JP6006681B2 - Optical device optical axis adjusting device and optical axis adjusting method - Google Patents

Optical device optical axis adjusting device and optical axis adjusting method Download PDF

Info

Publication number
JP6006681B2
JP6006681B2 JP2013110973A JP2013110973A JP6006681B2 JP 6006681 B2 JP6006681 B2 JP 6006681B2 JP 2013110973 A JP2013110973 A JP 2013110973A JP 2013110973 A JP2013110973 A JP 2013110973A JP 6006681 B2 JP6006681 B2 JP 6006681B2
Authority
JP
Japan
Prior art keywords
light
optical device
optical
optical axis
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013110973A
Other languages
Japanese (ja)
Other versions
JP2014228839A (en
Inventor
水上 雅人
雅人 水上
山口 城治
城治 山口
祐子 河尻
祐子 河尻
山本 剛
剛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013110973A priority Critical patent/JP6006681B2/en
Publication of JP2014228839A publication Critical patent/JP2014228839A/en
Application granted granted Critical
Publication of JP6006681B2 publication Critical patent/JP6006681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光デバイスの光軸調整装置および光軸調整方法に関し、詳細には、種々の光デバイス間相互の接続、例えば光ファイバ同士、あるいは光ファイバと光導波路との接続において、接続部を透過する伝送光強度をモニタすることによって精密光軸調整を行う前工程として、その接続部を透過する伝送光強度が検出可能となるように粗調整を自動的に行う、光デバイスの光軸調整装置および光軸調整方法に関する。   The present invention relates to an optical axis adjusting apparatus and an optical axis adjusting method for an optical device, and more particularly, to connecting various optical devices, for example, between optical fibers or between optical fibers and optical waveguides. The optical axis adjustment of the optical device, which automatically performs coarse adjustment so that the transmitted light intensity transmitted through the connection can be detected as a pre-process for precise optical axis adjustment by monitoring the transmitted light intensity transmitted. The present invention relates to an apparatus and an optical axis adjustment method.

光通信、光計測などに用いられる装置、システムの光伝送路では、光ファイバ、光導波路、半導体レーザなどの光部品が数多く接続され、それらはミクロンオーダで位置決めされ、接続される必要がある。このため光部品間相互の接続作業の高速化、高効率化、省力化が重要課題となっている。   Many optical components such as optical fibers, optical waveguides, and semiconductor lasers are connected in an optical transmission line of an apparatus or system used for optical communication, optical measurement, and the like, and they need to be positioned and connected in a micron order. For this reason, speeding up, high efficiency, and labor saving of the connection work between the optical components are important issues.

光ファイバ同士の接続・組立や光ファイバと光導波路の接続・組立など、複数の光デバイスを組み立てて、光モジュールを構成する光デバイス実装・組立工程においては、最終的な光学特性を確保するために、コア部を伝搬する光が最大値をとるように調整する光軸調整工程が必要である。このような光軸調整を行うには、伝送光強度の情報が不可欠となり、光軸調整を開始するには検出可能なレベルの伝送光強度が得られるように、あらかじめ接続する光部品の光軸を10μm程度の精度で仮調整しておかなければならない。この仮調整は、光軸に平行な軸(以下、Z軸という)とそれに直交する2軸(以下、X軸、Y軸という)の計3軸方向に対して実施される必要がある。このとき、光軸に平行な軸に関しては、光デバイス同士の接合面接触位置を正確に把握するために、光ファイバ同士あるいは光ファイバと光導波路の端面間の距離測定が必要不可欠な工程の一つとなっている。   In order to ensure the final optical characteristics in the optical device mounting / assembly process that forms an optical module by assembling multiple optical devices, such as connecting and assembling optical fibers and connecting and assembling optical fibers and optical waveguides. In addition, an optical axis adjustment step for adjusting the light propagating through the core portion to take the maximum value is necessary. In order to perform such optical axis adjustment, information on the transmitted light intensity is indispensable, and the optical axis of the optical component to be connected in advance is obtained so that a detectable level of transmitted light intensity can be obtained to start the optical axis adjustment. Must be provisionally adjusted with an accuracy of about 10 μm. This temporary adjustment needs to be performed in a total of three axial directions: an axis parallel to the optical axis (hereinafter referred to as the Z axis) and two axes orthogonal thereto (hereinafter referred to as the X axis and Y axis). At this time, with respect to an axis parallel to the optical axis, in order to accurately grasp the contact surface contact position between the optical devices, it is one of the indispensable steps to measure the distance between the optical fibers or between the optical fiber and the end face of the optical waveguide. It has become one.

このような光軸の仮調整に関する従来の方法について、図1を用いて説明する。顕微鏡を用いて光導波路端の出射光を観察する方法を示したものであり、X軸及びY軸に関する仮調整を行うものである。(1)半導体レーザ光源1からの光を光ファイバ2を通して固定ステージ7上の光導波路3の一方の端面に当てた状態で、光ファイバ2を6軸微動ステージ6を用いて走査する。(2)光導波路3を伝搬して光導波路3の他方の端面から出射する光を顕微鏡4とCCDカメラ5を用いて観察する。この手順により接続点9での光軸位置の調整をコントローラ8を介して行う。   A conventional method related to such temporary adjustment of the optical axis will be described with reference to FIG. The method of observing the emitted light at the end of the optical waveguide using a microscope is shown, and temporary adjustment is performed with respect to the X axis and the Y axis. (1) The optical fiber 2 is scanned using the 6-axis fine movement stage 6 with the light from the semiconductor laser light source 1 applied to one end face of the optical waveguide 3 on the fixed stage 7 through the optical fiber 2. (2) The light that propagates through the optical waveguide 3 and exits from the other end face of the optical waveguide 3 is observed using the microscope 4 and the CCD camera 5. By this procedure, the optical axis position at the connection point 9 is adjusted via the controller 8.

