a connection confirmation command, the process proceeds to step S74306. If a connection confirmation command has been received, the payout control CPU 371 sets a connection OK command (step S74303) and executes main control transmission command conversion processing (step S74304). In the main control transmission command conversion process in step S74304, a process of setting a control state (an error state such as a payout number error error, a ball out error, a full tank error, a prize ball error, etc.) in the lower 4 bits of the connection OK command. Done. Then, the payout control CPU 371 performs control to transmit the converted connection OK command to the game control microcomputer 560 (step S74305). Specifically, the payout control CPU 371 performs processing for outputting a connection OK command to the transmission register of the serial communication circuit 380. Then, the process proceeds to step S74306.

ステップS74306では、払出制御用CPU371は、エラーフラグに主制御通信エラー指定ビットをセットする。すなわち、主制御通信中処理は、賞球個数コマンドを受信した後、受信した賞球個数コマンドにもとづく賞球払出動作を開始可能な状態となるまでに実行される処理であり、賞球個数受付コマンドの返信が保留されて、遊技制御用マイクロコンピュータ560は賞球個数受付コマンドの受信待ち状態となっているのであるから、この間に遊技制御用マイクロコンピュータ560から新たに払出制御コマンドを受信することはない筈である。それにもかかわらず、新たなコマンドを受信したということは通信状態に何らかの異常が生じたと判断することができるのであるから、払出制御用CPU371は、主制御通信エラー指定ビットをセットする処理を行う。   In step S74306, the payout control CPU 371 sets a main control communication error designation bit in the error flag. That is, the main control communication process is a process that is executed after receiving the prize ball number command until the prize ball payout operation can be started based on the received prize ball number command. Since the response of the command is suspended, the game control microcomputer 560 is in a waiting state for receiving the award ball number reception command. During this time, a new payout control command is received from the game control microcomputer 560. There is no trap. Nevertheless, since receiving a new command can determine that some abnormality has occurred in the communication state, the payout control CPU 371 performs processing for setting a main control communication error designation bit.

なお、払出制御用CPU371は、ステップS74306で主制御通信エラー指定ビットをセットすると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   The payout control CPU 371 clears the main control communication reception buffer when the main control communication error designation bit is set in step S74306. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74307)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74308)。   Next, the payout control CPU 371 sets a value “1” indicating the main control communication normal process in the main control communication control code (step S74307). Then, the payout control CPU 371 sets a predetermined value (1050 ms in this example) in the main control communication control timer (step S74308).

主制御通信受信バッファに受信コマンドがなければ、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74309)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74310)。   If there is no reception command in the main control communication reception buffer, the payout control CPU 371 subtracts 1 from the value of the main control communication control timer (step S74309), and checks whether the main control communication control timer has timed out (step S74309). S74310).

主制御通信制御タイマがタイムアウトしていれば(ステップS74310のY)、賞球準備中コマンドを前回送信してから1秒以上経過したことを意味する。この場合、払出制御用CPU371は、次の賞球準備中コマンドを送信するために、賞球準備中コマンドをセットし(ステップS74311)、主制御送信コマンド変換処理を実行する(ステップS74312)。なお、ステップS74312の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74313)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。   If the main control communication control timer has timed out (Y in step S74310), it means that one second or more has elapsed since the previous prize ball preparation command was transmitted. In this case, the payout control CPU 371 sets a winning ball preparing command in order to transmit the next winning ball preparing command (step S74311), and executes main control transmission command conversion processing (step S74312). In the main control transmission command conversion process of step S74312, the control state (error status such as a payout number error error, a ball outage error, a full tank error, a prize ball error, etc.) is set in the lower 4 bits of the command for preparing a prize ball. Processing is performed. Then, the payout control CPU 371 performs control to transmit the converted prize ball preparing command to the game control microcomputer 560 (step S74313). Specifically, the payout control CPU 371 performs processing for outputting a prize ball preparing command to the transmission register of the serial communication circuit 380.

そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74314)。なお、ステップS74314でセットされた値にもとづいて、賞球準備中コマンドを送信した後、さらに1秒経過後にまだ賞球払出動作を開始できる状態になっていなければ次の賞球準備中コマンドが送信されることになる。   Then, the payout control CPU 371 sets a predetermined value (1 second in this example) in the main control communication control timer (step S74314). It should be noted that, after the command for preparing a prize ball is transmitted based on the value set in step S74314, a command for preparing the next prize ball is issued if it is not yet ready to start a prize ball payout operation after one second has passed. Will be sent.

主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、エラーフラグの値が0であるか否かを確認する(ステップS74315)。エラーフラグの値が0でなければ(すなわち、エラー状態であり、いずれかのエラービットがセットされていれば)、まだ賞球払出動作を開始できないので、そのまま処理を終了する。エラーフラグの値が0であれば(すなわち、エラー状態となっておらず、いずれのエラービットもセットされていなければ)、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS74316)。BRDY信号を入力していれば、まだ賞球払出動作を開始できないので、そのまま処理を終了する。   If the main control communication control timer has not timed out, the payout control CPU 371 checks whether or not the value of the error flag is 0 (step S74315). If the value of the error flag is not 0 (that is, if it is in an error state and one of the error bits is set), the winning ball payout operation cannot be started yet, so the processing is ended as it is. If the value of the error flag is 0 (that is, if no error state is set and no error bit is set), the payout control CPU 371 checks whether a BRDY signal is input. (Step S74316). If the BRDY signal is input, the winning ball payout operation cannot be started yet, and the process is terminated as it is.

BRDY信号も入力していなければ、払出制御用CPU371は、払出制御状態を示す払出制御状態フラグをロードし(ステップS74317)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS74318)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビット(賞球払出動作中であることを示すビット)または球貸し払出動作中指定ビット(球貸し払出動作中であることを示すビット)がセットされているか否かを確認する。賞球払出動作中または球貸し払出動作中であれば、まだ賞球払出動作を開始できないので、そのまま処理を終了する。なお、この実施の形態では、賞球払出動作を終了して賞球終了コマンドを受信してから次の賞球個数コマンドが送信されるので、通信エラーなどの異常が発生していないかぎり、ステップS74318において賞球払出動作中であると判定されることはない。   If the BRDY signal is not input, the payout control CPU 371 loads a payout control state flag indicating the payout control state (step S74317), and confirms whether the winning ball payout operation or the ball lending payout operation is in progress. (Step S74318). Specifically, the payout control CPU 371 specifies a prize ball payout operation designation bit (bit indicating that a prize ball payout operation is in progress) or a ball lending payout operation designation bit (in a ball lending payout operation) in the payout control state flag. It is confirmed whether or not a bit indicating that is set. If the winning ball payout operation or the ball lending payout operation is in progress, the winning ball payout operation cannot be started yet, so the processing is ended as it is. In this embodiment, since the next prize ball number command is transmitted after the prize ball payout operation is finished and the prize ball end command is received, the step is performed unless an abnormality such as a communication error occurs. In S74318, it is not determined that a prize ball payout operation is in progress.

賞球払出動作中でも球貸し払出動作中でもなければ、受信した賞球個数コマンドにもとづく賞球払出動作を開始可能な状態となったことを意味する。この場合、払出制御用CPU371は、主制御通信賞球個数バッファの下位4ビット(すなわち、一時退避した賞球個数)を未払出個数カウンタにセットする(ステップS74319)。   If neither the winning ball payout operation nor the ball lending payout operation is in progress, it means that the winning ball payout operation based on the received winning ball number command can be started. In this case, the payout control CPU 371 sets the lower 4 bits of the main control communication prize ball number buffer (that is, the temporarily saved prize ball number) in the unpaid number counter (step S74319).

なお、この実施の形態では、既に述べたように、賞球個数コマンドを受信したときに直ちに賞球払出動作を開始できない場合に、賞球個数コマンドで特定される賞球個数を直ちに未払出個数カウンタにセットするのではなく、主制御通信賞球個数バッファに一旦退避するのであるが、このように制御するのは、例えば、貸し球払出動作中に未払出個数カウンタに賞球個数が上乗せされて賞球個数を正確に管理できなくなる事態を防止するなど、払出制御に関する処理に不都合が生じないようにするためである。   In this embodiment, as described above, when the winning ball payout operation cannot be started immediately when the winning ball number command is received, the winning ball number specified by the winning ball number command is immediately set to the unpaid number. Instead of being set in the counter, it is temporarily saved in the main control communication award ball number buffer, but this control is performed, for example, by adding the award ball number to the unpaid number counter during the lending ball payout operation. This is to prevent inconvenience in processing related to payout control, such as preventing a situation where the number of winning balls cannot be accurately managed.

次いで、払出制御用CPU371は、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74320)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球個数受付コマンドを出力する処理を行う。   Next, the payout control CPU 371 performs control to transmit a prize ball number reception command to the game control microcomputer 560 (step S74320). Specifically, the payout control CPU 371 performs processing for outputting a prize ball number acceptance command to the transmission register of the serial communication circuit 380.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信終了処理を示す値「3」をセットする(ステップS74321)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74322)。なお、ステップS74322でセットされた値にもとづいて、賞球個数受付コマンドを送信した後、1秒経過後に賞球払出動作を完了していなければ賞球準備中コマンドが送信されることになる。   Next, the payout control CPU 371 sets a value “3” indicating the main control communication end process in the main control communication control code (step S74321). Then, the payout control CPU 371 sets a predetermined value (1 second in this example) in the main control communication control timer (step S74322). It should be noted that if a prize ball payout operation is not completed after a lapse of one second after the prize ball number acceptance command is transmitted based on the value set in step S74322, a prize ball preparing command is transmitted.

図88は、主制御通信制御コードの値が3の場合に実行される主制御通信終了処理(ステップS744)を示すフローチャートである。主制御通信終了処理において、払出制御用CPU371は、まず、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74401)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74402)。接続確認コマンドでなければ、ステップS74406に移行する。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74403)、主制御送信コマンド変換処理を実行する(ステップS74404)。なお、ステップS74404の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74405)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。そして、ステップS74406に移行する。   FIG. 88 is a flowchart showing main control communication end processing (step S744) executed when the value of the main control communication control code is 3. In the main control communication end process, the payout control CPU 371 first checks whether or not a reception command is stored in the main control communication reception buffer (step S74401). If a reception command is stored in the main control communication reception buffer, the payout control CPU 371 checks whether or not the received command is a connection confirmation command (step S74402). If it is not a connection confirmation command, the process proceeds to step S74406. If a connection confirmation command has been received, the payout control CPU 371 sets a connection OK command (step S74403) and executes main control transmission command conversion processing (step S74404). In the main control transmission command conversion process of step S74404, a process of setting a control state (an error state such as a payout number error error, a ball out error, a full tank error, a prize ball error) in the lower 4 bits of the connection OK command is performed. Done. Then, the payout control CPU 371 performs control to transmit the converted connection OK command to the game control microcomputer 560 (step S74405). Specifically, the payout control CPU 371 performs processing for outputting a connection OK command to the transmission register of the serial communication circuit 380. Then, control goes to a step S74406.

ステップS74406では、払出制御用CPU371は、エラーフラグに主制御通信エラー指定ビットをセットする。すなわち、主制御通信終了処理は、賞球個数コマンドを受信して賞球払出動作を開始した後、受信した賞球個数コマンドにもとづく賞球払出動作を終了するまで実行する処理であり、技制御用マイクロコンピュータ560は賞球終了コマンドの受信待ち状態となっているのであるから、この間に遊技制御用マイクロコンピュータ560から新たに払出制御コマンドを受信することはない筈である。それにもかかわらず、新たなコマンドを受信したということは通信状態に何らかの異常が生じたと判断することができるのであるから、払出制御用CPU371は、主制御通信エラー指定ビットをセットする処理を行う。   In step S74406, the payout control CPU 371 sets a main control communication error designation bit in the error flag. That is, the main control communication end process is a process executed after receiving the prize ball number command and starting the prize ball payout operation until the prize ball payout operation based on the received prize ball number command is ended. Since the microcomputer for use 560 is in a waiting state for receiving the winning ball end command, it is unlikely that a new payout control command will be received from the game control microcomputer 560 during this period. Nevertheless, since receiving a new command can determine that some abnormality has occurred in the communication state, the payout control CPU 371 performs processing for setting a main control communication error designation bit.

なお、払出制御用CPU371は、ステップS74406で主制御通信エラー指定ビットをセットすると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   The payout control CPU 371 clears the main control communication reception buffer when the main control communication error designation bit is set in step S74406. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74407)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74408)。   Next, the payout control CPU 371 sets a value “1” indicating the main control communication normal process in the main control communication control code (step S74407). Then, the payout control CPU 371 sets a predetermined value (1050 ms in this example) in the main control communication control timer (step S74408).

主制御通信受信バッファに受信コマンドがなければ、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74409)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74410)。   If there is no reception command in the main control communication reception buffer, the payout control CPU 371 subtracts 1 from the value of the main control communication control timer (step S74409), and checks whether the main control communication control timer has timed out (step S74409). S74410).

主制御通信制御タイマがタイムアウトしていれば(ステップS74410のY)、賞球個数受付コマンドや賞球準備中コマンドを前回送信してから1秒以上経過したことを意味する。この場合、払出制御用CPU371は、次の賞球準備中コマンドを送信するために、賞球準備中コマンドをセットし(ステップS74411)、主制御送信コマンド変換処理を実行する(ステップS74412)。なお、ステップS74412の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74413)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。   If the main control communication control timer has timed out (Y in step S74410), it means that one second or more has elapsed since the last time a prize ball acceptance command or a prize ball preparation command was transmitted. In this case, the payout control CPU 371 sets a prize ball preparing command in order to transmit the next prize ball preparing command (step S74411), and executes main control transmission command conversion processing (step S74412). In the main control transmission command conversion process in step S74412, a control state (error state such as a payout number error error, a ball runout error, a full tank error, a prize ball error, etc.) is set in the lower 4 bits of the command for preparing a prize ball. Processing is performed. Then, the payout control CPU 371 performs control to transmit the converted prize ball preparing command to the game control microcomputer 560 (step S74413). Specifically, the payout control CPU 371 performs processing for outputting a prize ball preparing command to the transmission register of the serial communication circuit 380.

そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74414)。なお、ステップS74414でセットされた値にもとづいて、賞球準備中コマンドを送信した後、さらに1秒経過後にまだ賞球払出動作が終了していなければ次の賞球準備中コマンドが送信されることになる。   Then, the payout control CPU 371 sets a predetermined value (1 second in this example) in the main control communication control timer (step S74414). It should be noted that, based on the value set in step S74414, after the command for preparing a prize ball is transmitted, if the prize ball payout operation is not yet completed after another one second, the next command for preparing a prize ball is transmitted. It will be.

主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS74415)、賞球払出動作中であるか否かを確認する(ステップS74416)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビットがセットされているか否かを確認する。賞球払出動作中であれば、受信した賞球個数コマンドにもとづく賞球払出動作をまだ終了していないことを意味するので、払出制御用CPU371は、そのまま処理を終了する。賞球払出動作中でなければ、受信した賞球個数コマンドにもとづく賞球払出動作を終了したことを意味する。そのため、払出制御用CPU371は、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74417)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球終了コマンドを出力する処理を行う。   If the main control communication control timer has not timed out, the payout control CPU 371 loads a payout control state flag (step S74415), and checks whether or not a prize ball payout operation is in progress (step S74416). Specifically, the payout control CPU 371 checks whether or not a prize ball payout operation specifying bit is set in the payout control state flag. If the winning ball payout operation is in progress, it means that the winning ball payout operation based on the received winning ball number command has not been finished yet, and the payout control CPU 371 ends the process as it is. If no winning ball payout operation is in progress, it means that the winning ball payout operation based on the received winning ball number command has ended. Therefore, the payout control CPU 371 performs control to transmit a prize ball end command to the game control microcomputer 560 (step S74417). Specifically, the payout control CPU 371 performs a process of outputting a prize ball end command to the transmission register of the serial communication circuit 380.

なお、払出制御用CPU371は、ステップS74417で賞球終了コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。   The payout control CPU 371 clears the main control communication reception buffer when it transmits the winning ball end command in step S74417. By doing so, it is possible to prevent a situation in which the received command is erroneously recognized in the subsequent processing and the erroneous processing is executed.

次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74418)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74419)。   Next, the payout control CPU 371 sets a value “1” indicating the main control communication normal process in the main control communication control code (step S74418). Then, the payout control CPU 371 sets a predetermined value (1050 ms in this example) in the main control communication control timer (step S74419).

図89は、ステップS7414,S74207,S74221,S74304,S74312,S74404,S74412で実行される主制御送信コマンド変換処理を示すフローチャートである。主制御送信コマンド変換処理において、払出制御用CPU371は、まず、エラーフラグをロードし、払出個数異常エラー指定ビットがセットされているか否かを確認する(ステップS731)。払出個数異常エラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用払出個数異常エラー出力ビット(具体的にはビット3)をセットする(ステップS732)。   FIG. 89 is a flowchart showing main control transmission command conversion processing executed in steps S7414, S74207, S74221, S74304, S74312, S74404, and S74412. In the main control transmission command conversion process, the payout control CPU 371 first loads an error flag and checks whether or not the payout number abnormality error designation bit is set (step S731). If the payout number abnormality error designation bit is set, the payout control CPU 371 sets a main control communication payout number error error output bit (specifically, bit 3) in the conversion buffer (step S732).

次いで、払出制御用CPU371は、球切れエラー指定ビットがセットされているか否かを確認する(ステップS733)。球切れエラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用球切れ出力ビット(具体的にはビット2)をセットする(ステップS734)。   Next, the payout control CPU 371 checks whether or not the ball break error designation bit is set (step S733). If the ball-out error designation bit is set, the payout control CPU 371 sets the main control communication ball-out output bit (specifically bit 2) in the conversion buffer (step S734).

次いで、払出制御用CPU371は、満タンエラー指定ビットがセットされているか否かを確認する(ステップS735)。満タンエラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用満タン出力ビット(具体的にはビット1)をセットする(ステップS736)。   Next, the payout control CPU 371 checks whether or not the full error designation bit is set (step S735). If the full error specification bit is set, the payout control CPU 371 sets the full output bit for main control communication (specifically bit 1) of the conversion buffer (step S736).

次いで、払出制御用CPU371は、その他の賞球エラー指定ビットがセットされているか否かを確認する(ステップS737)。具体的には、払出制御用CPU371は、エラーフラグに、主制御通信エラー指定ビットや、主制御未接続エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビットがセットされているか否かを確認する。その他の賞球エラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用球切れ出力ビット(具体的にはビット0)をセットする(ステップS738)。   Next, the payout control CPU 371 checks whether or not other prize ball error designation bits are set (step S737). Specifically, the payout control CPU 371 includes a main control communication error designation bit, a main control unconnected error designation bit, a withdrawal switch abnormality detection error 1 designation bit, a withdrawal switch abnormality detection error 2 designation bit, a withdrawal in the error flag. Check if the case error specification bit is set. If any other prize ball error designation bit is set, the payout control CPU 371 sets a main control communication ball out output bit (specifically bit 0) in the conversion buffer (step S738).

そして、払出制御用CPU371は、送信するためにセットされている払出制御コマンド(接続OKコマンドまたは賞球準備中コマンド)に変換バッファの内容をセットする(ステップS739)。   Then, the payout control CPU 371 sets the contents of the conversion buffer in the payout control command (connection OK command or prize ball preparing command) set for transmission (step S739).

図90は、ステップS755の払出制御処理を示すフローチャートである。払出制御処理において、払出制御用CPU371は、払出個数カウントスイッチ301の検出信号がオン状態となったことを確認したら(ステップS7501)、未払出個数カウンタの値が0となっているか否かを確認する(ステップS7502)。未払出個数カウンタの値が0となっていた場合には、払出制御用CPU371は、異常な払出の累積数をカウントするための払出個数異常カウンタの値を1加算する(ステップS7503)。すなわち、ステップS7502でYであるということは、未払出個数カウンタに払い出すべき未払い出し数がセットされていないのであるから、遊技球の払い出しが行われない筈であるにもかかわらず、払出動作が行われ払出個数カウントスイッチ301で遊技球の払い出しが検出された場合である。そのため、何らかの不正行為により払出動作が行われた可能性があるので、払出制御用CPU101は、払出個数異常カウンタの値を累積的に1加算する。   FIG. 90 is a flowchart showing the payout control process in step S755. In the payout control process, the payout control CPU 371 confirms that the detection signal of the payout number count switch 301 is turned on (step S7501), and checks whether the value of the unpaid number counter is 0. (Step S7502). If the value of the unpaid number counter is 0, the payout control CPU 371 adds 1 to the value of the payout number abnormality counter for counting the cumulative number of abnormal payouts (step S7503). In other words, Y in step S7502 means that the unpaid number to be paid out is not set in the unpaid-out number counter, so that the payout operation is performed even though the game ball should not be paid out. And the payout count switch 301 detects the payout of the game ball. For this reason, there is a possibility that the payout operation has been performed by some kind of fraud, so the payout control CPU 101 cumulatively adds 1 to the value of the payout number abnormality counter.

なお、払出個数異常カウンタは、賞球や貸し球の払い出すべき数の未払出の遊技球を超えた払出過多数と払い出すべき数の未払出の遊技球に満たなかった払出不足数とを累積的にカウントするためのカウンタである。後述するように、この実施の形態では、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(本例では2000)以上となると、払出個数異常エラーが発生したと判定して、払出停止状態に制御する処理が行われる。なお、ステップS7503の処理は、払出個数異常カウンタに払出過多数を累積的にカウントする処理に相当する。   The payout number abnormality counter indicates the number of payouts exceeding the number of unpaid game balls to be paid out and the number of payout shortages that did not meet the number of unpaid game balls to be paid out. This is a counter for cumulatively counting. As will be described later, in this embodiment, when the value of the payout number abnormality counter becomes equal to or greater than a predetermined payout number error error determination value (2000 in this example), it is determined that a payout number error has occurred and the payout is stopped. Processing to control the state is performed. Note that the process of step S7503 corresponds to a process of cumulatively counting the excess payout in the payout number abnormality counter.

なお、この実施の形態では、賞球であるか貸し球であるかを区別することなく、払出過多数と払出不足数とを払出個数異常カウンタに累積的にカウントするのであるが、賞球と貸し球のうちのいずれか一方のみを対象として、払出過多数と払出不足数とを払出個数異常カウンタに累積的にカウントするようにしてもよい。また、例えば、賞球と貸し球について、それぞれ別々のカウンタを用いて払出過多数と払出不足数とを累積的にカウントするようにしてもよい。この場合、いずれか一方のカウンタの値が所定の閾値に達したときに払出個数異常エラーと判定するようにしてもよく、両カウンタの合計値が所定の閾値に達したときに払出個数異常エラーと判定するようにしてもよい。   In this embodiment, without distinguishing whether the ball is a winning ball or a lending ball, the payout excess number and the payout shortage number are cumulatively counted in the payout number abnormality counter. For only one of the rented balls, the excessive payout and the shortage payout may be cumulatively counted in the payout number abnormality counter. Further, for example, with respect to prize balls and lending balls, it is possible to cumulatively count the excess payout and the shortage payout using separate counters. In this case, it may be determined that a payout number error occurs when the value of one of the counters reaches a predetermined threshold value, or a payout number error error when the total value of both counters reaches a predetermined threshold value. May be determined.

また、この実施の形態では、ステップS7503において払出過多を検出したときに払出個数異常カウンタの値を1加算する場合を示したが、払出個数異常カウンタの値のカウントアップの仕方は、この実施の形態で示したものにかぎられない。例えば、逆に、払出個数異常カウンタの値から払出過多数を減算するとともに、払出不足数を払出個数異常カウンタの値に加算するようにしてもよい。この場合、払出制御用CPU371は、例えば、電源投入時の初期設定処理において払出個数異常カウンタに初期値として「2000」をセットするとともに、ステップS7503において、払出個数異常カウンタの値を1減算するようにし、後述するステップS75320,S75325,S75335において払出個数異常カウンタの値に払出不足数に相当する値を加算するようにすればよい。そして、例えば、後述するステップS7504,S75321,S7725の処理では、払出個数異常カウンタの値が2000以下となっていることにもとづいて、払出個数異常エラーが発生したと判定するようにしてもよい。   Further, in this embodiment, the case where the value of the payout number abnormality counter is incremented by 1 when an excessive payout is detected in step S7503 has been shown, but the method of counting up the value of the payout number abnormality counter is described in this embodiment. It is not limited to what is shown in the form. For example, conversely, the excessive payout number may be subtracted from the value of the payout number abnormality counter, and the insufficient payout number may be added to the value of the payout number abnormality counter. In this case, for example, the payout control CPU 371 sets “2000” as the initial value in the payout number abnormality counter in the initial setting process when the power is turned on, and subtracts 1 from the value of the payout number abnormality counter in step S7503. In steps S75320, S75325, and S75335, which will be described later, a value corresponding to the insufficient payout number may be added to the value of the payout number abnormality counter. For example, in the processing of steps S7504, S75321, and S7725 described later, it may be determined that a payout number error has occurred based on the value of the payout number error counter being 2000 or less.

次いで、払出制御用CPU371は、加算後の払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となったか否かを確認する(ステップS7504)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーが発生したことを示す払出個数異常エラーフラグをセットする(ステップS7505)。すなわち、この実施の形態では、払出制御用マイクロコンピュータ370側で異常な払出の検出数を累積的に管理し、その累積値が所定の払出個数異常エラー判定値(例えば2000)以上となれば、何らかの不正行為により払出動作が行われている可能性が極めて高いと判断して、払出個数異常エラー(払い出された遊技球数が異常である旨のエラー)が発生したと判定される。なお、誤動作などにより遊技球が過剰に払い出されたり払出不足が生じたりすることも少なからずあるので、払出数の異常を検出したときに直ちに払出個数異常エラーと判定してしまったのでは、払出個数異常エラーと判定される頻度が必要以上に高くなり却って遊技に支障を生じてしまう。そこで、この実施の形態では、異常な払出の検出数を累積的に管理し、その累積値が所定の払出個数異常エラー判定値(例えば2000)以上となったことを条件として払出個数異常エラーと判定するようにすることによって、必要以上に払出個数異常エラーと判定されることを防止している。   Next, the payout control CPU 371 checks whether or not the value of the added payout number abnormality counter is equal to or greater than a predetermined payout number error error determination value (for example, 2000) (step S7504). If it is equal to or greater than a predetermined payout number error error determination value (for example, 2000), the payout control CPU 371 determines that a payout number error error has occurred, and indicates a payout number error error indicating that a payout number error error has occurred. A flag is set (step S7505). That is, in this embodiment, the number of abnormal payouts detected is cumulatively managed on the payout control microcomputer 370 side, and if the accumulated value is equal to or greater than a predetermined payout number abnormal error determination value (for example, 2000), It is determined that there is an extremely high possibility that a payout operation is being performed due to some sort of fraud, and it is determined that a payout number abnormality error (an error indicating that the number of game balls paid out is abnormal) has occurred. In addition, there are not a few cases where game balls are paid out excessively or insufficient due to malfunctions, etc. The frequency determined to be a payout number abnormality error becomes higher than necessary, and the game is hindered. Therefore, in this embodiment, the number of abnormal payouts detected is cumulatively managed, and the payout number abnormality error is determined on the condition that the accumulated value is equal to or greater than a predetermined payout number abnormality error determination value (for example, 2000). By determining, it is prevented that it is determined that the payout number abnormality error is more than necessary.

なお、この実施の形態では、払出個数異常エラーと判定されて払出個数異常エラーフラグが一度セットされると、電源リセットされるまで払出個数異常エラーフラグはクリアされず払出個数異常エラーから復旧しないので、払出個数異常エラーフラグがセットされると、以降、ステップS7504,S7505の処理や後述するS75321,S75322、S7725,S7726の処理は実行しないようにしてもよい。そのようにすれば、払出個数異常エラーと一度判定してしまった後の無駄な処理を防止し処理負担を軽減することができる。   In this embodiment, if it is determined that there is a payout number error and the payout number error error flag is set once, the payout number error error flag is not cleared until the power is reset, and the payout number error error is not recovered. When the payout number abnormality error flag is set, the processes in steps S7504 and S7505 and the processes in S75321, S75322, S7725, and S7726 described later may not be executed. By doing so, it is possible to prevent useless processing after it is once determined that the payout number abnormality error has occurred, and to reduce the processing burden.

また、この実施の形態では、所定の払出個数異常エラー判定値として、一般に、遊技店で用いられる遊技球の収納箱(いわゆるドル箱)に収納可能な遊技球の数に相当する「2000」を用いる場合を示しているが、所定の払出個数異常エラー判定値として他の値(例えば、1000や3000)を用いてもよい。   Further, in this embodiment, “2000” corresponding to the number of game balls that can be stored in a game ball storage box (so-called dollar box) generally used in a game store is set as a predetermined payout number abnormality error determination value. Although the case where it uses is shown, other values (for example, 1000 or 3000) may be used as the predetermined payout number abnormality error determination value.

なお、この実施の形態では、図90に示す払出制御処理は、賞球払出動作を実行するときと貸し球払出動作を実行するときとで共通に実行される処理であり、未払出個数カウンタは、賞球による未払出の遊技球数をカウントするときと貸し球による未払出の遊技球数をカウントするときとで共通に用いられるカウンタである。そして、払出個数の異常を検出した場合には、賞球による払出と貸し球による払出とを区別することなく払出個数異常カウンタの値がカウントアップされ、払出個数異常エラーが発生したか否かの判定が行われる。   In this embodiment, the payout control process shown in FIG. 90 is a process that is commonly executed when the prize ball payout operation is executed and when the lending ball payout operation is executed. This counter is used in common when counting the number of game balls that have not been paid out with prize balls and when counting the number of game balls that have not been paid out with lending balls. When an abnormality in the number of payouts is detected, the value of the payout number abnormality counter is incremented without distinguishing between payout with a prize ball and payout with a lending ball, and whether or not a payout number abnormality error has occurred. A determination is made.

未払出個数カウンタの値が0でなければ、払出制御用CPU371は、未払出個数カウンタの値を1減算し(ステップS7506)、払出制御状態のフラグに払出球検知指定ビット(遊技球の払い出しを検出したことを示すビット)をセットする(ステップS7507)。なお、払出球検知指定ビットは、払出個数カウントスイッチ301がオンしたときにセットされるビットであり、払出動作中に払出個数カウントスイッチ301が少なくとも1個の遊技球を検出したことを示すビットである。   If the value of the unpaid-out number counter is not 0, the payout control CPU 371 subtracts 1 from the value of the unpaid-out number counter (step S7506), and a payout ball detection designation bit (game ball payout) is added to the flag of the payout control state. A bit indicating detection) is set (step S7507). The payout ball detection designation bit is a bit that is set when the payout number count switch 301 is turned on, and indicates that the payout number count switch 301 has detected at least one game ball during the payout operation. is there.

その後、払出制御用CPU371は、払出制御コードの値に応じてステップS7511〜S7513のいずれかの処理を実行する。   Thereafter, the payout control CPU 371 executes any one of steps S7511 to S7513 according to the value of the payout control code.

図91は、払出制御コードが0の場合に実行される払出開始待ち処理(ステップS7511)を示すフローチャートである。払出開始待ち処理において、払出制御用CPU371は、まず、エラーフラグの値が0であるか否かを確認する(ステップS75101)。そして、エラービット(エラーフラグにおける全てのエラービットのうちの1つ以上)がセットされていたら、払出制御用CPU371は、以降の処理を実行しないように制御する。なお、この実施の形態では、ステップS75101の処理が実行されることによって、払出個数異常エラーと判定されてエラービットの払出個数異常エラー指定ビットがセットされていることにもとづいて、ステップS75102以降の処理に移行しないように制御され、払出停止状態に制御される。   FIG. 91 is a flowchart showing a payout start waiting process (step S7511) executed when the payout control code is 0. In the payout start waiting process, the payout control CPU 371 first checks whether or not the value of the error flag is 0 (step S75101). If an error bit (one or more of all error bits in the error flag) is set, the payout control CPU 371 controls not to execute the subsequent processing. In this embodiment, by executing the process of step S75101, it is determined that there is a payout number abnormal error, and the payout number abnormal error designation bit of the error bit is set, so that the steps after step S75102 are set. Control is performed so as not to shift to processing, and the payout is stopped.

エラーフラグの値が0であれば、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS75102)。BRDY信号を入力していれば、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75103)、球貸し要求中であるか否かを確認する(ステップS75104)。具体的には、払出制御用CPU371は、払出制御状態フラグに球貸し要求中指定ビット(球貸し要求中であることを示すビット)がセットされているか否かを確認する。なお、払出制御用CPU371は、BRQ信号を入力しているか否かを確認することによって、球貸し要求中であるか否かを判定するようにしてもよい。球貸し要求中であれば(すなわち、球貸し払出動作を開始する場合)、払出制御用CPU371は、払出制御状態フラグの球貸し要求中指定ビットをリセットする(ステップS75105)とともに、払出制御状態フラグの球貸し払出動作中指定ビットをセットする(ステップS75106)。次いで、払出制御用CPU371は、未払出個数カウンタに所定の球貸し個数(本例では25)をセットする(ステップS75107)とともに、払出モータ回転回数バッファに所定の球貸し個数(本例では25)をセットする(ステップS75108)。そして、ステップS75113に移行する。   If the value of the error flag is 0, the payout control CPU 371 checks whether or not the BRDY signal is input (step S75102). If the BRDY signal is input, the payout control CPU 371 loads a payout control state flag (step S75103), and checks whether or not a ball lending request is being made (step S75104). Specifically, the payout control CPU 371 checks whether or not a ball lending request specifying bit (a bit indicating that a ball lending request is being made) is set in the payout control state flag. The payout control CPU 371 may determine whether or not a ball lending request is being made by confirming whether or not a BRQ signal is input. If a ball lending request is being made (that is, when a ball lending payout operation is started), the payout control CPU 371 resets the ball lending request specifying bit of the payout control state flag (step S75105) and at the same time a payout control state flag. The designated bit during the ball lending / dispensing operation is set (step S75106). Next, the payout control CPU 371 sets a predetermined ball lending number (25 in this example) in the unpaid number counter (step S75107) and a predetermined ball lending number (25 in this example) in the payout motor rotation number buffer. Is set (step S75108). Then, control goes to a step S75113.

なお、払出モータ回転回数バッファは、払出モータ制御処理(ステップS756)において参照される。すなわち、払出モータ制御処理では、払出モータ回転回数バッファにセットされた値に対応した回転数分だけ払出モータ289を回転させる制御が実行される。   The payout motor rotation frequency buffer is referred to in the payout motor control process (step S756). That is, in the payout motor control process, control is performed to rotate the payout motor 289 by the number of rotations corresponding to the value set in the payout motor rotation frequency buffer.

BRDY信号を入力していなければ、払出制御用CPU371は、未払出個数カウンタの値が0であるか否かを確認する(ステップS75109)。未払出個数カウンタの値が0でなければ(すなわち、賞球払出動作を開始する場合)、払出制御用CPU371は、払出モータ回転回数バッファに未払出個数カウンタの値をセットする(ステップS75110)。すなわち、この場合、未払出個数カウンタには、受信した賞球個数コマンドで指定された賞球個数がセットされている筈であるから(ステップS74214,S74319参照)、賞球払出動作を開始するために、賞球個数を払出モータ回転回数バッファにセットする処理を行う。次いで、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75111)、払出制御状態フラグに賞球払出動作中指定ビットをセットする(ステップS75112)。そして、ステップS75113に移行する。   If the BRDY signal is not input, the payout control CPU 371 checks whether or not the value of the unpaid-out number counter is 0 (step S75109). If the value of the unpaid number counter is not 0 (that is, when the prize ball payout operation is started), the payout control CPU 371 sets the value of the unpaid number counter in the payout motor rotation number buffer (step S75110). That is, in this case, since the number of prize balls designated by the received prize ball number command should be set in the unpaid quantity counter (see steps S74214 and S74319), the prize ball dispensing operation is started. Then, a process of setting the number of prize balls in the payout motor rotation frequency buffer is performed. Next, the payout control CPU 371 loads a payout control state flag (step S75111), and sets a prize ball paying-out operation designation bit in the payout control state flag (step S75112). Then, control goes to a step S75113.

ステップS75113では、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動処理に応じて値をセットする。これにより、ステップS756の払出モータ制御処理において、払出モータ289を起動する払出モータ起動処理が実行され、貸し球払出動作または賞球払出動作が開始される。そして、払出制御用CPU371は、払出制御コードに払出モータ停止待ち処理を示す値「1」をセットし(ステップS75114)、処理を終了する。   In step S75113, the payout control CPU 371 sets a value in the payout motor control code for selecting a process to be executed in the payout motor control process according to the payout motor activation process. Thereby, in the payout motor control process in step S756, a payout motor starting process for starting the payout motor 289 is executed, and a lending ball payout operation or a prize ball payout operation is started. Then, the payout control CPU 371 sets a value “1” indicating the payout motor stop waiting process in the payout control code (step S75114), and ends the process.

図92は、払出制御コードが1の場合に実行される払出モータ停止待ち処理(ステップS7512)を示すフローチャートである。払出モータ停止待ち処理において、払出制御用CPU371は、まず、払出制御状態フラグをロードし(ステップS7521)、払出動作が終了したか否かを確認する(ステップS7522)。具体的には、払出制御用CPU371は、払出制御状態フラグに払出動作終了指定ビット(払出動作を終了したことを示すビット)がセットされているか否かを確認する。なお、払出動作終了指定ビットは、図80に示すステップS756の払出モータ制御処理における払出モータブレーキ処理や払出モータ球噛み解除処理においてセットされる。   FIG. 92 is a flowchart showing the payout motor stop waiting process (step S7512) executed when the payout control code is 1. In the payout motor stop waiting process, the payout control CPU 371 first loads a payout control state flag (step S7521), and checks whether or not the payout operation is completed (step S7522). Specifically, the payout control CPU 371 checks whether or not a payout operation end designation bit (a bit indicating that the payout operation has ended) is set in the payout control state flag. The payout operation end designation bit is set in the payout motor brake process and the payout motor ball biting release process in the payout motor control process in step S756 shown in FIG.

なお、払出モータ制御処理では、払出制御用CPU371は、払出モータ制御コードの値に応じて、払出モータ通常処理(ポインタをROMに格納されているテーブルの先頭アドレスにセットする等の処理)、払出モータ起動処理(出力ポート0の出力状態に対応したポート0バッファのビット4〜7に励磁パターンの初期値を設定する等の処理)、払出モータスローアップ処理(払出モータ289を滑らかに回転開始させるために、定速処理の場合よりも長い間隔で、かつ、徐々に定速処理の場合の時間間隔に近づくような時間間隔で、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータ定速処理(定期的に払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータブレーキ処理(払出モータ289を滑らかに停止させるために、定速処理の場合よりも長い間隔で、かつ、徐々に定速処理の場合の時間間隔から遠ざかるような時間間隔で、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータ球噛み処理(球噛み状態を検出した場合に、球噛みを解除するために、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する処理)、および払出モータ球噛み解除処理(球噛み状態が解除されたときに払出モータ通常処理に移行して通常のモータ制御状態に復帰する処理)のいずれかの処理を実行する。   In the payout motor control processing, the payout control CPU 371 performs payout motor normal processing (processing such as setting the pointer at the head address of the table stored in the ROM), payout, according to the value of the payout motor control code. Motor start-up processing (processing such as setting the initial value of the excitation pattern in bits 4 to 7 of the port 0 buffer corresponding to the output state of the output port 0), payout motor slow-up processing (starting the rotation of the payout motor 289 smoothly) Therefore, the output state of the output port 0 is read out by reading the contents of the payout motor excitation pattern table at intervals longer than those in the case of constant speed processing and gradually approaching the time intervals in the case of constant speed processing. , Processing of setting bits 4 to 7 in the port 0 buffer corresponding to), payout motor constant speed processing (periodic payout motor excitation pattern) The process of reading the contents of the table and setting the bits 4 to 7 of the port 0 buffer corresponding to the output state of the output port 0), the dispensing motor brake process (the constant speed process to smoothly stop the dispensing motor 289) Port 0 buffer corresponding to the output state of the output port 0 by reading out the contents of the payout motor excitation pattern table at intervals longer than those in the case of, and gradually away from the time interval in the case of constant speed processing Processing of setting the bits 4 to 7), the payout motor ball biting process (when the ball biting state is detected, in order to release the ball biting, the contents of the payout motor excitation pattern table are read and the output port 0 is set. Processing to set bits 4 to 7 of the port 0 buffer corresponding to the output state) Either processing shifts to the payout motor normal processing process returns to the normal motor control state) execution.

払出動作を終了していれば、払出制御用CPU371は、払出制御状態フラグの払出動作終了指定ビットをリセットする(ステップS7523)とともに、後述する払出通過監視時間などをセットするために用いる払出モータ停止待ち処理設定テーブル2をセットする(ステップS7524)。   If the payout operation has been completed, the payout control CPU 371 resets the payout operation end designation bit of the payout control state flag (step S7523) and stops the payout motor used to set a payout passage monitoring time to be described later. The waiting process setting table 2 is set (step S7524).

次いで、払出制御用CPU371は、払出制御状態フラグに払出球数検査済み指定ビットがセットされているか否かを確認する(ステップS7525)。払出球数検査済み指定ビットは、払出モータ289による払出動作終了時(正常動作の終了時)に払出個数カウントスイッチ301による検出の判定を行ったことを示すビットである。払出球数検査済み指定ビットがセットされていれば、ステップS7527に移行する。払出球数検査済み指定ビットがセットされていなければ、払出制御用CPU371は、払出モータ停止待ち処理設定テーブルをセットする(ステップS7526)。すなわち、払出制御用CPU371は、ステップS7524でセットしたテーブルを払出モータ停止待ち処理設定テーブルに差し替える。そして、ステップS7527に移行する。   Next, the payout control CPU 371 checks whether or not the payout ball number inspected designation bit is set in the payout control state flag (step S7525). The designated number of paid-out balls inspected is a bit indicating that the detection of the number-of-payout count switch 301 has been determined at the end of the payout operation by the payout motor 289 (at the end of normal operation). If the payout ball number inspected designation bit is set, the process proceeds to step S7527. If the payout ball number inspected designation bit is not set, the payout control CPU 371 sets a payout motor stop waiting process setting table (step S7526). That is, the payout control CPU 371 replaces the table set in step S7524 with a payout motor stop waiting process setting table. Then, control goes to a step S7527.

ステップS7527では、払出制御用CPU371は、払出制御コードに払出通過待ち処理を示す値「2」をセットする。そして、払出制御用CPU371は、ステップS7524,S7526でセットしたテーブルにもとづいて、払出制御タイマに払出通過監視時間をセットする(ステップS7528)。払出通過監視時間は、最後の払出球が払出モータ289によって払い出されてから払出個数カウントスイッチ301を通過するまでの時間に、余裕を持たせた時間である。この実施の形態では、ステップS7525で払出球数検査済みビットがセットされていた場合には、ステップS7524でセットした払出モータ停止待ち処理設定テーブル2にもとづいて、払出通過監視時間として1秒をセットする。また、ステップS7525で払出球数検査済みビットがセットされていなかった場合には、ステップS7526で差し替えた払出モータ停止待ち処理設定テーブルにもとづいて、払出通過監視時間として0.6秒をセットする。   In step S7527, the payout control CPU 371 sets a value “2” indicating payout passing waiting processing in the payout control code. The payout control CPU 371 sets the payout passing monitoring time in the payout control timer based on the table set in steps S7524 and S7526 (step S7528). The payout passing monitoring time is a time that has a margin in the time from when the last payout ball is paid out by the payout motor 289 until it passes through the payout number count switch 301. In this embodiment, when the payout ball number inspected bit is set in step S7525, 1 second is set as the payout passing monitoring time based on the payout motor stop waiting process setting table 2 set in step S7524. To do. If the paid ball number inspected bit is not set in step S7525, 0.6 seconds is set as the payout passing monitoring time based on the payout motor stop waiting process setting table replaced in step S7526.

図93〜図95は、払出制御コードの値が2の場合に実行される払出通過待ち処理(ステップS7513)を示すフローチャートである。払出通過待ち処理において、払出制御用CPU371は、まず、払出制御タイマの値を確認し(ステップS75301)、その値が0になっていれば、ステップS75304に移行する。払出制御タイマの値が0でなければ、払出制御タイマの値を−1する(ステップS75302)。そして、払出制御タイマの値が0になっていなければ(ステップS75303)、すなわち払出制御タイマがタイムアウトしていなければ処理を終了する。   93 to 95 are flowcharts showing a payout passing waiting process (step S7513) executed when the value of the payout control code is 2. In the payout passing waiting process, the payout control CPU 371 first checks the value of the payout control timer (step S75301). If the value is 0, the process proceeds to step S75304. If the value of the payout control timer is not 0, the value of the payout control timer is decremented by 1 (step S75302). If the value of the payout control timer is not 0 (step S75303), that is, if the payout control timer has not timed out, the process is terminated.

払出制御タイマがタイムアウトしていれば、払出制御用CPU371は、エラーフラグをロードし、払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、または払出スイッチ異常検知エラー2指定ビットがセットされているか否かを確認する(ステップS75304)。払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、または払出スイッチ異常検知エラー2指定ビットのいずれかがセットされていれば、払出動作をこれ以上継続できないと判断して、ステップS75306に移行する。払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、および払出スイッチ異常検知エラー2指定ビットのいずれもセットされていなければ、払出制御用CPU371は、未払出個数カウンタの値が0となっているか否かを確認する(ステップS75305)。未払出個数カウンタの値が0となっていれば、払出制御用CPU371は、正常に払出動作が終了したとして、払出制御状態フラグをロードし(ステップS75306)、払出制御状態フラグの球貸し要求中指定ビットおよび払出動作終了指定ビット以外のビットをリセットする(ステップS75307)。そして、払出制御用CPU371は、払出制御コードに払出開始待ち処理を示す値「0」をセットし(ステップS75308)、処理を終了する。   If the payout control timer has timed out, the payout control CPU 371 loads the error flag, and sets the payout number abnormality error designation bit, the dispensing switch abnormality detection error 1 designation bit, or the dispensing switch abnormality detection error 2 designation bit. It is confirmed whether or not (step S75304). If any one of the payout number abnormality error designation bit, the dispensing switch abnormality detection error 1 designation bit, or the dispensing switch abnormality detection error 2 designation bit is set, it is determined that the dispensing operation cannot be continued any more, and the process proceeds to step S75306. Transition. If none of the payout number error error specification bit, the payout switch error detection error 1 specification bit, and the payout switch error detection error 2 specification bit is set, the payout control CPU 371 sets the value of the unpaid number counter to 0. It is confirmed whether or not (step S75305). If the value of the unpaid-out counter is 0, the payout control CPU 371 assumes that the payout operation has ended normally, loads a payout control state flag (step S75306), and is requesting a ballot for the payout control state flag. Bits other than the designated bit and the payout operation end designation bit are reset (step S75307). Then, the payout control CPU 371 sets a value “0” indicating the payout start waiting process in the payout control code (step S75308), and ends the process.

未払出個数カウンタの値が0となっていなければ、払出制御用CPU371は、エラーフラグをロードし、球切れエラー指定ビットまたは満タンエラー指定ビットがセットされているか否かを確認する(ステップS75309)。球切れエラー指定ビットまたは満タンエラー指定ビットがセットされていれば、そのまま処理を終了する。球切れエラー指定ビットおよび満タンエラー指定ビットのいずれもセットされていなければ、払出制御用CPU371は、エラーフラグに払出ケースエラー指定ビットがセットされているか否かを確認する(ステップS75310)。払出ケースエラー指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグをロードして(ステップS75311)、払出制御状態フラグに払出球数検査済み指定ビットをセットする(ステップS75312)。また、払出制御用CPU371は、払出制御状態フラグの再払出動作中1指定ビット(1回目の再払出動作の実行を示すビット)と再払出動作中2指定ビット(2回目の再払出動作の実行を示すビット)をリセットし(ステップS75313)、処理を終了する。   If the value of the unpaid-out number counter is not 0, the payout control CPU 371 loads an error flag and confirms whether or not the ball breakage error designation bit or the full tank error designation bit is set (step S75309). . If the ball breakage error designation bit or the full tank error designation bit is set, the processing is terminated as it is. If neither the ball breakage error designation bit nor the full tank error designation bit is set, the payout control CPU 371 checks whether or not the payout case error designation bit is set in the error flag (step S75310). If the payout case error designation bit is set, the payout control CPU 371 loads the payout control status flag (step S75311), and sets the payout ball number checked designation bit in the payout control status flag (step S75312). . The payout control CPU 371 also includes a 1 designation bit during re-payout operation (bit indicating execution of the first re-payout operation) and a 2 designation bit during re-payout operation (execution of the second re-payout operation). Is reset (step S75313), and the process is terminated.

なお、払出球数検査済み指定ビットは、払出モータ289による払出動作終了時(正常動作の終了時)に払出個数カウントスイッチ301による検出の判定を行ったことを示すビットである。なお、払出動作を終了したにもかかわらず、未払出個数カウンタの値が2以上残っている場合には、払出個数異常カウンタにその残数が加算される。また、払出動作終了時の払出個数カウントスイッチ301による検出の判定は、払出動作を1回実行するごとに1回のみ実行され、払出モータ球噛み処理や払出モータ球噛み解除処理を実行して球噛み動作を終了するときには実行しない(具体的には、球噛み状態では払出ケースエラー指定ビットがセットされるので、ステップS75312であらかじめ払出球数検査済み指定ビットがセットされることによって、球噛み動作を終了しても払出個数カウントスイッチ301による検出の判定を行わない)ように制御される。なお、払出球数検査済み指定ビットは、払出モータ制御処理内における払出モータ定速処理で満タン状態となったときにもセットされる。   Note that the designated number of paid-out balls has been inspected is a bit indicating that the detection of the number-of-payout count switch 301 has been determined at the end of the payout operation by the payout motor 289 (at the end of normal operation). Note that, when the value of the unpaid-out number counter remains two or more despite the end of the payout operation, the remaining number is added to the payout number abnormality counter. Further, the detection determination by the payout number count switch 301 at the end of the payout operation is executed only once every time the payout operation is executed, and the payout motor ball biting process or the payout motor ball bite releasing process is executed. It is not executed when the biting operation is finished (specifically, since the payout case error designation bit is set in the ball biting state, the ball biting operation is performed by setting the payout ball number checked designation bit in advance in step S75312. (The detection determination by the payout number count switch 301 is not performed even if the operation is finished). It should be noted that the payout ball number inspected designation bit is also set when the payout motor constant speed process in the payout motor control process becomes full.

ステップS75310で払出ケースエラー指定ビットもセットされていなければ、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75314)、ステップS75315以降の再払出処理を実行するための処理を行う。   If the payout case error designation bit is not set in step S75310, the payout control CPU 371 loads a payout control state flag (step S75314) and performs processing for executing re-payout processing after step S75315.

再払出処理を実行するために、払出制御用CPU371は、まず、払出制御状態フラグの再払出動作中2指定ビットがセットされているか否かを確認する(ステップS75315)。セットされていなければ、払出制御用CPU371は、払出制御状態フラグの再払出動作中1指定ビットがセットされているか否かを確認する(ステップS75316)。再払出動作中1指定ビットもセットされていなければ、払出制御用CPU371は、初回の再払出動作を実行するために、払出制御状態フラグに再払出動作中1指定ビットをセットする(ステップS75317)。   In order to execute the re-payout process, the pay-out control CPU 371 first checks whether or not the 2 designation bit during re-payout operation of the payout control state flag is set (step S75315). If it is not set, the payout control CPU 371 checks whether or not the 1 designation bit during re-payout operation of the payout control state flag is set (step S75316). If the 1 designation bit during re-payout operation is not set, the payout control CPU 371 sets the 1 designation bit during re-payout operation in the payout control state flag in order to execute the first re-payout operation (step S75317). .

次いで、払出制御用CPU371は、払出制御状態フラグに払出球数検査済み指定ビットがセットされているか否かを確認する(ステップS75318)。払出球数検査済み指定ビットがセットされていれば、ステップS75326に移行する。払出球数検査済み指定ビットがセットされていなければ、払出制御用CPU371は、未払出個数カウンタの値が2以上であるか否かを確認する(ステップS75319)。未払出個数カウンタの値が2以上でなければ、ステップS75326に移行する。未払出個数カウンタの値が2以上であれば、払出制御用CPU371は、払出個数異常カウンタに未払個数カウンタの値を加算する(ステップS75320)。なお、ステップS75320の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。次いで、払出制御用CPU371は、加算後の払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となったか否かを確認する(ステップS75321)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーが発生したことを示す払出個数異常エラーフラグをセットする(ステップS75322)。   Next, the payout control CPU 371 checks whether or not the payout ball number inspected designation bit is set in the payout control state flag (step S75318). If the specified number of paid-out balls is inspected, the process proceeds to step S75326. If the specified number of paid-out balls has been inspected, the payout control CPU 371 checks whether or not the value of the unpaid-out number counter is 2 or more (step S75319). If the value of the unpaid-out number counter is not 2 or more, the process proceeds to step S75326. If the value of the unpaid number counter is 2 or more, the payout control CPU 371 adds the value of the unpaid number counter to the payout number abnormality counter (step S75320). Note that the process of step S75320 corresponds to a process of cumulatively counting the number of shortage payouts in the payout number abnormality counter. Next, the payout control CPU 371 checks whether or not the value of the added payout number abnormality counter is equal to or greater than a predetermined payout number error error determination value (for example, 2000) (step S75321). If it is equal to or greater than a predetermined payout number error error determination value (for example, 2000), the payout control CPU 371 determines that a payout number error error has occurred, and indicates a payout number error error indicating that a payout number error error has occurred. A flag is set (step S75322).

なお、この実施の形態では、ステップS75319の処理により、払出動作を終了したにもかかわらず、未払出個数カウンタの値が所定基準数(本例では2)以上残っていることを条件として、払出個数異常カウンタに未払出個数カウンタの値を加算する。すなわち、誤動作などにより、払出動作を終了したにもかかわらず、未払出個数カウンタの値がごく少数(本例では1)残った状態となることも少なからずあるので、払出動作を終了したときに未払出個数カウンタの値が1つでも残っているときに直ちに払出個数異常カウンタに累積カウントとしてしまったのでは、払出個数異常エラーと判定される頻度が必要以上に高くなり却って遊技に支障を生じてしまう。そこで、この実施の形態では、少し余裕をもたせて未払出個数カウンタの値が2以上残っていることを条件として、払出個数異常カウンタに累積カウントすることとし、必要以上に払出個数異常エラーと判定されることを防止している。なお、ステップS75319の処理では、払出不足数が所定基準数(本例では2)以上であることを条件に払出個数異常カウンタを累積的にカウントアップする場合を示しているが、払出過多数についても所定基準数(本例では2)以上であることを条件に払出個数異常カウンタを累積的にカウントアップするようにしてもよい。この場合、例えば、図90に示すステップS7502でYと判定した回数が累積して2回以上に達したことを条件にステップS7503で払出過多数分のカウント値を払出個数異常カウンタを累積的にカウントアップするようにすればよい。また、ステップS75319,S75320の処理において、未払出個数カウンタの値が所定基準数(本例では2)以上残っているか否かにかかわらず、必ず払出個数異常カウンタに未払出個数カウンタの値をそのまま加算するようにしてもよい。   In this embodiment, the payout is performed on condition that the value of the unpaid-out number counter remains at a predetermined reference number (2 in this example) even though the payout operation is finished by the process of step S75319. The value of the unpaid number counter is added to the number abnormality counter. That is, since the payout operation is terminated due to a malfunction or the like, the value of the unpaid-out number counter remains in a small number (1 in this example). If even one unsettled number counter value remains, if it is immediately counted as a cumulative count in the paid number abnormality counter, the frequency judged as a paid number abnormality error will be higher than necessary, causing problems to the game. End up. Therefore, in this embodiment, on the condition that the value of the unpaid-out number counter remains 2 or more with a little allowance, the accumulated number is counted in the payout number abnormality counter, and it is determined that there is an unnecessarily large number of payout errors. Is prevented. The process of step S75319 shows a case where the payout number abnormality counter is cumulatively counted up on condition that the payout shortage number is equal to or greater than a predetermined reference number (2 in this example). Alternatively, the payout number abnormality counter may be counted up cumulatively on condition that the number is a predetermined reference number (2 in this example) or more. In this case, for example, on the condition that the number of times determined to be Y in step S7502 shown in FIG. 90 has accumulated and has reached two or more, a count value corresponding to an excessive number of payouts is cumulatively set in step S7503. Count up. In the processing of steps S75319 and S75320, the value of the unpaid number counter is always used as it is in the payout number abnormality counter regardless of whether or not the value of the unpaid number counter remains at a predetermined reference number (2 in this example). You may make it add.

ステップS75316で再払出動作中1指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグに払出球検知指定ビットがセットされているか否かを確認する(ステップS75323)。払出球検知指定ビットがセットされていれば、払出制御用CPU371は、ステップS75326に移行する。払出球検知指定ビットがセットされていなければ、払出制御用CPU371は、2回目の再払出動作を実行するために、払出制御状態フラグに再払出動作中2指定ビットをセットする(ステップS75324)とともに、払出個数異常カウンタの値を1加算する(ステップS75325)。なお、ステップS75325の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。そして、ステップS75326に移行する。なお、ステップS75325の処理を実行することによって、1回目の再払出動作を実行したにもかかわらず、再払出動作が正常に行われなかった場合に、払出個数異常カウンタの値が1カウントアップされる。また、正常に払出が完了した場合でも、誤カウントなどにより未払出個数カウンタの値が0になっていいないこともある。そこで、ステップS75323の処理が実行されることによって、払出球検知指定ビットがセットされていれば、すなわち払出個数カウントスイッチ301が払出動作中に少なくとも1個の遊技球の払出を検出していれば、正常に払出が完了している可能性があるので、払出個数異常カウンタの累積カウントを行うことなく、そのままステップS75326に移行する。   If the 1 designation bit during re-payout operation is set in step S75316, the payout control CPU 371 checks whether or not the dispensed ball detection designation bit is set in the payout control state flag (step S75323). If the payout ball detection designation bit is set, the payout control CPU 371 proceeds to step S75326. If the payout ball detection designation bit is not set, the payout control CPU 371 sets the 2 designation bit during re-payout operation in the payout control state flag to execute the second re-payout operation (step S75324). Then, 1 is added to the value of the payout number abnormality counter (step S75325). Note that the process of step S75325 corresponds to a process of cumulatively counting the number of shortage payouts in the payout number abnormality counter. Then, control goes to a step S75326. Note that by executing the processing of step S75325, the value of the payout number abnormality counter is incremented by 1 when the re-payout operation is not performed normally despite the execution of the first re-payout operation. The Even when the payout is completed normally, the value of the unpaid-out number counter may not be 0 due to an erroneous count or the like. Therefore, if the payout ball detection designation bit is set by executing the process of step S75323, that is, if the payout number count switch 301 detects the payout of at least one game ball during the payout operation. Since there is a possibility that the payout has been completed normally, the process proceeds to step S75326 without performing the cumulative count of the payout number abnormality counter.

ステップS75326では、払出制御用CPU371は、初回の再払出動作を実行するために、再払出動作個数として1をセットする。次いで、払出制御用CPU371は、払出モータ回転回数バッファに再払出動作個数(本例では1)をセットする(ステップS75327)。次いで、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75328)、払出制御状態フラグの払出球検知指定ビットをリセットする(ステップ75329)。   In step S75326, the payout control CPU 371 sets 1 as the number of repaid operations in order to execute the first repaid operation. Next, the payout control CPU 371 sets the number of re-payout operations (1 in this example) in the payout motor rotation frequency buffer (step S75327). Next, the payout control CPU 371 loads the payout control state flag (step S75328), and resets the payout ball detection designation bit of the payout control state flag (step 75329).

次いで、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動処理に応じて値をセットする(ステップS75330)。これにより、ステップS756の払出モータ制御処理において、払出モータ289を起動する払出モータ起動処理が実行され、再払出動作が開始される。そして、払出制御用CPU371は、払出制御コードに払出モータ停止待ち処理を示す値「1」をセットし(ステップS75331)、処理を終了する。   Next, the payout control CPU 371 sets a value in the payout motor control code for selecting a process executed in the payout motor control process in accordance with the payout motor activation process (step S75330). Thereby, in the payout motor control process of step S756, the payout motor starting process for starting the payout motor 289 is executed, and the re-payout operation is started. Then, the payout control CPU 371 sets a value “1” indicating the payout motor stop waiting process in the payout control code (step S75331), and ends the process.

ステップS75315で再払出動作中2指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグの再払出動作中2指定ビットをリセットする(ステップS75332)。次いで、払出制御用CPU371は、払出制御状態フラグの払出球検知指定ビットがセットされているか否かを確認する(ステップS75333)。払出球検知指定ビットがセットされていれば、ステップS75326に移行する。払出球検知指定ビットがセットされていなければ、払出制御用CPU371は、払出制御状態フラグの再払出動作中2指定ビットをリセットする(ステップS75334)とともに、払出個数異常カウンタの値を1加算する(ステップS75335)。なお、ステップS75335の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。また、ステップS75335の処理を実行することによって、2回目の再払出動作を実行しても、再払出動作が正常に行われなかった場合に、払出個数異常カウンタの値が1カウントアップされる。また、正常に払出が完了した場合でも、誤カウントなどにより未払出個数カウンタの値が0になっていいないこともある。そこで、ステップS75333の処理が実行されることによって、払出球検知指定ビットがセットされていれば、すなわち払出個数カウントスイッチ301が払出動作中に少なくとも1個の遊技球の払出を検出していれば、正常に払出が完了している可能性があるので、払出個数異常カウンタの累積カウントを行うことなく、そのままステップS75326に移行する。   If the 2 designation bit during re-payout operation is set in step S75315, the payout control CPU 371 resets the 2 designation bit during re-payout operation of the payout control state flag (step S75332). Next, the payout control CPU 371 checks whether or not the payout ball detection designation bit of the payout control state flag is set (step S75333). If the payout ball detection designation bit is set, the process proceeds to step S75326. If the payout ball detection designation bit is not set, the payout control CPU 371 resets the 2 designation bit during re-payout operation of the payout control state flag (step S75334) and adds 1 to the value of the payout number abnormality counter (step S75334). Step S75335). Note that the process of step S75335 corresponds to a process of cumulatively counting the number of shortage payouts in the payout number abnormality counter. Also, by executing the process of step S75335, even if the second re-payout operation is executed, if the re-payout operation is not performed normally, the value of the payout number abnormality counter is incremented by one. Even when the payout is completed normally, the value of the unpaid-out number counter may not be 0 due to an erroneous count or the like. Therefore, if the payout ball detection designation bit is set by executing the process of step S75333, that is, if the payout number count switch 301 detects the payout of at least one game ball during the payout operation. Since there is a possibility that the payout has been completed normally, the process proceeds to step S75326 without performing the cumulative count of the payout number abnormality counter.

次いで、払出制御用CPU371は、エラーフラグをロードして、エラーフラグに払出ケースエラー指定ビットをセットする(ステップS75336)。そして、払出制御用CPU371は、再払出待ちタイマに所定時間(例えば2分)をセットし(ステップS75337)、処理を終了する。なお、ステップS57337でセットされた再払出待ちタイマは、後述するエラー処理で計測され(ステップS7710参照)、再払出タイマがタイムアウトしたことにもとづいて、エラーフラグの払出ケースエラー指定ビットがリセットされる(ステップS7711,S7712参照)。そのような処理が実行されることによって、この実施の形態では、払出ケースエラーが検出された後、2分経過したことにもとづいてエラー状態が自動復旧される。   Next, the payout control CPU 371 loads an error flag, and sets a payout case error designation bit in the error flag (step S75336). Then, the payout control CPU 371 sets a predetermined time (for example, 2 minutes) in the re-payout waiting timer (step S75337) and ends the process. The re-payout waiting timer set in step S57337 is measured by error processing described later (see step S7710), and the payout case error designation bit in the error flag is reset based on the time-out of the re-payout timer. (See steps S7711 and S7712). By executing such processing, in this embodiment, after the payout case error is detected, the error state is automatically recovered based on the fact that two minutes have passed.

次に、エラー処理について説明する。図96は、エラーの種類とエラー表示用LED374の表示との関係等を示す説明図である。図96に示すように、エラーが発生していない状態である場合には、エラー表示用LED374には「−」が表示される。また、払出個数異常カウンタの累積カウント値が2000個以上となり、払出個数異常エラーを検出した場合には、払出制御用マイクロコンピュータ370の払出制御用CPU371は、払出個数異常エラーとして、エラー表示用LED374に「A」を表示する制御を行う。なお、払出個数異常エラーとなった場合には、遊技機の電源がリセットされるまで、エラー状態が継続される。   Next, error processing will be described. FIG. 96 is an explanatory diagram showing the relationship between the type of error and the display of the LED 374 for error display. As shown in FIG. 96, when no error has occurred, “−” is displayed on the error display LED 374. When the cumulative count value of the payout number abnormality counter is 2000 or more and a payout number error is detected, the payout control CPU 371 of the payout control microcomputer 370 detects an error display LED 374 as a payout number error. Control to display “A” on the screen. If a payout number abnormality error occurs, the error state is continued until the power supply of the gaming machine is reset.

主基板31からの接続信号がオフ状態になった場合には、払出制御用マイクロコンピュータ370の払出制御用CPU371は、主基板未接続エラーとして、エラー表示用LED374に「1」を表示する制御を行う。   When the connection signal from the main board 31 is turned off, the payout control CPU 371 of the payout control microcomputer 370 performs control to display “1” on the error display LED 374 as a main board non-connection error. Do.

払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分において球詰まりが発生した場合には、払出スイッチ異常検知エラー1として、エラー表示用LED374に「2」を表示する制御を行う。なお、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分において球詰まりが発生したことは、払出個数カウントスイッチ301の検出信号がオフ状態にならなかったことによって判定される。   When the disconnection of the payout count switch 301 or a ball clogging occurs at the payout count switch 301, the error display LED 374 is controlled to display “2” as the payout switch abnormality detection error 1. The disconnection of the payout number count switch 301 or the occurrence of ball clogging in the payout number count switch 301 is determined by the detection signal of the payout number count switch 301 not being turned off.

遊技球の払出動作中でないにも関わらず払出個数カウントスイッチ301の検出信号がオン状態になった場合には、払出スイッチ異常検知エラー2として、エラー表示用LED374に「3」を表示する制御を行う。払出モータ289の回転異常または遊技球が払い出されたにも関わらず払出個数カウントスイッチ301の検出信号がオン状態にならない場合には、払出ケースエラーとして、エラー表示用LED374に「4」を表示する制御を行う。払出個数カウントスイッチ301の検出信号がオン状態にならないことの具体的な検出方法は既に説明したとおりである。   When the detection signal of the payout number count switch 301 is turned on even though the game ball is not paying out, a control for displaying “3” on the error display LED 374 as a payout switch abnormality detection error 2 is performed. Do. If the detection signal of the payout count switch 301 does not turn on despite the rotation abnormality of the payout motor 289 or the game ball being paid out, “4” is displayed on the error display LED 374 as a payout case error. Control. The specific method for detecting that the detection signal of the payout number count switch 301 is not turned on is as described above.

また、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間のシリアル通信エラーが検出された場合には、主制御通信エラーとして、エラー表示用LED374に「5」を表示する制御を行う。   When a serial communication error between the game control microcomputer 560 and the payout control microcomputer 370 is detected, control is performed to display “5” on the error display LED 374 as a main control communication error. .

また、下皿満タン状態すなわち満タンスイッチ48がオン状態になった場合には、満タンエラーとして、エラー表示用LED374に「6」を表示する制御を行う。補給球の不足状態すなわち球切れスイッチ187がオン状態になった場合には、球切れエラーとして、エラー表示用LED374に「7」を表示する制御を行う。   In addition, when the lower pan is full, that is, when the full switch 48 is turned on, control is performed to display “6” on the error display LED 374 as a full error. When the supply ball is insufficient, that is, when the ball break switch 187 is turned on, control is performed to display “7” on the error display LED 374 as a ball break error.

また、カードユニット50からのVL信号がオフ状態になった場合には、プリペイドカードユニット未接続エラーとして、エラー表示用LED374に「8」を表示する制御を行う。不正なタイミングでカードユニット50と通信がなされた場合には、プリペイドカードユニット通信エラーとして、エラー表示用LED374に「9」を表示する制御を行う。なお、プリペイドカードユニット通信エラーは、プリペイドカードユニット制御処理(ステップS758)において検出される。   Further, when the VL signal from the card unit 50 is turned off, control is performed to display “8” on the error display LED 374 as a prepaid card unit non-connection error. When communication with the card unit 50 is performed at an improper timing, control is performed to display “9” on the error display LED 374 as a prepaid card unit communication error. The prepaid card unit communication error is detected in the prepaid card unit control process (step S758).

以上のエラーのうち、払出スイッチ異常検知エラー2、払出ケースエラー、または主制御通信エラーが発生した後、エラー解除スイッチ375が操作されエラー解除スイッチ375から操作信号が出力されたら(オン状態になったら)、払出制御手段は、エラーが発生する前の状態に復帰する。   Among the above errors, after a payout switch abnormality detection error 2, a payout case error, or a main control communication error occurs, the error release switch 375 is operated and an operation signal is output from the error release switch 375 (becomes ON state). The payout control means returns to the state before the error occurred.

なお、払出制御用CPU371は、既に述べたように、具体的には、タイマ割込処理の表示制御処理(ステップS760参照)において、図96に示す関係に従ってエラー表示LED374にエラー表示を行う。例えば、払出制御用CPU371は、後述するエラー処理においてプリペイドカードユニット未接続状態指定ビットをセットしたことにもとづいて(ステップS7729参照)、表示制御処理において、プリペイドカードユニット未接続エラーが発生している旨を示すエラー表示「8」をエラー表示用LED374に表示する制御を行う。また、例えば、エラー処理において満タンエラー指定ビットをセットしたことにもとづいて(ステップS7714参照)、表示制御処理において、満タンエラーが発生している旨を示すエラー表示「6」をエラー表示用LED374に表示する制御を行う。   As already described, the payout control CPU 371 specifically displays an error on the error display LED 374 according to the relationship shown in FIG. 96 in the display control process of the timer interrupt process (see step S760). For example, the payout control CPU 371 generates a prepaid card unit unconnected error in the display control process based on the setting of the prepaid card unit unconnected state designation bit in the error process described later (see step S7729). An error display “8” indicating that is displayed on the error display LED 374 is controlled. Further, for example, based on the fact that the full error specification bit is set in the error processing (see step S7714), an error display “6” indicating that a full error has occurred in the display control processing is displayed on the error display LED 374. Control the display.

図97および図98は、ステップS757のエラー処理を示すフローチャートである。エラー処理において、払出制御用CPU371は、まず、エラーフラグをロードし、エラーフラグの払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、および払出個数異常エラー指定ビット以外のエラービットをリセットする(ステップS7701)。次いで、払出制御用CPU371は、エラーフラグの値が0となっているか否かを確認する(ステップS7702)。エラーフラグの値が0となっていれば、ステップS7710に移行する。エラーフラグの値が0でなければ(すなわち、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、または払出個数異常エラー指定ビットがセットされていれば)、払出制御用CPU371は、エラー解除スイッチ375から操作信号がオン状態になったか否か確認する(ステップS7703)。操作信号がオン状態になったら、払出制御用CPU371は、機構板開放センサ155Bからの機構板開放信号がオン状態であるか否かを確認する(ステップS7703a)。機構板開放信号がオン状態であれば(すなわち、機構板が開放状態となっていれば)、払出制御用CPU371は、エラー復帰時間をエラー復帰前タイマにセットする(ステップS7709)。エラー復帰時間は、エラー解除スイッチ375が操作されてから、実際にエラー状態から通常状態に復帰するまでの時間である。機構板開放信号がオン状態でなければ(すなわち、機構板が閉鎖状態となっていれば)、払出制御用CPU371は、ステップS7709の処理を実行することなく、ステップS7710に移行する。   97 and 98 are flowcharts showing the error processing in step S757. In the error processing, the payout control CPU 371 first loads an error flag, and the error flag payout switch abnormality detection error 2 designation bit, a payout case error designation bit, a main control communication error designation bit, and a payout number abnormality error designation bit. The other error bits are reset (step S7701). Next, the payout control CPU 371 checks whether or not the value of the error flag is 0 (step S7702). If the value of the error flag is 0, the process proceeds to step S7710. If the value of the error flag is not 0 (that is, if the payout switch abnormality detection error 2 designation bit, the withdrawal case error designation bit, the main control communication error designation bit, or the withdrawal number abnormality error designation bit is set) The control CPU 371 checks whether or not the operation signal is turned on from the error release switch 375 (step S7703). When the operation signal is turned on, the payout control CPU 371 checks whether or not the mechanism plate opening signal from the mechanism plate opening sensor 155B is turned on (step S7703a). If the mechanism plate release signal is on (that is, if the mechanism plate is in the open state), the payout control CPU 371 sets the error return time in the pre-error return timer (step S7709). The error recovery time is the time from when the error release switch 375 is operated until the actual return from the error state to the normal state. If the mechanism plate open signal is not in the on state (that is, if the mechanism plate is in the closed state), the payout control CPU 371 proceeds to step S7710 without executing the process of step S7709.

一般に、エラー解除スイッチ375は遊技機内部の払出制御基板37に搭載されているので、遊技店員などは、機構板を開放状態にしなければ、エラー解除スイッチ375を押下してエラー状態を解除することはできない。従って、正規の手順に従ってエラー状態を解除させる場合、エラー解除スイッチ375がオン状態となっていれば同時に機構板開放信号もオン状態となっている筈である。ステップS7703でエラー解除スイッチ375のオン状態が検出されたにもかかわらず、ステップS7703aで機構板開放信号のオン状態が検出されなかったということは、機構板が閉鎖状態のままでエラー解除スイッチ375が押下されたということである。そのため、遊技中に遊技機の隙間から器具を差し込んで不正にエラー解除スイッチ375をオンにする行為が行われている可能性が高い。そこで、この実施の形態では、ステップS7703でエラー解除スイッチ375のオン状態が検出されたにもかかわらず、ステップS7703aで機構板開放信号のオン状態が検出されなかった場合には、不正にエラー状態の解除が行われようとしている可能性が高いと判断して、ステップS7709のエラー復帰前タイマのセットを行わないようにしてエラー状態が解除されないように制御する。そのように制御することによって、この実施の形態では、エラー状態の解除に関しても、不正行為が行われている可能性を検出することができ、不正行為防止のための対策を強化することができる。   In general, since the error release switch 375 is mounted on the payout control board 37 inside the gaming machine, a game clerk or the like can release the error state by pressing the error release switch 375 unless the mechanism board is opened. I can't. Therefore, when the error state is released according to the normal procedure, if the error release switch 375 is in the on state, the mechanism plate open signal should be in the on state at the same time. Although the ON state of the mechanism release signal is not detected in step S7703a even though the ON state of the error release switch 375 is detected in step S7703, the error release switch 375 remains in the closed state. Is pressed. For this reason, there is a high possibility that an act of illegally turning on the error release switch 375 by inserting a device from the gap of the gaming machine during the game is performed. Therefore, in this embodiment, if the ON state of the mechanism plate release signal is not detected in step S7703a even though the ON state of the error release switch 375 is detected in step S7703, the error state is illegally detected. Therefore, it is determined that there is a high possibility that the error state is going to be canceled, and control is performed so that the error state is not released by not setting the pre-error recovery timer in step S7709. By controlling in such a manner, in this embodiment, it is possible to detect the possibility that fraud is being performed even with respect to cancellation of the error state, and it is possible to strengthen measures for preventing fraud. .

エラー解除スイッチ375から操作信号がオン状態でない場合には、エラー復帰前タイマの値を確認する(ステップS7704)。エラー復帰前タイマの値が0であれば、すなわち、エラー復帰前タイマがセットされていなければ、ステップS7710に移行する。エラー復帰前タイマがセットされていれば、エラー復帰前タイマの値を−1し(ステップS7705)、エラー復帰前タイマの値が0になったら(ステップS7706)、エラーフラグのうちの、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットをリセットする(ステップS7707)とともに、セットされていれば再払出待ちタイマをリセットする(ステップS7708)。そして、ステップS7710に移行する。また、エラー復帰前タイマがタイムアウトしていなければ、ステップS7713に移行する。   If the operation signal from the error release switch 375 is not on, the value of the timer before error recovery is confirmed (step S7704). If the value of the timer before error recovery is 0, that is, if the timer before error recovery is not set, the process proceeds to step S7710. If the pre-error recovery timer is set, the value of the pre-error recovery timer is decremented by -1 (step S7705). If the pre-error recovery timer value becomes 0 (step S7706), the payout switch of the error flags is set. The abnormality detection error 2 designation bit, the payout case error designation bit, and the main control communication error designation bit are reset (step S7707), and if set, the re-payout waiting timer is reset (step S7708). Then, control goes to a step S7710. If the pre-error recovery timer has not timed out, the process proceeds to step S7713.

なお、ステップS7707の処理が実行されるときに、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットのうちには、セット状態ではないエラービットがある場合もあるが、セット状態にないエラービットをリセットしても何ら問題はない。以上のように、この実施の形態では、払出スイッチ異常検知エラー2、払出ケースエラー、および主制御通信エラーのビットをセットする原因になったエラー(図96参照)が発生した場合には、エラー解除スイッチ375が押下されることによってエラー解除される。   When the processing of step S7707 is executed, there may be an error bit that is not in the set state among the payout switch abnormality detection error 2 designation bit, the payout case error designation bit, and the main control communication error designation bit. There is no problem even if the error bit that is not in the set state is reset. As described above, in this embodiment, when an error (see FIG. 96) that causes the setting of the payout switch abnormality detection error 2, the payout case error, and the main control communication error bit occurs, an error occurs. The error is released when the release switch 375 is pressed.

ステップS7710では、払出制御用CPU371は、セットされていれば、再払出待ちタイマの値を1減算し、減算後の再払出待ちタイマがタイムアウトしているか否かを確認する(ステップS7711)。再払出待ちタイマがタイムアウトしていれば、払出制御用CPU371は、エラーフラグの払出ケースエラー指定ビットをリセットする(ステップS7712)。そして、ステップS7713に移行する。   In step S7710, if set, the payout control CPU 371 subtracts 1 from the value of the re-payout waiting timer, and checks whether the re-payout wait timer after the subtraction has timed out (step S7711). If the re-payout waiting timer has timed out, the payout control CPU 371 resets the payout case error designation bit of the error flag (step S7712). Then, control goes to a step S7713.

以上のように、この実施の形態では、ステップS7707,S7712の処理が実行されることによって、払出ケースエラーが検出されて払出検出エラー指定ビットがセットされた場合には、エラー解除スイッチ375が押下されたこと(正確には、さらにエラー復帰前時間を経過したこと)を条件にエラー解除される場合と、払出ケースエラーの検出後に所定時間(本例では2分)を経過したことを条件にエラーが自動解除される場合とがある。なお、この実施の形態では、払出個数異常エラーに関しては、一度検出されると、遊技機への電源供給をリセットしないかぎり解除されない。   As described above, in this embodiment, when the payout case error is detected and the payout detection error designation bit is set by executing the processes of steps S7707 and S7712, the error release switch 375 is pressed. On the condition that the error has been canceled (more precisely, the time before error recovery has passed) and on the condition that a predetermined time (2 minutes in this example) has passed after detection of the payout case error The error may be automatically canceled. In this embodiment, regarding the payout number abnormality error, once detected, it is not canceled unless the power supply to the gaming machine is reset.

ステップS7707,S7712の処理が実行されて払出ケースエラー指定ビットがリセットされた場合には、払出制御コードが「2」(図93〜図95に示す払出通過待ち処理の実行に対応)であるときには、遊技球払出のリトライ動作が開始される。つまり、次にステップS755の払出制御処理が実行されるときにステップS7513の払出通過待ち処理が実行されると、再び、再払出処理が行われる。例えば、賞球払出処理が行われていた場合には、未払出個数カウンタの値が0でないときには、ステップS75305からステップS75309,S75310に移行し、ステップS75310において払出ケースエラー指定ビットがリセット状態であることが確認されるので、ステップS75314以降の再払出処理を開始するための処理が再度実行され、再払出処理が実行される。   When the processing of steps S7707 and S7712 is executed and the payout case error designation bit is reset, the payout control code is “2” (corresponding to the execution of the payout passing waiting process shown in FIGS. 93 to 95). Then, the game ball payout retry operation is started. That is, when the payout control process in step S755 is executed next, if the payout passing waiting process in step S7513 is executed, the repayout process is performed again. For example, if a prize ball payout process has been performed and the value of the unpaid-out number counter is not 0, the process proceeds from step S75305 to steps S75309 and S75310, and the payout case error designation bit is in the reset state in step S75310. Therefore, the process for starting the re-payout process after step S75314 is executed again, and the re-payout process is executed.

以上のように、払出制御手段は、球払出装置97が遊技球の払い出しを行ったにもかかわらず払出個数カウントスイッチ301が1個も遊技球を検出しなかったときには遊技球を払い出すためのリトライ動作をあらかじめ決められた所定回(例えば2回)を限度として球払出装置97に実行させる補正払出制御を行った後、払出個数カウントスイッチ301が1個も遊技球を検出しなかったことが検出されたときには(図93〜図95のステップS75314以降を参照)、払い出しに関わる制御状態をエラー状態に移行させ、エラー状態においてエラー解除スイッチ375からエラー解除信号が出力されたこと、または払出ケースエラーを検出してから所定時間(本例では2分)を経過したことを条件に再度補正払出制御を行わせる補正払出制御再起動処理を実行する。   As described above, the payout control means is used to pay out a game ball when the payout number count switch 301 detects no game ball even though the ball payout device 97 pays out a game ball. After performing the correct payout control for causing the ball payout device 97 to execute the retry operation for a predetermined number of times (for example, twice) as a limit, the payout number count switch 301 has detected no game balls. When it is detected (see step S75314 and subsequent steps in FIGS. 93 to 95), the control state related to payout is shifted to an error state, and an error release signal is output from the error release switch 375 in the error state, or a payout case Corrected payout that makes correction payout control again on condition that a predetermined time (2 minutes in this example) has passed since the error was detected To run the control restart processing.

さらに、エラー状態における再払出処理の実行中(具体的には払出ケースエラーをセットする前の再払出処理中およびエラー解除スイッチ375押下後の再払出処理中)でも、図90に示すステップS7501,S7502,S7506処理は実行されている。すなわち、払い出しに関わるエラーが生じているときでも、遊技球が払出個数カウントスイッチ301を通過すれば、未払出個数カウンタの値が減算される。従って、エラー状態から復帰したときの未払出個数カウンタの値は、実際に払い出された遊技球数を反映した値になっている。すなわち、払い出しに関わるエラーが発生しても、実際に払い出した遊技球数を正確に管理することができる。   Further, even during re-payout processing in an error state (specifically, during re-payout processing before setting a payout case error and during re-payout processing after the error release switch 375 is pressed), step S7501 shown in FIG. S7502 and S7506 are executed. That is, even when an error relating to payout occurs, if the game ball passes the payout number count switch 301, the value of the unpaid-off number counter is subtracted. Accordingly, the value of the unpaid-out number counter when returning from the error state is a value reflecting the number of game balls actually paid out. That is, even if an error related to payout occurs, the number of game balls actually paid out can be accurately managed.

また、図93〜図95に示された払出通過待ち処理において、再払出処理が実行された結果、遊技球が払い出されたことが確認されたときでも、払出ケースエラーのビットはリセットされない。払出ケースエラーのビットがリセットされるのは、あくまでも、エラー解除スイッチ375が操作されたとき(具体的は、操作後エラー復帰時間が経過したとき)、または払出ケースエラーを検出してから所定時間(本例では2分)を経過したときである(ステップS7707,S7712)。すなわち、払出ケースエラーを検出してから所定時間(本例では2分)を経過するまでは、遊技球が払出個数カウントスイッチ301を通過したこと等にもとづいて自動的に払出ケースエラー(払出不足エラー)の状態が解除されるということはなく、人為的な操作を経ないと払出ケースエラーは解除されない。従って、遊技店員等は、確実に払出不足が発生したことを認識することができる。ただし、この実施の形態では、少なくとも、払出ケースエラーが発生してからある程度長い時間(本例では2分)が経過すれば払出ケースエラーを自動解除するように構成することによって、払出ケースエラーが必要以上に長時間継続することを防止している。   Also, in the payout passing waiting process shown in FIGS. 93 to 95, even when it is confirmed that the game ball has been paid out as a result of the re-payout process, the payout case error bit is not reset. The bit of the payout case error is reset only when the error release switch 375 is operated (specifically, when an error return time after operation has elapsed) or when a payout case error is detected for a predetermined time. (2 minutes in this example) has elapsed (steps S7707, S7712). That is, until a predetermined time (in this example, 2 minutes) has passed since the detection of the payout case error, the payout case error (insufficient payout) is automatically determined based on the fact that the game ball has passed through the payout number count switch 301. The error) state is not canceled, and the payout case error is not canceled without an artificial operation. Therefore, the game store clerk and the like can surely recognize that a shortage of payout has occurred. However, in this embodiment, at least a long time (2 minutes in this example) after the occurrence of the payout case error is configured to automatically cancel the payout case error so that the payout case error is generated. Prevents continued for longer than necessary.

なお、エラー解除スイッチ375が操作されたことによってハードウェア的にリセット(払出制御用CPU371に対するリセット)がかかるように遊技機を構成する場合もあるが、そのように遊技機を構成した場合には、エラー解除スイッチ375が操作されたことによって例えば未払出個数カウンタの値もクリアされてしまう。しかし、この実施の形態では、払出制御手段が、エラー解除スイッチ375が操作されたことによって再払出動作を再び行うように構成されているので、確実に払出処理が実行され、遊技者に不利益を与えないようにすることができる。   In some cases, a gaming machine may be configured such that a hardware reset (reset for the payout control CPU 371) is performed by operating the error release switch 375. When the error release switch 375 is operated, for example, the value of the unpaid number counter is also cleared. However, in this embodiment, since the payout control means is configured to perform the re-payout operation again by operating the error release switch 375, the payout process is executed reliably, which is disadvantageous to the player. Can not be given.

ステップS7713では、払出制御用CPU371は、満タンスイッチ48の検出信号を確認する。満タンスイッチ48の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの満タンエラー指定ビットをセットする(ステップS7714)。   In step S7713, the payout control CPU 371 checks the detection signal of the full switch 48. If the detection signal of the full tank switch 48 is output (if it is in the ON state), the full tank error designation bit in the error flag is set (step S7714).

また、払出制御用CPU371は、球切れスイッチ187の検出信号を確認する(ステップS7715)。球切れスイッチ187の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの球切れエラー指定ビットをセットする(ステップS7716)。   Further, the payout control CPU 371 checks the detection signal of the ball break switch 187 (step S7715). If the detection signal of the ball break switch 187 is output (if it is on), the ball break error designation bit in the error flag is set (step S7716).

さらに、払出制御用CPU371は、主基板31からの接続信号の状態を確認し(ステップS7717)、接続信号が出力されていなければ(オフ状態であれば)、主基板未接続エラー指定ビットをセットする(ステップS7718)。   Furthermore, the payout control CPU 371 checks the state of the connection signal from the main board 31 (step S7717), and if the connection signal is not output (if it is in the off state), sets the main board unconnected error designation bit. (Step S7718).

また、払出制御用CPU371は、各スイッチの検出信号の状態が設定される各スイッチタイマのうち払出個数カウントスイッチ301に対応したスイッチタイマの値を確認し、その値がスイッチオン最大時間(例えば「250」)を越えていたら(ステップS7719)、エラーフラグのうち払出スイッチ異常検知エラー1のビットをセットする(ステップS7720)。なお、各スイッチタイマの値は、ステップS752の入力判定処理において、各スイッチの検出信号を入力する入力ポートの状態がスイッチオン状態であれば+1され、オフ状態であれば0クリアされる。従って、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン最大時間を越えていたということは、スイッチオン最大時間を越えて払出個数カウントスイッチ301がオン状態になっていることを意味し、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分で遊技球が詰まっていると判断される。   Further, the payout control CPU 371 checks the value of the switch timer corresponding to the payout number count switch 301 among the switch timers in which the state of the detection signal of each switch is set, and the value is the switch on maximum time (for example, “ 250 ") (step S7719), the bit of the payout switch abnormality detection error 1 is set in the error flag (step S7720). It should be noted that the value of each switch timer is incremented by 1 when the state of the input port to which the detection signal of each switch is input is switched on in the input determination process of step S752, and cleared by 0 when it is off. Accordingly, the fact that the value of the switch timer corresponding to the payout number count switch 301 exceeds the switch on maximum time means that the payout number count switch 301 is in the on state exceeding the switch on maximum time. Then, it is determined that the game ball is clogged at the disconnection of the payout number count switch 301 or at the portion of the payout number count switch 301.

また、払出制御用CPU371は、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン判定値(例えば「4」)になった場合には(ステップS7721)、払出制御状態フラグをロードし(ステップS7722)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS7723)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビットまたは球貸し払出動作中指定ビットがセットされているか否かを確認する。賞球払出動作中指定ビットおよび球貸し払出動作中指定ビットがともにリセット状態であれば、払出制御用CPU371は、払出動作中でないのに払出個数カウントスイッチ301を遊技球が通過したとして、エラーフラグのうち払出スイッチ異常検知エラー2のビットをセットする(ステップS7724)。   Further, the payout control CPU 371 loads the payout control state flag when the value of the switch timer corresponding to the payout number count switch 301 becomes a switch-on determination value (for example, “4”) (step S7721). In step S7722), it is confirmed whether the winning ball payout operation or the ball lending payout operation is in progress (step S7723). Specifically, the payout control CPU 371 checks whether or not a prize ball payout operation specifying bit or a ball lending payout operation specifying bit is set in the payout control state flag. If the designated bit during the winning ball payout operation and the designated bit during the ball lending payout operation are both in the reset state, the payout control CPU 371 determines that the game ball has passed through the payout number count switch 301 even though the payout operation is not in progress, an error flag. Among these, the bit of the payout switch abnormality detection error 2 is set (step S7724).

また、払出制御用CPU371は、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となっているか否かを確認する(ステップS7725)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーフラグをセットする(ステップS7726)。   Further, the payout control CPU 371 checks whether or not the value of the payout number abnormality counter is equal to or greater than a predetermined payout number error error determination value (for example, 2000) (step S7725). If it is equal to or greater than a predetermined payout number error error determination value (for example, 2000), the payout control CPU 371 determines that a payout number error has occurred and sets a payout number error error flag (step S7726).

次いで、払出制御用CPU371は、プリペイドカードユニット50のエラー状態を設定するためのプリペイドカードユニット用エラーフラグをリセットする(ステップS7727)。また、払出制御用CPU371は、カードユニット50からのVL信号の入力状態を確認し(ステップS7728)、VL信号が入力されていなければ(オフ状態であれば)、プリペイドカードユニット用エラーフラグのうちプリペイドカードユニット未接続エラー指定ビットをセットする(ステップS7729)。   Next, the payout control CPU 371 resets the prepaid card unit error flag for setting the error state of the prepaid card unit 50 (step S7727). Further, the payout control CPU 371 checks the input state of the VL signal from the card unit 50 (step S7728), and if the VL signal is not input (if it is in the OFF state) The prepaid card unit unconnected error designation bit is set (step S7729).

なお、ステップS760の表示制御処理では、エラーフラグおよびプリペイドカードユニット用エラーフラグ中のエラービットに応じた表示(数値表示)による報知をエラー表示用LED374によって行う。従って、通信エラーをエラー表示用LED374によって報知することができる。また、通信エラーは、払出制御手段の側で検出されるので、遊技制御手段の負担を増すことなく通信エラーを検出できる。   In the display control process of step S760, the error display LED 374 performs notification by display (numerical display) according to the error flag and the error bit in the prepaid card unit error flag. Therefore, a communication error can be notified by the error display LED 374. Further, since the communication error is detected on the payout control means side, the communication error can be detected without increasing the burden on the game control means.

また、この実施の形態では、主基板未接続エラーは接続信号がオン状態になると自動的に解消されるが(ステップS7701,S7717,S7718参照)、さらにエラー解除スイッチ375が操作されたという条件を加えて、エラー状態が解消されるようにしてもよい。   In this embodiment, the main board unconnected error is automatically canceled when the connection signal is turned on (see steps S7701, S7717, and S7718), but the condition that the error cancel switch 375 is further operated is set. In addition, the error state may be eliminated.

また、この実施の形態では、通信エラーが、カードユニット50との間の通信エラー(プリペイドカードユニット未接続エラーおよびプリペイドカードユニット通信エラー)やその他のエラーと区別可能に報知される(図96参照)。従って、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーが容易に特定される。   In this embodiment, a communication error is reported so as to be distinguishable from a communication error with the card unit 50 (prepaid card unit non-connection error and prepaid card unit communication error) and other errors (see FIG. 96). ). Therefore, a communication error between the game control microcomputer 560 and the payout control microcomputer 370 is easily identified.