図2はコア径の大きなマルチモードファイバ13を一時的に使って仮調整を行う方法である。例えば、シングルモードファイバの5倍程度の大きさのコア径であるコア径50μm程度のマルチモードファイバ13を受光ファイバとして用いれば、受光側での高精度位置決めを必要としなくなるので、そこでの位置決めが容易になる。なお、図2では、光パワーメータ14においてマルチモードファイバ13の端面から出射する光を観察し、6軸微動ステージ15でマルチモードファイバ13の位置を調整する。   FIG. 2 shows a method of performing temporary adjustment by temporarily using a multimode fiber 13 having a large core diameter. For example, if a multimode fiber 13 having a core diameter of about 50 μm, which is about five times as large as a single mode fiber, is used as a light receiving fiber, high accuracy positioning on the light receiving side is not required, and positioning there is not possible. It becomes easy. In FIG. 2, the light emitted from the end face of the multimode fiber 13 is observed with the optical power meter 14, and the position of the multimode fiber 13 is adjusted with the six-axis fine movement stage 15.

また、Z軸方向仮調整に関しては、従来はファイバアレイブロックなどの比較的大きな光デバイスが光導波路へ接触した際に反発力が生じるのをばねの伸びなどで検知し、ばねの伸びにより距離を推定して、間隔調整する方法(接触型の方法)などが採用されてきた(特許文献1参照)。   In addition, regarding temporary adjustment in the Z-axis direction, conventionally, when a relatively large optical device such as a fiber array block comes into contact with the optical waveguide, a repulsive force is detected by the extension of the spring, and the distance is increased by the extension of the spring. A method of estimating and adjusting the interval (contact type method) has been adopted (see Patent Document 1).

また、非接触でZ軸方向の微小間隔距離を測定する手段としては、一般的に光ヘテロダイン干渉計による測定方法があるが、位相差を検出する手段が必要なことや、偏波面制御をする必要があること、測定対象への入射光がコリメートされる必要があること、変調光を使う必要があるなど、特別な測定系を用意する必要があった(特許文献2参照)。   Further, as a means for measuring a minute distance in the Z-axis direction in a non-contact manner, there is generally a measuring method using an optical heterodyne interferometer. However, a means for detecting a phase difference is necessary, and polarization plane control is performed. It was necessary to prepare a special measurement system such as necessity, collimation of incident light on the measurement target, and use of modulated light (see Patent Document 2).

特許第4111362号公報Japanese Patent No. 4111362 特許第2126762号公報Japanese Patent No. 2216762

しかしながら、前述した顕微鏡を用いて光導波路端の出射光を観察するXY軸に関する従来の仮調整方法では、接続部を透過する光を測定観察する方式が採られているために、例えば光ファイバ、光導波路、光ファイバの3部品を接続しようとする際に、入力側、出力側の接続部で逐次調整を行う必要のあることや、さらに、片側の光軸調整が終了した後、マルチモードファイバや顕微鏡を接続すべき光部品と入れ替えるときに、微動ステージの位置決め誤差が必ず発生するので、その誤差を解消するための余分な調整工程がさらに必要となる等のために、全工程数が多くなって、作業時間が多大となる等の問題点が存在している。   However, in the conventional temporary adjustment method related to the XY axis for observing the emitted light at the end of the optical waveguide using the above-described microscope, a method of measuring and observing the light transmitted through the connecting portion is employed. When trying to connect the three parts of the optical waveguide and optical fiber, it is necessary to make sequential adjustments at the connection part on the input side and output side, and after the optical axis adjustment on one side is completed, the multimode fiber When a microscope or a microscope is replaced with an optical part to be connected, a positioning error of the fine movement stage always occurs, so that an extra adjustment process is necessary to eliminate the error, and the total number of processes is large. Thus, there is a problem that the work time becomes enormous.

さらに、Z軸の仮調整方法に関しては、上述の接触型の方法では、反発力がある程度大きくないと検知できない。よって、光ファイバアレイブロックの場合のように、光デバイス周辺を構造部材で保護したような部品の場合は適用可能であったが、単芯のファイバに適用する場合には、力が一点に集中してしまい、ファイバまたは導波路がダメージを受けることが問題となる。したがって、接触型の方法は適用対象が限定されることになっていた。   Furthermore, regarding the Z-axis temporary adjustment method, the contact type method described above cannot be detected unless the repulsive force is large to some extent. Therefore, as in the case of the optical fiber array block, it can be applied to a component in which the periphery of the optical device is protected by a structural member. However, when applied to a single-core fiber, the force is concentrated on one point. As a result, the fiber or waveguide is damaged. Therefore, the application target of the contact-type method is limited.

一方、非接触測定である、光ヘテロダイン干渉計による測定方法では、位相差を検出する手段が必要なことや、偏波面制御をする必要があること、測定対象への入射光がコリメートされる必要があること、変調光を使う必要がある。よって、測定用装置自体が大掛かりなものとなり、光軸調整装置に組み込むには光軸調整装置が大型化してしまうことや、非常にコスト高となるという課題があった。   On the other hand, in the measurement method using an optical heterodyne interferometer, which is a non-contact measurement, it is necessary to have a means for detecting the phase difference, to control the polarization plane, and to collimate the incident light on the measurement target. It is necessary to use modulated light. Therefore, the measuring device itself becomes large, and there are problems that the optical axis adjusting device becomes large and is very expensive to be incorporated in the optical axis adjusting device.