また、この実施の形態では、エラー処理において、まず、エラーフラグのうち、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、および払出個数異常エラー指定ビット以外のビットを一旦リセット(ステップS7701参照)してから、エラー処理を実行するごとに満タンエラーや球切れエラー、主制御未接続エラーとなっているか否かを確認している。そして、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットについては、エラー解除スイッチ375が操作されたことを条件にリセットしている。しかし、払出個数異常エラーについては、一度セットされれば解除されることはない。従って、この実施の形態では、払出個数異常エラーとなった場合には、電源リセットが行われたこと条件として払出個数異常エラーが解除されることになる。   In this embodiment, in error processing, first of the error flags, other than the payout switch abnormality detection error 2 designation bit, the payout case error designation bit, the main control communication error designation bit, and the withdrawal number abnormality error designation bit. After the bit is reset once (see step S7701), it is checked every time error processing is executed whether a full error, a ball break error, or a main control unconnected error has occurred. The payout switch abnormality detection error 2 designation bit, the payout case error designation bit, and the main control communication error designation bit are reset on the condition that the error release switch 375 has been operated. However, the payout number abnormality error is not canceled once it is set. Therefore, in this embodiment, when a payout number error occurs, the payout number error is canceled as a condition that the power supply is reset.

図99および図100は、ステップS759の情報出力処理を示すフローチャートである。情報出力処理において、払出制御用CPU371は、まず、払出制御状態フラグをロードし(ステップS7901)、球貸し払出動作中であるか否かを確認する(ステップS7902)。具体的には、払出制御用CPU371は、払出制御状態フラグの球貸し払出動作中指定ビットがセットされているか否かを確認する。球貸し払出動作中であれば、ステップS7909に移行する。球貸し払出動作中でなければ、払出制御用CPU371は、払出個数カウントスイッチ301がオン状態であるか否かを確認する(ステップS7903)。払出個数カウントスイッチ301がオン状態であれば(この場合、賞球による払い出しを検出したことになる)、払出制御用CPU371は、賞球信号1出力回数カウンタの値を1加算する(ステップS7904)とともに、賞球払出個数カウンタの値を1加算する(ステップS7905)。なお、賞球信号1出力回数カウンタは、賞球信号1を出力する条件が成立した回数をカウントするためのカウンタである。また、賞球払出個数カウンタは、賞球払出により払い出された遊技球の数をカウントするためのカウンタである。   99 and 100 are flowcharts showing the information output processing in step S759. In the information output process, the payout control CPU 371 first loads a payout control state flag (step S7901), and checks whether or not a ball lending payout operation is in progress (step S7902). Specifically, the payout control CPU 371 checks whether or not the designated bit during the ball lending payout operation of the payout control state flag is set. If the ball lending / dispensing operation is in progress, the process proceeds to step S7909. If the ball lending payout operation is not in progress, the payout control CPU 371 checks whether or not the payout number count switch 301 is in the on state (step S7903). If the payout number count switch 301 is in the ON state (in this case, the payout by the winning ball is detected), the payout control CPU 371 adds 1 to the value of the winning ball signal 1 output number counter (step S7904). At the same time, the value of the prize ball payout number counter is incremented by 1 (step S7905). The prize ball signal 1 output number counter is a counter for counting the number of times the condition for outputting the prize ball signal 1 is satisfied. The prize ball payout number counter is a counter for counting the number of game balls paid out by the prize ball payout.

次いで、払出制御用CPU371は、加算後の賞球払出個数カウンタの値が所定の賞球情報出力判定値(本例では10)以上となっているか否かを確認する(ステップS7906)。所定の賞球情報出力判定値(本例では10)以上となっていれば、払出制御用CPU371は、賞球払出個数カウンタをリセットする(ステップS7907)とともに、賞球情報出力回数カウンタの値を1加算する(ステップS7908)。なお、賞球情報出力回数カウンタは、賞球情報を出力する条件が成立した回数をカウントするためのカウンタである。   Next, the payout control CPU 371 checks whether or not the value of the added prize ball payout counter is equal to or greater than a predetermined prize ball information output determination value (10 in this example) (step S7906). If it is equal to or greater than a predetermined prize ball information output determination value (10 in this example), the payout control CPU 371 resets the prize ball payout number counter (step S7907) and sets the value of the prize ball information output number counter. 1 is added (step S7908). The prize ball information output count counter is a counter for counting the number of times that the condition for outputting prize ball information is satisfied.

次いで、払出制御用CPU371は、セットされていれば賞球情報出力タイマを1減算し(ステップS7909)、減算後の賞球情報出力タイマがタイムアウトしているか否かを確認する(ステップS7910)。なお、賞球情報出力タイマは、賞球情報の出力継続時間を計測するためのタイマである。タイムアウトしていなければ、ステップS7914に移行する。タイムアウトしていれば、払出制御用CPU371は、賞球情報出力回数カウンタの値が0となっているか否かを確認する(ステップS7911)。賞球情報出力回数カウンタの値が0であれば、ステップS7915に移行する。賞球情報出力回数カウンタの値が0でなければ(すなわち、賞球情報の出力条件の成立数がまだ残っていれば)、払出制御用CPU371は、賞球情報出力回数カウンタの値を1減算する(ステップS7912)。次いで、払出制御用CPU371は、次の賞球情報の出力を開始するために、賞球情報出力タイマをセットする(ステップS7913)。そして、払出制御用CPU371は、賞球情報を遊技制御用マイクロコンピュータ560に出力する制御を行う(ステップS7914)。具体的には、払出制御用CPU371は、出力ポート1の賞球情報出力ビット(ビット7。図77参照。)に出力データをセットする処理を行う。   Next, if it is set, the payout control CPU 371 decrements the prize ball information output timer by 1 (step S7909), and checks whether the prize ball information output timer after the subtraction has timed out (step S7910). The prize ball information output timer is a timer for measuring the output duration time of prize ball information. If not timed out, the process proceeds to step S7914. If time-out has occurred, the payout control CPU 371 checks whether or not the value of the prize ball information output number counter is 0 (step S7911). If the value of the prize ball information output number counter is 0, the process proceeds to step S7915. If the value of the winning ball information output number counter is not 0 (that is, if the number of winning ball information output conditions is still satisfied), the payout control CPU 371 subtracts 1 from the value of the winning ball information output number counter. (Step S7912). Next, the payout control CPU 371 sets a prize ball information output timer in order to start outputting the next prize ball information (step S7913). Then, the payout control CPU 371 performs control to output the prize ball information to the game control microcomputer 560 (step S7914). Specifically, the payout control CPU 371 performs a process of setting output data in a prize ball information output bit (bit 7, see FIG. 77) of the output port 1.

次いで、払出制御用CPU371は、セットされていれば賞球信号1出力タイマを1減算し(ステップS7915)、減算後の賞球信号1出力タイマがタイムアウトしているか否かを確認する(ステップS7916)。なお、賞球信号1出力タイマは、賞球信号1の出力継続時間を計測するためのタイマである。タイムアウトしていなければ、ステップS7920に移行する。タイムアウトしていれば、払出制御用CPU371は、賞球信号1出力回数カウンタの値が0となっているか否かを確認する(ステップS7917)。賞球信号1出力回数カウンタの値が0であれば、ステップS7921に移行する。賞球信号1出力回数カウンタの値が0でなければ(すなわち、賞球信号1の出力条件の成立数がまだ残っていれば)、払出制御用CPU371は、賞球信号1出力回数カウンタの値を1減算する(ステップS7918)。次いで、払出制御用CPU371は、次の賞球信号1の出力を開始するために、賞球信号1出力タイマをセットする(ステップS7919)。そして、払出制御用CPU371は、賞球信号1を外部出力する制御を行う(ステップS7920)。具体的には、払出制御用CPU371は、出力ポート0の賞球信号1出力ビット(ビット0。図77参照。)に出力データをセットする処理を行う。なお、この実施の形態では、賞球信号1は、払出制御基板31から直接ターミナル基板160に入力されて外部出力されるのではなく、主基板31を一旦経由してからターミナル基板160に入力されて外部出力される。   Next, if the payout control CPU 371 is set, the prize ball signal 1 output timer is decremented by 1 (step S7915), and it is confirmed whether or not the prize ball signal 1 output timer after the subtraction has timed out (step S7916). ). The prize ball signal 1 output timer is a timer for measuring the output duration time of the prize ball signal 1. If not timed out, the process proceeds to step S7920. If time-out has occurred, the payout control CPU 371 checks whether or not the value of the prize ball signal 1 output number counter is 0 (step S7917). If the value of the winning ball signal 1 output number counter is 0, the process proceeds to step S7921. If the value of the prize ball signal 1 output number counter is not 0 (that is, if the number of established conditions for the prize ball signal 1 still remains), the payout control CPU 371 determines the value of the prize ball signal 1 output number counter. 1 is subtracted (step S7918). Next, the payout control CPU 371 sets a prize ball signal 1 output timer to start outputting the next prize ball signal 1 (step S7919). Then, the payout control CPU 371 performs control to output the prize ball signal 1 to the outside (step S7920). Specifically, the payout control CPU 371 performs processing for setting output data in a prize ball signal 1 output bit (bit 0; see FIG. 77) of the output port 0. In this embodiment, the winning ball signal 1 is not directly input to the terminal board 160 from the payout control board 31 and output to the outside, but is input to the terminal board 160 once through the main board 31. Is output externally.

次いで、払出制御用CPU371は、出力ポート0の遊技機エラー状態信号出力ビット(ビット1。図77参照。)に出力データをセットする処理を行い(ステップS7921)、エラーフラグをロードする(ステップS7922)。エラーフラグに球切れエラー指定ビットまたは満タンエラー指定ビットのいずれかがセットされていれば(ステップS7923,S7924のY)、出力ポート0の遊技機エラー状態信号出力ビットがセットされたままの状態で処理を終了する。この場合、ステップS7921で出力ポート0の遊技機エラー状態信号出力ビットがセットされたことにもとづいて、遊技機エラー状態信号が外部出力されることになる。なお、この実施の形態では、遊技機エラー状態信号は、払出制御基板31から直接ターミナル基板160に入力されて外部出力されるのではなく、主基板31を一旦経由してからターミナル基板160に入力されて外部出力される。一方、エラーフラグに球切れエラー指定ビットおよび満タンエラー指定ビットのいずれもセットされていなければ、払出制御用CPU371は、出力ポート0の遊技機エラー状態信号出力ビットをクリアし(ステップS7925)、処理を終了する。   Next, the payout control CPU 371 performs processing for setting output data in the gaming machine error state signal output bit (bit 1, see FIG. 77) of the output port 0 (step S7921), and loads an error flag (step S7922). ). If either the ball breakage error designation bit or the full tank error designation bit is set in the error flag (Y in steps S7923 and S7924), the gaming machine error status signal output bit of the output port 0 remains set. The process ends. In this case, the gaming machine error status signal is output to the outside based on the fact that the gaming machine error status signal output bit of the output port 0 is set in step S7921. In this embodiment, the gaming machine error state signal is not directly input from the payout control board 31 to the terminal board 160 but externally output, but is input to the terminal board 160 once via the main board 31. And output externally. On the other hand, if neither the ball breakage error designation bit nor the full tank error designation bit is set in the error flag, the payout control CPU 371 clears the gaming machine error state signal output bit of the output port 0 (step S7925), and processing Exit.

以上の処理が実行されることによって、この実施の形態では、払出制御手段側で賞球払出を1球検出するごとに賞球信号1が外部出力される。また、払出制御手段側で賞球払出を10球検出するごとに遊技制御手段側に対して賞球情報が出力される。さらに、払出制御手段側で球切れエラーまたは満タンエラーを検出すると遊技機エラー状態信号が外部出力される。   By executing the above processing, in this embodiment, the prize ball signal 1 is output to the outside every time one prize ball payout is detected on the payout control means side. Further, prize ball information is output to the game control means side every time ten payout balls are detected on the payout control means side. Further, when a ball break error or a full tank error is detected on the payout control means side, a gaming machine error state signal is output to the outside.

次に、演出制御手段の動作を説明する。図101は、演出制御基板80に搭載されている演出制御手段としての演出制御用マイクロコンピュータ100(具体的には、演出制御用CPU101a)が実行するメイン処理を示すフローチャートである。演出制御用CPU101aは、電源が投入されると、メイン処理の実行を開始する。メイン処理では、まず、RAM領域のクリアや各種初期値の設定、また演出制御の起動間隔(例えば、4ms)を決めるためのタイマの初期設定等を行うための初期化処理を行う(ステップS781)。その後、演出制御用CPU101aは、タイマ割込フラグの監視(ステップS782)を行うループ処理に移行する。タイマ割込が発生すると、演出制御用CPU101aは、タイマ割込処理においてタイマ割込フラグをセットする。メイン処理において、タイマ割込フラグがセットされていたら、演出制御用CPU101aは、そのフラグをクリアし(ステップS783)、以下の演出制御処理を実行する。   Next, the operation of the effect control means will be described. FIG. 101 is a flowchart showing a main process executed by the effect control microcomputer 100 (specifically, effect control CPU 101a) as effect control means mounted on the effect control board 80. The effect control CPU 101a starts executing the main process when the power is turned on. In the main processing, first, initialization processing is performed for clearing the RAM area, setting various initial values, and initializing a timer for determining the activation control activation interval (for example, 4 ms) (step S781). . Thereafter, the effect control CPU 101a proceeds to a loop process for monitoring the timer interrupt flag (step S782). When a timer interrupt occurs, the effect control CPU 101a sets a timer interrupt flag in the timer interrupt process. If the timer interrupt flag is set in the main process, the effect control CPU 101a clears the flag (step S783) and executes the following effect control process.

演出制御処理において、演出制御用CPU101aは、まず、受信した演出制御コマンドを解析し、受信した演出制御コマンドに応じたフラグをセットする処理等を行う(コマンド解析処理:ステップS784)。   In the effect control process, the effect control CPU 101a first analyzes the received effect control command and performs a process of setting a flag according to the received effect control command (command analysis process: step S784).

次いで、演出制御用CPU101aは、演出制御プロセス処理を行う(ステップS785)。演出制御プロセス処理では、制御状態に応じた各プロセスのうち、現在の制御状態(演出制御プロセスフラグ)に対応した処理を選択して演出表示装置9の表示制御を実行する。   Next, the effect control CPU 101a performs effect control process processing (step S785). In the effect control process, the process corresponding to the current control state (effect control process flag) is selected from the processes corresponding to the control state, and display control of the effect display device 9 is executed.

次いで、大当り図柄決定用乱数などの乱数を生成するためのカウンタのカウント値を更新する乱数更新処理を実行する(ステップS786)。その後、ステップS782に移行する。   Next, a random number update process for updating a count value of a counter for generating a random number such as a jackpot symbol determining random number is executed (step S786). Thereafter, the process proceeds to step S782.

図102は、コマンド解析処理(ステップS784)の具体例を示すフローチャートである。主基板31から受信された演出制御コマンドは受信コマンドバッファに格納されるが、コマンド解析処理では、演出制御用CPU101aは、コマンド受信バッファに格納されているコマンドの内容を確認する。   FIG. 102 is a flowchart illustrating a specific example of command analysis processing (step S784). The effect control command received from the main board 31 is stored in the reception command buffer, but in the command analysis process, the effect control CPU 101a checks the content of the command stored in the command reception buffer.

なお、図102では、遊技制御用マイクロコンピュータ560から送信される演出制御コマンドのうち、特に、払出制御に関するエラーを示すコマンドを受信した場合の処理について示しているが、実際には、演出図柄の変動パターンを示す変動パターンコマンドや、大当りとするか否かの表示結果を示す表示結果指定コマンドなど、様々な演出制御コマンドが遊技制御用マイクロコンピュータ560から送信される。   Note that FIG. 102 shows the processing in the case of receiving a command indicating an error relating to payout control among the effect control commands transmitted from the game control microcomputer 560. Various effect control commands such as a variation pattern command indicating a variation pattern and a display result specifying command indicating a display result indicating whether or not to win are transmitted from the game control microcomputer 560.

コマンド解析処理において、演出制御用CPU101aは、まず、コマンド受信バッファに受信コマンドが格納されているか否か確認する(ステップS611)。格納されているか否かは、コマンド受信個数カウンタの値と読出ポインタとを比較することによって判定される。両者が一致している場合が、受信コマンドが格納されていない場合である。コマンド受信バッファに受信コマンドが格納されている場合には、演出制御用CPU101aは、コマンド受信バッファから受信コマンドを読み出す(ステップS612)。なお、読み出したら読出ポインタの値を+2しておく(ステップS613)。+2するのは2バイト(1コマンド)ずつ読み出すからである。   In the command analysis process, the effect control CPU 101a first checks whether or not a reception command is stored in the command reception buffer (step S611). Whether it is stored or not is determined by comparing the value of the command reception number counter with the read pointer. The case where both match is the case where the received command is not stored. When the reception command is stored in the command reception buffer, the effect control CPU 101a reads the reception command from the command reception buffer (step S612). When read, the value of the read pointer is incremented by +2 (step S613). The reason for +2 is that 2 bytes (1 command) are read at a time.

受信した演出制御コマンドが枠状態表示コマンドであれば(ステップS614)、演出制御用CPU101aは、枠状態表示コマンドのEXTデータのうちの賞球エラービット(ビット0。図71参照。)がセットされているか否かを確認する(ステップS615)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球エラー報知情報を重畳表示する制御を行う(ステップS616)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球エラーが発生しました」などの文字列を表示させる制御を行う。   If the received effect control command is a frame state display command (step S614), the effect control CPU 101a sets a prize ball error bit (bit 0; see FIG. 71) in the EXT data of the frame state display command. It is confirmed whether or not (step S615). If set, the effect control CPU 101a performs control to superimpose and display predetermined prize ball error notification information on the display screen of the effect display device 9 (step S616). For example, the effect control CPU 101 a performs control to display a character string such as “A prize ball error has occurred” on the display screen of the effect display device 9.

また、演出制御用CPU101aは、枠状態表示コマンドのEXTデータのうちの満タンエラービット(ビット1。図71参照。)がセットされているか否かを確認する(ステップS617)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の満タンエラー報知情報を重畳表示する制御を行う(ステップS618)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「満タンエラーが発生しました」などの文字列を表示させる制御を行う。   Further, the effect control CPU 101a checks whether or not the full error bit (bit 1; see FIG. 71) in the EXT data of the frame state display command is set (step S617). If set, the effect control CPU 101a performs control to superimpose and display predetermined full tank error notification information on the display screen of the effect display device 9 (step S618). For example, the effect control CPU 101 a performs control to display a character string such as “a full tank error has occurred” on the display screen of the effect display device 9.

また、演出制御用CPU101aは、枠状態表示コマンドのEXTデータのうちの球切れエラービット(ビット2。図71参照。)がセットされているか否かを確認する(ステップS619)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の球切れエラー報知情報を重畳表示する制御を行う(ステップS620)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「球切れエラーが発生しました」などの文字列を表示させる制御を行う。   Further, the effect control CPU 101a checks whether or not the ball break error bit (bit 2, see FIG. 71) in the EXT data of the frame state display command is set (step S619). If set, the effect control CPU 101a performs control to superimpose and display predetermined ball-out error notification information on the display screen of the effect display device 9 (step S620). For example, the effect control CPU 101 a performs control to display a character string such as “A ball break error has occurred” on the display screen of the effect display device 9.

また、演出制御用CPU101aは、枠状態表示コマンドのEXTデータのうちの払出個数異常エラービット(ビット3。図71参照。)がセットされているか否かを確認する(ステップS621)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の払出個数異常エラー報知情報を重畳表示する制御を行う(ステップS622)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「払出個数異常エラーが発生しました」などの文字列を表示させる制御を行う。   Further, the effect control CPU 101a checks whether or not the payout number abnormality error bit (bit 3, see FIG. 71) in the EXT data of the frame state display command is set (step S621). If set, the effect control CPU 101a performs control to superimpose and display predetermined payout number abnormality error notification information on the display screen of the effect display device 9 (step S622). For example, the effect control CPU 101 a performs control to display a character string such as “A payout number error has occurred” on the display screen of the effect display device 9.

また、演出制御用CPU101aは、枠状態表示コマンドのEXTデータのうちの扉開放異常エラービット(ビット7。図71参照。)がセットされているか否かを確認する(ステップS623)。セットされていれば、演出制御用CPU101aは、ガラス扉枠2の開放状態を検出したことを報知する所定の特殊音を出力させるための音信号(音番号データ)を音声出力基板70に出力する(ステップS624)。この場合、音声出力基板70において、演出制御用マイクロコンピュータ100から入力した特殊音用の音番号データは、入力ドライバ702を介して音声合成用IC703に入力される。そして、音声合成用IC703は、音番号データに応じた特殊音(例えば、ビープ音などの警告音)を発生し、増幅回路705を介してスピーカ27から出力させる。   Further, the effect control CPU 101a checks whether or not the door opening abnormality error bit (bit 7, see FIG. 71) in the EXT data of the frame state display command is set (step S623). If set, the production control CPU 101a outputs a sound signal (sound number data) for outputting a predetermined special sound for notifying that the open state of the glass door frame 2 is detected to the sound output board 70. (Step S624). In this case, the sound number data for special sounds input from the production control microcomputer 100 on the sound output board 70 is input to the sound synthesis IC 703 via the input driver 702. Then, the speech synthesis IC 703 generates a special sound (for example, a warning sound such as a beep sound) according to the sound number data and outputs it from the speaker 27 via the amplifier circuit 705.

なお、特殊音の出力は、例えば、遊技機に対する電力供給がオフするまで、またはガラス扉枠2が閉鎖状態にされるまで継続して出力されるようにしてもよいが、出力開始から所定期間(例えば、10秒)が経過するまで継続して出力されるようにしてもよい。ガラス扉枠2が閉鎖状態にされるまで継続して出力されるようにする場合には、遊技制御用マイクロコンピュータ560は、ガラス扉枠2が開放状態から閉鎖状態に変化したことを検出すると、その旨を示すコマンドを演出制御用マイクロコンピュータ100に送信する。   The special sound may be output continuously until, for example, the power supply to the gaming machine is turned off or until the glass door frame 2 is closed. The output may be continued until (for example, 10 seconds) elapses. When continuously outputting until the glass door frame 2 is closed, the game control microcomputer 560 detects that the glass door frame 2 has changed from the open state to the closed state. A command indicating this is transmitted to the production control microcomputer 100.

受信した演出制御コマンドが賞球不足エラーコマンドであれば(ステップS625)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球不足エラー報知情報を重畳表示する制御を行う(ステップS626)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球不足エラーが発生しました」などの文字列を表示させる制御を行う。   If the received effect control command is a prize ball shortage error command (step S625), the effect control CPU 101a performs control to superimpose and display predetermined prize ball shortage error notification information on the display screen of the effect display device 9 (step S625). S626). For example, the effect control CPU 101 a performs control to display a character string such as “There was a shortage of prize balls error” on the display screen of the effect display device 9.

受信した演出制御コマンドが賞球過剰エラーコマンドであれば(ステップS627)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球過剰エラー報知情報を重畳表示する制御を行う(ステップS628)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球過剰エラーが発生しました」などの文字列を表示させる制御を行う。   If the received effect control command is a prize ball excess error command (step S627), the effect control CPU 101a performs control to superimpose and display predetermined prize ball excess error notification information on the display screen of the effect display device 9 (step S627). S628). For example, the effect control CPU 101a performs control to display a character string such as “An excessive prize ball error has occurred” on the display screen of the effect display device 9.

なお、各エラー表示を単に重畳表示させるのではなく、不正の重要度の観点から順位付けを行って優先順位が高いエラーを優先して報知するようにしてもよい。例えば、払出個数異常エラーを最も高い優先順位で優先的に報知するようにしてもよく、エラー状態が変化した場合に新たに発生したエラーを優先して報知するようにしてもよい。   In addition, each error display may not be simply displayed in a superimposed manner, but may be prioritized and notified of an error having a high priority by ranking from the viewpoint of fraud importance. For example, a payout number abnormality error may be preferentially notified with the highest priority, or a newly generated error may be preferentially notified when the error state changes.

受信した演出制御コマンドが初期化不正報知コマンドであれば(ステップS629)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の初期化不正報知情報を重畳表示する制御を行う(ステップS630)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「クリアスイッチが不正に押されました」などの文字列を表示させる制御を行う。なお、所定の初期化不正報知情報を表示するのではなく、例えば、所定の警告音を出力したり、所定パターンで各ランプ25,28a,28b,28cを点灯または点滅表示させたりすることによって、クリアスイッチが不正に押下された可能性を報知するようにしてもよい。また、例えば、クリアスイッチが不正に押下された可能性を示す信号をターミナル基板160を介してホールコンピュータなどの外部装置に外部出力するように構成してもよい。   If the received effect control command is an initialization fraud notification command (step S629), the effect control CPU 101a performs control to superimpose and display predetermined initialization fraud notification information on the display screen of the effect display device 9 (step S630). ). For example, the effect control CPU 101a performs control to display a character string such as “the clear switch has been illegally pressed” on the display screen of the effect display device 9. Instead of displaying the predetermined initialization fraud information, for example, by outputting a predetermined warning sound or lighting or blinking the lamps 25, 28a, 28b, 28c in a predetermined pattern, You may make it alert | report the possibility that the clear switch was pressed illegally. Further, for example, a signal indicating the possibility that the clear switch has been illegally pressed may be output to an external device such as a hall computer via the terminal board 160.

受信した演出制御コマンドがその他のコマンドであれば、演出制御用CPU101aは、受信した演出制御コマンドに応じたフラグをセットする(ステップS631)。そして、ステップS611に移行する。なお、例えば、変動パターンコマンドや表示結果指定コマンドを受信した場合には、演出制御用CPU101aは、受信した変動パターンコマンドや表示結果指定コマンドをRAMに形成された所定の格納領域に格納する処理も行う。   If the received effect control command is another command, the effect control CPU 101a sets a flag corresponding to the received effect control command (step S631). Then, control goes to a step S611. For example, when a variation pattern command or a display result designation command is received, the effect control CPU 101a also performs processing for storing the received variation pattern command or display result designation command in a predetermined storage area formed in the RAM. Do.

図103は、図101に示されたメイン処理における演出制御プロセス処理(ステップS785)を示すフローチャートである。演出制御プロセス処理では、演出制御用CPU101aは、演出制御プロセスフラグの値に応じてステップS800〜S806のうちのいずれかの処理を行う。各処理において、以下のような処理を実行する。なお、演出制御プロセス処理では、演出表示装置9の表示状態が制御され、演出図柄の可変表示が実現されるが、第1特別図柄の変動に同期した演出図柄の可変表示に関する制御も、第2特別図柄の変動に同期した演出図柄の可変表示に関する制御も、一つの演出制御プロセス処理において実行される。なお、第1特別図柄の変動に同期した演出図柄の可変表示と、第2特別図柄の変動に同期した演出図柄の可変表示とを、別の演出制御プロセス処理により実行するように構成してもよい。また、この場合、いずれの演出制御プロセス処理により演出図柄の変動表示が実行されているかによって、いずれの特別図柄の変動表示が実行されているかを判断するようにしてもよい。   FIG. 103 is a flowchart showing the effect control process (step S785) in the main process shown in FIG. In the effect control process, the effect control CPU 101a performs one of steps S800 to S806 according to the value of the effect control process flag. In each process, the following process is executed. In the effect control process, the display state of the effect display device 9 is controlled and variable display of the effect symbol is realized. However, control related to variable display of the effect symbol synchronized with the change of the first special symbol is also the second. Control related to the variable display of the effect symbol synchronized with the change of the special symbol is also executed in one effect control process. It should be noted that the variable display of the effect symbol synchronized with the variation of the first special symbol and the variable display of the effect symbol synchronized with the variation of the second special symbol may be executed by separate effect control process processing. Good. Further, in this case, it may be determined which special symbol variation display is being executed depending on which representation control process processing is performing the variation display of the representation symbol.

変動パターンコマンド受信待ち処理(ステップS800):遊技制御用マイクロコンピュータ560から変動パターンコマンドを受信しているか否か確認する。具体的には、コマンド解析処理でセットされる変動パターンコマンド受信フラグがセットされているか否か確認する。変動パターンコマンドを受信していれば、演出制御プロセスフラグの値を演出図柄変動開始処理(ステップS801)に対応した値に変更する。   Fluctuation pattern command reception waiting process (step S800): It is confirmed whether or not a variation pattern command has been received from the game control microcomputer 560. Specifically, it is confirmed whether or not the variation pattern command reception flag set in the command analysis process is set. If the change pattern command has been received, the value of the effect control process flag is changed to a value corresponding to the effect symbol change start process (step S801).

演出図柄変動開始処理(ステップS801):演出図柄の変動が開始されるように制御する。そして、演出制御プロセスフラグの値を演出図柄変動中処理(ステップS802)に対応した値に更新する。   Production symbol variation start processing (step S801): Control is performed so that the variation of the production symbol is started. Then, the value of the effect control process flag is updated to a value corresponding to the effect symbol changing process (step S802).

演出図柄変動中処理(ステップS802):変動パターンを構成する各変動状態(変動速度)の切替タイミング等を制御するとともに、変動時間の終了を監視する。そして、変動時間が終了したら、演出制御プロセスフラグの値を演出図柄変動停止処理(ステップS803)に対応した値に更新する。   Production symbol variation processing (step S802): Controls the switching timing of each variation state (variation speed) constituting the variation pattern and monitors the end of the variation time. When the variation time ends, the value of the effect control process flag is updated to a value corresponding to the effect symbol variation stop process (step S803).

演出図柄変動停止処理(ステップS803):演出図柄の変動を停止し表示結果(停止図柄)を導出表示する制御を行う。そして、演出制御プロセスフラグの値を大当り表示処理(ステップS804)または変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。   Effect symbol variation stop processing (step S803): Control is performed to stop the variation of the effect symbol and derive and display the display result (stop symbol). Then, the value of the effect control process flag is updated to a value corresponding to the jackpot display process (step S804) or the variation pattern command reception waiting process (step S800).

大当り表示処理(ステップS804):大当りである場合には、変動時間の終了後、演出表示装置9に大当りの発生を報知するための画面を表示する制御を行う。そして、演出制御プロセスフラグの値を大当り遊技中処理(ステップS805)に対応した値に更新する。   Big hit display process (step S804): When the big hit is made, after the end of the variation time, the effect display device 9 is controlled to display a screen for notifying the occurrence of the big hit. Then, the value of the effect control process flag is updated to a value corresponding to the big hit game processing (step S805).

大当り遊技中処理(ステップS805):大当り遊技中の制御を行う。例えば、大入賞口開放中指定コマンドや大入賞口開放後指定コマンドを受信したら、演出表示装置9におけるラウンド数の表示制御等を行う。そして、演出制御プロセスフラグの値を大当り終了演出処理(ステップS806)に対応した値に更新する。   Big hit game processing (step S805): Control during big hit game is performed. For example, when a special winning opening opening designation command or a special winning opening open designation command is received, display control of the number of rounds in the effect display device 9 is performed. Then, the value of the effect control process flag is updated to a value corresponding to the jackpot end effect process (step S806).

大当り終了演出処理(ステップS806):演出表示装置9において、大当り遊技状態が終了したことを遊技者に報知する表示制御を行う。そして、演出制御プロセスフラグの値を変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。   Big hit end effect processing (step S806): In the effect display device 9, display control is performed to notify the player that the big hit gaming state has ended. Then, the value of the effect control process flag is updated to a value corresponding to the variation pattern command reception waiting process (step S800).

次に、乱数回路509の動作タイミングについて説明する。図104は、乱数回路509の動作を説明するためのタイミングチャートである。また、図104(A)では、主基板31に搭載された制御用クロック生成回路111により生成される制御用クロックCCLKを示している。図104(B)では、乱数用クロック生成回路112により生成される乱数用クロックRCLKを示している。なお、図104に示す各種信号は、ハイレベルでオフ状態となりローレベルでオン状態となる負論理の信号であるものとしている。図104(A)および(B)に示すように、制御用クロックCCLKの発振周波数と、乱数用クロックRCLKの発振周波数とは、互いに異なる周波数となっており、また、いずれか一方の発振周波数が他方の発振周波数の整数倍になることがない。   Next, the operation timing of the random number circuit 509 will be described. FIG. 104 is a timing chart for explaining the operation of the random number circuit 509. In FIG. 104A, the control clock CCLK generated by the control clock generation circuit 111 mounted on the main board 31 is shown. FIG. 104B shows the random number clock RCLK generated by the random number clock generation circuit 112. Note that the various signals shown in FIG. 104 are negative logic signals that are turned off at a high level and turned on at a low level. As shown in FIGS. 104A and 104B, the oscillation frequency of the control clock CCLK and the oscillation frequency of the random number clock RCLK are different from each other. It does not become an integral multiple of the other oscillation frequency.

図104(B)に示すように、乱数用クロックRCLKは、タイミングT10、T11、T12、…においてハイレベルからローレベルに立ち下がる。そして、乱数用クロックRCLKは、遊技制御用マイクロコンピュータ560の乱数用外部クロック端子ERCに供給され、図16に示す乱数回路509が備えるクロック用フリップフロップ552におけるクロック端子CKに入力される。クロック用フリップフロップ552は、逆相出力端子(反転出力端子)QバーからD入力端子へとフィードバックされるラッチ用クロックRC0を、クロック端子CKに入力される乱数用クロックRCLKの立ち下がりエッジに応答して取り込み(ラッチして)、正相出力端子(非反転出力端子)Qから乱数更新クロックRGKとして出力する。これにより、乱数更新クロックRGKは、図104(C)に示すように、タイミングT10、T12、T14、…において、ハイレベルからローレベルへと立ち下がり、乱数用クロックRCLKの発振周波数の1/2の発振周波数を有する信号となる。例えば、乱数用クロックRCLKの発振周波数が20MHzであれば、乱数更新クロックRGKの発振周波数は10MHzとなる。そして、乱数用クロックRCLKの発信周波数は制御用クロックCCLKの発振周波数の整数倍にも整数分の1にもならないことから、乱数更新クロックRGKの発振周波数は、制御用クロックCCLKの発振周波数とは異なる周波数となる。乱数生成回路553は、例えば乱数更新クロックRGKの立ち下がりエッジに応答して、カウント値順列RCNにおける数値データを更新する。乱数列変更回路555は、乱数列変更設定回路556による乱数更新規則の設定にもとづき、乱数生成回路553から出力されたカウント値順列RCNにおける数値データの更新順を変更したものを、乱数列RSNとして出力する。こうして、乱数列RSNにおける数値データは、例えば図104(D)に示すように、乱数更新クロックRGKの立ち下がりエッジなどに応答して更新される。   As shown in FIG. 104 (B), the random number clock RCLK falls from the high level to the low level at timings T10, T11, T12,. The random number clock RCLK is supplied to the random number external clock terminal ERC of the game control microcomputer 560 and input to the clock terminal CK in the clock flip-flop 552 provided in the random number circuit 509 shown in FIG. The clock flip-flop 552 responds to the falling edge of the random number clock RCLK input to the clock terminal CK with the latch clock RC0 fed back from the negative phase output terminal (inverted output terminal) Q bar to the D input terminal. Then, it is taken in (latched) and outputted as a random number update clock RGK from the positive phase output terminal (non-inverted output terminal) Q. Thereby, as shown in FIG. 104C, the random number update clock RGK falls from the high level to the low level at the timings T10, T12, T14,..., And is ½ of the oscillation frequency of the random number clock RCLK. The signal has an oscillation frequency of. For example, if the oscillation frequency of the random number clock RCLK is 20 MHz, the oscillation frequency of the random number update clock RGK is 10 MHz. Since the oscillation frequency of the random number clock RCLK is neither an integer multiple nor a fraction of the oscillation frequency of the control clock CCLK, the oscillation frequency of the random number update clock RGK is the oscillation frequency of the control clock CCLK. Different frequency. The random number generation circuit 553 updates the numerical data in the count value permutation RCN in response to, for example, the falling edge of the random number update clock RGK. The random number sequence change circuit 555 changes the numerical data update order in the count value permutation RCN output from the random number generation circuit 553 based on the setting of the random number update rule by the random number sequence change setting circuit 556 as a random number sequence RSN. Output. Thus, the numerical data in the random number sequence RSN is updated in response to the falling edge of the random number update clock RGK, for example, as shown in FIG.

このように、乱数用クロック生成回路112により生成される乱数用クロックRCLKの発振周波数と、制御用クロック生成回路111により生成される制御用クロックCCLKの発振周波数とは、互いに異なっており、また、一方の発振周波数が他方の発振周波数の整数倍となることもない。そのため、乱数回路509のクロック用フリップフロップ552により生成される乱数更新クロックRGKやラッチ用クロックRC0の発振周波数は、乱数用クロックRCLKの発振周波数の1/2となるが、制御用クロックCCLKの発振周波数や、制御用クロックCCLKの発振周波数の1/2となる内部システムクロックSCLKの発振周波数とは、異なるものとなる。こうして、制御用クロックCCLKや内部システムクロックSCLKと、乱数更新クロックRGKとに同期が生じることを防ぎ、CPU56の動作タイミングからは、乱数回路509にて乱数生成回路553や乱数列変更回路555により生成される乱数列RSNにおける数値データの更新タイミングを特定することが困難になる。これにより、CPU56の動作タイミングから乱数回路509における乱数値となる数値データの更新動作を解析した結果にもとづく狙い撃ちなどを、確実に防止することができる。   As described above, the oscillation frequency of the random number clock RCLK generated by the random number clock generation circuit 112 and the oscillation frequency of the control clock CCLK generated by the control clock generation circuit 111 are different from each other. One oscillation frequency does not become an integral multiple of the other oscillation frequency. Therefore, the oscillation frequency of the random number update clock RGK and the latch clock RC0 generated by the clock flip-flop 552 of the random number circuit 509 is ½ of the oscillation frequency of the random number clock RCLK, but the oscillation of the control clock CCLK. The frequency and the oscillation frequency of the internal system clock SCLK that is ½ of the oscillation frequency of the control clock CCLK are different. Thus, the control clock CCLK, the internal system clock SCLK, and the random number update clock RGK are prevented from being synchronized. It becomes difficult to specify the update timing of numerical data in the random number sequence RSN to be performed. As a result, it is possible to reliably prevent aiming and the like based on the result of analyzing the update operation of numerical data serving as a random number value in the random number circuit 509 from the operation timing of the CPU 56.

クロック用フリップフロップ552から出力されるラッチ用クロックRC0は、乱数更新クロックRGKの反転信号となり、その発振周波数は乱数更新クロックRGKの発振周波数と同一で、その位相は乱数更新クロックRGKの位相とπ(=180°)だけ異なる。ラッチ用クロックRC0は、分岐点BR1にてラッチ用クロックRC1とラッチ用クロックRC2とに分岐される。したがって、例えば図104(E)に示すように、各ラッチ用クロックRC0、RC1、RC2はいずれも、共通の周期で信号状態が変化する発振信号となる。ラッチ用クロックRC1は、ラッチ用フリップフロップ557Aのクロック端子CKに入力される。ラッチ用クロックRC2は、ラッチ用フリップフロップ557Bのクロック端子CKに入力される。   The latch clock RC0 output from the clock flip-flop 552 is an inverted signal of the random number update clock RGK, the oscillation frequency thereof is the same as the oscillation frequency of the random number update clock RGK, and its phase is equal to the phase of the random number update clock RGK and π It differs by (= 180 °). The latch clock RC0 is branched into a latch clock RC1 and a latch clock RC2 at a branch point BR1. Therefore, for example, as shown in FIG. 104 (E), each of the latch clocks RC0, RC1, and RC2 is an oscillation signal whose signal state changes in a common cycle. The latch clock RC1 is input to the clock terminal CK of the latch flip-flop 557A. The latch clock RC2 is input to the clock terminal CK of the latch flip-flop 557B.

こうして、ラッチ用クロックRC0を分岐することにより生成されるラッチ用クロックRC1、RC2の発振周波数は、制御用クロックCCLKや内部システムクロックSCLKの発振周波数とは、異なるものとなる。したがって、制御用クロックCCLKや内部システムクロックSCLKと、ラッチ用クロックRC1、RC2とに同期が生じることを防ぎ、CPU56の動作タイミングからは、乱数回路509にて乱数値となる数値データが取り込まれる動作タイミングを特定することが困難になる。これにより、CPU56の動作タイミングから乱数回路509における乱数値となる数値データの取込動作を解析した結果にもとづく狙い撃ちなどを、確実に防止することができる。   Thus, the oscillation frequencies of the latch clocks RC1 and RC2 generated by branching the latch clock RC0 are different from the oscillation frequencies of the control clock CCLK and the internal system clock SCLK. Therefore, the control clock CCLK, the internal system clock SCLK, and the latch clocks RC1 and RC2 are prevented from being synchronized, and the random number circuit 509 takes in numerical data as a random value from the operation timing of the CPU 56. It becomes difficult to specify the timing. As a result, it is possible to reliably prevent aiming and the like based on the result of analyzing the operation of fetching numerical data as a random value in the random number circuit 509 from the operation timing of the CPU 56.

ラッチ用フリップフロップ557Aは、ラッチ用クロックRC1の立ち下がりエッジに応答して、始動口スイッチ14aから伝送されて入力ポートP0に供給された始動入賞信号SSを取り込み(ラッチして)、始動入賞時ラッチ信号SL1として出力端子Qから出力する。そして、乱数ラッチセレクタ558Aにおける取込方法が入力ポートP0への信号入力に指定されていれば、始動入賞時ラッチ信号SL1が乱数ラッチ信号LL1として出力される。これにより、例えば図104(F)に示すようなタイミングでオフ状態(ハイレベル)とオン状態(ローレベル)とで信号状態が変化する始動入賞信号SSは、ラッチ用クロックRC1が立ち下がるタイミングT11、T13、…にてラッチ用フリップフロップ557Aに取り込まれた後、図104(G)に示すようなタイミングT11、T13で信号状態がオフ状態とオン状態とで変化する乱数ラッチ信号LL1となって、乱数ラッチセレクタ558Aから出力される。ここで、始動口スイッチ14aから伝送される始動入賞信号SSは、始動入賞口14における遊技球の始動入賞が検出されたときに、オフ状態からオン状態へと変化する。ラッチ用フリップフロップ557Aから乱数ラッチセレクタ558Aを介して出力された乱数ラッチ信号LL1は、乱数値レジスタR1Dとなる乱数値レジスタ559Aに供給されて、乱数列変更回路555から出力された乱数列RSNにおける数値データを取得するために用いられる。こうして、ラッチ用フリップフロップ557Aおよび乱数ラッチセレクタ558Aでは、始動入賞口14における遊技球の始動入賞が検出されたことにもとづき、ラッチ用クロックRC1を用いて、乱数値となる数値データを取得するための乱数ラッチ信号LL1が生成される。   The latch flip-flop 557A takes in (latches) the start winning signal SS transmitted from the start port switch 14a and supplied to the input port P0 in response to the falling edge of the latch clock RC1. The latch signal SL1 is output from the output terminal Q. Then, if the capturing method in the random number latch selector 558A is designated as signal input to the input port P0, the start winning latch signal SL1 is output as the random number latch signal LL1. Thus, for example, the start winning signal SS whose signal state changes between the off state (high level) and the on state (low level) at the timing shown in FIG. 104F is the timing T11 at which the latch clock RC1 falls. , T13,..., And then the latched flip-flop 557A takes the random number latch signal LL1 whose signal state changes between the off state and the on state at timings T11 and T13 as shown in FIG. , Output from the random number latch selector 558A. Here, the start winning signal SS transmitted from the start opening switch 14a changes from the off state to the on state when the start winning of the game ball at the start winning opening 14 is detected. The random number latch signal LL1 output from the latch flip-flop 557A via the random number latch selector 558A is supplied to the random number value register 559A serving as the random number value register R1D, and in the random number sequence RSN output from the random number sequence change circuit 555. Used to obtain numerical data. Thus, the latch flip-flop 557A and the random number latch selector 558A acquire numerical data as a random value using the latch clock RC1 based on the detection of the start winning of the game ball at the start winning opening 14. Random number latch signal LL1 is generated.

ラッチ用フリップフロップ557Bは、ラッチ用クロックRC2の立ち下がりエッジに応答して、始動口スイッチ14aから伝送されて入力ポートP1に供給された始動入賞信号SSを取り込み(ラッチして)、始動入賞時ラッチ信号SL2として出力端子Qから出力する。そして、乱数ラッチセレクタ558Bにおける取込方法が入力ポートP1への信号入力に指定されていれば、始動入賞時ラッチ信号SL2が乱数ラッチ信号LL2として出力される。これにより、例えば図104(F)に示すようなタイミングでオフ状態(ハイレベル)とオン状態(ローレベル)とで信号状態が変化する始動入賞信号SSは、ラッチ用クロックRC2が立ち下がるタイミングT11、T13、…にてラッチ用フリップフロップ557Bに取り込まれた後、図104(I)に示すようなタイミングT11、T13で信号状態がオフ状態とオン状態とで変化する乱数ラッチ信号LL2となって、乱数ラッチセレクタ558Bから出力される。ここで、始動口スイッチ14aから伝送される始動入賞信号SSは、始動入賞口14における遊技球の始動入賞が検出されたときに、オフ状態からオン状態へと変化する。ラッチ用フリップフロップ557Bから乱数ラッチセレクタ558Bを介して出力された乱数ラッチ信号LL2は、乱数値レジスタR2Dとなる乱数値レジスタ559Bに供給されて、乱数列変更回路555から出力された乱数列RSNにおける数値データを取得するために用いられる。こうして、ラッチ用フリップフロップ557Bおよび乱数ラッチセレクタ558Bでは、始動入賞口14における遊技球の始動入賞が検出されたことにもとづき、ラッチ用クロックRC2を用いて、乱数値となる数値データを取得するための乱数ラッチ信号LL2が生成される。   The latch flip-flop 557B takes in (latches) the start winning signal SS transmitted from the start port switch 14a and supplied to the input port P1 in response to the falling edge of the latch clock RC2, and at the time of starting winning The latch signal SL2 is output from the output terminal Q. Then, if the capturing method in the random number latch selector 558B is designated as signal input to the input port P1, the start winning latch signal SL2 is output as the random number latch signal LL2. Thereby, for example, the start winning signal SS whose signal state changes between the off state (high level) and the on state (low level) at the timing shown in FIG. 104 (F) is the timing T11 at which the latch clock RC2 falls. , T13,..., And then the latched flip-flop 557B takes the random number latch signal LL2 whose signal state changes between the off state and the on state at timings T11 and T13 as shown in FIG. Are output from the random number latch selector 558B. Here, the start winning signal SS transmitted from the start opening switch 14a changes from the off state to the on state when the start winning of the game ball at the start winning opening 14 is detected. The random number latch signal LL2 output from the latch flip-flop 557B via the random number latch selector 558B is supplied to the random number value register 559B serving as the random number value register R2D, and the random number sequence RSN output from the random number sequence change circuit 555 Used to obtain numerical data. In this way, the latch flip-flop 557B and the random number latch selector 558B acquire numerical data as a random value using the latch clock RC2 based on the detection of the start winning of the game ball at the start winning opening 14. Random number latch signal LL2 is generated.

このように、ラッチ用フリップフロップ557Aとラッチ用フリップフロップ557Bはそれぞれ、互いに共通のクロック用フリップフロップ552にて生成されたラッチ用クロックRC0を分岐点BR1で分岐したことにより、互いに共通の周期で信号状態が変化するラッチ用クロックRC1、RC2を用いて、乱数値となる数値データを取得するための始動入賞時ラッチ信号SL1や始動入賞時ラッチ信号SL2を生成する。これにより、乱数回路509における回路構成の簡素化や、パチンコ遊技機1における製造コストの削減を図ることができる。   In this way, the latch flip-flop 557A and the latch flip-flop 557B each have a common cycle by branching the latch clock RC0 generated by the common clock flip-flop 552 at the branch point BR1. Using the latch clocks RC1 and RC2 whose signal states change, a start winning latch signal SL1 and a start winning latch signal SL2 for obtaining numerical data as a random value are generated. Thereby, the circuit configuration in the random number circuit 509 can be simplified, and the manufacturing cost in the pachinko gaming machine 1 can be reduced.

乱数値レジスタR1Dとなる乱数値レジスタ559Aは、乱数列変更回路555から出力される乱数列RSNにおける数値データを、乱数ラッチセレクタ558Aからクロック端子へと入力される乱数ラッチ信号LL1の立ち下がりエッジに応答して取り込み(ラッチして)、記憶データとなる数値データを更新する。乱数値レジスタR2Dとなる乱数値レジスタ559Bは、乱数列変更回路555から出力される乱数列RSNにおける数値データを、乱数ラッチセレクタ558Bからクロック端子へと入力される乱数ラッチ信号LL2の立ち下がりエッジに応答して取り込み(ラッチして)、記憶データとなる数値データを更新する。   The random value register 559A serving as the random value register R1D receives the numerical data in the random number sequence RSN output from the random number sequence change circuit 555 at the falling edge of the random number latch signal LL1 input from the random number latch selector 558A to the clock terminal. In response, the data is fetched (latched), and the numerical data serving as stored data is updated. The random value register 559B serving as the random value register R2D receives the numerical data in the random number sequence RSN output from the random number sequence change circuit 555 at the falling edge of the random number latch signal LL2 input from the random number latch selector 558B to the clock terminal. In response, the data is fetched (latched), and the numerical data serving as stored data is updated.

例えば図104(G)に示すように、タイミングT11にて乱数ラッチ信号LL1がオフ状態からオン状態に変化する立ち下がりエッジが生じた場合には、このタイミングT11にて乱数列変更回路555から出力されている乱数列RSNにおける数値データが、図104(H)に示すように、乱数値レジスタR1Dに取り込まれ、乱数値となる数値データとして取得される。これにより、乱数値レジスタR1Dとなる乱数値レジスタ559Aでは、始動入賞口14における遊技球の始動入賞が検出されたことにもとづき、乱数値として用いられる数値データを取得して記憶することができる。   For example, as shown in FIG. 104 (G), when a falling edge occurs in which the random number latch signal LL1 changes from the off state to the on state at timing T11, the random number sequence change circuit 555 outputs the timing T11. As shown in FIG. 104 (H), the numerical data in the random number sequence RSN that has been read is taken into the random value register R1D and acquired as numerical data that becomes a random value. Thereby, the random value register 559A serving as the random value register R1D can acquire and store numerical data used as a random number value based on the detection of the start winning of the game ball at the start winning opening 14.

また、例えば図104(I)に示すように、タイミングT11にて乱数ラッチ信号LL2がオフ状態からオン状態に変化する立ち下がりエッジが生じた場合も同様に、このタイミングT11にて乱数列変更回路555から出力されている乱数列RSNにおける数値データが、図104(J)に示すように、乱数値レジスタR2Dに取り込まれ、乱数値となる数値データとして取得される。これにより、乱数値レジスタR2Dとなる乱数値レジスタ559Bは、始動入賞口14における遊技球の始動入賞が検出されたことにもとづき、乱数値として用いられる数値データを取得して記憶することができる。   For example, as shown in FIG. 104 (I), the random number sequence changing circuit is also generated at the timing T11 when the falling edge of the random number latch signal LL2 is changed from the OFF state to the ON state at the timing T11. The numerical data in the random number sequence RSN output from 555 is taken into the random value register R2D as shown in FIG. 104 (J), and is acquired as numerical data that becomes a random value. Thus, the random value register 559B serving as the random value register R2D can acquire and store numerical data used as a random value based on the detection of the start winning of the game ball at the start winning opening 14.

こうして、乱数値レジスタ559Aは、ラッチ用フリップフロップ557Aがラッチ用クロックRC1を用いて生成した始動入賞時ラッチ信号SL1や乱数ラッチセレクタ558Aから出力された乱数ラッチ信号LL1の立ち下がりエッジに応答して、乱数値RSNにおける数値データを格納する。また、乱数値レジスタ559Bは、ラッチ用フリップフロップ557Bがラッチ用クロックRC2を用いて生成した始動入賞時ラッチ信号SL2や乱数ラッチセレクタ558Bから出力された乱数ラッチ信号LL2の立ち下がりエッジに応答して、乱数列RSNにおける数値データを格納する。   Thus, the random value register 559A responds to the falling edge of the start winning latch signal SL1 generated by the latch flip-flop 557A using the latch clock RC1 and the random number latch signal LL1 output from the random number latch selector 558A. The numerical data in the random value RSN is stored. The random value register 559B is responsive to the falling edge of the start winning latch signal SL2 generated by the latch flip-flop 557B using the latch clock RC2 and the random number latch signal LL2 output from the random number latch selector 558B. The numerical data in the random number sequence RSN is stored.

このように、乱数回路509では、クロック用フリップフロップ552や乱数生成回路553、乱数列変更回路555などが、始動入賞口14における遊技球の始動入賞にもとづき乱数値となる数値データを取得するように構成されたラッチ用フリップフロップ557Aや乱数ラッチセレクタ558A、乱数値レジスタ559Aの組合せと、始動入賞口14における遊技球の始動入賞にもとづき乱数値となる数値データを取得するように構成されたラッチ用フリップフロップ557Bや乱数ラッチセレクタ558B、乱数値レジスタ559Bの組合せとに対して、共通化されている。これにより、乱数回路509における回路構成を簡素化することができ、パチンコ遊技機1の製造コストを削減することができる。   As described above, in the random number circuit 509, the clock flip-flop 552, the random number generation circuit 553, the random number sequence change circuit 555, etc. acquire numerical data that becomes a random number value based on the start winning of the game ball at the start winning opening 14. A latch configured to acquire numerical data to be a random value based on the combination of the latch flip-flop 557A, the random number latch selector 558A, the random number value register 559A, and the starting winning of the game ball at the starting winning opening 14. The common flip-flop 557B, random number latch selector 558B, and random number value register 559B are combined. Thereby, the circuit configuration in the random number circuit 509 can be simplified, and the manufacturing cost of the pachinko gaming machine 1 can be reduced.

図23(A)に示す乱数ラッチフラグレジスタRDFMでは、乱数値レジスタR1Dとなる乱数値レジスタ559Aにおける数値データの取込動作や読出動作、また、乱数値レジスタR2Dとなる乱数値レジスタ559Bにおける数値データの取込動作や読出動作に応答して、対応するビット値が“0”と“1”とに変化する。図105は、乱数ラッチフラグレジスタRDFMのビット番号[0]および[1]に格納される乱数ラッチフラグデータRDFM0および乱数ラッチフラグデータRDFM1の変化を説明するためのタイミングチャートである。   In the random number latch flag register RDFM shown in FIG. 23 (A), the operation for reading and reading numerical data in the random value register 559A serving as the random value register R1D, and the numerical data in the random value register 559B serving as the random value register R2D. The corresponding bit value changes to “0” and “1” in response to the fetch operation and read operation. FIG. 105 is a timing chart for explaining changes in random number latch flag data RDFM0 and random number latch flag data RDFM1 stored in bit numbers [0] and [1] of random number latch flag register RDFM.

図105(A)に示すように、乱数ラッチ信号LL1や乱数ラッチ信号LL2が立ち下がるタイミングT20にて、図105(B)に示すように乱数値レジスタR1Dや乱数値レジスタR2Dに数値データが取り込まれて格納されたことに対応して、図105(C)に示すように乱数ラッチフラグデータRDFM0や乱数ラッチフラグデータRDFM1のビット値が“0”から“1”へと変化する。例えば、タイミングT20にて乱数ラッチ信号LL1がオン状態(ローレベル)となったことに応答して乱数値レジスタR1Dに数値データが格納されたときには、乱数ラッチフラグデータRDFM0のビット値が“0”から“1”へと変化することにより、乱数値レジスタR1Dに対応する乱数ラッチフラグがオン状態となる。また、タイミングT20にて乱数ラッチ信号LL2がオン状態(ローレベル)となったことに応答して乱数値レジスタR2Dに数値データが格納されたときには、乱数ラッチフラグデータRDFM1のビット値が“0”から“1”へと変化することにより、乱数値レジスタR2Dに対応する乱数ラッチフラグがオン状態となる。   As shown in FIG. 105A, at the timing T20 when the random number latch signal LL1 or the random number latch signal LL2 falls, numerical data is taken into the random value register R1D or the random value register R2D as shown in FIG. Corresponding to this, the bit values of the random number latch flag data RDFM0 and the random number latch flag data RDFM1 change from “0” to “1” as shown in FIG. For example, when numerical data is stored in the random value register R1D in response to the random number latch signal LL1 being turned on (low level) at the timing T20, the bit value of the random number latch flag data RDFM0 is “0”. By changing from “1” to “1”, the random number latch flag corresponding to the random number value register R1D is turned on. Further, when numerical data is stored in the random value register R2D in response to the random number latch signal LL2 being turned on (low level) at the timing T20, the bit value of the random number latch flag data RDFM1 is “0”. By changing from “1” to “1”, the random number latch flag corresponding to the random number value register R2D is turned on.

こうして乱数ラッチフラグがオン状態となったときには、対応する乱数値レジスタR1Dや乱数値レジスタR2Dへの新たな数値データの格納が制限される。例えば、乱数ラッチフラグデータRDFM0のビット値が“0”から“1”へと変化したときには、乱数値レジスタR1Dに対応する乱数ラッチフラグがオン状態となり、乱数値レジスタR1Dへの新たな数値データの格納が制限される。また、乱数ラッチフラグデータRDFM1のビット値が“0”から“1”へと変化したときには、乱数値レジスタR2Dに対応する乱数ラッチフラグがオン状態となり、乱数値レジスタR2Dへの新たな数値データの格納が制限される。したがって、対応する乱数ラッチフラグがオン状態である乱数値レジスタR1Dおよび/または乱数値レジスタR2Dには、始動入賞信号SSの入力に対応して数値データを取り込むための乱数ラッチ信号LL1および/または乱数ラッチ信号LL2が入力されたときでも、乱数列RSNに含まれる新たな数値データの格納を行うことができない。   When the random number latch flag is turned on in this manner, storage of new numerical data in the corresponding random number value register R1D or random number value register R2D is restricted. For example, when the bit value of the random number latch flag data RDFM0 changes from “0” to “1”, the random number latch flag corresponding to the random number value register R1D is turned on, and new numerical data is stored in the random number value register R1D. Is limited. When the bit value of the random number latch flag data RDFM1 changes from “0” to “1”, the random number latch flag corresponding to the random number value register R2D is turned on, and new numerical data is stored in the random number value register R2D. Is limited. Therefore, the random number latch signal LL1 and / or the random number latch for fetching numerical data corresponding to the input of the start winning signal SS is input to the random value register R1D and / or the random value register R2D in which the corresponding random number latch flag is on. Even when the signal LL2 is input, new numeric data included in the random number sequence RSN cannot be stored.

これにより、乱数値レジスタR1Dや乱数値レジスタR2Dに数値データが一旦格納された後、その数値データがCPU56などから読み出されるよりも前に、例えば始動入賞信号SSがノイズ等により誤ってオン状態となったときでも、既に格納されている数値データが更新されてしまい不正確な乱数値の読み出しを防止することができる。また、乱数値取込指定データRDLT0や乱数値取込指定データRDLT1のビット値を外部から意図的に“1”に設定すること、あるいは、始動入賞信号SSを外部から意図的にオン状態とすることなどにより、既に格納されている数値データを改変するといった不正行為を防止することもできる。その一方で、乱数値レジスタR1Dや乱数値レジスタR2Dに一旦格納された数値データが長時間にわたりCPU56などから読み出されなくなると、その後に始動入賞信号SSが正常にオン状態となったときに、始動入賞口14における遊技球の通過(進入)に対応した正確な数値データを乱数値レジスタR1Dや乱数値レジスタR2Dに格納することができなくなる。   Thus, after numerical data is temporarily stored in the random value register R1D or the random value register R2D, before the numerical data is read from the CPU 56 or the like, for example, the start winning signal SS is erroneously turned on due to noise or the like. Even in such a case, the numerical data already stored is updated, and it is possible to prevent the reading of an inaccurate random number value. Further, the bit value of the random value acquisition specification data RDLT0 or the random value acquisition specification data RDLT1 is intentionally set to “1” from the outside, or the start winning signal SS is intentionally turned on from the outside. For example, it is possible to prevent an illegal act such as modifying already stored numerical data. On the other hand, when the numerical data once stored in the random value register R1D or the random value register R2D is not read from the CPU 56 or the like for a long time, when the start winning signal SS is normally turned on thereafter, Accurate numerical data corresponding to the passage (entrance) of the game ball at the start winning opening 14 cannot be stored in the random value register R1D or the random value register R2D.

そこで、例えば遊技制御用マイクロコンピュータ560のCPU56は、あらかじめ定められた乱数値読出条件が成立したときに、図105(D)に示すような所定の乱数値レジスタ読出処理を実行する。そして、乱数値レジスタR1Dや乱数値レジスタR2Dの読み出しを行って乱数ラッチフラグをオフ状態とすることにより、新たな数値データの格納が許可された状態に設定する。乱数値読出条件としては、CPU56がパチンコ遊技機1における遊技制御の実行を開始すること、および/または、始動入賞口14を遊技球が通過(進入)したときに特図ゲームの保留記憶数が所定の上限値に達していることなどを含むものであればよい。図105に示す動作例では、タイミングT25にて図105(B)に示す乱数値レジスタ読出処理が完了したことに対応して、図105(C)に示すように乱数ラッチフラグデータRDFM0や乱数ラッチフラグデータRDFM1のビット値が“1”から“0”へと更新されて、対応する乱数ラッチフラグがオフ状態に設定される。   Therefore, for example, the CPU 56 of the game control microcomputer 560 executes a predetermined random value register reading process as shown in FIG. 105 (D) when a predetermined random value reading condition is satisfied. Then, the random number value register R1D and the random number value register R2D are read to turn off the random number latch flag, thereby setting a state in which storage of new numerical data is permitted. As the random number value reading condition, the CPU 56 starts executing the game control in the pachinko gaming machine 1 and / or the reserved memory number of the special figure game when the game ball passes (enters) the start winning opening 14. Anything including that the predetermined upper limit value has been reached may be used. In the operation example shown in FIG. 105, in response to the completion of the random value register read processing shown in FIG. 105 (B) at timing T25, random number latch flag data RDFM0 and random number latch as shown in FIG. 105 (C). The bit value of the flag data RDFM1 is updated from “1” to “0”, and the corresponding random number latch flag is set to the off state.

一例として、CPU56は、パチンコ遊技機1における電源供給の開始にもとづいて遊技制御用マイクロコンピュータ560のシステムリセットが解除されたときに、所定のセキュリティチェック処理などを実行してから、ROM54からユーザプログラム(ゲーム制御用の遊技制御処理プログラム)を示す制御コードの読み出しなどを行い遊技制御の実行を開始する。このとき、CPU56は、乱数値レジスタ読出処理として図43に示すステップS5006の処理を実行することにより、乱数値レジスタR1Dや乱数値レジスタR2Dに格納された数値データを読み出して、対応する乱数ラッチフラグをオフ状態とする。なお、図43に示すステップS5006の処理において、CPU56は、乱数ラッチフラグデータRDFM1と乱数ラッチフラグデータRDFM0のビット値をチェックした結果などにもとづいて、乱数ラッチフラグがオン状態となっている乱数値レジスタの読み出しのみを行うようにしてもよい。あるいは、乱数ラッチフラグがオン状態であるか否かにかかわらず、乱数値レジスタR1Dと乱数値レジスタR2Dの双方から数値データを読み出すことにより、各乱数ラッチフラグをオフ状態としてもよい。   As an example, the CPU 56 executes a predetermined security check process and the like from the ROM 54 when the system reset of the game control microcomputer 560 is canceled based on the start of power supply in the pachinko gaming machine 1, and then the user program is read from the ROM 54. The control code indicating (game control game control program for game control) is read and the execution of the game control is started. At this time, the CPU 56 reads the numerical data stored in the random value register R1D and the random value register R2D by executing the process of step S5006 shown in FIG. 43 as the random value register read process, and sets the corresponding random number latch flag. Turn off. In the process of step S5006 shown in FIG. 43, the CPU 56 determines whether the random number latch flag is in the ON state based on the result of checking the bit values of the random number latch flag data RDFM1 and the random number latch flag data RDFM0. May be read out only. Alternatively, each random number latch flag may be turned off by reading numerical data from both the random value register R1D and the random value register R2D regardless of whether the random number latch flag is on.

パチンコ遊技機1の電源投入時などには、例えば図8(B)および(C)に示す電源電圧VSLおよび電源電圧VCCのように、各種の電源電圧が徐々に規定値まで上昇していく。こうした電源電圧の上昇中には、例えば遊技制御用マイクロコンピュータ560の内蔵回路といった、各種回路の一部分が正常に動作する一方で、他の部分は未だ正常には動作できない状態となることがある。一例として、電源電圧が不安定な状態では、始動入賞信号SSが誤ってオン状態となることなどにより、乱数回路509において乱数値レジスタR1Dや乱数値レジスタR2Dに数値データが取り込まれて格納され、対応する乱数ラッチフラグがオン状態になって新たな数値データの格納が制限されてしまう可能性がある。また、CPU56などによる遊技制御の実行が開始された後、図45に示すステップS21のスイッチ処理が実行されるより前に、所定タイミングで乱数ラッチ信号LL1や乱数ラッチ信号LL2を乱数値レジスタR1Dや乱数値レジスタR2Dに入力することで、特図表示結果を「大当り」とする大当り判定用乱数(ランダムR)を示す数値データを取得して大当り遊技状態に制御させる不正行為がなされる可能性がある。このように、乱数ラッチフラグがオン状態になると新たな数値データの格納が制限されるようにした場合には、始動入賞口14を遊技球が通過(進入)する始動入賞の発生後にノイズ等により誤った数値データが乱数値レジスタR1Dや乱数値レジスタR2Dに取り込まれて格納されることを防止できる一方で、始動入賞の発生前に電源電圧の不安定による誤動作や不正行為などにより数値データが乱数値レジスタR1Dや乱数値レジスタR2Dに取り込まれて格納された場合、その後に始動入賞が発生しても、この始動入賞の発生タイミングよりも前に既に格納されている数値データが乱数値として取得されて特図表示結果の決定などに用いられる可能性がある。   When the power of the pachinko gaming machine 1 is turned on, various power supply voltages gradually rise to specified values, such as the power supply voltage VSL and the power supply voltage VCC shown in FIGS. 8B and 8C, for example. While such a power supply voltage is rising, some of the various circuits, such as a built-in circuit of the game control microcomputer 560, operate normally, while other parts may not be able to operate normally. As an example, in a state where the power supply voltage is unstable, the start winning signal SS is erroneously turned on. For example, the random number circuit 509 captures and stores numerical data in the random value register R1D or the random value register R2D. There is a possibility that the storage of new numerical data may be restricted due to the corresponding random number latch flag being turned on. Further, after the execution of game control by the CPU 56 or the like is started and before the switch processing of step S21 shown in FIG. 45 is executed, the random number latch signal LL1 and the random number latch signal LL2 are stored at the random value register R1D and the random number latch signal LL2 at a predetermined timing. By inputting to the random value register R2D, there is a possibility that an illegal act of acquiring numerical data indicating a big hit determination random number (random R) with the special figure display result as “big hit” and controlling it to the big hit gaming state may be performed. is there. As described above, when the storage of new numerical data is restricted when the random number latch flag is turned on, an error due to noise or the like occurs after the start winning where the game ball passes (enters) the starting winning opening 14 is generated. Can be prevented from being stored in the random number value register R1D or the random number value register R2D, while the numerical value value is a random number value due to malfunction or fraud due to unstable power supply voltage before the start prize is generated. If the start prize is subsequently generated and stored in the register R1D or the random value register R2D, the numerical data already stored before the start prize is obtained as a random value. There is a possibility that it will be used to determine the special figure display result.

そこで、遊技制御用マイクロコンピュータ560におけるシステムリセットが解除されて遊技制御が開始されるときには、乱数ラッチフラグをオフ状態に設定して、新たな数値データの格納が許可された状態とする。これにより、例えばパチンコ遊技機1における電源投入時などの電源電圧が不安定な状態で誤って乱数値レジスタR1Dや乱数値レジスタR2Dに格納された数値データが乱数値として取得されてしまい、遊技制御における各種の決定などに使用されてしまうことを防止できる。また、遊技制御の実行が開始された後、始動口スイッチ14aの状態がチェックされるより前に乱数ラッチ信号を入力して大当り遊技状態に制御させる不正行為を防止することができる。   Therefore, when the system reset in the game control microcomputer 560 is released and the game control is started, the random number latch flag is set to the off state to allow the storage of new numerical data. As a result, for example, the numerical data stored in the random value register R1D or the random value register R2D in error when the power supply voltage is unstable, such as when the power is turned on in the pachinko gaming machine 1, is acquired as a random value, and the game control It can be prevented from being used for various decisions. Further, after the execution of the game control is started, it is possible to prevent an illegal act of inputting the random number latch signal and controlling it to the big hit game state before the state of the start port switch 14a is checked.

他の一例として、例えば電源電圧VSLといった、パチンコ遊技機1における所定電源電圧が低下したことにもとづいて、電源基板910に搭載された電源監視回路303からオン状態の電源断信号が出力される。CPU56は、図46のステップS450にてオン状態の電源断信号が出力され(ステップS450のY)、さらに、ステップS453にてバックアップ監視タイマ値がバックアップ判定値に達した後に、ステップS454〜ステップS481の処理を実行して電源電圧の低下によるパチンコ遊技機1の動作不安定あるいは動作停止に備えるとともに、遊技制御用マイクロコンピュータ560が動作停止状態となるまでステップS482の処理を繰り返し実行することにより、電源断信号の入力状態を繰り返し判定する。その後、ステップS482の処理を実行中に電源断信号がオフ状態となり入力されていない旨の判定がなされたときに、CPU56は、ステップS487の処理を実行してから電源断処理を終了するとともに遊技制御用タイマ割込み処理から復帰(リターン)させることにより、ROM54に記憶されているユーザプログラム(ゲーム制御用の遊技制御処理プログラム)を示す制御コードの先頭から、遊技制御の実行を開始させる。ここで、ステップS482の処理により電源断信号がオフ状態となり入力されていない旨の判定がなされた後、電源断処理を終了して制御コードの先頭から遊技制御の実行を開始させるより前に、乱数値レジスタ読出処理としてステップS483〜ステップS486の処理を実行することにより、乱数値レジスタR1Dや乱数値レジスタR2Dに格納された数値データを読み出して、対応する乱数ラッチフラグをオフ状態に設定する。   As another example, an on-state power-off signal is output from the power supply monitoring circuit 303 mounted on the power supply board 910 based on a decrease in the predetermined power supply voltage in the pachinko gaming machine 1, such as the power supply voltage VSL. The CPU 56 outputs an on-state power-off signal in step S450 of FIG. 46 (Y in step S450), and further, after the backup monitoring timer value reaches the backup determination value in step S453, the CPU 56 performs steps S454 to S481. By executing the above process to prepare for the unstable operation or operation stop of the pachinko gaming machine 1 due to the decrease in the power supply voltage, the process of step S482 is repeatedly executed until the game control microcomputer 560 is in the operation stop state. The input state of the power-off signal is repeatedly determined. Thereafter, when it is determined during the process of step S482 that the power-off signal is off and is not input, the CPU 56 executes the process of step S487 and then ends the power-off process and the game. By returning from the control timer interrupt process, the execution of the game control is started from the head of the control code indicating the user program (game control process program for game control) stored in the ROM 54. Here, after it is determined in step S482 that the power-off signal has been turned off and has not been input, before the power-off processing is terminated and the execution of game control is started from the beginning of the control code, By executing the processing from step S483 to step S486 as the random value register read processing, the numerical data stored in the random value register R1D or the random value register R2D is read, and the corresponding random number latch flag is set to the OFF state.

図106は、遊技制御の実行中に電源電圧VSLが低下した場合の動作例を示すタイミングチャートである。始めに、例えばパチンコ遊技機1への電源供給が開始されたことなどにもとづき、図106(A)に示す電源電圧VSLが所定値VSL1に達するタイミングT31よりも前のタイミングT30にて、図106(B)に示す電源電圧VCCが所定値VCC1に達する。このタイミングT30では、図106(C)に示すリセット信号がオン状態からオフ状態となる。続いて、タイミングT31にて電源電圧VSLが所定値VSL1に達したときに、図106(D)に示す電源断信号がオン状態からオフ状態となる。その後、例えばタイミングT32にて、乱数値レジスタR1Dに乱数値となる数値データが取り込まれて格納されたことに対応して、図106(E)に示す乱数ラッチフラグデータRDFM0のビット値が“0”から“1”へと変化することにより、乱数値レジスタR1Dに対応する乱数ラッチフラグがオン状態になるものとする。   FIG. 106 is a timing chart showing an operation example when the power supply voltage VSL decreases during execution of game control. First, based on the start of power supply to the pachinko gaming machine 1, for example, at a timing T30 before the timing T31 when the power supply voltage VSL shown in FIG. The power supply voltage VCC shown in (B) reaches a predetermined value VCC1. At this timing T30, the reset signal illustrated in FIG. 106C is changed from the on state to the off state. Subsequently, when the power supply voltage VSL reaches the predetermined value VSL1 at the timing T31, the power-off signal illustrated in FIG. Thereafter, for example, at timing T32, the bit value of the random number latch flag data RDFM0 shown in FIG. By changing from “1” to “1”, the random number latch flag corresponding to the random number register R1D is turned on.

こうしてタイミングT32にて乱数値レジスタR1Dに数値データが格納された後、その数値データがCPU56などにより読み出されるよりも前のタイミングT33にて、図106(A)に示す電源電圧VSLが所定値VSL1より低下したとする。このとき、図106(D)に示す電源断信号がオン状態であると判定されたことなどにもとづいて(図46のステップS450のY)、ステップS482にて電源断信号がオン状態であるか否かが繰り返し判定される。その後、例えばタイミングT34にて、図106(A)に示す電源電圧VSLが所定値VSL1に復帰したときには、図46に示すステップS482にて電源断信号がオフ状態であり入力されていないと判定される(ステップS482のN)。また、図46に示すステップS483にて乱数ラッチフラグデータRDFM0のビット値が“1”であり乱数ラッチフラグがオン状態であると判定されたことにもとづいて、ステップS484の処理が実行される。そして、乱数値レジスタR1Dに格納された数値データが読み出され、乱数ラッチフラグデータRDFM0のビット値が“1”から“0”へと更新されて、乱数値レジスタR1Dに対応する乱数ラッチフラグがオフ状態に設定される。その後、電源断処理が終了するときには、例えば図46に示すステップS487にて設定された電源断復旧時ベクタテーブルでの指定内容などにもとづいて、ROM54に記憶されているユーザプログラム(ゲーム制御用の遊技制御処理プログラム)を示す制御コードの先頭から遊技制御の実行を開始することで、図41に示すようなメイン処理が最初から実行される。   After the numerical data is stored in the random value register R1D at the timing T32 in this way, the power supply voltage VSL shown in FIG. 106A becomes the predetermined value VSL1 at the timing T33 before the numerical data is read by the CPU 56 or the like. Suppose that it is lower. At this time, based on the determination that the power-off signal shown in FIG. 106D is on (Y in step S450 in FIG. 46), is the power-off signal on in step S482? It is repeatedly determined whether or not. Thereafter, for example, at timing T34, when the power supply voltage VSL shown in FIG. 106A returns to the predetermined value VSL1, it is determined in step S482 shown in FIG. 46 that the power-off signal is in an off state and is not input. (N in step S482). Also, in step S483 shown in FIG. 46, based on the determination that the bit value of the random number latch flag data RDFM0 is “1” and the random number latch flag is on, the process of step S484 is executed. Then, the numerical data stored in the random value register R1D is read, the bit value of the random number latch flag data RDFM0 is updated from “1” to “0”, and the random number latch flag corresponding to the random number register R1D is turned off. Set to state. Thereafter, when the power-off process ends, for example, based on the contents specified in the power-off recovery vector table set in step S487 shown in FIG. 46, the user program stored in the ROM 54 (for game control) By starting the execution of the game control from the beginning of the control code indicating the (game control processing program), the main process as shown in FIG. 41 is executed from the beginning.

なお、乱数回路509において、始動入賞信号SSの立ち上がりエッジに応答して乱数値レジスタR1Dや乱数値レジスタR2Dに乱数値となる数値データが取り込まれて格納される場合には、例えば図47に示すステップS482の処理を繰り返し実行している期間などに、スイッチ作動用の電源電圧VDDが所定のスイッチ電圧以下に低下した後に正常電圧値に復旧すると、その正常電圧値への復旧中に始動入賞信号SSの立ち上がりエッジが生じて乱数値レジスタR1Dや乱数値レジスタR2Dの全部に数値データが取り込まれて格納され、各乱数ラッチフラグがオン状態になることがある。このような乱数ラッチフラグのオン状態を放置すると、電源電圧の復旧後に始動入賞口14を遊技球が通過(進入)して始動入賞が発生したときには、乱数ラッチフラグがオン状態であることから新たな数値データの格納が制限され、電源電圧の復旧中などに取り込まれた数値データにもとづいて特図表示結果の決定などが行われてしまい、始動入賞の発生タイミングとは全く異なるタイミングで取り込まれた数値データを用いた決定が行われてしまうという問題が生じる。そこで、遊技制御用マイクロコンピュータ560のCPU56は、図43に示すステップS5006や図47に示すステップS484および/またはステップS486にて乱数値レジスタR1Dや乱数値レジスタR2Dの読み出しを行い、対応する乱数ラッチフラグをオフ状態にしてから遊技制御の実行を開始(再開)させることで、上記の問題を解決することができる。   In the random number circuit 509, in the case where numerical data that becomes a random number value is captured and stored in the random value register R1D or the random value register R2D in response to the rising edge of the start winning signal SS, for example, as shown in FIG. When the switch operation power supply voltage VDD drops below the predetermined switch voltage during a period in which the process of step S482 is repeatedly executed, and the normal voltage value is restored, a start winning signal is displayed during the restoration to the normal voltage value. A rising edge of SS occurs, and numerical data is captured and stored in all of the random value register R1D and the random value register R2D, and each random number latch flag may be turned on. If such an ON state of the random number latch flag is left unattended, when the game ball passes (enters) through the start winning opening 14 after the power supply voltage is restored and a start winning is generated, the random number latch flag is in the ON state. Numeric values that are captured at timings completely different from the timing of starting winnings, because data storage is limited, and special figure display results are determined based on numeric data captured during power supply voltage recovery, etc. There arises a problem that a decision using data is made. Therefore, the CPU 56 of the game control microcomputer 560 reads the random number value register R1D and the random number value register R2D in step S5006 shown in FIG. 43 and step S484 and / or step S486 shown in FIG. The above-described problem can be solved by starting (resuming) the execution of the game control after turning off.

乱数値読出条件の他の一例として、始動入賞口14を遊技球が通過(進入)したときに特図ゲームの保留記憶数が所定の上限値に達している場合がある。ここで、例えば図72に示すステップS311にて始動口スイッチ14aがオン状態であると判定された後、図73に示すステップS321にて保留記憶数が所定の上限値(例えば「4」)以上であると判定された場合には、特図保留メモリにて全てのエントリ(例えば保留番号が「1」〜「4」に対応するエントリ)に保留データが記憶されており特図保留メモリにおける保留データの記憶数が上限記憶数に達しているために、新たな保留データを特図保留メモリに記憶させることができない。こうした場合には、一般に、始動入賞口14を遊技球が通過(進入)したことにもとづく特図ゲームの始動条件を成立させずに無効なものとし、賞球の払出しのみが行われる。   As another example of the random value reading condition, there is a case where the reserved memory number of the special-purpose game has reached a predetermined upper limit value when the game ball passes (enters) the start winning opening 14. Here, for example, after it is determined in step S311 shown in FIG. 72 that the start port switch 14a is in the ON state, the number of reserved memories is greater than or equal to a predetermined upper limit (eg, “4”) in step S321 shown in FIG. If it is determined that the hold data is stored in all entries (for example, entries corresponding to the hold numbers “1” to “4”) in the special figure hold memory, the hold in the special figure hold memory Since the data storage number has reached the upper limit storage number, new hold data cannot be stored in the special figure hold memory. In such a case, in general, the starting condition of the special game based on the passing of the game ball through (entering) the start winning opening 14 is not established, and only the winning ball is paid out.

そのため、乱数回路509により生成される乱数値となる数値データを読み出さないようにすることも考えられる。しかしながら、乱数回路509では、保留記憶数にかかわらず、始動入賞信号SSがオン状態となって入力されたことに応答して、乱数値レジスタR1Dや乱数値レジスタR2Dに乱数値となる数値データが取り込まれて格納され、対応する乱数ラッチフラグがオン状態となる。そうすると、次に始動入賞口14を遊技球が通過(進入)したときには、始動入賞信号SSがオン状態となって入力されても、乱数値レジスタR1Dや乱数値レジスタR2Dにおける新たな数値データの格納が制限されるために、始動入賞の発生に対応した正確な乱数値を取得することができなくなる。   For this reason, it may be considered not to read out numerical data that is a random value generated by the random number circuit 509. However, in the random number circuit 509, in response to the start winning signal SS being turned on and input regardless of the number of reserved memories, numerical data that becomes a random value is stored in the random value register R1D or the random value register R2D. The data is fetched and stored, and the corresponding random number latch flag is turned on. Then, the next time the game ball passes (enters) through the start winning opening 14, even if the start winning signal SS is turned on and input, new numerical data is stored in the random value register R1D or the random value register R2D. Therefore, it is impossible to obtain an accurate random value corresponding to the occurrence of the start winning.

これに対して、遊技制御用マイクロコンピュータ560のCPU56は、図73に示すステップS321にて保留記憶数が所定の上限値以上であると判定したときに(ステップS321のY)、ステップS326の処理を実行して、乱数値レジスタR1Dや乱数値レジスタR2Dに格納された数値データを読み出すことで、対応する乱数ラッチフラグをオフ状態としてから、始動口スイッチ通過処理を終了する。   On the other hand, when the CPU 56 of the game control microcomputer 560 determines in step S321 shown in FIG. 73 that the reserved storage number is equal to or larger than the predetermined upper limit (Y in step S321), the process of step S326 is performed. Is executed to read the numerical data stored in the random value register R1D or the random value register R2D, thereby turning off the corresponding random number latch flag, and the start port switch passing process is terminated.

主基板31では、電源基板910からの初期電力供給時(バックアップ電源のない電源投入時)や、システムリセットの発生後における再起動時などに、CPU56がROM54などに記憶されているセキュリティチェックプログラム54Aを読み出して実行することにより、遊技制御用マイクロコンピュータ560がセキュリティモードとなる。このときには、セキュリティチェックプログラム54Aに対応した処理として、例えば図40に示すようなセキュリティチェック処理が実行される。ここで、遊技制御用マイクロコンピュータ560がセキュリティモードとなるセキュリティ時間は、ROM54のプログラム管理エリアに記憶されているセキュリティ時間設定KSESのビット番号[2−0]やビット番号[4−3]にあらかじめ格納されたビット値に応じて、一定の固定時間とは異なる時間成分を含むことができる。   In the main board 31, the security check program 54A stored in the ROM 54 or the like is stored in the ROM 54 or the like when the initial power is supplied from the power board 910 (when power is turned on without a backup power supply) or when the system 56 is restarted after a system reset occurs. Is read and executed, the game control microcomputer 560 enters the security mode. At this time, as a process corresponding to the security check program 54A, for example, a security check process as shown in FIG. 40 is executed. Here, the security time when the game control microcomputer 560 is in the security mode is set in advance in the bit number [2-0] or bit number [4-3] of the security time setting KSES stored in the program management area of the ROM 54. Depending on the stored bit value, a time component different from the fixed time can be included.

例えば、セキュリティ時間設定KSESのビット番号[2−0]におけるビット値が“000”以外の値であれば(図40に示すステップS1002のN)、図14(D)に示すような設定内容に対応して、固定時間に加えてあらかじめ選択可能な複数の延長時間のいずれかを、セキュリティ時間に含まれる時間成分として設定することができる(ステップS1004)。また、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値が“00”以外の値であれば(ステップS1006のN)、図14(C)に示すようなショートモードまたはロングモードに対応して、システムリセットや電源投入にもとづき初期設定処理が実行されるごとに所定の時間範囲で変化する可変設定時間を、セキュリティ時間に含まれる時間成分として設定することができる(ステップS1008)。   For example, if the bit value in the bit number [2-0] of the security time setting KSES is a value other than “000” (N in step S1002 shown in FIG. 40), the setting contents shown in FIG. Correspondingly, any one of a plurality of extension times that can be selected in advance in addition to the fixed time can be set as a time component included in the security time (step S1004). If the bit value in the bit number [4-3] of the security time setting KSES is a value other than “00” (N in step S1006), the short mode or the long mode as shown in FIG. 14C is supported. Then, a variable setting time that changes in a predetermined time range each time the initial setting process is executed based on system reset or power-on can be set as a time component included in the security time (step S1008).

こうして設定されたセキュリティ時間が経過するまでは(ステップS1014のN)、ROM54に記憶されているユーザプログラムによるメイン処理の実行が開始されない。そして、乱数回路509による乱数値となる数値データの生成動作も、遊技制御用マイクロコンピュータ560がセキュリティモード中である期間では、開始されないようにすればよい。これにより、パチンコ遊技機1の電源投入やシステムリセット等による動作開始タイミングから、乱数回路509の動作開始タイミングや更新される数値データなどを特定することが困難になり、遊技制御処理プログラムの解析結果にもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続して所定タイミングで不正信号を入力することで、不正に大当り遊技状態を発生させるなどの行為を、確実に防止することができる。   Until the security time set in this way has elapsed (N in step S1014), execution of the main process by the user program stored in the ROM 54 is not started. Then, the operation of generating numerical data to be a random number value by the random number circuit 509 may not be started during the period in which the game control microcomputer 560 is in the security mode. As a result, it becomes difficult to specify the operation start timing of the random number circuit 509 or the numerical data to be updated from the operation start timing due to power-on of the pachinko gaming machine 1 or system reset, and the analysis result of the game control processing program By connecting a so-called “hanging board” and inputting a fraud signal at a predetermined timing, it is possible to reliably prevent acts such as illegally generating a big hit gaming state.

一例として、パチンコ遊技機1の機種毎に、セキュリティ時間設定KSESのビット番号[2−0]におけるビット値を異なる値に設定する。この場合には、図40に示すステップS1004にて設定される延長時間を、パチンコ遊技機1の機種毎に異ならせることができ、パチンコ遊技機1の動作開始タイミングから乱数回路509の動作開始タイミングを特定することが困難になる。また、セキュリティ時間設定KSESのビット番号[4−3]におけるビット値を“01”または“10”に設定することにより、ステップS1008にて設定される可変設定時間を、システムリセット毎に異ならせる。これにより、パチンコ遊技機1の動作開始タイミングから乱数回路509の動作開始タイミングを特定することは著しく困難になる。   As an example, the bit value in the bit number [2-0] of the security time setting KSES is set to a different value for each model of the pachinko gaming machine 1. In this case, the extension time set in step S1004 shown in FIG. 40 can be made different for each model of the pachinko gaming machine 1, and the operation start timing of the random number circuit 509 is determined from the operation start timing of the pachinko gaming machine 1. It becomes difficult to specify. Further, by setting the bit value in the bit number [4-3] of the security time setting KSES to “01” or “10”, the variable setting time set in step S1008 is changed for each system reset. This makes it extremely difficult to specify the operation start timing of the random number circuit 509 from the operation start timing of the pachinko gaming machine 1.

図40に示すステップS1014にてセキュリティ時間が経過したと判定されたときには(ステップS1014のY)、CPU56がROM54に記憶されているユーザプログラムを読み出して、図41に示すようなメイン処理が実行される。そして、例えばステップS14aにおける設定処理などには、図43に示すような乱数回路設定処理が含まれている。ここで、図13(B)に示すような第2乱数初期設定KRS2のビット番号[0]におけるビット値を“1”とすれば、図43に示すステップS5005の処理などにより、乱数回路509にて生成される乱数値となる数値データのスタート値を、システムリセット毎に変更することができる。これにより、たとえ乱数回路509の動作開始タイミングを特定することができたとしても、乱数回路509が備える乱数値レジスタ559Aや乱数値レジスタ559Bから読み出される数値データを特定することは困難になり、遊技制御処理プログラムの解析結果にもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続して所定タイミングで不正信号を入力することで、不正に大当り遊技状態を発生させるなどの行為を、確実に防止することができる。   When it is determined in step S1014 shown in FIG. 40 that the security time has elapsed (Y in step S1014), the CPU 56 reads the user program stored in the ROM 54, and the main process shown in FIG. 41 is executed. The For example, the setting process in step S14a includes a random number circuit setting process as shown in FIG. Here, if the bit value at the bit number [0] of the second random number initial setting KRS2 as shown in FIG. 13B is set to “1”, the random number circuit 509 is subjected to the processing of step S5005 shown in FIG. The start value of the numerical data, which is a random value generated in this way, can be changed every time the system is reset. Thereby, even if the operation start timing of the random number circuit 509 can be specified, it becomes difficult to specify numerical data read from the random value register 559A and the random value register 559B included in the random number circuit 509. Aiming based on the analysis result of the control processing program, or connecting a so-called `` hanging board '' and inputting an illegal signal at a predetermined timing can reliably prevent acts such as illegally generating a big hit gaming state it can.

乱数回路509などには、CPU56の動作とは別個に初期値決定用データとなるカウント値を更新するフリーランカウンタ554Aが設けられている。そして、第2乱数初期設定KRS2のビット番号[0]におけるビット値が“1”である場合には、乱数回路509のスタート値初期設定回路554による設定などにもとづき、初期設定時にフリーランカウンタ554Aのカウント値をそのまま用いること、あるいは、そのカウント値を所定の演算関数(例えばハッシュ関数)に代入して得られた値を用いることなどにより、スタート値がランダムに決定される。これにより、CPU56の動作態様から乱数回路509においてスタート値となる数値データを特定することは困難になり、遊技制御処理プログラムの解析結果にもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続して所定タイミングで不正信号を入力することで、不正に大当り遊技状態を発生させるなどの行為を、確実に防止することができる。   The random number circuit 509 and the like are provided with a free-run counter 554A that updates a count value serving as initial value determination data separately from the operation of the CPU 56. When the bit value [0] of the second random number initial setting KRS2 is “1”, the free run counter 554A is set at the initial setting based on the setting by the start value initial setting circuit 554 of the random number circuit 509. The start value is randomly determined by using the count value as it is, or by using a value obtained by substituting the count value into a predetermined arithmetic function (for example, a hash function). As a result, it becomes difficult to specify the numerical data that will be the start value in the random number circuit 509 from the operation mode of the CPU 56, and aiming based on the analysis result of the game control processing program or connecting a so-called “hanging board” to a predetermined timing By inputting the fraud signal at, actions such as illegally generating a big hit gaming state can be reliably prevented.

以上に説明したように、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、電力供給が開始されたときに、クリアスイッチ921から操作信号が入力されているか否かを判定し、操作信号が入力されていると判定されたときに、機構板が開放状態であるか否かを判定する。そして、遊技制御用マイクロコンピュータ560は、クリアスイッチ921からの操作信号を入力しているとともに開放状態であると判定したことにもとづいて、RAM55の記憶内容を初期化する初期化処理を実行する。一方、遊技制御用マイクロコンピュータ560は、クリアスイッチ921からの操作信号を入力していても開放状態でないと判定したことにもとづいて、初期化処理の実行を制限する。そのため、不正に初期化処理が実行されることを防止することによって、不正行為を防止することができる。   As described above, according to this embodiment, the game control microcomputer 560 determines whether or not an operation signal is input from the clear switch 921 when power supply is started, When it is determined that a signal is input, it is determined whether or not the mechanism plate is in an open state. The game control microcomputer 560 executes an initialization process for initializing the storage contents of the RAM 55 based on the input of the operation signal from the clear switch 921 and the determination that the game control microcomputer 560 is in the open state. On the other hand, the game control microcomputer 560 restricts the execution of the initialization process based on the determination that it is not in the open state even when the operation signal from the clear switch 921 is input. Therefore, illegal actions can be prevented by preventing the initialization process from being executed illegally.

また、この実施の形態によれば、クリアスイッチ921からの操作信号の入力を検出したものの機構板が開放状態でないと判定されたことにもとづいて、所定の報知処理(例えば、演出表示装置9の表示画面に初期化不正報知情報を重畳表示)を実行する。そのため、不正行為が行われている可能性があることを報知することができ、不正行為防止のための対策を強化することができる。   In addition, according to the present embodiment, a predetermined notification process (for example, the effect display device 9 of the effect display device 9) is detected based on the fact that the input of the operation signal from the clear switch 921 is detected but it is determined that the mechanism plate is not in the open state. Display the initialization fraud notification information on the display screen). Therefore, it is possible to notify that there is a possibility that fraud is being performed, and it is possible to strengthen measures for preventing fraud.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、遊クリアスイッチ921からの操作信号を入力していても開放状態でないと判定したことにもとづいて、ループ処理に移行し、遊技制御処理の実行を不能動化する。そのため、不正行為が行われている可能性があることを検出すれば、遊技の継続を不能にすることができ、不正行為防止のための対策を強化することができる。   Further, according to this embodiment, the game control microcomputer 560 shifts to the loop process based on the determination that the game control microcomputer 560 is not in the open state even if the operation signal from the game clear switch 921 is input, and the game Disables execution of control processing. Therefore, if it is detected that there is a possibility that an illegal act is performed, the continuation of the game can be disabled, and measures for preventing the illegal act can be strengthened.