本発明は前述の問題点を解決するために為されたものであり、その目的は、複数接続部の仮調整の並列処理による光軸の仮調整作業の高効率化と、安価かつ高信頼な光軸調整装置を実現することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to increase the efficiency of the optical axis temporary adjustment work by parallel processing of the temporary adjustment of a plurality of connecting portions, and to provide an inexpensive and highly reliable system. The object is to realize an optical axis adjusting device.

上記の課題を解決するために、一実施形態に記載された発明は、光源からの入射光の一部を反射し、一部を出射する端面を有する第1の光デバイスと、前記第1の光デバイスから出射された光の一部を前記第1の光デバイスに反射する端面を有する第2の光デバイスと、前記第2の光デバイスと前記第1の光デバイスとの相対位置を変化させるように移動させる微動ステージと、前記第1の光デバイスの入射光方向への戻り光の光強度を測定する反射光受光器と、前記反射光受光器における戻り光の強度変動と前記微動ステージの移動量とを対応させる反射光信号処理部と、前記強度変動と移動量との対応関係に基づいて目標位置となるために必要な前記微動ステージの移動量を算出する光軸調整制御部と、前記目標位置になるために必要な移動量として設定した移動量で前記微動ステージを移動させる微動ステージ制御部とを備えたことを特徴とする光デバイスの光軸調整装置である。   In order to solve the above-described problem, the invention described in one embodiment includes a first optical device having an end surface that reflects part of incident light from a light source and emits part of the light, and the first optical device. The relative position between the second optical device having an end face that reflects a part of the light emitted from the optical device to the first optical device, and the second optical device and the first optical device is changed. A fine movement stage that moves in such a manner, a reflected light receiver that measures the light intensity of the return light in the incident light direction of the first optical device, an intensity variation of the return light in the reflected light receiver, and the fine movement stage A reflected light signal processing unit that associates the amount of movement, an optical axis adjustment control unit that calculates the amount of movement of the fine movement stage necessary to reach the target position based on the correspondence between the intensity variation and the amount of movement, Necessary to reach the target position An optical axis adjusting device for an optical device characterized by comprising a fine movement stage control unit for moving the fine movement stage movement amount set as the dynamic quantity.

他の実施形態に記載された発明は、光源からの入射光の一部を反射し、一部を出射する端面を有する第1の光デバイスと、前記第1の光デバイスから出射された光の一部を前記第1の光デバイスに反射する端面を有する第2の光デバイスと、前記第2の光デバイスと前記第1の光デバイスとの相対位置を変化させるように移動させる微動ステージと、前記第1の光デバイスの入射光方向への戻り光の光強度を測定する反射光受光器と、前記反射光受光器における戻り光の強度変動と前記微動ステージの移動量とを対応させる反射光信号処理部と、前記強度変動と移動量との対応関係に基づいて目標位置となるために必要な前記微動ステージの移動量を算出する光軸調整制御部と、前記目標位置になるために必要な移動量として設定した移動量で前記微動ステージを移動させる微動ステージ制御部とを備えた光軸調整装置における光軸調整方法であって、前記第1の光デバイスに入射光を入射しながら前記微動ステージを移動させるステップと、前記微動ステージの移動量と前記戻り光の光強度を記憶するステップと、前記記憶された移動量と光強度とに基づいて、目標位置となるために必要な前記微動ステージの移動量を算出するステップと、前記微動ステージ制御部により前記微動ステージを前記算出された移動量だけ移動させるステップと、を含むことを特徴とする光軸調整方法である。   The invention described in another embodiment includes a first optical device having an end face that reflects part of incident light from a light source and emits part of the light, and light emitted from the first optical device. A second optical device having an end face that partially reflects the first optical device; a fine movement stage that moves so as to change a relative position between the second optical device and the first optical device; A reflected light receiver that measures the light intensity of the return light in the incident light direction of the first optical device, and reflected light that correlates the intensity fluctuation of the return light in the reflected light receiver and the amount of movement of the fine movement stage. Necessary to obtain the target position, a signal processing unit, an optical axis adjustment control unit that calculates the amount of movement of the fine movement stage necessary to reach the target position based on the correspondence between the intensity fluctuation and the movement amount Movement amount set as a safe movement amount An optical axis adjustment method in an optical axis adjustment apparatus comprising a fine movement stage control unit for moving the fine movement stage, wherein the fine movement stage is moved while incident light is incident on the first optical device; The step of storing the movement amount of the fine movement stage and the light intensity of the return light, and the step of calculating the movement amount of the fine movement stage necessary to reach the target position based on the stored movement amount and light intensity. And a step of moving the fine movement stage by the calculated amount of movement by the fine movement stage control unit.

本発明は、接続部(光調整を行う箇所)が複数になっても、それらを同時に光軸調整することができ、調整時間を軽減することが可能となる。 In the present invention, even when there are a plurality of connecting portions (locations where light adjustment is performed), the optical axes can be adjusted simultaneously, and the adjustment time can be reduced.

従来の光軸粗調整装置の一例を示す図である。It is a figure which shows an example of the conventional optical axis rough adjustment apparatus. 従来の光軸粗調整装置の他の一例を示す図である。It is a figure which shows another example of the conventional optical axis rough adjustment apparatus. 第1の実施形態における光軸調整装置を示す図である。It is a figure which shows the optical axis adjustment apparatus in 1st Embodiment. 第1の実施形態における光軸調整工程フローを示す図である。It is a figure which shows the optical axis adjustment process flow in 1st Embodiment. 第1の実施形態における光軸仮調整原理を説明する図である。It is a figure explaining the optical axis temporary adjustment principle in 1st Embodiment. 第2の実施形態における光軸調整装置を示す図である。It is a figure which shows the optical axis adjustment apparatus in 2nd Embodiment. 第2の実施形態における光軸調整工程フローを示す図である。It is a figure which shows the optical axis adjustment process flow in 2nd Embodiment. 第2の実施形態における光軸仮調整原理を説明する図である。It is a figure explaining the optical axis temporary adjustment principle in 2nd Embodiment.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図3は、第1の実施形態の光軸調整装置を示す図である。なお、本明細書においては、光学部品同士が接近する方向を光軸方向とし、それをZ軸方向と称することにする。この実施形態では、Z軸方向に垂直であるXY方向に関する光軸仮調整を行う。光軸調整装置は、光源20と、光ファイバ21と、光ファイバ22と、微動ステージ23と、微動ステージ24と、反射光受光器25と、反射光信号処理部26と、微動ステージ制御部27と、光軸調整制御部28と、1×2カプラ29とを備えて構成される。
(First embodiment)
FIG. 3 is a diagram illustrating the optical axis adjusting apparatus according to the first embodiment. In the present specification, the direction in which the optical components approach each other is referred to as the optical axis direction, which is referred to as the Z-axis direction. In this embodiment, optical axis temporary adjustment is performed in the XY direction that is perpendicular to the Z-axis direction. The optical axis adjusting device includes a light source 20, an optical fiber 21, an optical fiber 22, a fine movement stage 23, a fine movement stage 24, a reflected light receiver 25, a reflected light signal processing unit 26, and a fine movement stage control unit 27. And an optical axis adjustment control unit 28 and a 1 × 2 coupler 29.

図4は、光軸仮調整フローを示す図である。光軸仮調整開始後、光源20から光ファイバ21に入射された光は、光ファイバ21の一方の端面側から空気中に光が出射される(S1)。空気中に出射された光は、光ファイバ22の端面で反射され、再度光ファイバ21の端面からコア部を通って、反射光受光器25に入射される。微動ステージ制御部27を用いて、設定範囲内においてXY方向に設定ステップ量ごとに、光ファイバ21を微動ステージ23で移動させる(S2)。そのときに微動ステージ23を移動した設定量と反射光受光器25で得られる光強度の関係を、反射光信号処理部26は、記憶部(図示せず)に記録しておく(S3)。この記録した移動量と光強度との関係に基づいて、後述する光軸仮調整方法が実装された光軸調整制御部28は、コア位置を特定し、目標位置となるために必要な移動量を算出する(S4)。微動ステージ制御部27により微動ステージ23を算出した移動量に設定して目標位置に移動させる(S5)。このようにして、XY軸方向の光軸仮調整が完了する(S6)。   FIG. 4 is a diagram showing an optical axis temporary adjustment flow. After starting the optical axis temporary adjustment, the light incident on the optical fiber 21 from the light source 20 is emitted from the one end face side of the optical fiber 21 into the air (S1). The light emitted into the air is reflected by the end face of the optical fiber 22 and again enters the reflected light receiver 25 through the core portion from the end face of the optical fiber 21. Using the fine movement stage control unit 27, the optical fiber 21 is moved by the fine movement stage 23 for each set step amount in the XY direction within the setting range (S2). The reflected light signal processing unit 26 records the relationship between the set amount of movement of the fine movement stage 23 and the light intensity obtained by the reflected light receiver 25 in a storage unit (not shown) (S3). Based on the relationship between the recorded movement amount and the light intensity, the optical axis adjustment control unit 28 on which the optical axis temporary adjustment method to be described later is mounted specifies the core position and the movement amount necessary to become the target position. Is calculated (S4). The fine movement stage controller 27 sets the fine movement stage 23 to the calculated movement amount and moves it to the target position (S5). In this way, the optical axis temporary adjustment in the XY axis directions is completed (S6).

図5は、光ファイバ同士の接続におけるXY軸方向の光軸仮調整の原理を示す図である。光ファイバA30のコア部31とクラッド部32、及び光ファイバB33のコア部34とクラッド部分35はその材質の屈折率が異なるために光がコア部を導波する。屈折率の異なる材料では、その反射率も屈折率に依存して異なる。空気中を伝搬した光が材料に入射するとき、空気の屈折率を1、材料の屈折率をnとすると、その部分の反射率Rは下記式(1)で表される。
R={(1−n)/(1+n)} ・・・・式(1)
FIG. 5 is a diagram illustrating the principle of optical axis temporary adjustment in the XY-axis direction in connection between optical fibers. Since the core part 31 and the clad part 32 of the optical fiber A30 and the core part 34 and the clad part 35 of the optical fiber B33 have different refractive indexes, light is guided through the core part. For materials having different refractive indexes, the reflectance also varies depending on the refractive index. When light propagated in the air enters the material, assuming that the refractive index of air is 1 and the refractive index of the material is n, the reflectance R of the portion is expressed by the following formula (1).
R = {(1-n) / (1 + n)} 2 ... Formula (1)

ここで一般的な光ファイバの値を入れて計算する。光ファイバB33端面を反射面としたとき光ファイバB33のコア部34の屈折率をn1=1.470、クラッド部分35の屈折率をn2=1.458とするとコア部34の反射率R1=0.036、クラッド部分35の反射率R2=0.033となる。したがって、この反射率差による光信号強度差を検出することにより、コア部34とクラッド部35の位置の特定が出来る。光軸調整制御部28は、記憶部に記憶された、微動ステージの移動量と光信号強度差とに基づいてコア位置を特定することができる。   Here, calculation is performed by including values of general optical fibers. When the end face of the optical fiber B33 is a reflection surface, the refractive index of the core part 34 of the optical fiber B33 is n1 = 1.470, and the refractive index of the cladding part 35 is n2 = 1.458. 0.036, the reflectivity R2 of the clad portion 35 is 0.033. Therefore, the position of the core part 34 and the clad part 35 can be specified by detecting the optical signal intensity difference due to the reflectance difference. The optical axis adjustment control unit 28 can specify the core position based on the movement amount of the fine movement stage and the optical signal intensity difference stored in the storage unit.