また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定のエラー状態(例えば、払出スイッチ異常検知エラー2や、払出ケースエラー、主制御通信エラー)に設定されているときに、エラー解除スイッチ375から操作信号が入力されているか否かを判定し、操作信号が入力されていると判定したときに、機構板が開放状態であるか否かを判定する。そして、払出制御用マイクロコンピュータ370は、エラー解除スイッチ375からの操作信号を入力しているとともに開放状態であると判定したことにもとづいて、所定のエラー状態を解除する。一方、払出制御用マイクロコンピュータ370は、エラー解除スイッチ375からの操作信号を入力していても開放状態でないと判定したことにもとづいて、所定のエラー状態の解除を制限する。そのため、所定のエラー状態の解除に関しても、不正行為が行われている可能性を検出することができ、不正行為防止のための対策を強化することができる。   Further, according to this embodiment, when the payout control microcomputer 370 is set to a predetermined error state (for example, payout switch abnormality detection error 2, payout case error, main control communication error), It is determined whether or not an operation signal is input from the error release switch 375, and when it is determined that an operation signal is input, it is determined whether or not the mechanism plate is in an open state. Then, the payout control microcomputer 370 releases the predetermined error state based on the input of the operation signal from the error release switch 375 and the determination that it is in the open state. On the other hand, the payout control microcomputer 370 restricts the release of a predetermined error state based on the determination that the operation signal from the error release switch 375 is not open even when the operation signal is input. Therefore, also regarding the cancellation of the predetermined error state, it is possible to detect the possibility that fraud is being performed, and to strengthen countermeasures for preventing fraud.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、シリアル通信で制御コマンドを送受信する。また、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との通信接続状態を確認するための接続確認コマンドを、所定期間(本例では1秒)が経過する毎に払出制御用マイクロコンピュータ370に送信する。また、払出制御用マイクロコンピュータ370は、接続確認コマンドを受信したことにもとづいて接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560が制御状態(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)を認識可能な態様で接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。そのような構成により、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータ370が接続確認コマンドの受信にもとづいて定期的に出力する接続OKコマンドに制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を送信することができる。そのため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信を確実に行うことができる。なお、この実施の形態では、接続確認コマンドを送信する周期(間隔)を1秒としていたが、0.5秒等としてもよい。   Further, according to this embodiment, the game control microcomputer 560 and the payout control microcomputer 370 transmit and receive control commands by serial communication. Further, the game control microcomputer 560 sends a connection confirmation command for confirming the communication connection state with the payout control microcomputer 370 every time a predetermined period (1 second in this example) elapses. To 370. The payout control microcomputer 370 transmits a connection OK command to the game control microcomputer 560 based on the reception of the connection confirmation command. In this case, the payout control microcomputer 370 is connected in such a manner that the game control microcomputer 560 can recognize the control state (in this example, a prize ball error, a full tank error, a ball shortage error, and a payout number error error). The command is transmitted to the game control microcomputer 560. With such a configuration, by using a serial communication method, it is possible to facilitate wiring between the game control microcomputer 560 and the payout control microcomputer 370. In addition, the control state signal (response signal to which the control state is added) is transmitted by placing the control state on the connection OK command that the payout control microcomputer 370 periodically outputs based on the reception of the connection confirmation command. Can do. Therefore, it is possible to prevent the control state signal from being missed without considering the output timing of the control state signal, and the communication between the game control microcomputer 560 and the payout control microcomputer 370 is reliably performed. be able to. In this embodiment, the cycle (interval) for transmitting the connection confirmation command is 1 second, but it may be 0.5 seconds or the like.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、払出制御の実行を終了したときに、賞球プロセスタイマに所定期間(本例では1秒)を再設定して賞球プロセスタイマによる計測制御を開始する(ステップS52505参照)。そして、遊技制御用マイクロコンピュータ560は、賞球個数が記憶されていなければ(具体的には、ステップS52301で賞球コマンド出力カウンタの中にカウント値が1以上のものがなければ)、再設定した賞球プロセスタイマがタイムアウトしたことにもとづいて、新たな接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、払出制御の実行の終了後に新たな接続確認コマンドを送信するまでの間にインターバル期間を設けることができ、払出制御の実行の終了時における処理が集中して新たな接続確認コマンドの取りこぼし等が発生することを防止することができる。   Further, according to this embodiment, the game control microcomputer 560 resets a predetermined period (1 second in this example) to the prize ball process timer when the execution of the payout control is finished, and the prize ball process. Measurement control by the timer is started (see step S52505). If the number of prize balls is not stored (specifically, if no prize ball command output counter has a count value of 1 or more in step S52301), the game control microcomputer 560 resets the game. A new connection confirmation command is transmitted to the payout control microcomputer 370 based on the time-out of the prize ball process timer. For this reason, an interval period can be provided between the end of execution of payout control and the transmission of a new connection confirmation command, and processing at the end of execution of payout control is concentrated, and a new connection check command is overwritten. Can be prevented.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、接続確認コマンドの送信タイミングにかかわらず、入賞を検出したことにもとづいて、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信したことにもとづいて賞球個数受付コマンドを送信するとともに、払出制御の実行の実行中に賞球準備中コマンドを、所定の払出中信号出力期間(本例では1秒)毎に遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560が制御状態(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)を認識可能な態様で賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。また、遊技制御用マイクロコンピュータ560は、賞球個数受付コマンドを受信したことにもとづいて、接続確認コマンドの送信を停止する。そのため、払出制御の実行中は無駄に接続確認コマンドの送信制御を行わないようにすることによって、遊技制御用マイクロコンピュータ560の制御負担を軽減することができる。また、払出制御の実行中であっても、賞球準備中コマンドに制御状態を乗せることにより制御状態信号を出力することができるため、遊技制御用マイクロコンピュータ560側で制御状態を認識することができる。   Further, according to this embodiment, the game control microcomputer 560 transmits a winning ball number command to the payout control microcomputer 370 based on the detection of a winning regardless of the transmission timing of the connection confirmation command. To do. Further, the payout control microcomputer 370 transmits a prize ball number reception command based on the reception of the prize ball number command, and receives a prize ball preparation command during execution of the payout control. The signal is transmitted to the game control microcomputer 560 every signal output period (1 second in this example). In this case, the payout control microcomputer 370 receives the prize ball in such a manner that the game control microcomputer 560 can recognize the control state (in this example, a prize ball error, a full tank error, an out of ball error, and a payout number error error). The preparing command is transmitted to the game control microcomputer 560. Further, the game control microcomputer 560 stops the transmission of the connection confirmation command based on the reception of the prize ball number reception command. Therefore, it is possible to reduce the control burden of the game control microcomputer 560 by not performing connection control command transmission control unnecessarily during execution of payout control. Even when the payout control is being executed, the control state signal can be output by adding the control state to the award ball preparation command, so that the game control microcomputer 560 can recognize the control state. it can.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信した後、賞球個数が記憶されていれば(具体的には、ステップS52301で賞球コマンド出力カウンタの中にカウント値が1以上のものがあれば)、接続確認コマンドの送信にかかわらず、直ちに新たな賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、払出制御の実行処理の迅速化を図ることができる。   Further, according to this embodiment, the game control microcomputer 560 receives the award ball end command and then stores the number of award balls (specifically, the prize ball command output counter in step S52301). If the count value is 1 or more), a new prize ball number command is immediately transmitted to the payout control microcomputer 370 regardless of the transmission of the connection confirmation command. Therefore, it is possible to speed up the execution process of the payout control.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ60は、受信した接続OKコマンドで示される制御状態にもとづいて、所定のエラー(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)が発生しているか否かを判定する。そして、遊技制御用マイクロコンピュータ60は、所定のエラーが発生していないと判定したことを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、エラー状態となっていて正常に払出制御を行えない場合に賞球個数コマンドを送信してしまう不都合を防止することができる。特に、この実施の形態では、払出制御用マイクロコンピュータ370が備えるRAMはバックアップ電源によりバックアップされていないので、払出制御に異常が生じているときに賞球個数コマンドを送信してしまうと、電源リセットなどにより賞球個数の記憶が消滅し、遊技者に大きな不利益を与えてしまう可能性がある。そこで、この実施の形態では、払出制御に異常が生じている場合には、バックアップ電源でバックアップされている遊技制御用マイクロコンピュータ560側で賞球個数の記憶を保持したまま賞球個数コマンドの送信を保留するように制御することによって、そのような不利益が生じることを防止することができる。   In addition, according to this embodiment, the game control microcomputer 60 determines whether a predetermined error (in this example, a prize ball error, a full tank error, a full ball error, etc.) based on the control state indicated by the received connection OK command. , And a payout quantity abnormality error). Then, the game control microcomputer 60 transmits a prize ball number command to the payout control microcomputer 370 on the condition that it is determined that a predetermined error has not occurred. Therefore, it is possible to prevent the inconvenience of sending a prize ball number command when the payout control cannot be normally performed due to an error state. In particular, in this embodiment, since the RAM provided in the payout control microcomputer 370 is not backed up by the backup power supply, if a prize ball number command is transmitted when there is an abnormality in the payout control, the power is reset. For example, the memorized number of prize balls may be lost, which may cause a great disadvantage to the player. Therefore, in this embodiment, when there is an abnormality in the payout control, the prize ball number command is transmitted while the memory of the prize ball number is retained on the game control microcomputer 560 side backed up by the backup power source. It is possible to prevent such a disadvantage from occurring by controlling to hold.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、接続確認コマンドを送信した後、接続OKコマンドを受信できなかった場合には、接続確認コマンドを送信する時間間隔を長くし、特定期間(本例では10秒)が経過する毎に接続確認コマンドを送信する制御に切り替える。そのため、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信状態が不安定な状態では、接続確認コマンドを送信するまでのインターバル期間を長くすることによって、接続確認コマンドの送信処理を無駄に実行する頻度を低減し、無駄な処理負担を軽減することができる。   Further, according to this embodiment, the game control microcomputer 560 increases the time interval for transmitting the connection confirmation command when the connection OK command cannot be received after transmitting the connection confirmation command. Whenever a specific period (10 seconds in this example) elapses, the control is switched to the connection confirmation command. Therefore, in a state where the communication state between the game control microcomputer 560 and the payout control microcomputer 370 is unstable, the connection confirmation command transmission process is performed by extending the interval period until the connection confirmation command is transmitted. Can be performed less frequently, and a wasteful processing load can be reduced.

また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定のエラー(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)が発生したときに、遊技制御用マイクロコンピュータ560が所定のエラーを認識可能な情報を、接続OKコマンドの特定ビットを異ならせることにより設定し、当該設定がなされた接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。また、遊技制御用マイクロコンピュータ560は、受信した接続OKコマンドに設定された所定のエラーを認識可能な情報をそのまま設定した枠状態表示コマンドを演出制御用マイクロコンピュータ100に送信する。そして、演出制御用マイクロコンピュータ100は、枠状態表示コマンドを受信したことにもとづいて、演出装置(本例では、演出表示装置9)を制御して所定のエラーが発生したことを報知する制御を行う。そのため、演出装置を用いて所定のエラーが発生したことを報知することができるとともに、遊技制御用マイクロコンピュータ560の処理負担を軽減することができる。   Further, according to this embodiment, the payout control microcomputer 370 causes the game to occur when a predetermined error (in this example, a prize ball error, a full tank error, a ball shortage error, and a payout number error) occurs. Information that allows the control microcomputer 560 to recognize a predetermined error is set by changing a specific bit of the connection OK command, and the connection OK command in which the setting has been made is transmitted to the game control microcomputer 560. The game control microcomputer 560 transmits a frame state display command in which information capable of recognizing a predetermined error set in the received connection OK command is set as it is to the effect control microcomputer 100. Then, based on the reception of the frame state display command, the production control microcomputer 100 controls the production device (the production display device 9 in this example) to notify that a predetermined error has occurred. Do. Therefore, it is possible to notify that a predetermined error has occurred using the effect device, and to reduce the processing load on the game control microcomputer 560.

また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、賞球や貸し球の払い出すべき数の未払出の遊技球を超えた払出過多数と払い出すべき数の未払出の遊技球に満たなかった払出不足数とを払出個数異常カウンタを用いて累積的にカウントする。そして、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(本例では2000)以上となると、払出制御の実行を停止させて払出停止状態に制御する。そのため、各々の払出制御について判断するのではなく、累積的にカウントアップされた払出個数異常カウンタの値にもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技球を払い出させる行為をより的確に防止することを可能とすることができる。   In addition, according to this embodiment, the payout control microcomputer 370 has a payout excess exceeding the number of unpaid game balls to be paid out and the number of unpaid games to be paid out. The number of shortage payouts that did not reach the ball is cumulatively counted using a payout number abnormality counter. When the value of the payout number abnormality counter becomes equal to or greater than a predetermined payout number error error determination value (2000 in this example), the payout control is stopped and the payout stop state is controlled. Therefore, instead of judging each payout control, the payout control is executed by comprehensively judging the payout control executed under an abnormal condition based on the value of the payout number abnormality counter counted up cumulatively. Can be stopped. Therefore, it is possible to more accurately prevent the act of illegally paying out the game ball.

また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定基準数(本例では2)以上の払出不足数が発生したときに払出個数異常カウンタの値をカウントアップする。そのため、必要以上に払出制御の実行を停止させてしまう不都合を防止することができる。すなわち、遊技機の稼働状態ではごく少数(本例では1個)の払出不足数が生じることが少なからずあるのであるから、所定基準数(本例では2)以上の払出不足数が発生したことを条件としてカウントアップを行うことによって、必要以上に払出制御の実行を停止させてしまうことを防止している。   Further, according to this embodiment, the payout control microcomputer 370 counts up the value of the payout number abnormality counter when a payout shortage number equal to or greater than a predetermined reference number (2 in this example) occurs. Therefore, it is possible to prevent inconvenience that the execution of the payout control is stopped more than necessary. In other words, since there are not a few small numbers (1 in this example) of insufficient payouts in the operating state of the gaming machine, the number of insufficient payouts exceeding the predetermined reference number (2 in this example) has occurred. By counting up on the condition, it is possible to prevent the execution of the payout control from being stopped more than necessary.

また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、払出不足数が発生したときに球払出装置97を駆動制御して遊技球を1つだけ払い出させる再払出制御を実行する。そして、再払出制御を実行しても遊技球の払い出しを検出しなかった場合には払出個数異常カウンタの値をカウントアップする。そのため、払出不足数が少ない場合でも適切に払出個数異常カウンタのカウント値に反映させて払出制御の実行の停止を行うことができ、不正に遊技球を払い出させる行為を防止する不正対策をより強化することができる。   Further, according to this embodiment, the payout control microcomputer 370 executes re-payout control for driving and controlling the ball payout device 97 to pay out only one game ball when a payout shortage occurs. . If the payout of the game ball is not detected even after the re-payout control is executed, the value of the payout number abnormality counter is counted up. Therefore, even if the number of payout shortages is small, it is possible to appropriately stop the execution of payout control by reflecting it in the count value of the payout number abnormality counter, and to take illegal measures to prevent the act of illegally paying out game balls. Can be strengthened.

また、この実施の形態によれば、払出個数異常エラーが検出されて払出停止状態に制御されたときに、遊技機の電源リセットが行われたことを条件として払出停止状態を解除する。そのため、払出停止状態を解除するためには遊技店員が異常状態を確認した上で解除操作を行わなければならないので、不正に払出停止状態を解除されて異常な状態のまま遊技を継続されてしまうことを防止することができる。   Further, according to this embodiment, when the payout number abnormality error is detected and controlled to the payout stop state, the payout stop state is canceled on condition that the power supply of the gaming machine is reset. Therefore, in order to release the payout stop state, the game store clerk must confirm the abnormal state and then perform the release operation. Therefore, the payout stop state is canceled illegally and the game is continued in the abnormal state. This can be prevented.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560が備えるRAM55は、遊技機への電力供給が停止してもバックアップ電源により記憶内容を所定期間保持可能である。また、遊技制御用マイクロコンピュータ560は、払出停止状態に制御されているときには、入賞が生じても賞球個数コマンドの送信を禁止する。そのため、不正行為によらない遊技機側に起因する異常により払出停止状態となったにもかかわらずRAM55記憶された賞球個数(具体的には、賞球コマンド出力カウンタの値)がクリアされてしまう事態を防止することができ、遊技者に対して不利益が生じることを防止することができる。   Further, according to this embodiment, the RAM 55 provided in the gaming control microcomputer 560 can retain the stored contents for a predetermined period by the backup power supply even when the power supply to the gaming machine is stopped. In addition, when the game control microcomputer 560 is controlled to be in the payout stop state, the game control microcomputer 560 prohibits the transmission of the winning ball number command even if a winning occurs. For this reason, the number of prize balls stored in the RAM 55 (specifically, the value of the prize ball command output counter) is cleared even though the payout is stopped due to an abnormality caused by the gaming machine side that is not caused by fraud. It is possible to prevent such a situation from occurring, and it is possible to prevent the player from being disadvantaged.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信するタイミングで賞球個数カウンタに賞球個数を加算し、賞球情報を受信したことにもとづいて賞球個数カウンタの値を10減算する。そして、賞球個数カウンタの値が所定の賞球不足判定値(本例では501)以上となったことにもとづいて賞球不足エラーと判定し、賞球個数カウンタの値が所定の賞球過剰判定値(本例では0)未満となったことにもとづいて賞球過剰エラーと判定する。そのため、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との双方で異常状態を検出することができる。従って、不正に遊技球を払い出させる行為を防止する不正対策をより強固なものとすることができる。   Further, according to this embodiment, the game control microcomputer 560 adds the prize ball number to the prize ball number counter at the timing of sending the prize ball number command, and receives the prize ball information based on the received prize ball information. Subtract 10 from the value of the ball counter. Then, based on the fact that the value of the prize ball number counter is equal to or greater than a predetermined prize ball shortage determination value (501 in this example), it is determined that there is a prize ball shortage error. Based on the fact that it is less than the determination value (0 in this example), it is determined that there is an excessive prize ball error. Therefore, the abnormal state can be detected by both the game control microcomputer 560 and the payout control microcomputer 370. Accordingly, it is possible to further strengthen the fraud countermeasure that prevents the act of illegally paying out the game ball.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との通信の接続状態を示す接続信号を出力ポート57を介して払出制御用マイクロコンピュータ370に送信するように構成されているので、払出制御用マイクロコンピュータ370側でどのタイミングにおいても通信の接続状態を確認することができるため、通信の接続状態が異常状態であるときに賞球の払い出しが行われることを確実に防止することができる。   Further, according to this embodiment, the game control microcomputer 560 transmits a connection signal indicating a connection state of communication with the payout control microcomputer 370 to the payout control microcomputer 370 via the output port 57. Since the payout control microcomputer 370 can confirm the communication connection state at any timing, the payout of the prize ball is performed when the communication connection state is abnormal. This can be surely prevented.

なお、上記の実施の形態では、遊技制御用マイクロコンピュータ560が、通常時は接続OKコマンドの受信後1秒経過後に接続確認コマンドを送信し、通信エラーが発生しているときは(例えば、接続OKコマンドを受信できないときには)、接続確認コマンドの送信後10秒経過後に接続確認コマンドを送信するように構成し、1秒や10秒の期間をタイマ(ソフトウェアで構成されたカウンタ)で計測するように構成していたが、内部クロックによってハードウェアとして更新されるカウンタが所定値になったとき(1秒や10秒)発生する内部割込で接続確認コマンドを送信するようにしてもよい。その場合、接続OKコマンドの受信によってカウンタをクリアするようにするか、所定値となって内部割込を発生させたらカウンタがクリアされるものであればよい。   In the above embodiment, the game control microcomputer 560 normally transmits a connection confirmation command 1 second after the connection OK command is received, and when a communication error occurs (for example, connection When the OK command cannot be received), the connection confirmation command is transmitted 10 seconds after the connection confirmation command is transmitted, and the period of 1 second or 10 seconds is measured by a timer (a counter configured by software). However, the connection confirmation command may be transmitted by an internal interrupt that occurs when the counter updated as hardware by the internal clock reaches a predetermined value (1 second or 10 seconds). In that case, the counter may be cleared by reception of the connection OK command, or the counter may be cleared if an internal interrupt is generated with a predetermined value.

また、この実施の形態によれば、乱数回路590は、数値データをあらかじめ定められた手順により更新して出力する乱数生成回路553や乱数列変更回路555と、出力された数値データを乱数値として取り込んで格納する乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)と、始動入賞信号SSにもとづく乱数ラッチ信号LL1,LL2の入力にもとづいて乱数生成回路553や乱数列変更回路555から出力された数値データが乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納されたときにオン状態にされて新たな数値データの格納を制限する一方、乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納された数値データが乱数値の読出タイミングにてCPU56により読み出されたときにオフ状態にされて新たな数値データの格納を許可する乱数ラッチフラグRDFM0,RDFM1とを含む。また、遊技制御用マイクロコンピュータ560は、CPU56による遊技制御が開始されるときに、乱数ラッチフラグRDFM0,RDFM1をオフ状態にする。そのため、そのような構成によれば、乱数ラッチ信号LL1,LL2の入力にもとづいて乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納された数値データを、正確な乱数値として取得することができる。また、遊技機に供給される電源が不安定な状態で誤って乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納された数値データを取得してしまう事態も防止することができる。   Further, according to this embodiment, the random number circuit 590 includes the random number generation circuit 553 and the random number sequence change circuit 555 that update and output numerical data according to a predetermined procedure, and the output numerical data as a random value. The random number value register 559A (R1D) and the random number value register 559B (R2D) to be captured and stored and the random number latch signals LL1 and LL2 based on the start winning signal SS are output from the random number generation circuit 553 and the random number sequence change circuit 555. On the other hand, the stored numerical data is turned on when it is stored in the random value register 559A (R1D) or the random value register 559B (R2D), and storage of new numerical data is restricted, while the random value register 559A (R1D) The numerical data stored in the random value register 559B (R2D) is C at the read timing of the random value. Random latch flag RDFM0 which is turned off to allow the storage of new numerical data when read by U56, and a RDFM1. Further, the game control microcomputer 560 turns off the random number latch flags RDFM0 and RDFM1 when the game control by the CPU 56 is started. Therefore, according to such a configuration, numerical data stored in the random value register 559A (R1D) or the random value register 559B (R2D) is acquired as an accurate random value based on the input of the random number latch signals LL1 and LL2. can do. In addition, it is possible to prevent a situation in which numerical data stored in the random value register 559A (R1D) or the random value register 559B (R2D) is erroneously acquired when the power supplied to the gaming machine is unstable. .

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560のシステムリセットが解除されてCPU56による遊技制御の実行が開始されるときに、乱数ラッチフラグRDFM0,RDFM1をオフ状態にする。そのため、例えば、電源投入時などの電源電圧が不安定な状態で誤って乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納された数値データを乱数値として取得してしまうことを防止することができる。   Further, according to this embodiment, when the system reset of the game control microcomputer 560 is released and the execution of the game control by the CPU 56 is started, the random number latch flags RDFM0 and RDFM1 are turned off. Therefore, for example, the numerical data stored in the random value register 559A (R1D) or the random value register 559B (R2D) is erroneously acquired as a random value when the power supply voltage is unstable, such as when the power is turned on. Can be prevented.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、電源監視回路920から検出信号が出力された後、動作停止状態となるまで、検出信号の入力状態を繰り返し判定し、検出信号が入力されていない旨の判定がなされたときに、遊技制御処理プログラムの先頭から遊技制御の実行を開始する。また、遊技制御用マイクロコンピュータ560は、検出信号が入力されていない旨の判定がなされた後、遊技制御処理プログラムの先頭から遊技制御の実行を開始するより前に、乱数ラッチフラグRDFM0,RDFM1をオフ状態にする。そのため、例えば、所定電源電圧の低下時などの電源電圧が不安定な状態で誤って乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納された数値データを乱数値として取得してしまうことを防止することができる。   Also, according to this embodiment, the game control microcomputer 560 repeatedly determines the input state of the detection signal until the operation stop state after the detection signal is output from the power supply monitoring circuit 920, and the detection signal When it is determined that is not input, execution of game control is started from the beginning of the game control processing program. In addition, the game control microcomputer 560 turns off the random number latch flags RDFM0 and RDFM1 after it is determined that the detection signal is not input and before the execution of the game control is started from the head of the game control processing program. Put it in a state. Therefore, for example, numerical data stored in the random value register 559A (R1D) or the random value register 559B (R2D) by mistake when the power supply voltage is unstable such as when the predetermined power supply voltage drops is obtained as a random value. Can be prevented.

また、この実施の形態によれば、乱数生成回路553や乱数列変更回路555は、数値データを更新可能な所定の範囲において、所定の更新初期値から所定の更新最終値まで循環的に数値データを更新する。また、遊技制御用マイクロコンピュータ560は、当該遊技制御用マイクロコンピュータがシステムリセットされるごとに、所定の更新初期値を可変設定可能である。そのため、システムリセットの発生後に乱数値となる数値データを特定することが困難になり、狙い撃ちなどによる不正行為を、確実に防止することができる。   Further, according to this embodiment, the random number generation circuit 553 and the random number sequence change circuit 555 cyclically numerical data from a predetermined update initial value to a predetermined update final value within a predetermined range in which the numerical data can be updated. Update. Further, the game control microcomputer 560 can variably set a predetermined update initial value every time the game control microcomputer is reset. For this reason, it becomes difficult to specify numerical data that becomes a random value after the occurrence of a system reset, and it is possible to reliably prevent fraudulent acts such as aiming.

また、この実施の形態によれば、遊技機への電力供給が開始された後、CPU56の動作とは別個に数値をカウントするフリーランカウンタ554Aを備える。また、遊技制御用マイクロコンピュータ560は、フリーランカウンタ554Aによってカウントされた数値を用いて、所定の更新初期値を決定する。そのため、CPU56の動作態様から乱数値となる数値データを特定することが困難になり、狙い撃ちなどによる不正行為を、確実に防止することができる。   In addition, according to this embodiment, after the power supply to the gaming machine is started, the free run counter 554A that counts the numerical value separately from the operation of the CPU 56 is provided. In addition, the game control microcomputer 560 determines a predetermined update initial value using the numerical value counted by the free-run counter 554A. Therefore, it becomes difficult to specify numerical data that is a random number value from the operation mode of the CPU 56, and it is possible to reliably prevent fraudulent acts such as aiming.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、CPU56以外による不揮発性メモリ(ROM54)の外部読出を制限する内部リソースアクセス制御回路501Aを含む。そのため、不揮発性メモリ(ROM54)に記憶されている制御プログラムなどを遊技制御用マイクロコンピュータ560の外部から読み出して解析などをすることが困難になり、制御プログラムの解析結果などにもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続することによる不正行為を、確実に防止することができる。   In addition, according to this embodiment, game control microcomputer 560 includes internal resource access control circuit 501A for restricting external reading of nonvolatile memory (ROM 54) by other than CPU 56. Therefore, it becomes difficult to read out the control program stored in the non-volatile memory (ROM 54) from the outside of the game control microcomputer 560 and analyze it, and so on. Unauthorized acts caused by connecting the “hanging board” can be surely prevented.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560の外部にて乱数用クロック信号を生成して、乱数回路に供給する乱数用クロック生成回路112と、CPU56に供給される制御用クロック信号を生成する制御用クロック生成回路111やクロック回路502とを備える。また、遊技制御用マイクロコンピュータ560は、乱数用クロック生成回路112から供給される乱数用クロック信号の入力状態を制御用クロック生成回路111やクロック回路502にて生成された制御用クロック信号と比較することにより、乱数用クロック信号の入力状態に異常が発生したか否かを判定する。そのため、乱数値となる数値データの更新動作に異常が発生している状態で遊技制御が実行されてしまうことを防止できる。   Further, according to this embodiment, the random number clock generation circuit 112 that generates a random number clock signal outside the game control microcomputer 560 and supplies the random number clock signal to the random number circuit, and the control clock supplied to the CPU 56 A control clock generation circuit 111 and a clock circuit 502 that generate signals are provided. The game control microcomputer 560 compares the input state of the random number clock signal supplied from the random number clock generation circuit 112 with the control clock signal generated by the control clock generation circuit 111 or the clock circuit 502. Thus, it is determined whether or not an abnormality has occurred in the input state of the random number clock signal. Therefore, it is possible to prevent the game control from being executed in a state where an abnormality has occurred in the operation of updating the numerical data that becomes the random value.

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、所定の初期設定において不揮発性メモリ(ROM54)の記憶内容が変更されたか否かを検査するセキュリティチェックを実行する。また、遊技制御用マイクロコンピュータ560は、セキュリティチェックの実行時間を可変設定可能に構成されている。そのため、遊技制御の実行開始タイミングを特定することが困難になり、初期設定動作などの解析結果にもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続することによる不正行為を、確実に防止することができる。   Further, according to this embodiment, the game control microcomputer 560 executes a security check that checks whether or not the storage content of the nonvolatile memory (ROM 54) has been changed in a predetermined initial setting. The game control microcomputer 560 is configured to be able to variably set the security check execution time. Therefore, it becomes difficult to specify the execution start timing of the game control, and it is possible to reliably prevent a sniper based on an analysis result such as an initial setting operation or an illegal act by connecting a so-called “hanging board”. .

また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、乱数値の読出タイミングにて特図保留メモリにおける保留記憶数が所定の上限数(例えば、4)に達しているときに、乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D)に格納された数値データを読み出すことにより乱数ラッチフラグRDFM0,RDFM1をオフ状態にする。そのため、保留記憶数が所定の上限数に達した後、上限数未満となってから乱数値の読出タイミングとなったときに、始動入賞信号SSにもとづく乱数ラッチ信号LL1,LL2の入力にもとづく正確な乱数値を取得することができる。   In addition, according to this embodiment, the game control microcomputer 560, when the number of reserved storage in the special figure reservation memory reaches a predetermined upper limit number (for example, 4) at the read timing of the random number value, By reading the numerical data stored in the random value register 559A (R1D) and the random value register 559B (R2D), the random number latch flags RDFM0 and RDFM1 are turned off. Therefore, after the reserved storage number reaches the predetermined upper limit number, when the random number value is read out after the number becomes less than the upper limit number, it is accurate based on the input of the random number latch signals LL1 and LL2 based on the start winning signal SS Random numbers can be obtained.

なお、上記の実施の形態において本発明による遊技機としてパチンコ機を適用した場合について説明したが、本発明による遊技機としてパロット機を適用することも可能である。この場合、上記の実施の形態で示した構成を適用して、電力供給が開始されたときに、クリアスイッチから操作信号が入力されているか否かを判定し、操作信号が入力されていると判定されたときに、遊技機内部に外部から接触可能な開放状態であるか否かを判定するようにすればよい。そして、クリアスイッチからの操作信号を入力しているとともに開放状態であると判定したことにもとづいて初期化処理を実行する一方、クリアスイッチからの操作信号を入力していても開放状態でなければ初期化処理の実行を制限するようにすればよい。   In the above embodiment, the case where the pachinko machine is applied as the gaming machine according to the present invention has been described. However, the parrot machine can also be applied as the gaming machine according to the present invention. In this case, when the configuration shown in the above embodiment is applied and power supply is started, it is determined whether or not an operation signal is input from the clear switch, and the operation signal is input. When it is determined, it may be determined whether or not the gaming machine is in an open state in which it can be contacted from the outside. An initialization signal is input based on the determination that the operation signal is input from the clear switch and the open state, and the operation signal is not open even if the operation signal is input from the clear switch. The execution of the initialization process may be limited.

以下、スロットマシンの実施例について図面(図107および図108)を用いて説明する。本実施例(変形例)のスロットマシン601は、図107に示すように、前面が開口する筐体(図示略)と、この筺体の側端に回動自在に枢支された前面扉と、から構成されている。   Hereinafter, embodiments of the slot machine will be described with reference to the drawings (FIGS. 107 and 108). As shown in FIG. 107, the slot machine 601 of the present embodiment (modified example) includes a housing (not shown) having an open front surface, a front door pivotally supported on a side end of the housing, It is composed of

本実施例のスロットマシン601の筐体内部には、外周に複数種の図柄が配列されたリール602L、602C、602R(以下、左リール、中リール、右リールともいう)が水平方向に並設されており、図107に示すように、これらリール602L、602C、602Rに配列された図柄のうち連続する3つの図柄が前面扉に設けられた透視窓603から見えるように配置されている。   Inside the casing of the slot machine 601 of the present embodiment, reels 602L, 602C, and 602R (hereinafter also referred to as a left reel, a middle reel, and a right reel) in which a plurality of types of symbols are arranged on the outer periphery are arranged in parallel in the horizontal direction. As shown in FIG. 107, three consecutive symbols out of the symbols arranged on the reels 602L, 602C, and 602R are arranged so as to be seen from the see-through window 603 provided on the front door.

リール602L、602C、602Rの外周部には、例えば、「赤7(図中白抜き7)」、「BAR」、「リプレイ」、「スイカ」、「チェリー」、「ベル」といった互いに識別可能な複数種類の図柄が所定の順序で、それぞれ21個ずつ描かれている。リール602L、602C、602Rの外周部に描かれた図柄は、透視窓603において各々上中下三段に表示される。   For example, “red 7 (outline 7 in the figure)”, “BAR”, “replay”, “watermelon”, “cherry”, “bell” can be distinguished from each other on the outer periphery of the reels 602L, 602C, 602R. A plurality of types of symbols are drawn 21 in a predetermined order. The symbols drawn on the outer peripheries of the reels 602L, 602C, and 602R are displayed on the perspective window 603 in upper, middle, and lower three stages.

各リール602L、602C、602Rは、各々対応して設けられリールモータ632L、632C、632R(図108参照)によって回転させることで、各リール602L、602C、602Rの図柄が透視窓603に連続的に変化しつつ表示されるとともに、各リール602L、602C、602Rの回転を停止させることで、透視窓603に3つの連続する図柄が表示結果として導出表示されるようになっている。   The reels 602L, 602C, and 602R are provided in correspondence with each other and are rotated by reel motors 632L, 632C, and 632R (see FIG. 108), so that the symbols of the reels 602L, 602C, and 602R are continuously provided in the see-through window 603. In addition to being displayed while changing, by stopping the rotation of the reels 602L, 602C, and 602R, three continuous symbols are derived and displayed on the fluoroscopic window 603 as display results.

また、前面扉には、メダルを投入可能なメダル投入部604、メダルが払い出されるメダル払出口609、クレジット(遊技者所有の遊技用価値として記憶されているメダル数)を用いてメダル1枚分の賭数を設定する際に操作される1枚BETスイッチ605、クレジットを用いて、その範囲内において遊技状態に応じて定められた規定数の賭数(本実施例では通常遊技状態においては「3」、レギュラーボーナスにおいては「1」)を設定する際に操作されるMAXBETスイッチ606、クレジットとして記憶されているメダル及び賭数の設定に用いたメダルを精算する(クレジット及び賭数の設定に用いた分のメダルを返却させる)際に操作される精算スイッチ610、ゲームを開始する際に操作されるスタートスイッチ607、リール602L、602C、602Rの回転を各々停止する際に操作されるストップスイッチ608L、608C、608Rが設けられている。   Further, on the front door, a medal insertion unit 604 capable of inserting medals, a medal payout exit 609 from which medals are paid out, and credits (the number of medals stored as a player's own game value) are used for one medal. A single bet switch 605 that is operated when setting the bet number of the bet, and using a credit, a specified number of bet numbers determined according to the game state within the range (in this embodiment, in the normal game state, “ 3 ”, MAXBET switch 606 operated when setting“ 1 ”for the regular bonus), medals stored as credits and the medals used for setting the bet amount are settled (for setting the credit and bet number) A check switch 610 operated when the medal used is returned), a start switch 607 operated when starting the game, Le 602L, 602C, stop switch 608L is operated to stop each rotation of the 602R, 608C, 608R are provided.

また、前面扉には、クレジットとして記憶されているメダル枚数が表示されるクレジット表示器611、後述するビッグボーナス中のメダルの獲得枚数やエラー発生時にその内容を示すエラーコード等が表示される遊技補助表示器612、入賞の発生により払い出されたメダル枚数が表示されるペイアウト表示器613が設けられている。   Also, on the front door, a credit indicator 611 that displays the number of medals stored as credits, a game that displays the number of medals acquired in a big bonus, which will be described later, and an error code indicating the contents when an error occurs, etc. An auxiliary indicator 612 and a payout indicator 613 for displaying the number of medals paid out due to the occurrence of a winning are provided.

また、前面扉には、賭数が1設定されている旨を点灯により報知する1BETLED614、賭数が2設定されている旨を点灯により報知する2BETLED615、賭数が3設定されている旨を点灯により報知する3BETLED616、メダルの投入が可能な状態を点灯により報知する投入要求LED617、スタートスイッチ607の操作によるゲームのスタート操作が有効である旨を点灯により報知するスタート有効LED618、ウェイト(前回のゲーム開始から一定期間経過していないためにリールの回転開始を待機している状態)中である旨を点灯により報知するウェイト中LED619、後述するリプレイゲーム中である旨を点灯により報知するリプレイ中LED620が設けられている。   Also, on the front door, 1 BETLED 614 that notifies that the bet number is set by 1 is lit, 2 BETLED 615 that notifies that the bet number is set is 2 and lit that 3 bets are set 3BETLED 616 to be notified by, lighting request LED 617 to notify that the medal can be inserted by lighting, start valid LED 618 to notify that the game start operation by operating the start switch 607 is effective, weight (previous game) (Waiting to start reel rotation since a certain period of time has not elapsed since the start) LED 619 during waiting to notify that it is on, LED during replay 620 to notify that it is in a replay game to be described later Is provided.

また、MAXBETスイッチ606の内部には、1枚BETスイッチ605及びMAXBETスイッチ606の操作による賭数の設定操作が有効である旨を点灯により報知するBETスイッチ有効LED621(図108参照)が設けられており、ストップスイッチ608L、608C、608Rの内部には、該当するストップスイッチ608L、608C、608Rによるリールの停止操作が有効である旨を点灯により報知する左、中、右停止有効LED622L、622C、622R(図108参照)がそれぞれ設けられている。   Further, inside the MAXBET switch 606, a BET switch valid LED 621 (see FIG. 108) is provided to notify that the bet number setting operation by the operation of the single BET switch 605 and the MAXBET switch 606 is valid. In the stop switches 608L, 608C, 608R, the left, middle, and right stop valid LEDs 622L, 622C, 622R that notify that the reel stop operation by the corresponding stop switches 608L, 608C, 608R is valid are turned on. (See FIG. 108).

前面扉の内側上方中央位置には、遊技に関連する演出画像等を表示可能な液晶表示器651が設けられており、その前方に配置された液晶表示窓670を通して表示画面に表示される表示画像を視認できるようになっている。また、該液晶表示器651の左右側には、遊技に関連する演出を行う2つの可動役物675L,675Rがそれぞれ配設されており、左右の可動役物675L,675Rの前方に配置されるように前面扉に設けられた透明パネルからなる演出用透視窓671L,671Rから内部の可動役物675L,675Rを透視できるようになっている。   A liquid crystal display 651 capable of displaying an effect image or the like related to a game is provided at the upper center position inside the front door, and a display image displayed on the display screen through a liquid crystal display window 670 disposed in front of the liquid crystal display 651. Can be visually recognized. Further, on the left and right sides of the liquid crystal display 651, two movable accessories 675L and 675R that perform effects related to the game are respectively disposed, and are disposed in front of the left and right movable combinations 675L and 675R. As described above, the internal movable accessory 675L and 675R can be seen through from the production perspective windows 671L and 671R made of a transparent panel provided on the front door.

また、左右の可動役物675L,675Rと演出用透視窓671L,671Rとの間には、左右の可動役物675L,675Rを演出用透視窓671L,671Rから透視不可能に隠蔽する隠蔽状態と、左右の可動役物675L,675Rを演出用透視窓671L,671Rから透視可能とする非隠蔽状態と、に変更可能な2つのシャッタ装置(図示せず)を構成する無端状のシャッタシートが配設されている。   Further, between the left and right movable combination objects 675L and 675R and the production perspective windows 671L and 671R, there is a concealment state in which the left and right movable combinations 675L and 675R are hidden from the production perspective windows 671L and 671R so that they cannot be seen through. , Endless shutter sheets constituting two shutter devices (not shown) that can be changed to a non-hidden state in which the left and right movable accessories 675L and 675R can be seen through the production perspective windows 671L and 671R are arranged. It is installed.

また、前面扉の内側には、所定のキー操作によりRAM異常エラーを除くエラー状態及び打止状態を解除するためのリセット操作を検出するリセットスイッチ623、設定値の変更中や設定値の確認中にその時点の設定値が表示される設定値表示器624、メダル投入部604から投入されたメダルの流路を、筐体内部に設けられたホッパータンク(図示略)側またはメダル払出口609側のいずれか一方に選択的に切り替えるための流路切替ソレノイド630、メダル投入部604から投入され、ホッパータンク側に流下したメダルを検出する投入メダルセンサ631が設けられている。   Further, inside the front door, a reset switch 623 for detecting a reset operation for canceling an error state and a stop state excluding a RAM abnormality error by a predetermined key operation, changing a set value or checking a set value Set value display 624 for displaying the set value at that time, and the flow path of medals inserted from the medal insertion unit 604, the hopper tank (not shown) side provided inside the housing or the medal payout outlet 609 side A flow path switching solenoid 630 for selectively switching to any one of the above, a insertion medal sensor 631 for detecting a medal that has been inserted from the medal insertion unit 604 and flowed down to the hopper tank side is provided.

筐体内部には、前述したリール602L、602C、602R、リールモータ632L、632C、632R、各リール602L、602C、602Rのリール基準位置をそれぞれ検出可能なリールセンサ633からなるリールユニット(図示略)、メダル投入部604から投入されたメダルを貯留するホッパータンク(図示略)、ホッパータンクに貯留されたメダルをメダル払出口609より払い出すためのホッパーモータ634、ホッパーモータ634の駆動により払い出されたメダルを検出する払出センサ635、電源ボックス(図示略)が設けられている。   Inside the casing, a reel unit (not shown) including reel sensors 633 capable of detecting the reel reference positions of the reels 602L, 602C, 602R, reel motors 632L, 632C, 632R, and reels 602L, 602C, 602R, respectively. , A hopper tank (not shown) for storing medals inserted from the medal insertion unit 604, a hopper motor 634 for paying out medals stored in the hopper tank from the medal payout outlet 609, and the hopper motor 634 being paid out. A payout sensor 635 for detecting a medal and a power supply box (not shown) are provided.

電源ボックスの前面には、ビッグボーナス終了時に打止状態(リセット操作がなされるまでゲームの進行が規制される状態)に制御する打止機能の有効/無効を選択するための打止スイッチ636、ビッグボーナス終了時に自動精算処理(クレジットとして記憶されているメダルを遊技者の操作によらず精算(返却)する処理)に制御する自動精算機能の有効/無効を選択するための自動精算スイッチ629、起動時に設定変更モードに切り替えるための設定キースイッチ637、通常時においてはRAM異常エラーを除くエラー状態や打止状態を解除するためのリセットスイッチとして機能し、設定変更モードにおいては内部抽選の当選確率(出玉率)の設定値を変更するための設定スイッチとして機能するリセット/設定スイッチ638、電源をON/OFFする際に操作される電源スイッチ639が設けられている。   On the front face of the power supply box, a stop switch 636 for selecting enable / disable of a stop function for controlling the stop state at the end of the big bonus (a state in which the progress of the game is restricted until a reset operation is performed), An automatic checkout switch 629 for selecting whether the automatic checkout function is valid / invalid for controlling automatic checkout processing (processing for adjusting (returning) medals stored as credits regardless of the player's operation) at the end of the big bonus, Setting key switch 637 for switching to the setting change mode at startup, functioning as a reset switch for canceling an error state or a stop state except for a RAM abnormality error in normal times, and winning probability of internal lottery in the setting change mode A reset / setting switch 638 that functions as a setting switch for changing the setting value of (delay rate) Power switch 639 is operated to ON / OFF the power is provided.

本実施例のスロットマシン601においてゲームを行う場合には、まず、メダルをメダル投入部604から投入するか、あるいはクレジットを使用して賭数を設定する。クレジットを使用するには1枚BETスイッチ605、またはMAXBETスイッチ606を操作すれば良い。遊技状態に応じて定められた規定数の賭数が設定されると、入賞ラインL1〜L5(図107参照)が有効となり、スタートスイッチ607の操作が有効な状態、すなわち、ゲームが開始可能な状態となる。尚、本実施例では、規定数の賭数として通常遊技状態においては3枚が定められており、レギュラーボーナス中においては、1枚が定められている。尚、遊技状態に対応する規定数を超えてメダルが投入された場合には、その分はクレジットに加算される。   When a game is played in the slot machine 601 of this embodiment, first, medals are inserted from the medal insertion unit 604, or credits are used to set the number of bets. In order to use the credit, the single BET switch 605 or the MAX BET switch 606 may be operated. When a predetermined number of bets determined according to the gaming state are set, the pay lines L1 to L5 (see FIG. 107) become valid, and the operation of the start switch 607 is valid, that is, the game can be started. It becomes a state. In the present embodiment, as the specified number of bets, three are determined in the normal gaming state, and one is determined in the regular bonus. If medals are inserted beyond the prescribed number corresponding to the gaming state, the amount is added to the credit.

ゲームが開始可能な状態でスタートスイッチ(レバーともいう)607を操作すると、各リール602L、602C、602Rが回転し、各リール602L、602C、602Rの図柄が連続的に変動する。この状態でいずれかのストップスイッチ608L、608C、608Rを操作すると、対応するリール602L、602C、602Rの回転が停止し、透視窓603に表示結果が導出表示される。   When the start switch (also referred to as a lever) 607 is operated while the game can be started, the reels 602L, 602C, and 602R rotate, and the symbols of the reels 602L, 602C, and 602R continuously change. When any one of the stop switches 608L, 608C, and 608R is operated in this state, the rotation of the corresponding reels 602L, 602C, and 602R is stopped, and the display result is derived and displayed on the fluoroscopic window 603.