光源からの入力光強度を0.1mWとすると、この場合コア部34での反射光強度は、反射面が2つあることを考慮すると7.2μWであり、またクラッド部35での反射光強度は6.6μmである。反射光受光部に戻ってくる光は1×2カプラで半分になるとすると、0.3μWの差分を検出すればよいこととなり、市販の光パワーメータで十分識別可能な値である。   If the input light intensity from the light source is 0.1 mW, in this case, the reflected light intensity at the core part 34 is 7.2 μW considering that there are two reflecting surfaces, and the reflected light intensity at the cladding part 35 Is 6.6 μm. If the light returning to the reflected light receiving unit is halved by the 1 × 2 coupler, it is sufficient to detect a difference of 0.3 μW, which is a value that can be sufficiently identified by a commercially available optical power meter.

図4に示した光軸仮調整工程フローでは、上記原理により、S4において光軸調整制御部28により、コア位置を特定し、S5において微動ステージ制御部27により、コア部での反射戻り光強度に対応した微動ステージ設定位置に微動ステージ23、24を移動させればよいこととなる。   In the optical axis temporary adjustment process flow shown in FIG. 4, the core position is specified by the optical axis adjustment control unit 28 in S4 based on the principle described above, and the reflected return light intensity at the core unit by the fine movement stage control unit 27 in S5. Therefore, it is only necessary to move the fine movement stages 23 and 24 to the fine movement stage setting position corresponding to.

本実施例では、光ファイバ2部品の光軸仮調整の例を示したが、光ファイバ3部品間の2接続点の光軸仮調整も、反射戻り光の情報のみ使用しており、透過光情報を必要としないので、独立に実行可能となる。   In the present embodiment, an example of the optical axis temporary adjustment of the two optical fiber components is shown, but the optical axis temporary adjustment of the two connection points between the three optical fiber components also uses only the information of the reflected return light, and the transmitted light Since no information is required, it can be executed independently.

本実施例では、一般的な光ファイバの例により、光軸仮調整を説明したが、同様に石英光導波路、有機光導波路のようにコア部とクラッド部の屈折率が異なる光デバイスであれば、適用可能である。さらに、屈折率差がより大きい光デバイスであれば、反射戻り光の強度差が大きいため、検出がより容易となる。また、光ファイバ21を微動ステージ23で移動させる例を示したが、光ファイバ21が固定で、光ファイバ22、微動ステージ24を移動させるようにしてもよい。   In the present embodiment, the optical axis temporary adjustment has been described using an example of a general optical fiber. Similarly, if the optical device has a different refractive index between the core and the clad, such as a quartz optical waveguide and an organic optical waveguide. Applicable. Further, if the optical device has a larger refractive index difference, the difference in the intensity of the reflected return light is large, so that detection becomes easier. Moreover, although the example which moves the optical fiber 21 with the fine movement stage 23 was shown, the optical fiber 21 may be fixed and the optical fiber 22 and the fine movement stage 24 may be moved.

(第2の実施形態)
図6は、第2の実施形態にかかる光軸調整装置の構成を示す図である。この実施形態では、光軸に平行なZ軸方向に関する光軸仮調整を行う。光軸調整装置は、光源40と、光ファイバ41と、光ファイバ42と、微動ステージ43と、微動ステージ44と、反射光受光器45と、反射光信号処理部46と、微動ステージ制御部47と、光軸調整制御部48と、1×2カプラ49とを備えて構成される。
(Second Embodiment)
FIG. 6 is a diagram illustrating a configuration of the optical axis adjusting apparatus according to the second embodiment. In this embodiment, optical axis temporary adjustment is performed in the Z-axis direction parallel to the optical axis. The optical axis adjusting device includes a light source 40, an optical fiber 41, an optical fiber 42, a fine movement stage 43, a fine movement stage 44, a reflected light receiver 45, a reflected light signal processing unit 46, and a fine movement stage control unit 47. And an optical axis adjustment control unit 48 and a 1 × 2 coupler 49.

図7は、光軸に平行なZ軸方向に関する光軸仮調整フローを示す図である。光軸仮調整開始後、光源40からの入射光は、光ファイバ41の一方の端面側から入射し、光ファイバ41の他方の端面から空気中に光が出射される(S11)。空気中に出射された光は、光ファイバ42の端面で反射され、再度光ファイバ41の端面からコア部を通って、反射光受光器45に入射される。微動ステージ制御部47を用いて、Z軸方向において光ファイバ21に近づく方向に微動ステージ44で光ファイバ42を移動させる(S2)。このときに微動ステージ44を移動した移動量と反射光受光部で得られる光強度の関係を、反射光信号処理部26は、記憶部(記載せず)に記録しておく(S13)。この記録した移動量と光強度とに基づいて、後述する光軸仮調整方法が実装された光軸調整制御部48により目標とする端面間距離となるために必要な移動量を算出する(S14)。微動ステージ制御部47により微動ステージ44を目標とする端面間距離となる設定位置に移動させる(S15)。このようにして、Z軸方向の光軸仮調整が完了する(S16)。   FIG. 7 is a diagram showing an optical axis temporary adjustment flow in the Z-axis direction parallel to the optical axis. After the optical axis temporary adjustment is started, incident light from the light source 40 enters from one end face side of the optical fiber 41, and light is emitted from the other end face of the optical fiber 41 into the air (S11). The light emitted into the air is reflected by the end face of the optical fiber 42, and again enters the reflected light receiver 45 from the end face of the optical fiber 41 through the core portion. Using the fine movement stage controller 47, the optical fiber 42 is moved by the fine movement stage 44 in a direction approaching the optical fiber 21 in the Z-axis direction (S2). At this time, the reflected light signal processing unit 26 records the relationship between the amount of movement of the fine movement stage 44 and the light intensity obtained by the reflected light receiving unit in a storage unit (not shown) (S13). Based on the recorded movement amount and light intensity, the movement amount necessary for achieving the target distance between the end faces is calculated by the optical axis adjustment control unit 48 in which the optical axis temporary adjustment method described later is mounted (S14). ). The fine movement stage controller 47 moves the fine movement stage 44 to a set position that is the target end-to-end distance (S15). In this way, the optical axis temporary adjustment in the Z-axis direction is completed (S16).