そして全てのリール602L、602C、602Rが停止されることで1ゲームが終了し、有効化されたいずれかの入賞ラインL1〜L5上に予め定められた図柄の組み合わせ(以下、役とも呼ぶ)が各リール602L、602C、602Rの表示結果として停止した場合には入賞が発生し、その入賞に応じて定められた枚数のメダルが遊技者に対して付与され、クレジットに加算される。また、クレジットが上限数(本実施例では50)に達した場合には、メダルが直接メダル払出口609(図107参照)から払い出されるようになっている。尚、有効化された複数の入賞ライン上にメダルの払出を伴う図柄の組み合わせが揃った場合には、有効化された入賞ラインに揃った図柄の組み合わせそれぞれに対して定められた払出枚数を合計し、合計した枚数のメダルが遊技者に対して付与されることとなる。ただし、1ゲームで付与されるメダルの払出枚数には、上限(本実施例では、15枚)が定められており、合計した払出枚数が上限を超える場合には、上限枚数のメダルが付与されることとなる。また、有効化されたいずれかの入賞ラインL1〜L5上に、遊技状態の移行を伴う図柄の組み合わせが各リール602L、602C、602Rの表示結果として停止した場合には図柄の組み合わせに応じた遊技状態に移行するようになっている。   Then, when all the reels 602L, 602C and 602R are stopped, one game is completed, and a predetermined symbol combination (hereinafter also referred to as a role) is set on any of the activated pay lines L1 to L5. When the reels 602L, 602C, and 602R are stopped as a display result, a winning occurs, and a predetermined number of medals are awarded to the player and added to the credit. Further, when the credit reaches the upper limit (50 in this embodiment), medals are paid out directly from the medal payout exit 609 (see FIG. 107). If a combination of symbols with a medal payout is available on a plurality of activated pay lines, the total number of payouts determined for each combination of symbols on the activated pay line is totaled. The total number of medals is awarded to the player. However, an upper limit (15 in this embodiment) is set for the number of medals to be awarded in one game. When the total number of medals exceeds the upper limit, the upper limit number of medals is awarded. The Rukoto. In addition, when a combination of symbols accompanying the transition of the gaming state is stopped as a display result of each reel 602L, 602C, 602R on any of the activated pay lines L1 to L5, a game corresponding to the combination of symbols Transition to the state.

図108は、スロットマシン601の構成を示すブロック図である。スロットマシン601には、図108に示すように、遊技制御基板640(図4の遊技制御基板(主基板)31に相当)、演出制御基板690(図4の演出制御基板80に相当)、電源基板600が設けられており、遊技制御基板640によって遊技状態が制御され、演出制御基板690によって遊技状態に応じた演出が制御され、電源基板600によってスロットマシン601を構成する電気部品の駆動電源が生成され、各部に供給される。   FIG. 108 is a block diagram showing the configuration of the slot machine 601. As shown in FIG. 108, the slot machine 601 includes a game control board 640 (corresponding to the game control board (main board) 31 of FIG. 4), an effect control board 690 (corresponding to the effect control board 80 of FIG. 4), a power supply The board 600 is provided, the gaming state is controlled by the game control board 640, the presentation according to the gaming state is controlled by the presentation control board 690, and the power supply board 600 is used to drive electric power for the electrical components constituting the slot machine 601. Generated and supplied to each unit.

遊技制御基板640には、前述した1枚BETスイッチ605、MAXBETスイッチ606、スタートスイッチ607、ストップスイッチ608L、608C、608R、精算スイッチ610、リセットスイッチ623、投入メダルセンサ631、リールセンサ633が接続されているとともに、電源基板600を介して前述した払出センサ635、打止スイッチ636、自動精算スイッチ629、設定キースイッチ637、リセット/設定スイッチ638が接続されており、これら接続されたスイッチ類の検出信号が入力されるようになっている。   The game control board 640 is connected to the one-sheet BET switch 605, the MAXBET switch 606, the start switch 607, the stop switches 608L, 608C, and 608R, the settlement switch 610, the reset switch 623, the insertion medal sensor 631, and the reel sensor 633. In addition, the above-described payout sensor 635, stop switch 636, automatic settlement switch 629, setting key switch 637, and reset / setting switch 638 are connected via the power supply board 600, and detection of these connected switches is detected. A signal is input.

また、遊技制御基板640には、前述したクレジット表示器611、遊技補助表示器612、ペイアウト表示器613、1〜3BETLED614〜616、投入要求LED617、スタート有効LED618、ウェイト中LED619、リプレイ中LED620、BETスイッチ有効LED621、左、中、右停止有効LED622L、622C、622R、設定値表示器624、流路切替ソレノイド630、リールモータ632L、632C、632Rが接続されているとともに、電源基板600を介して前述したホッパーモータ634が接続されており、これら電気部品は、遊技制御基板640に搭載された後述のメイン制御部641(図4の遊技制御用マイクロコンピュータ560に相当)の制御に基づいて駆動されるようになっている。   The game control board 640 includes the credit display 611, the game auxiliary display 612, the payout display 613, 1 to 3 BET LEDs 614 to 616, the insertion request LED 617, the start valid LED 618, the waiting LED 619, the replaying LED 620, and the BET. A switch valid LED 621, left, middle, and right stop valid LEDs 622L, 622C, and 622R, a set value display 624, a flow path switching solenoid 630, and reel motors 632L, 632C, and 632R are connected to each other, and are described above via the power supply board 600. The hopper motor 634 is connected, and these electric components are driven based on control of a main control unit 641 (corresponding to the game control microcomputer 560 of FIG. 4) described later mounted on the game control board 640. Like That.

遊技制御基板640には、CPU641a、ROM641b、RAM641c、I/Oポート641dを備えたマイクロコンピュータからなり、遊技の制御を行うメイン制御部641、所定範囲(本実施例では0〜16383)の乱数を発生させる乱数発生回路642、乱数発生回路から乱数を取得するサンプリング回路643、遊技制御基板640に直接または電源基板600を介して接続されたセンサやスイッチ等のスイッチ類から入力された検出信号を検出するスイッチ検出回路644、リールモータ632L、632C、632Rの駆動制御を行うモータ駆動回路645、流路切替ソレノイド630の駆動制御を行うソレノイド駆動回路646、遊技制御基板640に接続された各種表示器やLEDの駆動制御を行うLED駆動回路647、スロットマシン601に供給される電源電圧を監視し、電圧低下を検出したときに、その旨を示す電圧低下信号をメイン制御部641に対して出力する電断検出回路648、電源投入時またはCPU641aからの初期化命令が入力されないときにCPU641aにリセット信号を与えるリセット回路649、その他各種デバイス、回路が搭載されている。   The game control board 640 includes a microcomputer having a CPU 641a, ROM 641b, RAM 641c, and I / O port 641d. A main control unit 641 for controlling the game, random numbers in a predetermined range (0 to 16383 in this embodiment) Random number generation circuit 642 for generating, sampling circuit 643 for obtaining random numbers from the random number generation circuit, detection signals input from switches such as sensors and switches connected directly to game control board 640 or via power supply board 600 Switch detection circuit 644, a motor drive circuit 645 that controls the drive of the reel motors 632L, 632C, and 632R, a solenoid drive circuit 646 that controls the drive of the flow path switching solenoid 630, various displays connected to the game control board 640, LED drive circuit for LED drive control 47. The power supply voltage supplied to the slot machine 601 is monitored, and when a voltage drop is detected, a power drop detection circuit 648 that outputs a voltage drop signal indicating that to the main control unit 641, A reset circuit 649 for providing a reset signal to the CPU 641a when an initialization command is not input from the CPU 641a, and other various devices and circuits are mounted.

CPU641aは、I/Oポート641dを介して演出制御基板690に、各種のコマンドを送信する。遊技制御基板640から演出制御基板690へ送信されるコマンドは一方向のみで送られ、演出制御基板690から遊技制御基板640へ向けてコマンドが送られることはない。遊技制御基板640から演出制御基板690へ送信されるコマンドの伝送ラインは、ストローブ(INT)信号ライン、データ伝送ライン、グラウンドラインから構成されているとともに、演出中継基板680を介して接続されており、遊技制御基板640と演出制御基板690とが直接接続されない構成とされている。   The CPU 641a transmits various commands to the effect control board 690 via the I / O port 641d. A command transmitted from the game control board 640 to the effect control board 690 is sent in only one direction, and no command is sent from the effect control board 690 to the game control board 640. A transmission line for commands transmitted from the game control board 640 to the effect control board 690 includes a strobe (INT) signal line, a data transmission line, and a ground line, and is connected via the effect relay board 680. The game control board 640 and the effect control board 690 are not directly connected.

演出制御基板690には、スロットマシン601の前面扉に配置された液晶表示器651(図107参照)、演出効果LED652、スピーカ653、654、リールLED655及びシャッタモータ810、シャッタセンサ811、可動物用LED881、可動物用モータ805、可動物用センサ829等の電気部品が接続されており、これら電気部品は、演出制御基板690に搭載された後述のサブ制御部691による制御に基づいて駆動されるようになっている。   On the effect control board 690, a liquid crystal display 651 (see FIG. 107) disposed on the front door of the slot machine 601, an effect LED 652, speakers 653 and 654, a reel LED 655, a shutter motor 810, a shutter sensor 811, and a movable object Electrical components such as the LED 881, the movable object motor 805, and the movable object sensor 829 are connected, and these electrical components are driven based on control by a later-described sub-control unit 691 mounted on the effect control board 690. It is like that.

演出制御基板690には、メイン制御部641と同様にCPU691a、ROM691b、RAM691c、I/Oポート691dを備えたマイクロコンピュータにて構成され、演出の制御を行うサブ制御部691、演出制御基板690に接続された液晶表示器651の駆動制御を行う液晶駆動回路692、演出効果LED652、リールLED655、可動物用LED881の駆動制御を行うLED駆動回路693、スピーカ653、654からの音声出力制御を行う音声出力回路694、電源投入時またはCPU691aからの初期化命令が入力されないときにCPU691aにリセット信号を与えるリセット回路695、シャッタセンサ811、可動物用センサ829やスイッチ等のスイッチ類から入力された検出信号を検出するスイッチ検出回路696、シャッタモータ810及び可動物用モータ805の駆動制御を行うモータ駆動回路697やその他の回路等、が搭載されており、CPU691aは、遊技制御基板640から送信されるコマンドを受けて、演出を行うための各種の制御を行うとともに、演出制御基板690に搭載された制御回路の各部を直接的または間接的に制御する。   The effect control board 690 is composed of a microcomputer having a CPU 691a, a ROM 691b, a RAM 691c, and an I / O port 691d in the same manner as the main control part 641, and includes a sub-control part 691 for effect control and an effect control board 690. A liquid crystal drive circuit 692 that controls the drive of the connected liquid crystal display 651, an effect effect LED 652, a reel LED 655, an LED drive circuit 693 that controls the drive of the movable object LED 881, and a sound that controls audio output from the speakers 653 and 654. Output circuit 694, detection signal input from switches such as a reset circuit 695 that provides a reset signal to the CPU 691a when the power is turned on or when an initialization command is not input from the CPU 691a, a shutter sensor 811, a movable object sensor 829, and switches Detect the switch The CPU 691a receives a command transmitted from the game control board 640, and is mounted with a motor driving circuit 697 for controlling the driving of the H detection circuit 696, the shutter motor 810, and the movable object motor 805. In addition to performing various controls for performing effects, each part of the control circuit mounted on the effect control board 690 is controlled directly or indirectly.

次に、メイン制御部641により実行される内部抽選の処理について説明する。スタートスイッチ607がオンしたタイミングで、サンプリング回路643が乱数発生回路642によってカウントされている数値(乱数)を取得(抽出)する。サンプリング回路643は、乱数として取得した数値をメイン制御部641におけるCPU641aに出力する。   Next, the internal lottery process executed by the main control unit 641 will be described. At the timing when the start switch 607 is turned on, the sampling circuit 643 acquires (extracts) a numerical value (random number) counted by the random number generation circuit 642. The sampling circuit 643 outputs the numerical value acquired as a random number to the CPU 641a in the main control unit 641.

メイン制御部641におけるCPU641aは、サンプリング回路643から取得した数値を、ROM641bに格納されている内部抽選用のテーブルにおける役(小役・再遊技役・特別役など)毎に設定された判定値と比較することによって、小役・再遊技役・特別役に当選したか否かを判定する。また、内部抽選用のテーブルとして、設定値・遊技状態(通常遊技状態、レギュラーボーナス)に応じてメダルの払出率が変わるように複数のテーブルが設けられている。例えば、内部抽選用のテーブルには、小役(チェリー、ベル)・再遊技役(リプレイ)・特別役(レギュラーボーナス、ビッグボーナス)・はずれのそれぞれに対して複数の判定値が設定される。また、例えば、リセット/設定スイッチ638によって設定可能な設定値として「1」から「6」が設けられている場合に、設定値の数字が大きいほどメダルの払出率が変わるように判定値が割り振られたテーブルが用いられる。また、遊技状態が通常遊技状態の場合には、小役・再遊技役・特別役のいずれも当選可能となるように各々の役およびはずれに判定値が割り振られたテーブルが用いられ、遊技状態がレギュラーボーナスの場合には、小役のみ当選可能となるように小役およびはずれに判定値が割り振られたテーブル(再遊技役・特別役には判定値が割り振られていないテーブル)が用いられる。なお、上記のテーブルの判定値の設定は一例であって、そのような判定値の設定に限られるわけではない。本実施例では、賭数として、通常遊技状態においては「3」、レギュラーボーナスにおいては「1」しか遊技者は設定することができないこととされているが、通常遊技状態・レギュラーボーナスのいずれの遊技状態においても、賭数として、「1」〜「3」のいずれも遊技者が設定可能とすることも可能であり、この場合、同一の設定値であっても賭数に応じて小役・再遊技役・特別役の当選確率の異なる複数の内部抽選用のテーブルを用意し、賭数に対応したテーブルを用いて内部抽選を行うようにしてもよい。   The CPU 641a in the main control unit 641 uses the numerical value acquired from the sampling circuit 643 and the determination value set for each combination (small combination, replay combination, special combination, etc.) in the internal lottery table stored in the ROM 641b. By comparing, it is determined whether or not a small role / replaying role / special role is won. Further, as a table for internal lottery, a plurality of tables are provided so that the medal payout rate changes according to the set value / game state (normal game state, regular bonus). For example, in the internal lottery table, a plurality of judgment values are set for each of a small combination (cherry, bell), a re-playing combination (replay), a special combination (regular bonus, big bonus), and a loss. Further, for example, when “1” to “6” are provided as setting values that can be set by the reset / setting switch 638, the determination value is assigned so that the medal payout rate changes as the setting value number increases. Table is used. In addition, when the gaming state is a normal gaming state, a table in which a judgment value is assigned to each of the roles and outliers so that any of the small roles, replaying roles, and special roles can be won is used. In the case of a regular bonus, a table in which judgment values are assigned to the small role and the offside so that only the small role can be won (a table in which no judgment value is assigned to the replaying role / special role) is used. . The setting of the determination value in the above table is an example, and the determination value is not limited to such setting. In this embodiment, the number of bets can be set by the player only “3” in the normal gaming state and “1” in the regular bonus, but either of the normal gaming state or the regular bonus can be set. Even in the gaming state, any one of “1” to “3” can be set by the player as the bet number. A plurality of internal lottery tables having different winning probabilities for replaying and special roles may be prepared, and internal lottery may be performed using tables corresponding to the number of bets.

上述したように、本実施例のスロットマシン601は、設定値に応じてメダルの払出率が変わるものであり、内部抽選の当選確率は、設定値に応じて定まるものとなる。   As described above, in the slot machine 601 of this embodiment, the medal payout rate changes according to the set value, and the winning probability of the internal lottery is determined according to the set value.

本実施例のスロットマシン601は、前述のように遊技状態に応じて設定可能な賭数の規定数が定められており、遊技状態に応じて定められた規定数の賭数が設定されたことを条件にゲームを開始させることが可能となる。本実施例では、遊技状態として、レギュラーボーナス、通常遊技状態があり、このうちレギュラーボーナスに対応する賭数の規定数として1が定められており、通常遊技状態に対応する賭数の規定数として3が定められている。このため、遊技状態がレギュラーボーナスにあるときには、賭数として1が設定されるとゲームを開始させることが可能となり、遊技状態が通常遊技状態にあるときには、賭数として3が設定されるとゲームを開始させることが可能となる。尚、本実施例では、遊技状態に応じた規定数の賭数が設定された時点で、全ての入賞ラインL1〜L5が有効化されるようになっており、遊技状態に応じた規定数が1であれば、賭数として1が設定された時点で全ての入賞ラインL1〜L5が有効化され、遊技状態に応じた規定数が3であれば、賭数として3が設定された時点で全ての入賞ラインL1〜L5が有効化されることとなる。   In the slot machine 601 of the present embodiment, the prescribed number of bets that can be set is determined according to the gaming state as described above, and the prescribed number of bets determined according to the gaming state is set. It becomes possible to start the game on the condition. In this embodiment, there are a regular bonus and a normal gaming state as the gaming state. Among these, 1 is defined as the prescribed number of bets corresponding to the regular bonus, and the prescribed number of bets corresponding to the normal gaming state is as follows. 3 is defined. For this reason, when the gaming state is a regular bonus, the game can be started when the betting number is set to 1, and when the gaming state is the normal gaming state, the game is started when the betting number is set to 3. Can be started. In this embodiment, when a specified number of bets corresponding to the gaming state is set, all winning lines L1 to L5 are activated, and the specified number corresponding to the gaming state is If it is 1, all winning lines L1 to L5 are activated when 1 is set as the bet number, and if the specified number is 3 according to the gaming state, 3 is set as the bet number. All winning lines L1 to L5 are activated.

本実施例のスロットマシン601は、全てのリール602L、602C、602Rが停止した際に、有効化された入賞ライン(本実施例の場合、常に全ての入賞ラインが有効化されるため、以下では、有効化された入賞ラインを単に入賞ラインと呼ぶ)上に役と呼ばれる図柄の組み合わせが揃うと入賞となる。入賞となる役の種類は、遊技状態に応じて定められているが、大きく分けて、メダルの払い出しを伴う小役と、賭数の設定を必要とせずに次のゲームを開始可能となる再遊技役と、遊技状態の移行を伴う特別役と、がある。以下では、小役と再遊技役をまとめて一般役とも呼ぶ。遊技状態に応じて定められた各役の入賞が発生するためには、内部抽選に当選して、当該役の当選フラグがRAM641cに設定されている必要がある。   In the slot machine 601 of this embodiment, when all the reels 602L, 602C, and 602R are stopped, the winning line that is activated (in the case of this embodiment, all the winning lines are always activated. The activated winning line is simply referred to as a winning line), and a winning combination is obtained when a combination of symbols called “comb” is arranged. The type of winning combination is determined according to the game state, but it can be roughly divided into a small role with payout of medals and a replay that can start the next game without the need to set the number of bets. There are a game combination and a special combination with a transition of the game state. Below, a small role and a re-playing role are collectively called a general role. In order for winning of each combination determined according to the game state to occur, it is necessary to win an internal lottery and the winning flag of the combination must be set in the RAM 641c.

尚、これら各役の当選フラグのうち、小役及び再遊技役の当選フラグは、当該フラグが設定されたゲームにおいてのみ有効とされ、次のゲームでは無効となるが、特別役の当選フラグは、当該フラグにより許容された役の組み合わせが揃うまで有効とされ、許容された役の組み合わせが揃ったゲームにおいて無効となる。すなわち特別役の当選フラグが一度当選すると、たとえ、当該フラグにより許容された役の組み合わせを揃えることができなかった場合にも、その当選フラグは無効とされずに、次のゲームへ持ち越されることとなる。このように、本発明によるスロットマシン601において、入賞用事前決定手段により特定入賞の発生を許容する旨が決定され、特定入賞表示結果が入賞用可変表示部に導出されなかったときに、当該特定入賞の発生を許容する旨の決定を次ゲーム以降に持ち越す持越手段を備えている。そのように構成された場合には、特定入賞表示結果が入賞用可変表示部に導出されなかったときであっても、当該特定入賞の発生を許容する旨の決定を次ゲーム以降に持ち越され、遊技者に損失を与えることを防ぐことができる。   Of the winning flags for each of these combinations, the winning flag for the small role and the re-playing role is valid only in the game in which the flag is set, and is invalid in the next game. It is valid until the combination of combinations permitted by the flag is complete, and is invalid in a game having the combination of combinations permitted. In other words, once the special combination winning flag is won, even if the combination of the combination permitted by the flag cannot be made, the winning flag is not invalidated and is carried over to the next game. It becomes. As described above, in the slot machine 601 according to the present invention, when it is determined by the prize predetermining means that the generation of the specific prize is permitted and the specific prize display result is not derived to the prize variable display section, There is a carry-over means for carrying over the decision to allow the generation of a prize from the next game. In such a configuration, even when the specific winning display result is not derived to the winning variable display section, the decision to allow the occurrence of the specific winning is carried over from the next game onward, A loss to the player can be prevented.

このスロットマシン601における役としては、特別役としてビッグボーナス、レギュラーボーナスが、小役としてチェリー、ベルが、再遊技役としてリプレイが定められている。また、スロットマシン601における役の組み合わせとしては、ビッグボーナス+チェリー、レギュラーボーナス+チェリーが定められている。すなわち、役及び役の組み合わせの合計は7となっている。   As a combination in the slot machine 601, a big bonus and a regular bonus are defined as a special combination, cherry and bell are defined as a small combination, and replay is defined as a re-playing combination. In addition, as a combination of combinations in the slot machine 601, big bonus + cherry and regular bonus + cherry are determined. That is, the total of the combination of the combination and combination is 7.

本実施例のスロットマシン601においては、遊技状態が、通常遊技状態であるか、レギュラーボーナスであるか、によって抽選の対象となる役及び役の組み合わせが異なる。更に遊技状態が通常遊技状態である場合には、いずれかの特別役の持ち越し中か否か(特別役の当選フラグにいずれかの特別役が当選した旨が既に設定されているか否か)によっても抽選の対象となる役及び役の組み合わせが異なる。本実施例では、遊技状態に応じた状態番号が割り当てられており、内部抽選を行う際に、現在の遊技状態に応じた状態番号を設定し、この状態番号に応じて抽選対象となる役を特定することが可能となる。具体的には、通常遊技状態においていずれの特別役も持ち越されていない場合には、状態番号として「0」が設定され、通常遊技状態においていずれかの特別役が持ち越されている場合には、状態番号として「1」が設定され、レギュラーボーナスである場合には、状態番号として「2」が設定されるようになっている。   In the slot machine 601 of the present embodiment, the combination of combinations and combinations of combinations that are subject to lottery differ depending on whether the gaming state is a normal gaming state or a regular bonus. Furthermore, when the gaming state is the normal gaming state, it depends on whether any special role is being carried over (whether any special role has already been set in the winning flag of the special role). The combination of combinations and combinations that are subject to lottery are also different. In this embodiment, a state number corresponding to the gaming state is assigned, and when performing an internal lottery, a state number corresponding to the current gaming state is set, and a role to be a lottery object is determined according to this state number. It becomes possible to specify. Specifically, when no special combination is carried over in the normal gaming state, “0” is set as the state number, and when any special combination is carried over in the normal gaming state, “1” is set as the state number, and “2” is set as the state number in the case of a regular bonus.

遊技状態が通常遊技状態であり、いずれの特別役も持ち越されていない状態、すなわち状態番号として「0」が設定されている場合には、ビッグボーナス、レギュラーボーナス、ビッグボーナス+チェリー、レギュラーボーナス+チェリー、リプレイ、チェリー、ベル、すなわち全ての役及び役の組み合わせが内部抽選の対象となる。また、遊技状態が通常遊技状態であり、いずれかの特別役が持ち越されている状態、すなわち状態番号として「1」が設定されている場合には、リプレイ、チェリー、ベルの役及び役の組み合わせが内部抽選の対象となる。また、遊技状態がレギュラーボーナス、すなわち状態番号として「2」が設定されている場合には、チェリー、ベルの役及び役の組み合わせが内部抽選の対象となる。   When the gaming state is a normal gaming state and no special role is carried over, that is, when the state number is set to “0”, a big bonus, a regular bonus, a big bonus + cherry, a regular bonus + Cherry, replay, cherry, bell, that is, all combinations and combinations of combinations are subject to internal lottery. In addition, when the game state is the normal game state and any special combination is carried over, that is, when the state number is set to “1”, a combination of replay, cherry, bell combination and combination Is subject to internal lottery. Further, when the game state is a regular bonus, that is, “2” is set as the state number, the combination of cherry and bell and combinations of combinations are targeted for internal lottery.

チェリーは、いずれの遊技状態においても左リールについて入賞ラインのいずれかに「チェリー」の図柄が導出されたときに入賞となり、通常遊技状態においては2枚のメダルが払い出され、レギュラーボーナスにおいては15枚のメダルが払い出される。尚、「チェリー」の図柄が左リールの上段または下段に停止した場合には、入賞ラインL2、L4または入賞ラインL3、L5の2本の入賞ラインにチェリーの組み合わせが揃うこととなり、2本の入賞ライン上でチェリーに入賞したこととなるので、通常遊技状態においては4枚のメダルが払い出されることとなるが、レギュラーボーナスでは、2本の入賞ライン上でチェリーに入賞しても、1ゲームにおいて払い出されるメダル枚数の上限が15枚に設定されているため、15枚のみメダルが払い出されることとなる。ベルは、いずれの遊技状態においても入賞ラインのいずれかに「ベル−ベル−ベル」の組み合わせが揃ったときに入賞となり、通常遊技状態においては8枚のメダルが払い出され、レギュラーボーナスにおいては15枚のメダルが払い出される。   Cherry is awarded when the “Cherry” symbol is derived on one of the winning lines for the left reel in any gaming state, and two medals are paid out in the normal gaming state. 15 medals are paid out. If the “Cherry” symbol stops at the upper or lower level of the left reel, the combination of cherries will be aligned on the two winning lines L2 and L4 or the winning lines L3 and L5. Since you won the cherry on the winning line, 4 medals will be paid out in the normal gaming state, but in the regular bonus, even if you win the cherry on the 2 winning lines, one game Since the upper limit of the number of medals to be paid out at 15 is set to 15, only 15 medals are paid out. A bell is awarded when a combination of “Bell-Bell-Bell” is placed on any of the winning lines in any gaming state, and in the normal gaming state, 8 medals are paid out. 15 medals are paid out.

リプレイは、通常遊技状態において入賞ラインのいずれかに「リプレイ−リプレイ−リプレイ」の組み合わせが揃ったときに入賞となる。リプレイ入賞したときには、メダルの払い出しはないが次のゲームを改めて賭数を設定することなく開始できるので、次のゲームで設定不要となった賭数(レギュラーボーナスではリプレイ入賞しないので必ず3)に対応した3枚のメダルが払い出されるのと実質的には同じこととなる。   Replay is awarded when a combination of “replay-replay-replay” is arranged on any of the winning lines in the normal gaming state. When a replay is won, the medals will not be paid out, but the next game can be started without setting the number of bets again, so the number of bets no longer required to be set in the next game (the regular bonus will not be replayed and will always be 3) This is substantially the same as when three corresponding medals are paid out.

レギュラーボーナスは、通常遊技状態において入賞ラインのいずれかに「赤7−赤7−BAR」の組み合わせが揃ったときに入賞となる。レギュラーボーナス入賞すると、遊技状態が通常遊技状態からレギュラーボーナスに移行する。レギュラーボーナスは、12ゲームを消化したとき、または8ゲーム入賞(役の種類は、いずれでも可)したとき、のいずれか早いほうで終了する。遊技状態がレギュラーボーナスにある間は、レギュラーボーナス中フラグがRAM641cに設定される。   The regular bonus is awarded when a combination of “red 7-red 7-BAR” is arranged on any of the winning lines in the normal gaming state. When the regular bonus is won, the gaming state shifts from the normal gaming state to the regular bonus. The regular bonus ends when 12 games are consumed, or when 8 games are won (any kind of combination is possible), whichever comes first. While the game state is the regular bonus, the regular bonus medium flag is set in the RAM 641c.

ビッグボーナスは、通常遊技状態において入賞ラインのいずれかに「赤7−赤7−赤7」の組み合わせが揃ったときに入賞となる。ビッグボーナス入賞すると、遊技状態がビッグボーナスに移行する。ビッグボーナスに移行すると、ビッグボーナスへの移行と同時にレギュラーボーナスに移行し、レギュラーボーナスが終了した際に、ビッグボーナスが終了していなければ、再度レギュラーボーナスに移行し、ビッグボーナスが終了するまで繰り返しレギュラーボーナスに制御される。すなわちビッグボーナス中は、常にレギュラーボーナスに制御されることとなる。そして、ビッグボーナスは、当該ビッグボーナス中において遊技者に払い出したメダルの総数が465枚を超えたときに終了する。この際、レギュラーボーナスの終了条件が成立しているか否かに関わらずレギュラーボーナスも終了する。遊技状態がビッグボーナスにある間は、ビッグボーナス中フラグがRAM641cに設定される。   The big bonus is awarded when a combination of “red 7-red 7-red 7” is aligned on any of the winning lines in the normal gaming state. When the big bonus is won, the gaming state shifts to the big bonus. When transitioning to the big bonus, the transition to the regular bonus is performed at the same time as the transition to the big bonus. Controlled by regular bonus. That is, during the big bonus, the regular bonus is always controlled. The big bonus ends when the total number of medals paid out to the player in the big bonus exceeds 465. At this time, the regular bonus is ended regardless of whether the regular bonus end condition is satisfied. While the gaming state is the big bonus, the big bonus medium flag is set in the RAM 641c.

なお、前述したレギュラーボーナス、ビッグボーナスをまとめて、単に「ボーナス」と呼ぶ場合がある。   The regular bonus and the big bonus described above may be collectively referred to simply as “bonus”.

なお、図107におけるリール601L,601C,601Rにおいて、白抜き7の図柄のみ描かれているが、図示を省略しているだけで、実際にはリール601L,601C,601Rにおける点線囲いの部分にも図柄が描かれている。   In addition, in the reels 601L, 601C, and 601R in FIG. 107, only the white symbol 7 is drawn, but the illustration is omitted, and the reels 601L, 601C, and 601R are actually also surrounded by dotted lines. The design is drawn.

本実施例のスロットマシン601では、内部抽選で小役、再遊技役または特別役(ボーナス)に当選している可能性があること(内部抽選に当選して小役、再遊技役または特別役の当選フラグがRAM641cに設定されている状態である可能性があること)を示唆する示唆演出が演出部材(液晶表示器651、液晶表示器651の左右側の可動役物675L,675Rなど)を用いて実行される。特に、内部抽選処理により、特別役の発生を許容する旨を決定された(内部抽選に当選して特別役の当選フラグがRAM641cに設定されている状態)ことにもとづいて、CPU691aは、液晶表示器651の表示画面に表示される左・中・右の図柄Z1〜Z3の停止図柄の組み合わせとして特定表示結果(例えば「7・7・7」が揃うこと)となるように示唆演出を実行する。   In the slot machine 601 of the present embodiment, there is a possibility that a small role, a re-playing role or a special role (bonus) is won in the internal lottery (a small role, a re-playing role or a special role is won by winning the internal lottery). Suggestive effects suggesting that there is a possibility that the winning flag is set in the RAM 641c) on the stage members (liquid display 651, movable right and left movable parts 675L, 675R, etc. of the liquid crystal display 651). To be executed. In particular, based on the fact that it is determined that the special combination is allowed to be generated by the internal lottery process (a state in which the internal lottery is won and the special combination winning flag is set in the RAM 641c), the CPU 691a displays the liquid crystal display. The suggestion effect is executed so that a specific display result (for example, “7, 7 and 7” are aligned) is obtained as a combination of the left, middle, and right symbols Z1 to Z3 displayed on the display screen of the device 651. .

なお、遊技者によって有利な遊技状態としては、上記のビッグボーナスやレギュラーボーナスに限らず、例えば、リールの導出条件(例えば停止順や停止タイミング)が満たされることを条件に発生する報知対象入賞の導出条件を満たす操作手順が報知される遊技状態(いわゆるアシストタイム(AT))や、少なくともいずれか1つのリールの引込範囲を制限することで、ストップスイッチ606L、606C、606Rが操作された際に表示されている図柄が停止しやすいように制御し、遊技者が目押しを行うことで入賞図柄の組合せを導出させることが可能となるチャレンジタイム(CT)、特定の入賞(例えばリプレイ入賞やシングルボーナス入賞等)の発生が許容される確率が高まる遊技状態(いわゆるリプレイタイム(RT)や集中状態)等、さらには、これらを組み合わせた遊技状態(例えばアシストタイムとリプレイタイムを組み合わせたART)などを搭載してもよく、示唆演出手段は、これらの遊技状態に移行する移行条件が成立していることにもとづいて特定表示結果となるように示唆演出を行ってもよい。   Note that the gaming state advantageous to the player is not limited to the above big bonus and regular bonus, but for example, a notification target winning that occurs on condition that reel deriving conditions (for example, stop order or stop timing) are satisfied. When a stop switch 606L, 606C, or 606R is operated by limiting a game state (so-called assist time (AT)) in which an operation procedure that satisfies a derivation condition is notified or at least one of the reels is retracted. Control the displayed symbols to be easy to stop, and the challenge time (CT) that allows the player to derive a combination of winning symbols by pushing forward, specific winnings (for example, replay winnings and singles) Gaming state (so-called replay time (RT) Middle state), and further, a game state (for example, ART that combines assist time and replay time) may be mounted, and the suggestion producing means establishes a transition condition for shifting to these game states. The suggestion effect may be performed so that a specific display result is obtained based on what is being performed.

また、移行条件が成立している遊技状態の種類に応じて特定表示結果の種類を異なるようにしてもよい。(例えば、内部抽選により特別役としてビッグボーナスが当選したことにもとづいて「7・7・7」または「3・3・3」が揃い、内部抽選により特別役としてレギュラーボーナスが当選したことにもとづいて「3・3・3」が揃い、リプレイタイム(RT)に移行する移行条件が成立していることにもとづいて「1・1・1」が揃う。)   Further, the type of specific display result may be different depending on the type of gaming state where the transition condition is satisfied. (For example, “7 ・ 7 ・ 7” or “3 ・ 3 ・ 3” is based on the fact that the big bonus was won as a special role in the internal lottery, and the regular bonus was won as a special role in the internal lottery. “3.3.3” is prepared, and “1.1.1” is prepared based on the fact that the transition condition for shifting to the replay time (RT) is satisfied.)

なお、上記に示した実施の形態では、以下の(1)〜(33)に示すような遊技機の特徴的構成も示されている。   In addition, in embodiment shown above, the characteristic structure of the gaming machine as shown to the following (1)-(33) is also shown.

(1)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとは、シリアル通信で信号を入出力し(例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、それぞれシリアル通信回路511,380を内蔵し、図41に示す払出制御コマンドをシリアル通信で送受信する)、遊技制御用マイクロコンピュータは、所定期間(例えば、1秒)が経過したか否かを判定する所定期間判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52313を実行する部分)と、払出制御用マイクロコンピュータとの通信接続状態を確認するための接続確認信号(例えば、接続確認コマンド)を、所定期間判定手段によって所定期間が経過したと判定される毎に払出制御用マイクロコンピュータに出力する接続確認信号出力手段(例えば、遊技制御用マイクロコンピュータ560においてステップS52313でYと判定した後にステップS5211を実行する部分)と、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて、払い出すべき景品としての景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、払出数信号出力手段によって払出数信号が出力されたことにもとづいて、接続確認信号出力手段による接続確認信号の出力を停止する停止手段(例えば、遊技制御用マイクロコンピュータ560において、賞球送信処理2のステップS52305で賞球個数コマンドを送信した後に、接続確認コマンドを送信する賞球送信処理1に移行せずに賞球受領確認処理に移行(ステップS52306参照)することによって、接続確認コマンドの送信を停止する部分。例えば、遊技制御用マイクロコンピュータ560は、図61に示す賞球送信処理1においてのみ接続確認コマンドを送信する処理(ステップS5211参照)を行い、賞球個数コマンド送信後に移行される図64に示す賞球受領確認処理では接続確認コマンドを送信する処理を行わない。)と、を含み、払出制御用マイクロコンピュータは、接続確認信号出力手段が出力した接続確認信号を入力したことにもとづいて応答信号(例えば、接続OKコマンド)を遊技制御用マイクロコンピュータに出力する応答信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7415,S74208を実行する部分)と、払出数信号出力手段により出力された払出数信号で特定される数の未払出の景品遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、を含み、応答信号出力手段は、遊技制御用マイクロコンピュータが制御状態を認識可能な態様で応答信号を遊技制御用マイクロコンピュータに出力し(例えば、払出制御用マイクロコンピュータ370は、ステップS7414,S74207の処理を実行して、図45に示すように接続OKコマンドの下位4ビットに賞球エラーや満タンエラー、球切れエラー、払出個数異常エラーをセットして送信する)、遊技制御用マイクロコンピュータは、さらに、払出制御の実行を終了したときに、払出数記憶手段に払出数データが記憶されているか否かを判定する払出数データ判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52503でYと判定されステップS52504が実行されて賞球送信処理2に移行したときにステップS52301を実行する部分)と、を含み、払出数信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていると判定されたときに、当該払出数記憶手段に記憶された払出数データにもとづいて、新たな払出数信号を払出制御用マイクロコンピュータに出力し(例えば、遊技制御用マイクロコンピュータ560は、ステップS52301でYと判定したことにもとづいてステップS52305を実行して新たな賞球個数コマンドを送信する)、接続確認信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていないと判定されたときに、所定期間判定手段により所定期間が経過したと判定されたことにもとづいて、新たな接続確認信号を払出制御用マイクロコンピュータに出力する(例えば、遊技制御用マイクロコンピュータ560は、ステップS52301でNと判定した後にステップS52313でYとなって賞球送信処理1に移行し、ステップS5211を実行して新たな接続確認コマンドを送信する)ように構成されて入れてよい。そのような構成によれば、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータが接続確認信号の入力にもとづいて定期的に出力する応答信号に制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を出力することができるため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの間の通信を確実に行うことができる。 (1) A gaming machine can use a game medium (for example, a game ball) to allow a player to play a predetermined game, and a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A gaming machine that pays out game media based on a game control microcomputer that controls the progress of the game (for example, a game control microcomputer 560), and a payout means that pays out game media (for example, , A ball payout device 97) and a payout control microcomputer (for example, a payout control microcomputer 370) for controlling the payout means. The game control microcomputer and the payout control microcomputer are connected by serial communication. For example, the game control microcomputer 560 and the payout control microcomputer 370 are connected to each other. Each serial communication circuit 511, 380 is built in and the payout control command shown in FIG. 41 is transmitted / received by serial communication), and the game control microcomputer determines whether or not a predetermined period (for example, 1 second) has elapsed. A connection confirmation signal (for example, a connection confirmation command) for confirming a communication connection state between the predetermined period determination means (for example, the part for executing step S52313 in the game control microcomputer 560) and the payout control microcomputer. The connection confirmation signal output means for outputting to the payout control microcomputer every time it is determined by the predetermined time period determination means that the predetermined time period has elapsed (for example, after the game control microcomputer 560 determines Y in step S52313, step S5211). And the predetermined payout conditions Payout number data (for example, prize balls) that can specify the number of prize game media (for example, the number of prize balls) as prizes to be paid out based on the establishment (for example, that the game balls have won a prize opening) The number of prize game media to be paid out is specified based on the number-of-payout storage means (for example, a prize ball command output counter) that stores the command output counter) and the number-of-payout data stored in the number-of-payout storage means. A payout number signal output means for outputting a possible payout number signal (for example, a prize ball number command) to the payout control microcomputer (for example, a part for executing step S52305 in the game control microcomputer 560), and a payout number signal output. The output of the connection confirmation signal by the connection confirmation signal output means is stopped based on the output of the number-of-payout signal by the means. Stop means (for example, in the game control microcomputer 560, after the prize ball number command is transmitted in step S52305 of the prize ball transmission process 2, the prize ball is received without moving to the prize ball transmission process 1 for transmitting the connection confirmation command. A part for stopping the transmission of the connection confirmation command by shifting to the confirmation process (see step S52306). For example, the game control microcomputer 560 performs a process of transmitting a connection confirmation command only in the prize ball transmission process 1 shown in FIG. 61 (see step S5211), and moves to after the prize ball number command is transmitted, as shown in FIG. In the ball receipt confirmation process, a process for transmitting a connection confirmation command is not performed. The payout control microcomputer outputs a response signal (for example, a connection OK command) to the game control microcomputer based on the input of the connection confirmation signal output from the connection confirmation signal output means. The number of unpaid premium game media specified by the payout number signal output by the signal output means (for example, the part for executing steps S7415 and S74208 in the payout control microcomputer 370) and the payout number signal output means is paid out. Game medium payout control means for executing payout control for driving and paying out the means (for example, the payout motor 289 is activated by executing the processing in step S75113 in the payout control microcomputer 370, and the payout motor control in step S756) Processing part), and a response signal output The means outputs a response signal to the game control microcomputer in such a manner that the game control microcomputer can recognize the control state (for example, the payout control microcomputer 370 executes the processes of steps S7414 and S74207, As shown in FIG. 45, a prize ball error, a full tank error, a ball shortage error, a payout number error error are set in the lower 4 bits of the connection OK command and transmitted), and the game control microcomputer further executes the payout control. When the process is finished, the number-of-payout data determination means for determining whether or not the number-of-payout data is stored in the number-of-payout storage means (for example, it is determined as Y in step S52503 in the game control microcomputer 560 and step S52504 is executed). Step S52 when the process proceeds to the prize ball transmission process 2 The payout number signal output means stores the payout number data in the payout number storage means when the payout number data determination means determines that the payout number data is stored in the payout number storage means. Based on the stored payout number data, a new payout number signal is output to the payout control microcomputer (for example, the game control microcomputer 560 executes step S52305 based on the determination of Y in step S52301). A new prize ball number command), and the connection confirmation signal output means determines the predetermined period when the payout number data determination means determines that no payout number data is stored in the payout number storage means. Based on the determination that the predetermined period has passed, a new connection confirmation signal is output to the dispensing control microcomputer. (For example, the game control microcomputer 560 determines N in step S52301, then becomes Y in step S52313, shifts to prize ball transmission processing 1, and executes step S5211 to transmit a new connection confirmation command. You may put it configured. According to such a configuration, it is possible to facilitate the wiring of the game control microcomputer and the payout control microcomputer by using the serial communication method. In addition, a control state signal (a response signal to which a control state is added) can be output by adding a control state to a response signal periodically output by the payout control microcomputer based on the input of the connection confirmation signal. Therefore, it is possible to prevent the control state signal from being missed without considering the output timing of the control state signal, and to reliably perform communication between the game control microcomputer and the payout control microcomputer. it can.

(2)所定期間判定手段は、所定期間を計測するための計測タイマ(例えば、賞球プロセスタイマ)を用いて所定期間が経過したか否かを判定し(例えば、遊技制御用マイクロコンピュータ560は、ステップS5226で賞球プロセスタイマに接続確認時間1(1秒)をセットした後、ステップS52313の処理を実行する)、遊技制御用マイクロコンピュータは、払出制御の実行を終了したときに、計測タイマに所定期間を再設定して当該計測タイマによる計測制御を開始する計測タイマ開始手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52505で賞球プロセスタイマに接続確認時間1(1秒)をセットした後、賞球送信処理2に移行してステップS52313の計測を開始する部分)を含み、接続確認信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていないと判定されたときに、計測タイマ開始手段によって再設定された計測タイマがタイムアウトしたことにもとづいて、新たな接続確認信号を払出制御用マイクロコンピュータに出力する(例えば、遊技制御用マイクロコンピュータ560におけるステップS52313でYとなったときに、賞球送信処理1に移行してステップS5211を実行する)ように構成されていてもよい。そのような構成によれば、払出制御の実行の終了後に新たな接続確認信号を出力するまでの間にインターバル期間を設けることができ、払出制御の実行の終了時における処理が集中して新たな接続確認信号の取りこぼし等が発生することを防止することができる。 (2) The predetermined period determining means determines whether or not the predetermined period has elapsed using a measurement timer (for example, a prize ball process timer) for measuring the predetermined period (for example, the game control microcomputer 560 is Then, after setting the connection confirmation time 1 (1 second) to the prize ball process timer in step S5226, the processing of step S52313 is executed.) When the game control microcomputer finishes executing the payout control, the measurement timer Measurement timer start means for resetting a predetermined period to start measurement control by the measurement timer (for example, the connection confirmation time 1 (1 second) is set in the award ball process timer in step S52505 in the game control microcomputer 560) Thereafter, the process proceeds to the prize ball transmission process 2 and the measurement of step S52313 is started). The signal output means is based on the fact that the measurement timer reset by the measurement timer start means has timed out when it is determined by the payout number data determination means that the payout number data is not stored in the payout number storage means. A new connection confirmation signal is output to the payout control microcomputer (for example, when the game control microcomputer 560 becomes Y in step S52313, the process shifts to prize ball transmission processing 1 and executes step S5211). It may be configured. According to such a configuration, an interval period can be provided between the end of execution of payout control and the output of a new connection confirmation signal, and processing at the end of execution of payout control is concentrated and new It is possible to prevent the connection confirmation signal from being lost.