図8に第2の実施形態におけるZ軸方向の光軸仮調整原理を示す。光ファイバ50、光ファイバ51を用いた例である。光ファイバ50を光ファイバ51に接続させるために接近しているときは、その距離は入射する光の可干渉距離より近い場合が通常であるので、光ファイバの端面と光導波路端面はいわゆるファブリペローエタロンを構成することになる。ファブリペロー干渉は、反射端面間の距離が半波長の整数倍のときに光強度振幅が最大となる。例えば、波長λの場合は、h=mλ/2(mは整数)が条件となる。ここでhは端面間の距離である。この現象を利用して、光ファイバ端面間の光軸仮調整を行う。   FIG. 8 shows the principle of temporary adjustment of the optical axis in the Z-axis direction in the second embodiment. In this example, the optical fiber 50 and the optical fiber 51 are used. When the optical fiber 50 is close to connect to the optical fiber 51, the distance is usually shorter than the coherence distance of the incident light, so the end face of the optical fiber and the end face of the optical waveguide are so-called Fabry-Perot. It will constitute an etalon. The Fabry-Perot interference has a maximum light intensity amplitude when the distance between the reflection end faces is an integral multiple of a half wavelength. For example, in the case of the wavelength λ, h = mλ / 2 (m is an integer) is a condition. Here, h is the distance between the end faces. Using this phenomenon, the optical axis is temporarily adjusted between the optical fiber end faces.

光源の波長を1.55μmとした場合、半波長0.725μmの整数倍の間隔の時に振幅が最大となる。光ファイバ50と光ファイバ51との間隔を50μm程度の間隔になるように、微動ステージの機械原点をもとにZ軸間隔を仮設定しておき、この距離から光ファイバ51を光ファイバ50に微動ステージを近づけていき、光軸調整制御部48でその際の光強度振幅が最大となるところの数を55回カウントすることより、Z軸間隔がほぼ10μm程度のところに仮調整することができる。   When the wavelength of the light source is 1.55 μm, the amplitude is maximized at intervals of an integral multiple of the half wavelength of 0.725 μm. A Z-axis interval is temporarily set based on the mechanical origin of the fine movement stage so that the distance between the optical fiber 50 and the optical fiber 51 is about 50 μm, and the optical fiber 51 is connected to the optical fiber 50 from this distance. By moving the fine movement stage closer and counting the number of light intensity amplitudes at that time by the optical axis adjustment controller 48 55 times, the Z axis interval can be temporarily adjusted to about 10 μm. it can.

なお、本実施形態では、光ファイバ2部品の光軸仮調整の例を示したが、光ファイバ3部品間の2接続点の光軸仮調整も反射戻り光の情報のみ使用しており、透過光情報を必要としないので、独立に実行可能となる。   In this embodiment, an example of the optical axis temporary adjustment of the two optical fiber components has been shown. However, the optical axis temporary adjustment of the two connection points between the three optical fiber components also uses only the information of the reflected return light, and transmits the light. Since optical information is not required, it can be executed independently.

また、本実施形態では、光ファイバ同士の光軸仮調整を例として説明したが、一方が光導波路の場合でも同様に適用可能である。さらに、光ファイバ42を微動ステージ44で移動させる例を示したが、光ファイバ42が固定で、光ファイバ41と、微動ステージ43とを移動させるようにしてもよい。   In this embodiment, the optical axis temporary adjustment between the optical fibers has been described as an example, but the present invention can be similarly applied even when one of the optical fibers is an optical waveguide. Furthermore, although the example in which the optical fiber 42 is moved by the fine movement stage 44 has been shown, the optical fiber 42 may be fixed and the optical fiber 41 and the fine movement stage 43 may be moved.

本実施形態の光軸調整装置によれば、複数接続部における光軸の仮調整を並列に実行することが出来るので、例えば光ファイバ、光導波路、光ファイバの3部品の接続においては調整時間が従来に比較して半分になること、また接続部が多数になっても、同時に調整が可能であるため、調整時間を軽減出来る等の格段の効果が得られる。   According to the optical axis adjusting apparatus of the present embodiment, the optical axes can be temporarily adjusted in a plurality of connection portions in parallel. For example, in the connection of three parts of an optical fiber, an optical waveguide, and an optical fiber, adjustment time is required. Compared to the conventional case, even if the number of connecting portions is increased, the adjustment can be performed at the same time, so that a remarkable effect such as reduction of the adjustment time can be obtained.

さらに光デバイス同士のZ軸方向の光軸仮調整に関して、実装・組立を行う際において、非接触でその端面間距離を測定することが可能となったため、光デバイスの破損を防ぎ、測定を効率化するとともに、製作時の歩留りを向上して低コスト化をすることができる。   Furthermore, with regard to the optical axis temporary adjustment in the Z-axis direction between optical devices, it is possible to measure the distance between the end faces without contact when mounting and assembling, thus preventing damage to the optical device and making the measurement more efficient In addition, the production yield can be improved and the cost can be reduced.