(3)払出数信号出力手段は、接続確認信号出力手段による接続確認信号の出力タイミングにかかわらず、所定の払出条件が成立したことにもとづいて、払出数信号を払出制御用マイクロコンピュータに出力し(例えば、遊技制御用マイクロコンピュータ560は、接続確認コマンドの送信タイミングとは関係なく、ステップS52301でYのときにステップS52305を実行する)、遊技媒体払出制御手段は、払出数信号出力手段が出力した払出数信号を入力したことにもとづいて、払出制御の実行を開始し(例えば、払出制御用マイクロコンピュータ370は、ステップS74214,S74319で賞球個数コマンドで指定された賞球個数を未払出個数カウンタにセットして、ステップS75109で未払出個数カウンタの値が0でないことにもとづいてステップS75113の処理が実行されて払出モータ289が起動される)、払出制御用マイクロコンピュータは、払出数信号出力手段が出力した払出数信号を入力したことにもとづいて、当該払出数信号を入力したことを示す受付信号(例えば、賞球個数受付コマンド)を遊技制御用マイクロコンピュータに出力する受付信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS74215,S74320を実行する部分)と、払出制御の実行中に、払出制御の実行中であることを示す払出中信号(例えば賞球準備中コマンド)を、所定の払出中信号出力期間(例えば、1秒)毎に遊技制御用マイクロコンピュータに出力する払出中信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS74222,S74313,S74413を実行する部分)と、払出制御の実行を終了すると、払出制御の実行を終了したことを示す払出終了信号(例えば、賞球終了コマンド)を遊技制御用マイクロコンピュータに出力する払出終了信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS74417を実行する部分)と、を含み、払出中信号出力手段は、遊技制御用マイクロコンピュータが制御状態を認識可能な態様で払出中信号を遊技制御用マイクロコンピュータに出力し(例えば、払出制御用マイクロコンピュータ370は、ステップS74221,S74312,S74412の処理を実行して、図45に示すように賞球準備中コマンドの下位4ビットに賞球エラーや満タンエラー、球切れエラー、払出個数異常エラーをセットして送信する)、停止手段は、受付信号出力手段により受付信号が出力されたことにもとづいて、接続確認信号出力手段による接続確認信号の出力を停止させ(例えば、遊技制御用マイクロコンピュータ560は、ステップS52403でYと判定したことにもとづいて、接続確認コマンドを送信する賞球送信処理1に移行せずにステップS52405を実行して賞球終了確認処理に移行する)、計測タイマ開始手段は、払出終了信号出力手段によって払出終了信号が出力されたことにもとづいて、計測タイマに所定期間を再設定して当該計測タイマによる計測制御を開始する(例えば、遊技制御用マイクロコンピュータ560は、ステップS52503でYと判定したことにもとづいて、ステップS52505で賞球プロセスタイマに接続確認時間1(1秒)をセットした後、賞球送信処理2に移行してステップS52313の計測を開始する)ように構成されていてもよい。そのような構成によれば、払出制御の実行中は無駄に接続確認信号の出力制御を行わないようにすることによって、遊技制御用マイクロコンピュータの制御負担を軽減することができる。また、払出制御の実行中であっても、払出中信号に制御状態を乗せることにより制御状態信号を出力することができるため、遊技制御用マイクロコンピュータ側で制御状態を認識することができる。 (3) The payout number signal output means outputs a payout number signal to the payout control microcomputer based on the fact that a predetermined payout condition is satisfied regardless of the output timing of the connection confirmation signal by the connection confirmation signal output means. (For example, the game control microcomputer 560 executes step S52305 when Y in step S52301 regardless of the transmission timing of the connection confirmation command), and the game medium payout control means outputs the payout number signal output means. The payout control is started based on the input of the payout number signal (for example, the payout control microcomputer 370 determines the number of prize balls designated by the prize ball number command in steps S74214 and S74319 as the number of unpaid balls. Set to the counter, and the value of the unpaid-out number counter is 0 in step S75109. The payout motor 289 is activated based on the fact that the payout motor 289 is activated), and the payout control microcomputer inputs the payout number signal output from the payout number signal output means. A reception signal output means for outputting a reception signal (for example, a prize ball number reception command) indicating that a number signal has been input to the game control microcomputer (for example, a part for executing steps S74215 and S74320 in the payout control microcomputer 370) ) And a payout signal (for example, a prize ball preparation command) indicating that the payout control is being executed during execution of the payout control for each predetermined payout signal output period (for example, 1 second). Payout signal output means for outputting to the microcomputer for use (for example, a microcomputer for payout control) A portion for executing steps S74222, S74313, and S74413 in 370) and, when the execution of the payout control is finished, a payout end signal (for example, a prize ball end command) indicating that the payout control is finished. A payout end signal output means (for example, a part for executing step S74417 in the payout control microcomputer 370), and the payout signal output means is capable of recognizing the control state by the game control microcomputer. The payout-in-progress signal is output to the game control microcomputer (for example, the payout control microcomputer 370 executes the processes of steps S74221, S74312, and S74412, and, as shown in FIG. 4 bit prize ball error and full tank The stop means outputs the connection confirmation signal from the connection confirmation signal output means based on the reception signal output from the reception signal output means. (For example, the game control microcomputer 560 executes step S52405 without moving to the prize ball transmission process 1 for transmitting the connection confirmation command based on the determination of Y in step S52403, and ends the prize ball. The measurement timer starting means resets a predetermined period in the measurement timer and starts measurement control by the measurement timer based on the output of the payout end signal by the payout end signal output means. (For example, the game control microcomputer 560 determines that Y is determined in step S52503. After setting the connection confirmation time 1 (1 second) prize balls process timer at step S52505, starts measuring step S52313 goes to prize balls transmission process 2) it may be configured so. According to such a configuration, it is possible to reduce the control burden of the game control microcomputer by not performing the output control of the connection confirmation signal during the payout control. Even when the payout control is being executed, the control state signal can be output by adding the control state to the paying-in signal, so that the control state can be recognized on the game control microcomputer side.

(4)遊技制御用マイクロコンピュータは、応答信号出力手段によって出力された応答信号で示される制御状態にもとづいて、所定のエラーが発生しているか否かを判定するエラー判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52302を実行する部分)を含み、払出数信号出力手段は、エラー判定手段によって所定のエラーが発生していないと判定されたことを条件として、払出数信号を払出制御用マイクロコンピュータに出力する(例えば、遊技制御用マイクロコンピュータ560は、ステップS52302でYと判定したときにステップS52305を実行して賞球個数コマンドを送信する)ように構成されていてもよい。そのような構成によれば、エラー状態となっていて正常に払出制御を行えない場合に払出数信号を出力してしまう不都合を防止することができる。 (4) The game control microcomputer uses error determination means (for example, game control) to determine whether or not a predetermined error has occurred based on the control state indicated by the response signal output by the response signal output means. The payout number signal output means uses the payout number signal for payout control on condition that the error determination means determines that a predetermined error has not occurred. The game control microcomputer 560 may be configured to output to the microcomputer (for example, when the game control microcomputer 560 determines Y in step S52302, it executes step S52305 and transmits a prize ball number command). According to such a configuration, it is possible to prevent the inconvenience of outputting a payout number signal when the payout control cannot be normally performed due to an error state.

(5)払出数信号出力手段は、払出終了信号出力手段によって出力された払出終了信号を入力した後、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていると判定されたときに、エラー判定手段による判定にかかわらず、新たな払出数信号を払出制御用マイクロコンピュータに出力する(例えば、遊技制御用マイクロコンピュータ560は、ステップS52503でYと判定して賞球送信処理2に移行した後、ステップS52301でYと判定したことにもとづいて、ステップS52305の処理を実行して賞球個数コマンドを送信する)ように構成されていてもよい。そのような構成によれば、払出制御の実行処理の迅速化を図ることができる。 (5) The payout number signal output means inputs the payout end signal output by the payout end signal output means, and then determines that the payout number data is stored in the payout number storage means by the payout number data determination means. Sometimes, regardless of the determination by the error determination means, a new payout number signal is output to the payout control microcomputer (for example, the game control microcomputer 560 determines Y in step S52503 and award ball transmission process 2). After shifting to, based on the determination of Y in step S52301, the process of step S52305 may be executed to transmit a winning ball number command). According to such a configuration, it is possible to speed up the execution process of the payout control.

(6)遊技制御用マイクロコンピュータは、所定期間よりも長い特定期間(例えば、接続確認時間2(10秒))が経過したか否かを判定する特定期間判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5213で賞球プロセスタイマにセットされた接続確認時間2(10秒)にもとづいてステップS5227を実行する部分)と、接続確認信号を出力した後、応答信号を入力したか否かを判定する応答信号判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5223を実行する部分)を含み、接続確認信号出力手段は、応答信号判定手段によって応答信号を入力していないと判定されると、接続確認信号を特定期間判定手段によって特定期間が経過したと判定される毎に払出制御用マイクロコンピュータに出力する制御に切り替える(例えば、遊技制御用マイクロコンピュータ560は、ステップS5223でYと判定されなければ、ステップS5227でYと判定したことにもとづいて賞球送信処理1に移行してステップS5211を実行する)ように構成されていてもよい。そのような構成によれば、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの間の通信状態が不安定な状態では、接続確認信号を出力するまでのインターバル期間を長くすることによって、接続確認信号の出力処理を無駄に実行する頻度を低減し、無駄な処理負担を軽減することができる。 (6) The game control microcomputer is a specific period determination means (for example, a game control microcomputer) that determines whether or not a specific period (for example, connection confirmation time 2 (10 seconds)) longer than a predetermined period has elapsed. 560, step S5213 is executed based on the connection confirmation time 2 (10 seconds) set in the prize ball process timer) and whether or not a response signal is input after outputting the connection confirmation signal. Including a response signal determination means for determining (for example, a part of step S5223 in the game control microcomputer 560), and the connection confirmation signal output means determines that the response signal is not input by the response signal determination means. , Each time the connection confirmation signal is determined by the specific period determination means that the specific period has passed, Switching to control to be output to the microcomputer (for example, if the game control microcomputer 560 does not determine Y in step S5223, it proceeds to the award ball transmission process 1 based on the determination of Y in step S5227). (S5211 may be executed). According to such a configuration, when the communication state between the game control microcomputer and the payout control microcomputer is unstable, the connection check is performed by extending the interval period until the connection check signal is output. It is possible to reduce the frequency of wasteful execution of signal output processing and reduce the wasteful processing load.

(7)遊技機は、所定の演出装置(例えば、演出表示装置9)を制御する演出制御用マイクロコンピュータ(例えば、演出制御用マイクロコンピュータ100)を備え、応答信号出力手段は、所定のエラーが発生したときに、遊技制御用マイクロコンピュータが当該所定のエラーを認識可能な情報を、応答信号の特定ビットを異ならせることにより設定し(例えば、払出制御用マイクロコンピュータ370は、図45に示すように、接続OKコマンドのビット0〜ビット3を設定することによって、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラーを設定する)、当該設定がなされた応答信号を遊技制御用マイクロコンピュータに出力し(例えば、払出制御用マイクロコンピュータ370は、ステップS7414,S74207を実行してステップS7515,S74208を実行する)、遊技制御用マイクロコンピュータは、応答信号出力手段により出力された応答信号を入力したときに、当該応答信号に設定された所定のエラーを認識可能な情報をそのまま設定した報知用エラー信号(例えば、枠状態表示コマンド)を演出制御用マイクロコンピュータに出力する報知用エラー信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS398を実行する部分)を含み、演出制御用マイクロコンピュータは、報知用エラー信号を入力したことにもとづいて、演出装置を制御して所定のエラーが発生したことを報知する異常報知手段(例えば、演出制御用マイクロコンピュータ100におけるステップS614でYと判定したときにステップS616,S618,S620,S622を実行する部分)を含むように構成されていてもよい。そのような構成によれば、演出装置を用いて所定のエラーが発生したことを報知することができるとともに、遊技制御用マイクロコンピュータの処理負担を軽減することができる。 (7) The gaming machine includes an effect control microcomputer (for example, the effect control microcomputer 100) for controlling a predetermined effect device (for example, the effect display device 9), and the response signal output means has a predetermined error. When this occurs, information that allows the game control microcomputer to recognize the predetermined error is set by changing a specific bit of the response signal (for example, the payout control microcomputer 370 is configured as shown in FIG. 45). In addition, by setting bit 0 to bit 3 of the connection OK command, a prize ball error, a full tank error, a ball shortage error, and a payout number error error are set), and the response signal thus set is sent to the game control micro (For example, the payout control microcomputer 370 outputs the information to steps S7414 and S7. 207 is executed to execute steps S7515 and S74208), the game control microcomputer can recognize the predetermined error set in the response signal when the response signal output by the response signal output means is input. Informing error signal output means for outputting to the effect control microcomputer a notification error signal (for example, a frame state display command) in which various information is set as it is (for example, a part for executing step S398 in the game control microcomputer 560). The effect control microcomputer controls the effect device to notify that a predetermined error has occurred based on the input of the notification error signal (for example, the effect control microcomputer 100). When it is determined as Y in step S614 Step S616, S618, S620, it may be configured so as to include a portion) to perform S622. According to such a configuration, it is possible to notify that a predetermined error has occurred using the rendering device, and to reduce the processing burden on the game control microcomputer.

(8)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、遊技制御用マイクロコンピュータは、遊技による払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて、払い出すべき景品としての景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、を含み、払出制御用マイクロコンピュータは、少なくとも、払出数信号出力手段により出力された払出数信号で特定される数の未払出の景品遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、少なくとも、払出数信号で特定される数を超えた払出過多数と払出数信号で特定される数に満たなかった払出不足数とを示すデータ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新されたデータが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含むように構成されていてもよい。そのような構成によれば、各々の払出制御について判断するのではなく、累積的に更新されたデータにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。 (8) The gaming machine allows a player to play a predetermined game using a game medium (for example, a game ball), and that a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A gaming machine that pays out game media based on a game control microcomputer that controls the progress of the game (for example, a game control microcomputer 560), and a payout means that pays out game media (for example, , A ball payout device 97) and a payout control microcomputer (for example, payout control microcomputer 370) for controlling the payout means, and the game control microcomputer is satisfied that a payout condition for the game is satisfied (eg, The number of prize game media (for example, the number of prize balls) can be specified as a prize to be paid Payout number storage means (for example, a prize ball command output counter) for storing a payout number data (for example, a count value of a prize ball command output counter) and a payout number data stored in the payout number storage means. A payout number signal output means (for example, step S52305 in the game control microcomputer 560 is executed) that outputs a payout number signal (for example, a prize ball number command) that can specify the number of prize game media to be output to the payout control microcomputer. The payout control microcomputer at least controls the payout means to control the payout means for the number of unpaid prize game media specified by the payout number signal output by the payout number signal output means. Game medium payout control means for executing payout control (for example, a payout control microcomputer 370) In step S75113, the payout motor 289 is started and the payout motor control process in step S756 is executed), and at least the payout excess and the payout number exceeding the number specified by the payout number signal. Cumulative update means (for example, step S7503 in the payout control microcomputer 370) that cumulatively updates data (for example, the count value of the payout number abnormality counter) indicating the number of shortage payouts that is less than the number specified by the signal. When the data updated by the cumulative update means and the data updated by the cumulative update means become a specific value (for example, a predetermined payout number abnormality error determination value (for example, 2000)), payout by the game medium payout control means Dispensing stop means for controlling the execution to the payout stop state by stopping execution of the control (for example, , After setting the payout number abnormality error designation bit in steps S7505, S75322, and S7726 in the payout control microcomputer 370, the control is made so that the payout operation is not performed by determining N in step S75101). It may be configured. According to such a configuration, instead of judging each payout control, the payout control is executed by comprehensively judging the payout control executed under abnormal conditions based on the cumulatively updated data. Can be stopped. Therefore, it is possible to more accurately prevent the act of illegally paying out game media.

(9)累積更新手段は、所定基準数(例えば、2)以上の払出過多数または払出不足数が発生したときにデータを更新する(例えば、払出制御用マイクロコンピュータ370は、ステップS75319でYと判定したときにステップS75320を実行する)ように構成されていてもよい。そのような構成によれば、必要以上に払出制御の実行を停止させてしまう不都合を防止することができる。 (9) The cumulative update means updates the data when an excessive number of payouts or an insufficient payout number equal to or greater than a predetermined reference number (for example, 2) occurs (for example, the payout control microcomputer 370 determines Y in step S75319). Step S75320 may be executed when the determination is made). According to such a configuration, it is possible to prevent inconvenience that the execution of the payout control is stopped more than necessary.

(10)払出制御用マイクロコンピュータは、払出不足数が発生したときに払出手段を駆動制御して遊技媒体を1つだけ払い出させる再払出制御を実行する再払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75314〜S75333を実行する部分)を含み、累積更新手段は、再払出制御手段による再払出制御が実行されても遊技媒体の払い出しを検出しなかった場合にはデータを更新する(例えば、払出制御用マイクロコンピュータ370におけるステップS75325,S75335を実行する部分)ように構成されていてもよい。そのような構成によれば、払出不足数が少ない場合でも適切にデータに反映させて払出制御の実行の停止を行うことができ、不正に遊技媒体を払い出させる行為を防止する不正対策をより強化することができる。 (10) The payout control microcomputer performs re-payout control means (for example, payout control) for performing re-payout control for driving out the payout means and paying out only one game medium when an insufficient payout number occurs. The cumulative updating means updates the data when no payout of the game medium is detected even if the re-payout control by the re-payout control means is executed, including a portion of steps S75314 to S75333 in the microcomputer 370. (For example, the part which performs step S75325, S75335 in the payout control microcomputer 370) may be configured. According to such a configuration, even when the number of payout shortages is small, the execution of payout control can be stopped appropriately by reflecting it in the data, and more fraud countermeasures can be implemented to prevent the act of illegally paying out game media. Can be strengthened.

(11)遊技機は、遊技機への電力供給が開始されたときに、払出停止状態を解除する払出停止状態解除手段(例えば、払出制御用マイクロコンピュータ370において、図82のステップS7701,S7707に示すように、エラーフラグのうち払出個数異常エラー指定ビットについてはリセット処理を行わないようにすることによって、遊技機の電源リセットが行われない限り払出個数異常エラーを解除しないようにする部分)を備えるように構成されていてもよい。そのような構成によれば、払出停止状態を解除するためには遊技店員が異常状態を確認した上で解除操作を行わなければならないので、不正に払出停止状態を解除されて異常な状態のまま遊技を継続されてしまうことを防止することができる。 (11) When the power supply to the gaming machine is started, the gaming machine cancels the payout stop state (for example, the payout control microcomputer 370 uses the payout control microcomputer 370 in steps S7701 and S7707 in FIG. 82). As shown, the part that prevents the payout number abnormality error from being canceled unless the power supply reset of the gaming machine is performed by not performing reset processing on the payout number abnormality error designation bit in the error flag) It may be configured to include. According to such a configuration, in order to release the payout stop state, the game store clerk must confirm the abnormal state and then perform the release operation. Therefore, the payout stop state is canceled illegally and remains in the abnormal state. It is possible to prevent the game from being continued.

(12)遊技機は、遊技機への電力供給が停止しても遊技制御用マイクロコンピュータにのみ所定期間電力供給が可能なバックアップ電源(例えば、電源基板において作成されるバックアップ電源)を備え、払出数記憶手段は、遊技機への電力供給が停止してもバックアップ電源により記憶内容を所定期間保持可能であり(例えば、遊技制御用マイクロコンピュータ560が備えるRAM55は、その一部または全部が電源基板において作成されるバックアップ電源によってバックアップされている)、遊技制御用マイクロコンピュータは、払出停止状態に制御されているときには、遊技による払出条件が成立しても払出数信号出力手段による払出数信号の出力を禁止する払出数信号禁止手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52302でNと判定したときにはステップS52305の処理を実行しないように制御する部分)を含むように構成されていてもよい。そのような構成によれば、不正行為によらない遊技機側に起因する異常により払出停止状態となったにもかかわらず払出数データがクリアされてしまう事態を防止することができ、遊技者に対して不利益が生じることを防止することができる。 (12) The gaming machine is provided with a backup power supply (for example, a backup power supply created on a power supply board) that can supply power to the gaming control microcomputer only for a predetermined period even when power supply to the gaming machine is stopped. The number storage means can retain the stored contents by a backup power source for a predetermined period even when the power supply to the gaming machine is stopped (for example, the RAM 55 provided in the game control microcomputer 560 is partially or entirely a power supply board). When the game control microcomputer is controlled in the payout stop state, the payout number signal output means outputs the payout number signal even if the payout condition for the game is satisfied. Payout number signal prohibiting means (for example, a game control microcomputer 56) May be configured so as to include a portion) that controls not to execute the processing in step S52305 when it is determined that N in step S52302 in. According to such a configuration, it is possible to prevent a situation in which the number-of-payout data is cleared even though the payout is stopped due to an abnormality caused by the gaming machine side that does not depend on fraud. It is possible to prevent a disadvantage from occurring.

(13)遊技機は、所定の演出装置(例えば、演出表示装置9)を制御する演出制御用マイクロコンピュータ(例えば、演出制御用マイクロコンピュータ100)を備え、払出制御用マイクロコンピュータは、払出停止手段によって払出停止状態に制御されたときに、所定のエラーが発生したことを示すエラー信号(例えば、エラー情報が設定された接続OKコマンドや賞球準備中コマンド)を遊技制御用マイクロコンピュータに出力するエラー信号出力手段(例えば、払出制御用マイクロコンピュータ370において、図45に示すように、接続OKコマンドや賞球準備中コマンドのビット0〜ビット3を設定することによって、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラーを設定してステップS7415,S74208,S74222,S74313,SS74413を実行する部分)を含み、遊技制御用マイクロコンピュータは、エラー信号出力手段によりエラー信号が出力されたときに、所定のエラーが発生したことを報知するための報知用エラー信号(例えば、枠状態表示コマンド)を演出制御用マイクロコンピュータに出力する報知用エラー信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS398を実行する部分)を含み、演出制御用マイクロコンピュータは、報知用エラー信号を入力したことにもとづいて、演出装置を制御して所定のエラーが発生したことを報知する異常報知手段(例えば、演出制御用マイクロコンピュータ100におけるステップS614でYと判定したときにステップS616,S618,S620,S622を実行する部分)を含むように構成されていてもよい。そのような構成によれば、演出装置を用いて所定のエラーが発生したことを報知することができ、遊技店員に対して異常が発生したことを認識させることができる。 (13) The gaming machine includes an effect control microcomputer (for example, the effect control microcomputer 100) that controls a predetermined effect device (for example, the effect display device 9), and the payout control microcomputer is a payout stop means. When the payout stop state is controlled by, an error signal indicating that a predetermined error has occurred (for example, a connection OK command in which error information is set or a winning ball preparation command) is output to the game control microcomputer. Error signal output means (for example, in the payout control microcomputer 370, as shown in FIG. 45, by setting bits 0 to 3 of a connection OK command or a winning ball preparation command, a winning ball error, a full tank error, A ball breakage error and a payout quantity abnormality error are set, and steps S7415 and S7 are performed. 208, S74222, S74313, SS74413), and the game control microcomputer is used to notify that a predetermined error has occurred when an error signal is output by the error signal output means. Including a notification error signal output means for outputting an error signal (for example, a frame state display command) to the effect control microcomputer (for example, a part for executing step S398 in the game control microcomputer 560); Is based on the fact that the error signal for notification is input and controls the effect device to notify that a predetermined error has occurred (for example, it is determined as Y in step S614 in the effect control microcomputer 100). Sometimes steps S616, S 18, S620, may be configured so as to include a portion) to perform S622. According to such a structure, it can alert | report that the predetermined | prescribed error generate | occur | produced using a production | presentation apparatus, and can recognize that abnormality had generate | occur | produced with respect to the game store clerk.

(14)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、球貸し要求があったこと)にもとづいて遊技媒体を払い出す遊技機であって、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、制御用マイクロコンピュータは、少なくとも、貸出要求による払出条件の成立にもとづく未払出の貸し遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、少なくとも、貸出要求された数を超えた払出過多数と貸出要求された数に満たなかった払出不足数とを示すデータ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新されたデータが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含むように構成されていてもよい。そのような構成によれば、各々の払出制御について判断するのではなく、累積的に更新されたデータにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。 (14) The gaming machine allows a player to play a predetermined game using a game medium (for example, a game ball), and a predetermined payout condition is satisfied (for example, a ball rental request has been made) ), A payout means (for example, a ball payout device 97) for paying out the game medium, and a control microcomputer for controlling the payout means (for example, a payout control microcomputer) 370), and the control microcomputer executes a payout control for executing payout control for driving and paying out payout means for at least unpaid out game media based on establishment of a payout condition based on the loan request. Means (for example, the processing of step S75113 in the payout control microcomputer 370 is executed, the payout motor 289 is activated, and the step Data indicating the payout motor control processing in step S756), at least an excessive payout amount exceeding the requested loan amount and an insufficient payout amount less than the requested loan amount (for example, the number of payouts) Cumulative update means for cumulatively updating (count value of the abnormality counter) (for example, a part for executing steps S7503, S75320, S75325, and S75335 in the payout control microcomputer 370) and data updated by the cumulative update means are specified. When a value (for example, a predetermined payout number abnormality error determination value (for example, 2000)) is reached, a payout stop unit (for example, for payout control) that stops execution of the payout control by the game medium payout control unit and controls the payout stop state. In steps S7505, S75322, and S7726 in the microcomputer 370 After setting the number abnormal error specified bit output, it is determined that N and portions) for controlling so as not to perform the dispensing operation in step S75101, may be configured to include. According to such a configuration, instead of judging each payout control, the payout control is executed by comprehensively judging the payout control executed under abnormal conditions based on the cumulatively updated data. Can be stopped. Therefore, it is possible to more accurately prevent the act of illegally paying out game media.

(15)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと。球貸し要求があったこと。)にもとづいて遊技媒体を払い出す遊技機であって、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、制御用マイクロコンピュータは、払出条件の成立にもとづく未払出の遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、払い出すべき数の未払出の遊技媒体を超えた払出過多数と払い出すべき数の未払出の遊技媒体に満たなかった払出不足数とを示すデータ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新されたデータが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含むように構成されていてもよい。そのような構成によれば、各々の払出制御について判断するのではなく、累積的に更新されたデータにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。 (15) The gaming machine allows a player to play a predetermined game using a game medium (for example, a game ball), and that a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A game machine which pays out game media based on a ball lending request), a payout means (for example, a ball payout device 97) for paying out game media, and a control for controlling the payout means A control microcomputer (for example, a payout control microcomputer 370), and the control microcomputer executes payout control for driving out payout means for paying out unpaid game media based on the establishment of payout conditions. Game medium payout control means (for example, the process of step S75113 in the payout control microcomputer 370 is executed to start the payout motor 289, and The portion where the payout motor control process of step S756 is executed), the payout excess exceeding the number of unpaid game media to be paid out, and the number of payout shortages that did not satisfy the number of unpaid game media to be paid out And cumulative updating means for cumulatively updating data (for example, the count value of the payout number abnormality counter) (for example, a part for executing steps S7503, S75320, S75325, and S75335 in the payout control microcomputer 370), and cumulative When the data updated by the updating means reaches a specific value (for example, a predetermined payout number abnormality error determination value (for example, 2000)), the execution of the payout control by the game medium payout control means is stopped to control the payout stop state. Dispensing stop means (for example, steps S7505 and S7 in the dispensing control microcomputer 370) 322, after setting the payout number abnormal error bits specified in S7726, it is determined that N and portions) for controlling so as not to perform the dispensing operation in step S75101, may be configured to include. According to such a configuration, instead of judging each payout control, the payout control is executed by comprehensively judging the payout control executed under abnormal conditions based on the cumulatively updated data. Can be stopped. Therefore, it is possible to more accurately prevent the act of illegally paying out game media.

(16)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、遊技による払出条件の成立(例えば、遊技球が入賞口に入賞したこと)にもとづく景品としての景品遊技媒体の払い出し(例えば、賞球払出)を検出し、払出制御用マイクロコンピュータに検出信号を出力する払出検出手段(例えば、払出個数カウントスイッチ301)と、を備え、遊技制御用マイクロコンピュータは、遊技による払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて、払い出すべき景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、払出数信号が出力されるタイミングで、払い出すべき景品遊技媒体の数を示す第1データ(例えば、賞球個数カウンタのカウント値)を更新する更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52308を実行する部分)と、を含み、払出制御用マイクロコンピュータは、払出検出手段から検出信号が所定回数(例えば、賞球情報出力判定値(10回))入力されたことにもとづいて、遊技制御用マイクロコンピュータに対して景品遊技媒体の払い出しの検出を示す遊技媒体計数信号(例えば、賞球情報)を出力する計数信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7914を実行する部分)と、少なくとも、払出数信号出力手段により出力された払出数信号で特定される数の未払出の景品遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、少なくとも、払出数信号で特定される数を超えた払出過多数と払出数信号で特定される数に満たなかった払出不足数とを示す第2データ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新された第2データが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含み、遊技制御用マイクロコンピュータは、さらに、計数信号出力手段によって遊技媒体計数信号が出力されたことにもとづいて、第1データを逆方向に更新する逆更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5311を実行する部分)と、第1データが所定の閾値(例えば、賞球不足判定値(501)。賞球過剰判定値(0))となったことにもとづいて異常状態であると判定する異常状態判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52309,S5312を実行する部分)と、を含むように構成されていてもよい。そのような構成によれば、各々の払出制御について判断するのではなく、累積的に更新された第2データにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。また、遊技制御用マイクロコンピュータ側でも第1データにもとづいて異常状態を判定できるので、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの双方で異常状態を検出することができる。従って、不正に遊技媒体を払い出させる行為を防止する不正対策をより強固なものとすることができる。 (16) The gaming machine can play a predetermined game using a game medium (for example, a game ball) and a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A gaming machine that pays out game media based on a game control microcomputer that controls the progress of the game (for example, a game control microcomputer 560), and a payout means that pays out game media (for example, , A ball payout device 97), a payout control microcomputer for controlling the payout means (for example, payout control microcomputer 370), and fulfillment of payout conditions by the game (for example, the game ball has won a winning opening) A payout detection that detects payout of a prize game medium as a base prize (for example, prize ball payout) and outputs a detection signal to a microcomputer for payout control Means (for example, the number-of-payout counting switch 301), and the game control microcomputer should pay out based on the fact that a payout condition for the game has been established (for example, a game ball has won a winning opening). A payout number storage means (for example, a prize ball command output counter) for storing payout number data (for example, a count value of a prize ball command output counter) capable of specifying the number of prize game media (for example, the number of prize balls), and a payout Based on the number-of-payout data stored in the number storage means, a number-of-payout signal that outputs a number-of-payout signal (for example, a prize ball number command) that can specify the number of prize game media to be paid out is output to the payout control microcomputer. Means (for example, a part for executing step S52305 in the game control microcomputer 560) and a payout number signal are output. Update means for updating the first data (for example, the count value of the prize ball number counter) indicating the number of prize game media to be paid out (for example, a part for executing step S52308 in the game control microcomputer 560). And the payout control microcomputer receives the detection signal from the payout detection means for a predetermined number of times (for example, a prize ball information output determination value (10 times)) to the game control microcomputer. Counting signal output means (for example, a part executing step S7914 in the payout control microcomputer 370) for outputting a game medium count signal (for example, prize ball information) indicating detection of payout of prize game media, and at least payout Number of unpaid premiums specified by the number-of-payout signal output by the number signal output means Game medium payout control means for executing payout control for driving the payout means to pay out game media (for example, the process of step S75113 in the payout control microcomputer 370 is executed to start the payout motor 289, and step S756). The payout motor control process is executed), and at least a second payout number exceeding the number specified by the payout number signal and a second payout shortage not exceeding the number specified by the payout number signal. Cumulative update means for cumulatively updating data (for example, the count value of the payout number abnormality counter) (for example, a portion for executing steps S7503, S75320, S75325, and S75335 in the payout control microcomputer 370) and cumulative update means The updated second data is a specific value (for example, a predetermined payout number abnormality) When the error determination value (for example, 2000) is reached, the payout stop means (for example, steps S7505 and S75322 in the payout control microcomputer 370) stops execution of the payout control by the game medium payout control means and controls the payout stop state. The game control microcomputer further includes a counting signal output means, and sets the payout number abnormality error designation bit in S7726, and then determines that N is determined in step S75101 so as not to perform the payout operation. Based on the output of the game medium count signal by the reverse update means for updating the first data in the reverse direction (for example, the part for executing step S5311 in the game control microcomputer 560), and the first data is predetermined. Threshold value (for example, prize ball shortage determination value (501)). An abnormal state determination means (for example, a part that executes steps S52309 and S5312 in the game control microcomputer 560) that determines that the abnormal state is based on the fact that the award ball excess determination value (0) is reached. It may be configured as follows. According to such a configuration, instead of determining each payout control, payout control is performed by comprehensively determining payout control executed under abnormal conditions based on the cumulatively updated second data. Execution can be stopped. Therefore, it is possible to more accurately prevent the act of illegally paying out game media. Further, since the game control microcomputer side can also determine the abnormal state based on the first data, both the game control microcomputer and the payout control microcomputer can detect the abnormal state. Therefore, it is possible to further strengthen the fraud countermeasure that prevents the act of illegally paying out the game medium.

(17)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと。球貸し要求があったこと。)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、遊技による払出条件の成立(例えば、遊技球が入賞口に入賞したこと)にもとづく景品としての景品遊技媒体の払い出し(例えば、賞球払出)と、貸出要求による払出条件の成立(例えば、球貸し要求があったこと)にもとづく貸し遊技媒体の払い出し(例えば、球貸し払出)とを検出し、払出制御用マイクロコンピュータに検出信号を出力する払出検出手段(例えば、払出個数カウントスイッチ301)と、を備え、遊技制御用マイクロコンピュータは、遊技による払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて、払い出すべき景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、払出数信号が出力されるタイミングで、払い出すべき景品遊技媒体の数を示す第1データ(例えば、賞球個数カウンタのカウント値)を更新する更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52308を実行する部分)と、を含み、払出制御用マイクロコンピュータは、払出検出手段から入力された検出信号が景品遊技媒体と貸し遊技媒体とのいずれの払い出しによるものかを判定する払出判定手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7902,S7903を実行する部分)と、払出判定手段により検出信号が景品遊技媒体の払い出しによるものと所定回数(例えば、賞球情報出力判定値(10回))判定されたことにもとづいて、遊技制御用マイクロコンピュータに対して遊技媒体の払い出しの検出を示す遊技媒体計数信号(例えば、賞球情報)を出力する計数信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7914を実行する部分)と、払出数信号出力手段により出力された払出数信号で特定される数の未払出の景品遊技媒体、または貸出要求による払出条件の成立にもとづく所定数の貸し遊技媒体を、払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、払出数信号で特定される数または所定数を超えた払出過多数と払出数信号で特定される数または所定数に満たなかった払出不足数とを示す第2データ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新された第2データが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含み、遊技制御用マイクロコンピュータは、さらに、計数信号出力手段によって遊技媒体計数信号が出力されたことにもとづいて、第1データを逆方向に更新する逆更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5311を実行する部分)と、第1データが所定の閾値(例えば、賞球不足判定値(501)。賞球過剰判定値(0))となったことにもとづいて異常状態であると判定する異常状態判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52309,S5312を実行する部分)と、を含むように構成されていてもよい。そのような構成によれば、各々の払出制御について判断するのではなく、累積的に更新された第2データにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。また、遊技制御用マイクロコンピュータ側でも第1データにもとづいて異常状態を判定できるので、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの双方で異常状態を検出することができる。従って、不正に遊技媒体を払い出させる行為を防止する不正対策をより強固なものとすることができる。 (17) The gaming machine allows a player to play a predetermined game using a game medium (for example, a game ball), and that a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A gaming machine that pays out game media based on a ball lending request), a game control microcomputer that controls the progress of the game (for example, a game control microcomputer 560), and a game A payout means (for example, a ball payout device 97) for paying out a medium, a payout control microcomputer (for example, a payout control microcomputer 370) for controlling the payout means, and a game payout condition is satisfied (eg, a game ball) (For example, prize ball payout) and fulfillment of a payout condition by a loan request (for example, a prize ball) A payout detecting means (for example, a payout number count switch 301) which detects a payout of a rental game medium based on a ball lending request (for example, a ball lending payout) and outputs a detection signal to a payout control microcomputer. And the game control microcomputer is configured to count the number of prize game media to be paid out (for example, a prize ball) based on the fact that a game payout condition has been established (for example, a game ball has won a prize opening). The number of payouts that can be specified (for example, the count value of the prize ball command output counter) (for example, the prize ball command output counter) and the number of payouts stored in the number of payouts storage Based on this, a payout number signal (for example, a prize ball number command) that can specify the number of prize game media to be paid out is a microcomputer for payout control. A payout number signal output means for outputting to the computer (for example, a part for executing step S52305 in the game control microcomputer 560) and a first number indicating the number of prize game media to be paid out at the timing when the payout number signal is output. Update means for updating data (for example, the count value of the prize ball number counter) (for example, a part for executing step S52308 in the game control microcomputer 560), the payout control microcomputer from the payout detection means Payout determination means for determining whether the input detection signal is a payout of a prize game medium or a rental game medium (for example, a part for executing steps S7902 and S7903 in the payout control microcomputer 370), and a payout determination The detection signal is paid by the means A game medium count signal (detection of game medium payout to the game control microcomputer based on the determination of a predetermined number of times (e.g., award ball information output determination value (10 times)). For example, count signal output means for outputting prize ball information (for example, a part for executing step S7914 in the payout control microcomputer 370) and the number specified by the payout number signal output by the payout number signal output means. Game medium payout control means (for example, payout control) for executing payout control for driving out payout means for paying out a predetermined number of loaned game media based on fulfillment of payout conditions based on a loan request or unpaid premium game media The processing of step S75113 in the microcomputer 370 is executed, the payout motor 289 is activated, and the step 756 payout motor control process is executed), the number specified by the payout number signal or the number of payouts exceeding the predetermined number, and the number specified by the payout number signal or the number of payout shortages not satisfying the predetermined number Second update data (for example, a count value of a payout number abnormality counter) that cumulatively updates (for example, a portion that executes steps S7503, S75320, S75325, and S75335 in the payout control microcomputer 370); When the second data updated by the cumulative update means reaches a specific value (for example, a predetermined payout number abnormality error determination value (for example, 2000)), the execution of the payout control by the game medium payout control means is stopped to stop payout. Dispensing stop means for controlling the state (for example, step S75 in the dispensing control microcomputer 370) The game control microcomputer further includes: a portion for controlling to not perform a payout operation by determining N in step S75101 after the payout number abnormality error designation bit is set in 5, S75322, S7726. On the basis of the output of the game medium count signal by the count signal output means, reverse update means for updating the first data in the reverse direction (for example, a part for executing step S5311 in the game control microcomputer 560), One data is a predetermined threshold (for example, a prize ball shortage determination value (501)). An abnormal state determination means (for example, a part that executes steps S52309 and S5312 in the game control microcomputer 560) that determines that the abnormal state is based on the fact that the award ball excess determination value (0) is reached. It may be configured as follows. According to such a configuration, instead of determining each payout control, payout control is performed by comprehensively determining payout control executed under abnormal conditions based on the cumulatively updated second data. Execution can be stopped. Therefore, it is possible to more accurately prevent the act of illegally paying out game media. Further, since the game control microcomputer side can also determine the abnormal state based on the first data, both the game control microcomputer and the payout control microcomputer can detect the abnormal state. Accordingly, it is possible to further strengthen the fraud countermeasure that prevents the act of illegally paying out the game medium.

(18)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとは、シリアル通信で信号を入出力し(例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、それぞれシリアル通信回路511,380を内蔵し、図41に示す払出制御コマンドをシリアル通信で送受信する)、遊技制御用マイクロコンピュータは、所定期間(例えば、1秒)が経過したか否かを判定する所定期間判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52313を実行する部分)と、払出制御用マイクロコンピュータとの通信接続状態を確認するための接続確認信号(例えば、接続確認コマンド)を、所定期間判定手段によって所定期間が経過したと判定される毎に払出制御用マイクロコンピュータに出力する接続確認信号出力手段(例えば、遊技制御用マイクロコンピュータ560においてステップS52313でYと判定した後にステップS5211を実行する部分)と、遊技による払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて、払い出すべき景品としての景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、を含み、払出制御用マイクロコンピュータは、接続確認信号出力手段が出力した接続確認信号を入力したことにもとづいて応答信号(例えば、接続OKコマンド)を遊技制御用マイクロコンピュータに出力する応答信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7415,S74208を実行する部分)と、少なくとも、払出数信号出力手段により出力された払出数信号で特定される数の未払出の景品遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、少なくとも、払出数信号で特定される数を超えた払出過多数と払出数信号で特定される数に満たなかった払出不足数とを示すデータ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新されたデータが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含み、応答信号出力手段は、遊技制御用マイクロコンピュータが制御状態を認識可能な態様で応答信号を遊技制御用マイクロコンピュータに出力する(例えば、払出制御用マイクロコンピュータ370は、ステップS7414,S74207の処理を実行して、図45に示すように接続OKコマンドの下位4ビットに賞球エラーや満タンエラー、球切れエラー、払出個数異常エラーをセットして送信する)ように構成されていてもよい。そのような構成によれば、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータが接続確認信号の入力にもとづいて定期的に出力する応答信号に制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を出力することができるため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの間の通信を確実に行うことができる。さらに、各々の払出制御について判断するのではなく、累積的に更新されたデータにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。 (18) The gaming machine can play a predetermined game using a game medium (for example, a game ball), and a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A gaming machine that pays out game media based on a game control microcomputer that controls the progress of the game (for example, a game control microcomputer 560), and a payout means that pays out game media (for example, , A ball payout device 97) and a payout control microcomputer (for example, a payout control microcomputer 370) for controlling the payout means. The game control microcomputer and the payout control microcomputer are connected by serial communication. Input / output signals (for example, the game control microcomputer 560 and the payout control microcomputer 370 Each serial communication circuit 511, 380 is built in and the payout control command shown in FIG. 41 is transmitted / received by serial communication), and the game control microcomputer determines whether or not a predetermined period (for example, 1 second) has elapsed. A connection confirmation signal (for example, a connection confirmation command) for confirming a communication connection state between the predetermined period determination means for determining (for example, the portion of step S52313 in the game control microcomputer 560 that executes step S52313) and the payout control microcomputer. Is output to the payout control microcomputer every time it is determined by the predetermined period determination means that the predetermined period has elapsed (for example, after the game control microcomputer 560 determines Y in step S52313, the step Part to execute S5211) and pay by game Based on the fact that the condition is satisfied (for example, that a game ball has won a prize opening), the number of payout data (for example, the number of prize balls) as the prize to be paid out (for example, the number of prize balls) (for example, The number of prize game media to be paid out based on the number-of-payout storage means (for example, the prize-ball command output counter) for storing the prize ball command output counter) and the number-of-payout data stored in the number-of-payout storage means Payout number signal output means for outputting a payout number signal (for example, a prize ball number command) that can be specified to the payout control microcomputer (for example, a part for executing step S52305 in the game control microcomputer 560). The payout control microcomputer responds based on the input of the connection confirmation signal output from the connection confirmation signal output means. Response signal output means for outputting a signal (for example, connection OK command) to the game control microcomputer (for example, a part for executing steps S7415 and S74208 in the payout control microcomputer 370) and at least a payout number signal output means Game medium payout control means (for example, step in the payout control microcomputer 370) that executes payout control for driving the payout means to pay out the number of unpaid premium game media specified by the output payout number signal. The process of S75113 is executed to start the payout motor 289, and the payout motor control process of step S756 is executed), and at least the payout excess and the payout number signal exceeding the number specified by the payout number signal Data indicating the number of underpayments that did not reach the specified number (for example, Cumulative update means for cumulatively updating (count value of the payout number abnormality counter) (for example, a part for executing steps S7503, S75320, S75325, and S75335 in the payout control microcomputer 370) and data updated by the cumulative update means Becomes a specific value (for example, a predetermined payout number abnormality error determination value (for example, 2000)), a payout stop unit (for example, a payout) that stops execution of the payout control by the game medium payout control unit and controls the payout stop state. The control microcomputer 370 sets a payout number abnormality error designation bit in steps S7505, S75322, and S7726, and then determines that N is determined in step S75101 so as not to perform a payout operation). The output means is a game control microphone. A response signal is output to the game control microcomputer in such a manner that the computer can recognize the control state (for example, the payout control microcomputer 370 executes the processes of steps S7414 and S74207 to connect as shown in FIG. (The award ball error, full tank error, out of ball error, and payout number error error may be set and transmitted in the lower 4 bits of the OK command). According to such a configuration, it is possible to facilitate the wiring of the game control microcomputer and the payout control microcomputer by using the serial communication method. In addition, a control state signal (a response signal to which a control state is added) can be output by adding a control state to a response signal periodically output by the payout control microcomputer based on the input of the connection confirmation signal. Therefore, it is possible to prevent the control state signal from being missed without considering the output timing of the control state signal, and to reliably perform communication between the game control microcomputer and the payout control microcomputer. it can. Furthermore, instead of determining each payout control, the payout control executed under an abnormal condition can be comprehensively determined based on the cumulatively updated data, and the payout control can be stopped. . Therefore, it is possible to more accurately prevent the act of illegally paying out game media.

(19)遊技制御用マイクロコンピュータは、払出数信号出力手段によって払出数信号が出力されたことにもとづいて、接続確認信号出力手段による接続確認信号の出力を停止する停止手段(例えば、遊技制御用マイクロコンピュータ560における接続確認コマンドを送信する賞球送信処理1に移行せずに賞球終了確認処理に移行する部分)と、払出制御の実行を終了したときに、払出数記憶手段に払出数データが記憶されているか否かを判定する払出数データ判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52503でYと判定されステップS52504が実行されて賞球送信処理2に移行したときにステップS52301を実行する部分)と、を含み、払出数信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていると判定されたときに、当該払出数記憶手段に記憶された払出数データにもとづいて、新たな払出数信号を払出制御用マイクロコンピュータに出力し(例えば、遊技制御用マイクロコンピュータ560は、ステップS52301でYと判定したことにもとづいてステップS52305を実行して新たな賞球個数コマンドを送信する)、接続確認信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていないと判定されたときに、所定期間判定手段により所定期間が経過したと判定されたことにもとづいて、新たな接続確認信号を払出制御用マイクロコンピュータに出力する(例えば、遊技制御用マイクロコンピュータ560は、ステップS52301でNと判定した後にステップS52313でYとなって賞球送信処理1に移行し、ステップS5211を実行して新たな接続確認コマンドを送信する)ように構成されていてもよい。そのような構成によれば、払出制御の実行の終了時における処理が集中して新たな接続確認信号の取りこぼし等が発生することを防止することができ、払出制御の実行処理の迅速化を図ることができる。 (19) The game control microcomputer stops the output of the connection confirmation signal by the connection confirmation signal output means based on the output of the payout number signal by the payout number signal output means (for example, for game control When the execution of the payout control is terminated, the payout amount data is stored in the payout amount storage means when the microcomputer 560 finishes executing the payout control. The number-of-payout data determination means for determining whether or not is stored (for example, when it is determined as Y in step S52503 in the game control microcomputer 560 and step S52504 is executed to move to the prize ball transmission process 2) The payout number signal output means includes a payout number data determination means. When it is determined that the payout number data is stored in the payout number storage means, a new payout number signal is sent to the payout control microcomputer based on the payout number data stored in the payout number storage means. (For example, the game control microcomputer 560 executes step S52305 based on the determination of Y in step S52301 and transmits a new prize ball number command), and the connection confirmation signal output means outputs the number of payouts. When it is determined by the data determining means that the payout number data is not stored in the payout number storage means, a new connection confirmation signal is issued based on the predetermined period determining means determining that the predetermined period has elapsed. The information is output to the control microcomputer (for example, the game control microcomputer 560 outputs step S52301). It moves to prize balls transmission process 1 becomes Y in step S52313 after determining that N, then executes step S5211 and transmits the new connection confirmation command) may also be configured. According to such a configuration, it is possible to prevent the processing at the end of the execution of the payout control from being concentrated and the occurrence of a new connection confirmation signal to be missed, thereby speeding up the execution processing of the payout control. be able to.

(20)遊技機は、遊技による払出条件の成立(例えば、遊技球が入賞口に入賞したこと)にもとづく景品としての景品遊技媒体の払い出し(例えば、賞球払出)を検出し、払出制御用マイクロコンピュータに検出信号を出力する払出検出手段(例えば、払出個数カウントスイッチ301)を備え、遊技制御用マイクロコンピュータは、払出数信号が出力されるタイミングで、払い出すべき景品遊技媒体の数を示す媒体数データ(例えば、賞球個数カウンタのカウント値)を更新する更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52308を実行する部分)を含み、払出制御用マイクロコンピュータは、払出検出手段から検出信号が所定回数(例えば、賞球情報出力判定値(10回))入力されたことにもとづいて、遊技制御用マイクロコンピュータに対して景品遊技媒体の払い出しの検出を示す遊技媒体計数信号(例えば、賞球情報)を出力する計数信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7914を実行する部分)と、を含み、遊技制御用マイクロコンピュータは、さらに、計数信号出力手段によって遊技媒体計数信号が出力されたことにもとづいて、媒体数データを逆方向に更新する逆更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5311を実行する部分)と、媒体数データが所定の閾値(例えば、賞球不足判定値(501)。賞球過剰判定値(0))となったことにもとづいて異常状態であると判定する異常状態判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52309,S5312を実行する部分)と、を含むように構成されていてもよい。そのような構成によれば、遊技制御用マイクロコンピュータ側でも媒体数データにもとづいて異常状態を判定できるので、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの双方で異常状態を検出することができる。従って、不正に遊技媒体を払い出させる行為を防止する不正対策をより強固なものとすることができる。 (20) The gaming machine detects a payout of a prize game medium as a prize (for example, a prize ball payout) based on the establishment of a payout condition by a game (for example, a game ball has won a prize opening) and is used for payout control The microcomputer includes a payout detection means (for example, a payout number count switch 301) for outputting a detection signal to the microcomputer, and the game control microcomputer indicates the number of prize game media to be paid out at the timing when the payout number signal is output. Including update means (for example, a part for executing step S52308 in the game control microcomputer 560) for updating the medium number data (for example, the count value of the prize ball number counter), the payout control microcomputer from the payout detection means The detection signal is input a predetermined number of times (for example, prize ball information output determination value (10 times)). Then, a counting signal output means (for example, step S7914 in the payout control microcomputer 370) that outputs a game medium count signal (for example, prize ball information) indicating detection of payout of the prize game medium to the game control microcomputer. The game control microcomputer further includes reverse update means for updating the medium number data in the reverse direction based on the output of the game medium count signal by the count signal output means. For example, the part for executing step S5311 in the game control microcomputer 560 and the medium number data have reached a predetermined threshold value (for example, a shortage determination value (501) for a shortage of winning balls). Based on the abnormal state determination means for determining the abnormal state (for example, a game control microcomputer A portion) for performing the steps S52309, S5312 in Yuta 560, may be configured to include. According to such a configuration, since the abnormal state can be determined on the game control microcomputer side based on the medium number data, the abnormal state can be detected by both the game control microcomputer and the payout control microcomputer. it can. Accordingly, it is possible to further strengthen the fraud countermeasure that prevents the act of illegally paying out the game medium.

(21)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、球貸し要求があったこと)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとは、シリアル通信で信号を入出力し(例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、それぞれシリアル通信回路511,380を内蔵し、図41に示す払出制御コマンドをシリアル通信で送受信する)、遊技制御用マイクロコンピュータは、所定期間(例えば、1秒)が経過したか否かを判定する所定期間判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52313を実行する部分)と、払出制御用マイクロコンピュータとの通信接続状態を確認するための接続確認信号(例えば、接続確認コマンド)を、所定期間判定手段によって所定期間が経過したと判定される毎に払出制御用マイクロコンピュータに出力する接続確認信号出力手段(例えば、遊技制御用マイクロコンピュータ560においてステップS52313でYと判定した後にステップS5211を実行する部分)と、を含み、払出制御用マイクロコンピュータは、接続確認信号出力手段が出力した接続確認信号を入力したことにもとづいて応答信号(例えば、接続OKコマンド)を遊技制御用マイクロコンピュータに出力する応答信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7415,S74208を実行する部分)と、少なくとも、貸出要求による払出条件の成立にもとづく所定数の貸し遊技媒体を払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、少なくとも、所定数を超えた払出過多数と所定数に満たなかった払出不足数とを示すデータ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新されたデータが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含み、応答信号出力手段は、遊技制御用マイクロコンピュータが制御状態を認識可能な態様で応答信号を遊技制御用マイクロコンピュータに出力するとともに、払出停止状態に制御されたときに、当該払出停止状態に制御されたことを認識可能に応答信号を遊技制御用マイクロコンピュータに出力し(例えば、払出制御用マイクロコンピュータ370は、ステップS7414,S74207の処理を実行して、図45に示すように接続OKコマンドの下位4ビットに賞球エラーや満タンエラー、球切れエラー、払出個数異常エラーをセットして送信する)、遊技制御用マイクロコンピュータは、さらに、払出停止状態に制御されたことを認識可能な応答信号を入力したことにもとづいて、払出停止状態に制御されていることを報知する制御を行う払出停止報知制御手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS398を実行して枠状態表示コマンドを送信することによって、演出制御用マイクロコンピュータにエラー報知を行わせる部分)を含むように構成されていてもよい。そのような構成によれば、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータが接続確認信号の入力にもとづいて定期的に出力する応答信号に制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を出力することができるため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの間の通信を確実に行うことができる。また、各々の払出制御について判断するのではなく、累積的に更新されたデータにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。さらに、払出停止状態となったことを報知することができ、遊技店員に対して異常が発生したことを認識させることができる。 (21) The gaming machine allows a player to play a predetermined game using a game medium (for example, a game ball), and a predetermined payout condition is satisfied (for example, a ball rental request has been made) ) Based on the game control microcomputer for controlling the progress of the game (for example, the game control microcomputer 560) and the payout means for paying out the game medium (for example, a ball). A payout device 97) and a payout control microcomputer (for example, a payout control microcomputer 370) for controlling the payout means, and the game control microcomputer and the payout control microcomputer send a signal by serial communication. For example, the game control microcomputer 560 and the payout control microcomputer 370 are respectively Serial communication circuits 511 and 380 are incorporated, and the payout control command shown in FIG. 41 is transmitted and received by serial communication). The game control microcomputer determines whether or not a predetermined period (for example, 1 second) has elapsed. A connection confirmation signal (for example, a connection confirmation command) for confirming the communication connection state between the period determining means (for example, the part for executing step S52313 in the game control microcomputer 560) and the payout control microcomputer is predetermined. Connection confirmation signal output means that outputs to the payout control microcomputer every time the period determination means determines that the predetermined period has elapsed (for example, the game control microcomputer 560 executes step S5211 after determining Y in step S52313) Part) and for payout control The microcomputer uses response signal output means (for example, for payout control) that outputs a response signal (for example, connection OK command) to the game control microcomputer based on the input of the connection confirmation signal output by the connection confirmation signal output means. A part for executing steps S7415 and S74208 in the microcomputer 370) and a game medium for executing payout control for driving and paying out a predetermined number of rental game media based on establishment of a payout condition based on a loan request by driving the payout means The payout control means (for example, the part where the payout motor 289 is started by executing the process of step S75113 in the payout control microcomputer 370 and the payout motor control process of step S756 is executed) and at least a predetermined number Overdue and the predetermined number is not met Cumulative update means (for example, steps S7503, S75320, S75325, and S75335 in the payout control microcomputer 370 are executed to cumulatively update data indicating the number of payout shortages (for example, the count value of the payout number abnormality counter). Portion) and the data updated by the cumulative update means become a specific value (for example, a predetermined payout number abnormality error determination value (for example, 2000)), the execution of the payout control by the game medium payout control means is stopped and paid out. The payout stopping means for controlling the stop state (for example, after setting the payout number error error designation bit in steps S7505, S75322, and S7726 in the payout control microcomputer 370, it is determined as N in step S75101 and the payout operation is not performed. Control part), and The answer signal output means outputs a response signal to the game control microcomputer in a manner in which the game control microcomputer can recognize the control state, and is controlled to the payout stop state when controlled to the payout stop state. A response signal is output to the game control microcomputer so that it can be recognized (for example, the payout control microcomputer 370 executes the processing of steps S7414 and S74207 to display the subordinate of the connection OK command as shown in FIG. 4) Set the award ball error, full tank error, out-of-ball error, and payout error error to 4 bits, and the game control microcomputer will further send a response signal that can recognize that the payout stop state has been controlled. Based on the input, payout is performed to notify that the payout is stopped. It is configured to include stop notification control means (for example, a part that causes the control microcomputer to perform error notification by executing step S398 in the game control microcomputer 560 and transmitting a frame state display command). May be. According to such a configuration, it is possible to facilitate the wiring of the game control microcomputer and the payout control microcomputer by using the serial communication method. In addition, a control state signal (a response signal to which a control state is added) can be output by adding a control state to a response signal periodically output by the payout control microcomputer based on the input of the connection confirmation signal. Therefore, it is possible to prevent the control state signal from being missed without considering the output timing of the control state signal, and to reliably perform communication between the game control microcomputer and the payout control microcomputer. it can. Further, instead of determining each payout control, it is possible to stop the payout control by comprehensively determining the payout control executed under an abnormal condition based on the cumulatively updated data. . Therefore, it is possible to more accurately prevent the act of illegally paying out game media. Furthermore, it is possible to notify that the payout has been stopped, and to allow the game store clerk to recognize that an abnormality has occurred.

(22)遊技制御用マイクロコンピュータは、遊技による払出条件が成立したことにもとづいて、払い出すべき景品としての景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、払出数信号出力手段によって払出数信号が出力されたことにもとづいて、接続確認信号出力手段による接続確認信号の出力を停止する停止手段(例えば、遊技制御用マイクロコンピュータ560における接続確認コマンドを送信する賞球送信処理1に移行せずに賞球終了確認処理に移行する部分)と、払出制御の実行を終了したときに、払出数記憶手段に払出数データが記憶されているか否かを判定する払出数データ判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52503でYと判定されステップS52504が実行されて賞球送信処理2に移行したときにステップS52301を実行する部分)と、を含み、払出数信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていると判定されたときに、当該払出数記憶手段に記憶された払出数データにもとづいて、新たな払出数信号を払出制御用マイクロコンピュータに出力し(例えば、遊技制御用マイクロコンピュータ560は、ステップS52301でYと判定したことにもとづいてステップS52305を実行して新たな賞球個数コマンドを送信する)、接続確認信号出力手段は、払出数データ判定手段によって払出数記憶手段に払出数データが記憶されていないと判定されたときに、所定期間判定手段により所定期間が経過したと判定されたことにもとづいて、新たな接続確認信号を払出制御用マイクロコンピュータに出力する(例えば、遊技制御用マイクロコンピュータ560は、ステップS52301でNと判定した後にステップS52313でYとなって賞球送信処理1に移行し、ステップS5211を実行して新たな接続確認コマンドを送信する)ように構成されていてもよい。そのような構成によれば、払出制御の実行の終了時における処理が集中して新たな接続確認信号の取りこぼし等が発生することを防止することができ、払出制御の実行処理の迅速化を図ることができる。 (22) The game control microcomputer, based on the fact that the game payout condition is satisfied, payout number data (for example, the number of prize balls) as the prize to be paid out (for example, the number of prize balls) (for example, The number of prize game media to be paid out based on the number-of-payout storage means (for example, the prize-ball command output counter) for storing the prize ball command output counter) and the number-of-payout data stored in the number-of-payout storage means The number-of-payout signal (for example, a part for executing step S52305 in the game control microcomputer 560) for outputting a number-of-payout signal (for example, a prize ball number command) to the payout control microcomputer, and the number of payouts Based on the output of the payout number signal by the signal output means, the connection confirmation signal output means confirms the connection. Stop means for stopping signal output (for example, a portion that shifts to a prize ball end confirmation process without shifting to a prize ball transmission process 1 for transmitting a connection confirmation command in the game control microcomputer 560) and execution of payout control When the game is finished, the number-of-payout data determination means for determining whether or not the number-of-payout data is stored in the number-of-payout storage means (for example, it is determined as Y in step S52503 in the game control microcomputer 560, and step S52504 is executed). The payout number signal output means stores the payout number data in the payout number storage means by the payout number data determination means. Is determined based on the payout amount data stored in the payout amount storage means. Is output to the payout control microcomputer (for example, the game control microcomputer 560 executes step S52305 based on the determination of Y in step S52301 and transmits a new prize ball number command) to confirm the connection. The signal output means is based on the fact that the predetermined period determining means determines that the predetermined period has elapsed when the payout number data determining means determines that the payout number storage means does not store the payout number data. A new connection confirmation signal is output to the payout control microcomputer (for example, the game control microcomputer 560 determines “N” in step S52301, then becomes “Y” in step S52313, and proceeds to the award ball transmission process 1.) (S5211 is executed and a new connection confirmation command is transmitted) It may be configured. According to such a configuration, it is possible to prevent the processing at the end of the execution of the payout control from being concentrated and the occurrence of a new connection confirmation signal to be missed, thereby speeding up the execution processing of the payout control. be able to.

(23)遊技機は、遊技による払出条件の成立(例えば、遊技球が入賞口に入賞したこと)にもとづく景品としての景品遊技媒体の払い出し(例えば、賞球払出)と、貸出要求による払出条件の成立(例えば、球貸し要求があったこと)にもとづく貸し遊技媒体の払い出し(例えば、球貸し払出)とを検出し、払出制御用マイクロコンピュータに検出信号を出力する払出検出手段(例えば、払出個数カウントスイッチ301)を備え、遊技制御用マイクロコンピュータは、払出数信号が出力されるタイミングで、払い出すべき景品遊技媒体の数を示す媒体数データ(例えば、賞球個数カウンタのカウント値)を更新する更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52308を実行する部分)を含み、払出制御用マイクロコンピュータは、払出検出手段から入力された検出信号が景品遊技媒体と貸し遊技媒体とのいずれの払い出しによるものかを判定する払出判定手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7902,S7903を実行する部分)と、払出判定手段により検出信号が景品遊技媒体の払い出しによるものと所定回数(例えば、賞球情報出力判定値(10回))判定されたことにもとづいて、遊技制御用マイクロコンピュータに対して遊技媒体の払い出しの検出を示す遊技媒体計数信号(例えば、賞球情報)を出力する計数信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7914を実行する部分)と、を含み、遊技制御用マイクロコンピュータは、さらに、計数信号出力手段によって遊技媒体計数信号が出力されたことにもとづいて、媒体数データを逆方向に更新する逆更新手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5311を実行する部分)と、媒体数データが所定の閾値(例えば、賞球不足判定値(501)。賞球過剰判定値(0))となったことにもとづいて異常状態であると判定する異常状態判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52309,S5312を実行する部分)と、を含むように構成されていてもよい。そのような構成によれば、遊技制御用マイクロコンピュータ側でも媒体数データにもとづいて異常状態を判定できるので、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの双方で異常状態を検出することができる。従って、不正に遊技媒体を払い出させる行為を防止する不正対策をより強固なものとすることができる。 (23) The gaming machine pays out a prize game medium as a prize (for example, pays out a prize ball) based on the establishment of a game payout condition (for example, a game ball has won a prize opening) and a payout condition for a lending request A payout detection means (for example, a payout) that detects a payout of a rental game medium (for example, a ballrent payout) based on the establishment of (for example, a ball lending request) and outputs a detection signal to the payout control microcomputer The game control microcomputer is provided with a number count switch 301), and at the timing when a payout number signal is output, medium number data (for example, a count value of a prize ball number counter) indicating the number of premium game media to be paid out is provided. An update means for updating (for example, a part for executing step S52308 in the game control microcomputer 560) and paying out The control microcomputer determines whether the detection signal input from the payout detection means is a payout game medium or a rented game medium. The payout determination means (for example, steps S7902, S7903 in the payout control microcomputer 370). And a game control micro based on that the detection signal is determined a predetermined number of times (for example, a prize ball information output determination value (10 times)) by the payout determination means. Counting signal output means (for example, a part for executing step S7914 in the payout control microcomputer 370) for outputting a game medium count signal (for example, prize ball information) indicating detection of game medium payout to the computer; In addition, the game control microcomputer further includes a counting signal. Based on the output of the game medium count signal by the output means, reverse update means for updating the medium number data in the reverse direction (for example, the part for executing step S5311 in the game control microcomputer 560), and the medium number data Is an abnormal state determination means (for example, a game control micro) that determines an abnormal state based on a predetermined threshold value (for example, a shortage determination value (501) for a prize ball, a determination value (0) for a prize ball excess)). And a portion for executing steps S52309 and S5312 in the computer 560). According to such a configuration, since the abnormal state can be determined on the game control microcomputer side based on the medium number data, the abnormal state can be detected by both the game control microcomputer and the payout control microcomputer. it can. Accordingly, it is possible to further strengthen the fraud countermeasure that prevents the act of illegally paying out the game medium.

(24)遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、所定の払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと。球貸し要求があったこと。)にもとづいて遊技媒体を払い出す遊技機であって、遊技の進行を制御する遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御用マイクロコンピュータ(例えば、払出制御用マイクロコンピュータ370)と、を備え、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとは、シリアル通信で信号を入出力し(例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、それぞれシリアル通信回路511,380を内蔵し、図41に示す払出制御コマンドをシリアル通信で送受信する)、遊技制御用マイクロコンピュータは、所定期間(例えば、1秒)が経過したか否かを判定する所定期間判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52313を実行する部分)と、払出制御用マイクロコンピュータとの通信接続状態を確認するための接続確認信号(例えば、接続確認コマンド)を、所定期間判定手段によって所定期間が経過したと判定される毎に払出制御用マイクロコンピュータに出力する接続確認信号出力手段(例えば、遊技制御用マイクロコンピュータ560においてステップS52313でYと判定した後にステップS5211を実行する部分)と、遊技による払出条件が成立したこと(例えば、遊技球が入賞口に入賞したこと)にもとづいて、払い出すべき景品としての景品遊技媒体の数(例えば、賞球個数)を特定可能な払出数データ(例えば、賞球コマンド出力カウンタのカウント値)を記憶する払出数記憶手段(例えば、賞球コマンド出力カウンタ)と、払出数記憶手段に記憶された払出数データにもとづいて、払い出すべき景品遊技媒体の数を特定可能な払出数信号(例えば、賞球個数コマンド)を払出制御用マイクロコンピュータに出力する払出数信号出力手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS52305を実行する部分)と、を含み、払出制御用マイクロコンピュータは、接続確認信号出力手段が出力した接続確認信号を入力したことにもとづいて応答信号(例えば、接続OKコマンド)を遊技制御用マイクロコンピュータに出力する応答信号出力手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7415,S74208を実行する部分)と、払出数信号出力手段により出力された払出数信号で特定される数または貸出要求による払出条件の成立にもとづく所定数の貸し遊技媒体を、払出手段を駆動制御して払い出させる払出制御を実行する遊技媒体払出制御手段(例えば、払出制御用マイクロコンピュータ370におけるステップS75113の処理が実行されて払出モータ289が起動され、ステップS756の払出モータ制御処理が実行される部分)と、払出数信号で特定される数または所定数を超えた払出過多数と払出数信号で特定される数または所定数に満たなかった払出不足数とを示すデータ(例えば、払出個数異常カウンタのカウント値)を累積的に更新する累積更新手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7503,S75320,S75325,S75335を実行する部分)と、累積更新手段によって更新されたデータが特定値(例えば、所定の払出個数異常エラー判定値(例えば、2000))となると、遊技媒体払出制御手段による払出制御の実行を停止させて払出停止状態に制御する払出停止手段(例えば、払出制御用マイクロコンピュータ370におけるステップS7505,S75322,S7726で払出個数異常エラー指定ビットをセットした後、ステップS75101でNと判定して払出動作を行わないように制御する部分)と、を含み、応答信号出力手段は、遊技制御用マイクロコンピュータが制御状態を認識可能な態様で応答信号を遊技制御用マイクロコンピュータに出力する(例えば、払出制御用マイクロコンピュータ370は、ステップS7414,S74207の処理を実行して、図45に示すように接続OKコマンドの下位4ビットに賞球エラーや満タンエラー、球切れエラー、払出個数異常エラーをセットして送信する)ように構成されていてもよい。そのような構成によれば、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータが接続確認信号の入力にもとづいて定期的に出力する応答信号に制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を出力することができるため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの間の通信を確実に行うことができる。さらに、各々の払出制御について判断するのではなく、累積的に更新されたデータにもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技媒体を払い出させる行為をより的確に防止することを可能とすることができる。 (24) The gaming machine can play a predetermined game using a game medium (for example, a game ball), and a predetermined payout condition is satisfied (for example, a game ball wins a winning opening) A gaming machine that pays out game media based on a ball lending request), a game control microcomputer that controls the progress of the game (for example, a game control microcomputer 560), and a game A payout means (for example, a ball payout device 97) for paying out a medium and a payout control microcomputer (for example, a payout control microcomputer 370) for controlling the payout means are provided, and the game control microcomputer and the payout control are provided. The microcomputer for input / output of signals by serial communication (for example, a game control microcomputer 560 and a payout control microphone) The computer 370 includes serial communication circuits 511 and 380, respectively, and sends and receives the payout control command shown in FIG. 41 by serial communication.) Whether the game control microcomputer has passed a predetermined period (for example, 1 second) A connection confirmation signal (for example, connection) for confirming a communication connection state between the predetermined period determination means for determining whether or not (for example, the portion of step S52313 in the game control microcomputer 560 that executes step S52313) and the payout control microcomputer The connection confirmation signal output means (for example, the game control microcomputer 560 determines Y in step S52313) to output a confirmation command) to the payout control microcomputer every time the predetermined period determination means determines that the predetermined period has elapsed. Step S5211 is executed after The number of prize game media as prizes to be paid out (for example, the number of prize balls) based on the fact that the game payout condition has been established (for example, a game ball has won a prize opening) Based on payout number storage means (for example, a prize ball command output counter) for storing possible payout number data (for example, a count value of a prize ball command output counter) and payout number data stored in the payout number storage means, A payout number signal output means (for example, step S52305 in the game control microcomputer 560) that outputs a payout number signal (for example, a prize ball number command) that can specify the number of prize game media to be paid out to the payout control microcomputer. The payout control microcomputer inputs the connection confirmation signal output from the connection confirmation signal output means. A response signal output means for outputting a response signal (for example, connection OK command) to the game control microcomputer based on the input (for example, a portion for executing steps S7415 and S74208 in the payout control microcomputer 370); Game for executing payout control for driving out payout means to drive out a predetermined number of rental game media based on the number specified by the payout number signal output by the number signal output means or establishment of the payout condition by the loan request The medium payout control means (for example, the portion where the payout motor 289 is started by executing the process of step S75113 in the payout control microcomputer 370 and the payout motor control process of step S756 is executed) and the payout number signal are specified. Or the number of payouts exceeding the specified number and the payout number signal Cumulative update means (for example, step S7503 in the payout control microcomputer 370) that cumulatively updates data indicating the predetermined number or the number of shortage payouts that did not satisfy the predetermined number (for example, the count value of the payout number abnormality counter). , S75320, S75325, S75335) and the data updated by the cumulative update means become a specific value (for example, a predetermined payout number abnormality error determination value (for example, 2000)), the game medium payout control means Discharge stop means for stopping the execution of the payout control to control the payout stop state (for example, after setting the payout quantity abnormality error designation bit at steps S7505, S75322, and S7726 in the payout control microcomputer 370, N is set at step S75101. Judgment and do not perform payout operation The response signal output means outputs a response signal to the game control microcomputer in a manner that allows the game control microcomputer to recognize the control state (for example, a payout control microcomputer). 370 executes the processes of steps S7414 and S74207, and transmits a prize ball error, a full tank error, a ball shortage error, and a payout number error error in the lower 4 bits of the connection OK command as shown in FIG. 45) It may be configured as follows. According to such a configuration, it is possible to facilitate the wiring of the game control microcomputer and the payout control microcomputer by using the serial communication method. In addition, a control state signal (a response signal to which a control state is added) can be output by adding a control state to a response signal periodically output by the payout control microcomputer based on the input of the connection confirmation signal. Therefore, it is possible to prevent the control state signal from being missed without considering the output timing of the control state signal, and to reliably perform communication between the game control microcomputer and the payout control microcomputer. it can. Furthermore, instead of determining each payout control, the payout control executed under an abnormal condition can be comprehensively determined based on the cumulatively updated data, and the payout control can be stopped. . Therefore, it is possible to more accurately prevent the act of illegally paying out game media.

(25)遊技制御用マイクロコンピュータは、所定の初期設定を実行した後、不揮発性メモリ(例えば、ROM54)の記憶内容にもとづき遊技機における遊技制御を実行する制御用CPU(例えば、CPU56)が内蔵され、遊技制御用マイクロコンピュータ(例えば、遊技制御用マイクロコンピュータ560)に内蔵または外付けされ、乱数値となる数値データを生成する乱数回路(例えば、乱数回路509)を備え、乱数回路は、数値データをあらかじめ定められた手順により更新して出力する数値更新手段(例えば、乱数生成回路553や乱数列変更回路555)と、数値更新手段から出力された数値データを乱数値として取り込んで格納する乱数値格納手段(例えば、乱数値レジスタ559A(R1D)や乱数値レジスタ559B(R2D))と、所定信号(例えば、始動入賞信号SSにもとづく乱数ラッチ信号LL1,LL2)の入力にもとづいて数値更新手段から出力された数値データが乱数値格納手段に格納されたときにオン状態にされて新たな数値データの格納を制限する一方、乱数値格納手段に格納された数値データが乱数値の読出タイミングにて制御用CPUにより読み出されたときにオフ状態にされて新たな数値データの格納を許可する所定のフラグ(例えば、乱数ラッチフラグRDFM0,RDFM1)と、を含み、遊技制御用マイクロコンピュータは、制御用CPUによる遊技制御が開始されるときに、所定のフラグをオフ状態にする遊技制御開始時処理手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5006を実行して乱数ラッチフラグRDFM0,RDFM1をクリアする部分。遊技制御用マイクロコンピュータ560におけるステップS484、S486を実行して乱数ラッチフラグRDFM0,RDFM1をクリアする部分。)を含むように構成されていてもよい。そのような構成によれば、所定信号の入力にもとづいて乱数値格納手段に格納された数値データを、正確な乱数値として取得することができる。また、遊技機に供給される電源が不安定な状態で誤って乱数値格納手段に格納された数値データを取得してしまう事態も防止することができる。 (25) The game control microcomputer has a built-in control CPU (for example, CPU 56) that executes game control in the game machine based on the stored contents of the nonvolatile memory (for example, ROM 54) after executing predetermined initial settings. And a random number circuit (for example, a random number circuit 509) that is built in or externally attached to a game control microcomputer (for example, the game control microcomputer 560) and generates numerical data that becomes a random number value. Numerical value updating means (for example, random number generation circuit 553 or random number sequence changing circuit 555) that updates and outputs data according to a predetermined procedure, and randomness that takes numerical data output from numerical value updating means as a random value and stores it Numerical value storage means (for example, random value register 559A (R1D) or random value register 559B) R2D)) and a predetermined signal (for example, random number latch signals LL1 and LL2 based on the start winning signal SS), the numerical data output from the numerical value updating means is stored in the random value storage means. In the meantime, the storage of new numerical data is restricted and the numerical data stored in the random number storage means is turned off when the random number value is read out by the control CPU at the read timing of the random value, and the new numerical value is stored. And a predetermined flag that permits data storage (for example, random number latch flags RDFM0 and RDFM1), and the game control microcomputer turns off the predetermined flag when game control by the control CPU is started. Game control start processing means (for example, executing step S5006 in the game control microcomputer 560) Number latch flag RDFM0, RDFM1 clears the portion. Steps in the game control microcomputer 560 S484, perform the S486 and random number latch flag RDFM0, RDFM1 clearing portion.) May be configured to include. According to such a configuration, the numerical data stored in the random value storage unit based on the input of the predetermined signal can be acquired as an accurate random value. In addition, it is possible to prevent a situation in which numerical data stored in the random value storage means is erroneously acquired in a state where the power supplied to the gaming machine is unstable.

(26)遊技制御開始時処理手段は、遊技制御用マイクロコンピュータのシステムリセットが解除されて制御用CPUによる遊技制御の実行が開始されるときに、所定のフラグをオフ状態にするシステムリセット時処理手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5006を実行して乱数ラッチフラグRDFM0,RDFM1をクリアする部分)を含むように構成されていてもよい。そのような構成によれば、例えば、電源投入時などの電源電圧が不安定な状態で誤って乱数値格納手段に格納された数値データを乱数値として取得してしまうことを防止することができる。 (26) The game control start time processing means is a system reset time processing for turning off a predetermined flag when the system reset of the game control microcomputer is released and the execution of the game control by the control CPU is started. Means (for example, a part for executing step S5006 in the game control microcomputer 560 to clear the random number latch flags RDFM0 and RDFM1) may be included. According to such a configuration, for example, it is possible to prevent the numerical data stored in the random number storage means from being erroneously acquired as a random value when the power supply voltage is unstable when the power is turned on. .

(27)遊技機は、遊技機への電力供給にもとづいて生成された所定電源電圧を監視し、該所定電源電圧が低下したことにもとづいて検出信号(例えば、電源断信号)を出力する電源監視手段(例えば、電源監視回路920)を備え、遊技制御用マイクロコンピュータは、電源監視手段から検出信号が出力された後、動作停止状態となるまで、検出信号の入力状態を繰り返し判定する検出判定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS482を実行する部分)と、検出判定手段によって検出信号が入力されていない旨の判定がなされたときに、遊技制御処理プログラムの先頭から遊技制御の実行を開始する電断復旧時制御手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS487を実行した後、メイン処理から復帰(リターン)する部分)と、を含み、遊技制御開始時処理手段は、検出判定手段によって検出信号が入力されていない旨の判定がなされた後、電断復旧時制御手段が遊技制御処理プログラムの先頭から遊技制御の実行を開始するより前に、所定のフラグをオフ状態にする電断復旧時処理手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS484、S486を実行して乱数ラッチフラグRDFM0,RDFM1をクリアする部分)を含むように構成されていてもよい。そのような構成によれば、例えば、所定電源電圧の低下時などの電源電圧が不安定な状態で誤って乱数値格納手段に格納された数値データを乱数値として取得してしまうことを防止することができる。 (27) The gaming machine monitors a predetermined power supply voltage generated based on power supply to the gaming machine and outputs a detection signal (for example, a power-off signal) based on the decrease in the predetermined power supply voltage. A detection judgment provided with monitoring means (for example, a power supply monitoring circuit 920), wherein the game control microcomputer repeatedly determines the input state of the detection signal until the operation stop state after the detection signal is output from the power supply monitoring means. When the determination that the detection signal is not input by the means (for example, the part for executing step S482 in the game control microcomputer 560) and the detection determination means, the game control processing program starts from the beginning. The power failure recovery control means for starting execution (for example, in the game control microcomputer 560, step S487 is executed). The game control start time processing means after the determination that the detection signal is not input by the detection determination means, and when the power interruption is restored. Before the control means starts executing the game control from the beginning of the game control processing program, the power failure recovery processing means for turning off a predetermined flag (for example, steps S484 and S486 in the game control microcomputer 560 are executed). It may be configured to include a portion that executes and clears the random number latch flags RDFM0 and RDFM1). According to such a configuration, for example, it is possible to prevent the numerical data stored in the random value storage means from being erroneously acquired as a random value when the power supply voltage is unstable, for example, when the predetermined power supply voltage is lowered. be able to.

(28)数値更新手段は、数値データを更新可能な所定の範囲において、所定の更新初期値から所定の更新最終値まで循環的に数値データを更新し(例えば、乱数生成回路553や乱数列変更回路555において図32や図33に示すような乱数列RSNを生成する部分)、遊技制御用マイクロコンピュータは、当該遊技制御用マイクロコンピュータがシステムリセットされるごとに、所定の更新初期値を可変設定可能な乱数初期値設定手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS5005を実行する部分)を含むように構成されていてもよい。そのような構成によれば、システムリセットの発生後に乱数値となる数値データを特定することが困難になり、狙い撃ちなどによる不正行為を、確実に防止することができる。 (28) The numerical value updating means cyclically updates the numerical data from a predetermined update initial value to a predetermined update final value within a predetermined range in which the numerical data can be updated (for example, the random number generation circuit 553 or the random number sequence change) The part for generating the random number sequence RSN as shown in FIG. 32 or FIG. 33 in the circuit 555), the game control microcomputer variably sets a predetermined update initial value every time the game control microcomputer is system reset. Possible random number initial value setting means (for example, a part for executing step S5005 in the game control microcomputer 560) may be included. According to such a configuration, it becomes difficult to specify numerical data that becomes a random number value after the occurrence of a system reset, and it is possible to reliably prevent an illegal act due to a shooting or the like.

(29)遊技機は、遊技機への電力供給が開始された後、制御用CPUの動作とは別個に数値をカウントするカウント手段(例えば、フリーランカウンタ554A)を備え、乱数初期値設定手段は、カウント手段によってカウントされた数値を用いて、所定の更新初期値を決定する(例えば、遊技制御用マイクロコンピュータ560によるステップS5005の処理にもとづいて、スタート値設定回路554がスタート値を設定する部分)ように構成されていてもよい。そのような構成によれば、制御用CPUの動作態様から乱数値となる数値データを特定することが困難になり、狙い撃ちなどによる不正行為を、確実に防止することができる。 (29) The gaming machine includes a counting unit (for example, a free-run counter 554A) that counts a numerical value separately from the operation of the control CPU after power supply to the gaming machine is started, and a random number initial value setting unit Uses the numerical value counted by the counting means to determine a predetermined update initial value (for example, the start value setting circuit 554 sets the start value based on the processing of step S5005 by the game control microcomputer 560). (Part)). According to such a configuration, it becomes difficult to specify numerical data that is a random number value from the operation mode of the control CPU, and it is possible to reliably prevent fraudulent acts such as aiming.

(30)不揮発性メモリは、遊技制御用マイクロコンピュータに内蔵され、遊技制御用マイクロコンピュータは、制御用CPU以外による不揮発性メモリの外部読出を制限する読出制限回路(例えば、内部リソースアクセス制御回路501A)を含むように構成されていてもよい。そのような構成によれば、不揮発性メモリに記憶されている制御プログラムなどを遊技制御用マイクロコンピュータの外部から読み出して解析などをすることが困難になり、制御プログラムの解析結果などにもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続することによる不正行為を、確実に防止することができる。 (30) The nonvolatile memory is built in the game control microcomputer, and the game control microcomputer restricts external reading of the nonvolatile memory other than by the control CPU (for example, the internal resource access control circuit 501A). ) May be included. According to such a configuration, it becomes difficult to read out and analyze the control program stored in the non-volatile memory from the outside of the game control microcomputer, and aiming based on the analysis result of the control program, etc. It is possible to surely prevent an illegal act by connecting a so-called “hanging board”.

(31)遊技機は、遊技制御用マイクロコンピュータの外部にて乱数用クロック信号を生成して、乱数回路に供給する乱数用クロック生成回路(例えば、乱数用クロック生成回路112)と、制御用CPUに供給される制御用クロック信号を生成する制御用クロック生成回路(例えば、制御用クロック生成回路111やクロック回路502)と、を備え、乱数回路は、遊技制御用マイクロコンピュータに内蔵され、遊技制御用マイクロコンピュータは、乱数用クロック生成回路から供給される乱数用クロック信号の入力状態を制御用クロック生成回路にて生成された制御用クロック信号と比較することにより、乱数用クロック信号の入力状態に異常が発生したか否かを判定する乱数用クロック異常判定手段(例えば、周波数監視回路551、および遊技制御用マイクロコンピュータ560におけるステップS562〜S566を実行する部分)を含むように構成されていてもよい。そのような構成によれば、乱数値となる数値データの更新動作に異常が発生している状態で遊技制御が実行されてしまうことを防止できる。 (31) The gaming machine generates a random number clock signal outside the gaming control microcomputer and supplies the random number clock signal to the random number circuit (for example, the random number clock generation circuit 112), and a control CPU And a control clock generation circuit (for example, the control clock generation circuit 111 or the clock circuit 502) that generates a control clock signal supplied to the game control microcomputer. The microcomputer for microcomputer changes the input state of the random number clock signal supplied from the random number clock generation circuit to the input state of the random number clock signal by comparing the input state of the random number clock signal with the control clock signal generated by the control clock generation circuit. Random number clock abnormality determination means for determining whether or not an abnormality has occurred (for example, frequency monitoring circuit 551, It may be configured so as to include a portion) for performing the steps S562~S566 in the gaming control microcomputer 560 and. According to such a configuration, it is possible to prevent the game control from being executed in a state where an abnormality has occurred in the operation of updating the numerical data that is the random value.

(32)遊技制御用マイクロコンピュータは、所定の初期設定において不揮発性メモリの記憶内容が変更されたか否かを検査するセキュリティチェックを実行するセキュリティチェック手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS1009〜S1014を実行する部分)と、セキュリティチェック手段によるセキュリティチェックの実行時間を可変設定可能なセキュリティ時間設定手段(例えば、セキュリティ時間設定KSESのビット番号[2−0]にもとづいて、遊技制御用マイクロコンピュータ560におけるステップS1001〜S1004を実行する部分。セキュリティ時間設定KSESのビット番号[4−3]にもとづいて、遊技制御用マイクロコンピュータ560におけるステップS1005〜S1008を実行する部分)と、を含むように構成されていてもよい。そのような構成によれば、遊技制御の実行開始タイミングを特定することが困難になり、初期設定動作などの解析結果にもとづく狙い撃ちや、いわゆる「ぶら下げ基板」を接続することによる不正行為を、確実に防止することができる。 (32) The game control microcomputer performs security check to check whether or not the stored contents of the nonvolatile memory have been changed in a predetermined initial setting (for example, step S1009 in the game control microcomputer 560). To S1014) and security time setting means that can variably set the execution time of the security check by the security check means (for example, based on the bit number [2-0] of the security time setting KSES) The part which performs step S1001-S1004 in computer 560. Based on bit number [4-3] of security time setting KSES, step S1005 in microcomputer 560 for game control 1008 and the portions for performing), it may be configured to include. According to such a configuration, it becomes difficult to specify the execution start timing of the game control, and it is possible to reliably perform a sniper based on an analysis result such as an initial setting operation or an illegal act by connecting a so-called “hanging board”. Can be prevented.

(33)遊技制御用マイクロコンピュータは、乱数値の読出タイミングにて保留記憶手段における保留記憶の数が所定の上限数に達しているときに、乱数値格納手段に格納された数値データを読み出すことにより所定のフラグをオフ状態にする上限記憶時読出手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS326を実行して乱数ラッチフラグRDFM0,RDFM1をクリアする部分)を含むように構成されていてもよい。そのような構成によれば、保留記憶の数が所定の上限数に達した後、上限数未満となってから乱数値の読出タイミングとなったときに、所定信号の入力にもとづく正確な乱数値を取得することができる。 (33) The game control microcomputer reads the numerical data stored in the random value storage means when the number of the reserved memories in the reserved storage means reaches a predetermined upper limit number at the read timing of the random number values. May be configured to include upper limit storage reading means for turning off the predetermined flag (for example, a portion for executing step S326 in the game control microcomputer 560 to clear the random number latch flags RDFM0 and RDFM1). . According to such a configuration, an accurate random number value based on an input of a predetermined signal when the number of reserved memories reaches a predetermined upper limit number and becomes a random number read timing after the number becomes less than the upper limit number. Can be obtained.

本発明は、パチンコ遊技機およびスロット機などの遊技機に好適に適用できる。   The present invention can be suitably applied to gaming machines such as pachinko gaming machines and slot machines.

1 パチンコ遊技機
9 演出表示装置
14 始動入賞口
14a 始動口スイッチ
15 可変入賞球装置
31 遊技制御基板(主基板)
37 払出制御基板
56 CPU
80 演出制御基板
100 演出制御用マイクロコンピュータ
101a 演出制御用CPU
101b シリアル通信回路(演出制御側)
155A 扉開放センサ
155B 機構板開放センサ
160 ターミナル基板
370 払出制御用マイクロコンピュータ
371 払出制御用CPU
380 シリアル通信回路(払出制御側)
501 外部バスインタフェース
501A 内部リソースアクセス制御回路
502 クロック回路
503 固有情報記憶回路
504 リセット/割込みコントローラ
508 CTC
509 乱数回路
510 PIP
511 シリアル通信回路(遊技制御側)
512 アドレスデコード回路
551 周波数監視回路
552 クロック用フリップフロップ
553 乱数生成回路
554 スタート値設定回路
554A フリーランカウンタ
555 乱数列変更回路
556 乱数列変更設定回路
557A,557B ラッチ用フリップフロップ
558A,558B 乱数ラッチセレクタ
559A,559B 乱数値レジスタ
560 遊技制御用マイクロコンピュータ
DESCRIPTION OF SYMBOLS 1 Pachinko machine 9 Production display device 14 Start winning opening 14a Start opening switch 15 Variable winning ball apparatus 31 Game control board (main board)
37 Dispensing control board 56 CPU
80 Production control board 100 Production control microcomputer 101a Production control CPU
101b Serial communication circuit (production control side)
155A Door opening sensor 155B Mechanism plate opening sensor 160 Terminal board 370 Discharge control microcomputer 371 Discharge control CPU
380 Serial communication circuit (withdrawal control side)
501 External bus interface 501A Internal resource access control circuit 502 Clock circuit 503 Specific information storage circuit 504 Reset / interrupt controller 508 CTC
509 Random number circuit 510 PIP
511 Serial communication circuit (game control side)
512 Address decode circuit 551 Frequency monitoring circuit 552 Clock flip-flop 553 Random number generation circuit 554 Start value setting circuit 554A Free run counter 555 Random number sequence change circuit 556 Random number sequence change setting circuit 557A, 557B Latch flip-flops 558A, 558B Random number latch selector 559A, 559B Random value register 560 Microcomputer for game control

Claims (1)

遊技を行うことが可能な遊技機であって、
遊技の進行を制御する遊技制御手段と、
遊技機に設けられた電気部品を制御する電気部品制御手段と、
遊技機に設けられた開閉扉を開放状態とすることにより操作可能となり、操作に応じて操作信号を出力する初期化操作手段とを備え、
前記遊技制御手段は、
遊技機への電源が投入されたときに、前記初期化操作手段から前記操作信号が入力されているか否かを判定する操作信号判定手段と、
遊技機への電源が投入されたときに、前記開放状態であるか否かを判定する開放状態判定手段と、
前記操作信号判定手段によって前記操作信号が入力されていると判定され、且つ前記開放状態判定手段によって前記開放状態であると判定されたことにもとづいて、初期化処理を実行する初期化処理実行手段と、
前記初期化処理を実行したときに、前記電気部品制御手段を初期化するための初期化コマンドを出力する初期化コマンド出力手段と、
前記開放状態判定手段によって前記開放状態でないと判定されたことにもとづいて、前記初期化処理実行手段による前記初期化処理の実行を制限する初期化制限手段と
所定の異常を検出すると、遊技の進行を不能動化する不能動化手段とを含み、
前記不能動化手段による前記不能動化は、遊技機への電源を再投入し、前記操作信号判定手段によって前記操作信号が入力されていると判定され且つ前記開放状態判定手段によって前記開放状態であると判定されたことにもとづいて前記初期化処理実行手段によって前記初期化処理が実行されることにより解除される
ことを特徴とする遊技機。
A gaming machine capable of playing a game,
Game control means for controlling the progress of the game;
Electrical component control means for controlling electrical components provided in the gaming machine;
It is possible to operate by opening the open / close door provided in the gaming machine, and includes an initialization operation means that outputs an operation signal according to the operation,
The game control means includes
Operation signal determination means for determining whether or not the operation signal is input from the initialization operation means when power to the gaming machine is turned on;
An open state determining means for determining whether or not the open state when the power to the gaming machine is turned on;
Initialization processing execution means for executing an initialization process based on the determination that the operation signal is input by the operation signal determination means and the determination of the open state by the open state determination means When,
An initialization command output means for outputting an initialization command for initializing the electrical component control means when the initialization process is executed;
An initialization limiting unit that limits execution of the initialization process by the initialization process execution unit based on the determination that the release state determination unit is not in the open state ;
Upon detection of a predetermined abnormality, seen including a deactivation means for deactivation of the progression of the game,
The disabling by the disabling means is to turn on the power to the gaming machine again, the operation signal determining means determines that the operation signal is input, and the open state determining means is in the open state. A gaming machine that is released when the initialization process is executed by the initialization process execution means based on the determination that there is a game machine.
JP2014250664A 2014-12-11 2014-12-11 Game machine Active JP6009525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250664A JP6009525B2 (en) 2014-12-11 2014-12-11 Game machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250664A JP6009525B2 (en) 2014-12-11 2014-12-11 Game machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010087994A Division JP5666822B2 (en) 2010-04-06 2010-04-06 Game machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016179104A Division JP2017006721A (en) 2016-09-14 2016-09-14 Game machine

Publications (3)

Publication Number Publication Date
JP2015044112A JP2015044112A (en) 2015-03-12
JP2015044112A5 JP2015044112A5 (en) 2015-07-02
JP6009525B2 true JP6009525B2 (en) 2016-10-19

Family

ID=52670142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250664A Active JP6009525B2 (en) 2014-12-11 2014-12-11 Game machine

Country Status (1)

Country Link
JP (1) JP6009525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006721A (en) * 2016-09-14 2017-01-12 株式会社三共 Game machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310951A (en) * 2002-04-19 2003-11-05 Sankyo Kk Game machine
JP5169105B2 (en) * 2007-09-25 2013-03-27 株式会社三洋物産 Game machine
JP2010167005A (en) * 2009-01-21 2010-08-05 Takao Co Ltd Pinball game machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006721A (en) * 2016-09-14 2017-01-12 株式会社三共 Game machine

Also Published As

Publication number Publication date
JP2015044112A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5996002B2 (en) Game machine
JP5666822B2 (en) Game machine
JP2017006721A (en) Game machine
JP2011130838A (en) Game machine
JP6009525B2 (en) Game machine
JP5996005B2 (en) Game machine
JP5996003B2 (en) Game machine
JP5996004B2 (en) Game machine
JP5905527B2 (en) Game machine
JP5905526B2 (en) Game machine
JP5905528B2 (en) Game machine
JP5905530B2 (en) Game machine
JP5905529B2 (en) Game machine
JP5694436B2 (en) Game machine
JP5495409B2 (en) Game machine
JP2016193310A (en) Game machine
JP6321715B2 (en) Game machine
JP6255437B2 (en) Game machine
JP6255435B2 (en) Game machine
JP5923561B2 (en) Game machine
JP6255434B2 (en) Game machine
JP6255436B2 (en) Game machine
JP5694433B2 (en) Game machine
JP5694435B2 (en) Game machine
JP5694434B2 (en) Game machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160914

R150 Certificate of patent or registration of utility model

Ref document number: 6009525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250