第2の実施形態の微動ステージ43、44として、Z軸方向のみならずXY軸方向にも移動可能な微動ステージを用いることによって、3軸方向の調整が可能である。   The fine movement stages 43 and 44 of the second embodiment can be adjusted in the three-axis directions by using fine movement stages that can move not only in the Z-axis direction but also in the XY-axis direction.

20 光源
21 光ファイバ
22 光ファイバ
23 微動ステージ
24 微動ステージ
25 反射光受光器
26 反射光信号処理部
27 微動ステージ制御部
28 光軸調整制御部
29 1×2カプラ
40 光源
41 光ファイバ
42 光ファイバ
43 微動ステージ
44 微動ステージ
45 反射光受光器
46 反射光信号処理部
47 微動ステージ制御部
48 光軸調整制御部
49 1×2カプラ
DESCRIPTION OF SYMBOLS 20 Light source 21 Optical fiber 22 Optical fiber 23 Fine movement stage 24 Fine movement stage 25 Reflected light receiver 26 Reflected light signal processing part 27 Fine movement stage control part 28 Optical axis adjustment control part 29 1 * 2 coupler 40 Light source 41 Optical fiber 42 Optical fiber 43 Fine movement stage 44 Fine movement stage 45 Reflected light receiver 46 Reflected light signal processing section 47 Fine movement stage control section 48 Optical axis adjustment control section 49 1 × 2 coupler

Claims (2)

光源からの入射光の一部を反射し、一部を出射する出射端面を有する第1の光デバイスと、
前記第1の光デバイスから出射された光の一部を前記第1の光デバイスに反射する反射端面を有する第2の光デバイスと、
前記第2の光デバイスと前記第1の光デバイスとの相対位置を光軸に平行な軸方向に沿って変化させるように移動る微動ステージと、
前記第1の光デバイスの入射光方向への戻り光の光強度を測定する反射光受光器と、
前記反射光受光器における前記戻り光の光強度と前記微動ステージの移動量とを対応付けて記憶する反射光信号処理部と、
前記戻り光の強度変動と移動量との対応関係に基づいて目標位置となるために必要な前記微動ステージの移動量を算出する光軸調整制御部と、
前記目標位置になるために必要な移動量として設定した移動量で前記微動ステージを移動させる微動ステージ制御部とを備え
前記光源が、前記第1の光デバイスに入射光を入射し、
前記微動ステージが、前記第1の光デバイスの前記出射端面と前記第2の光デバイスの前記反射端面との間隔を変化させ、
前記光軸調整制御部が、前記反射光信号処理部に記憶された前記光強度と前記移動量とに基づいて、前記第1の光デバイスの前記出射端面と前記第2の光デバイスの前記反射端面とで構成されたファブリーペローエタロンの干渉によって生じる前記戻り光の強度変動において前記光強度が最大となる回数と前記入射光の波長とから前記第1の光デバイスの前記出射端面と前記第2の光デバイスの前記反射端面との間の距離を特定して、前記目標位置となるために必要な前記微動ステージの移動量を算出することを特徴とする光デバイスの光軸調整装置。
A first optical device having an emission end face that reflects part of incident light from the light source and emits part of the light;
A second optical device having a reflective end surface for reflecting a part of the light emitted from the first optical device to the first optical device;
A fine movement stage you move to vary along parallel axial relative position between the second optical device and the first optical device to the optical axis,
A reflected light receiver for measuring the light intensity of the return light in the incident light direction of the first optical device;
And the reflected light signal processing unit corresponding with storing the movement amount of the return light of the light intensity and the fine stage in the reflected light receiving device,
An optical axis adjustment control unit that calculates the amount of movement of the fine movement stage necessary to reach the target position based on the correspondence between the intensity fluctuation of the return light and the amount of movement;
A fine movement stage control unit that moves the fine movement stage by a movement amount set as a movement amount necessary to reach the target position ;
The light source impinges incident light on the first optical device;
The fine movement stage changes a distance between the emission end face of the first optical device and the reflection end face of the second optical device;
The optical axis adjustment control unit, based on the light intensity and the movement amount stored in the reflected light signal processing unit, the emission end face of the first optical device and the reflection of the second optical device. The emission end face of the first optical device and the second light intensity are calculated based on the number of times the light intensity becomes maximum in the intensity fluctuation of the return light caused by the interference of the Fabry-Perot etalon composed of the end face and the wavelength of the incident light. An optical axis adjustment apparatus for an optical device, characterized in that a distance between the optical device and the reflection end face is specified, and a movement amount of the fine movement stage necessary to reach the target position is calculated .
光源からの入射光の一部を反射し、一部を出射する出射端面を有する第1の光デバイスと、前記第1の光デバイスから出射された光の一部を前記第1の光デバイスに反射する反射端面を有する第2の光デバイスと、前記第2の光デバイスと前記第1の光デバイスとの相対位置を光軸に平行な軸方向に沿って変化させるように移動る微動ステージと、前記第1の光デバイスの入射光方向への戻り光の光強度を測定する反射光受光器と、前記反射光受光器における前記戻り光の光強度と前記微動ステージの移動量とを対応付けて記憶する反射光信号処理部と、前記戻り光の強度変動と移動量との対応関係に基づいて目標位置となるために必要な前記微動ステージの移動量を算出する光軸調整制御部と、前記目標位置になるために必要な移動量として設定した移動量で前記微動ステージを移動させる微動ステージ制御部とを備えた光軸調整装置における光軸調整方法であって、
前記光源が、前記第1の光デバイスに入射光を入射するステップと、
前記微動ステージが、前記第1の光デバイスの前記出射端面と前記第2の光デバイスの前記反射端面との間隔を変化させるステップと、
前記光軸調整制御部が、前記反射光信号処理部に記憶された前記光強度と前記移動量とに基づいて、前記第1の光デバイスの前記出射端面と前記第2の光デバイスの前記反射端面とで構成されたファブリーペローエタロンの干渉によって生じる前記戻り光の強度変動において前記光強度が最大となる回数と前記入射光の波長とから前記第1の光デバイスの前記出射端面と前記第2の光デバイスの前記反射端面との間の距離を特定して、前記目標位置となるために必要な前記微動ステージの移動量を算出するステップと
を含むことを特徴とする光軸調整方法。
A first optical device having an emission end face that reflects a part of incident light from the light source and emits a part thereof, and a part of the light emitted from the first optical device to the first optical device second and an optical device, the second light device and the first mobile to that fine movement stage so as to vary along the axial direction parallel to the optical axis of the relative position of the optical device having a reflective facet that reflects When the reflected light receiving device for measuring the light intensity of the return light to the incident light direction of the first optical device, the light intensity of the return light in the reflected light receiving device and a moving amount of the fine stage corresponding A reflected light signal processing unit for storing information, an optical axis adjustment control unit for calculating the amount of movement of the fine movement stage necessary to reach the target position based on the correspondence between the intensity variation of the return light and the amount of movement; , And the amount of movement necessary to reach the target position An optical axis adjusting method of the optical axis adjusting apparatus that includes a fine movement stage control unit for moving the fine movement stage movement amount set Te,
The light source impinges incident light on the first optical device ;
The fine movement stage changing a distance between the emission end face of the first optical device and the reflection end face of the second optical device ;
The optical axis adjustment control unit, on the basis of the stored the light intensity and the amount of movement to said reflected light signal processing unit, the reflection of the first of the exit end face and said second optical device of the optical device The emission end face of the first optical device and the second light intensity are calculated based on the number of times the light intensity becomes maximum in the intensity fluctuation of the return light caused by the interference of the Fabry-Perot etalon composed of the end face and the wavelength of the incident light. Specifying the distance between the reflection end face of the optical device and calculating the amount of movement of the fine movement stage necessary to reach the target position ;
An optical axis adjustment method comprising:
JP2013110973A 2013-05-27 2013-05-27 Optical device optical axis adjusting device and optical axis adjusting method Expired - Fee Related JP6006681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110973A JP6006681B2 (en) 2013-05-27 2013-05-27 Optical device optical axis adjusting device and optical axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110973A JP6006681B2 (en) 2013-05-27 2013-05-27 Optical device optical axis adjusting device and optical axis adjusting method

Publications (2)

Publication Number Publication Date
JP2014228839A JP2014228839A (en) 2014-12-08
JP6006681B2 true JP6006681B2 (en) 2016-10-12

Family

ID=52128682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110973A Expired - Fee Related JP6006681B2 (en) 2013-05-27 2013-05-27 Optical device optical axis adjusting device and optical axis adjusting method

Country Status (1)

Country Link
JP (1) JP6006681B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186081A (en) * 1984-03-05 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of laser diode module
DE3831839A1 (en) * 1988-09-20 1990-03-29 Standard Elektrik Lorenz Ag OPTICAL SEND AND / OR RECEPTION BLOCK
JP3303057B2 (en) * 1995-09-11 2002-07-15 日本電信電話株式会社 Automatic alignment mechanism for optical fiber connection
JP2012181343A (en) * 2011-03-01 2012-09-20 Sumitomo Electric Ind Ltd Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device

Also Published As

Publication number Publication date
JP2014228839A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
US9921115B2 (en) Optical fiber coupled photonic crystal slab strain sensor, system and method of fabrication and use
US6886365B2 (en) Fiber optic Fabry-Perot interferometer and associated methods
US9810521B2 (en) Displacement detection apparatus
CN110470240A (en) A kind of optical fiber curvature measurement sensor and preparation method thereof, measuring system
CN110987230A (en) Dual-parameter optical fiber sensing module, system and measuring method
JP6082320B2 (en) Optical axis adjusting device and process thereof
KR101793831B1 (en) Collimating optics for transmitting and receiving optical signal, and Displacement amount measuring system using laser interferometer
JP2023133433A (en) displacement detection device
JP6006681B2 (en) Optical device optical axis adjusting device and optical axis adjusting method
CN112179537A (en) Fabry-Perot interferometer optical fiber sensor based on optical fiber surface waveguide
US20140036258A1 (en) Optical transmission line connection system and optical transmission line connection method
JP6082313B2 (en) Distance measuring apparatus and method for optical axis adjustment
CN100363714C (en) Optical fiber sensor based on laser feedback
CN206804690U (en) A kind of highly sensitive single polarization maintaining optical fibre interference formula acceleration sensing system
JP5870059B2 (en) Distance measuring device and distance measuring method
KR102269597B1 (en) Optical cavity interferometer with improved struckture
CN109580036A (en) FP temperature sensor and preparation method thereof based on photonic crystal fiber FBG
Chen et al. Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination
US11977254B2 (en) Composed multicore optical fiber device
Zhang et al. Feedback stabilized optical Fabry–Perot interferometer based on twin-core fiber for multidimension microdisplacement sensing
JP4627020B2 (en) Method for measuring optical characteristics of multimode optical waveguide
JP5918724B2 (en) Optical axis adjusting device and optical axis adjusting method
Chen et al. Integrated micro Michelson fiber interferometer with spatial mode beating characteristics for directional discrimination
Xu et al. Stability effects on optical component assembly and measurement using an automation system
JP5065230B2 (en) Optical module and method of manufacturing optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees