JP6002987B2 - Curable resin composition, cured product thereof, and printed wiring board - Google Patents

Curable resin composition, cured product thereof, and printed wiring board Download PDF

Info

Publication number
JP6002987B2
JP6002987B2 JP2012051648A JP2012051648A JP6002987B2 JP 6002987 B2 JP6002987 B2 JP 6002987B2 JP 2012051648 A JP2012051648 A JP 2012051648A JP 2012051648 A JP2012051648 A JP 2012051648A JP 6002987 B2 JP6002987 B2 JP 6002987B2
Authority
JP
Japan
Prior art keywords
resin composition
epoxy resin
curable resin
compound
naphthol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012051648A
Other languages
Japanese (ja)
Other versions
JP2013185081A (en
Inventor
教夫 長江
教夫 長江
泰 佐藤
泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2012051648A priority Critical patent/JP6002987B2/en
Publication of JP2013185081A publication Critical patent/JP2013185081A/en
Application granted granted Critical
Publication of JP6002987B2 publication Critical patent/JP6002987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、得られる硬化物の熱膨張率が低く、且つ耐熱性にも優れる硬化性樹脂組成物と、この組成物を硬化させた硬化物及び、プリント配線基板に関する。   The present invention relates to a curable resin composition having a low coefficient of thermal expansion and excellent heat resistance, a cured product obtained by curing the composition, and a printed wiring board.

エポキシ樹脂及びその硬化剤を必須成分とする硬化性樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。   A curable resin composition containing an epoxy resin and a curing agent as an essential component exhibits excellent heat resistance and insulation in the cured product, and is therefore widely used in electronic component applications such as semiconductors and multilayer printed boards. Yes.

近年、電子機器の小型化・高性能化の流れに伴い、プリント配線板では配線ピッチが狭小化した、高密度の配線が要求されている。高密度配線に対応する半導体の実装方法としては、従来のワイヤボンディング方式に代わり、フリップチップ接続方式が広く用いられている。フリップチップ接続方式は、ワイヤに代えてはんだボールにより、配線板と半導体とを接続させる方法である。互いに向き合わせにした配線板と半導体との間にはんだボールを配置させ、全体に加熱して、はんだをリフロー(溶融接続)させて、配線板と半導体を接続させて実装している。この方法では、はんだリフロー時に従来より高い熱が配線板等にかかる。この際、従来の硬化性樹脂組成物を材料として形成された配線板では、配線板が熱収縮して、配線板と半導体を接続するはんだボールに大きな応力が発生し、配線の接続不良を起こす場合があった。この状況を背景として、低熱膨張率の硬化性樹脂組成物が求められている。   In recent years, with the trend toward miniaturization and high performance of electronic devices, printed wiring boards are required to have high-density wiring with a narrowed wiring pitch. As a semiconductor mounting method corresponding to high-density wiring, a flip chip connection method is widely used instead of the conventional wire bonding method. The flip chip connection method is a method of connecting a wiring board and a semiconductor by solder balls instead of wires. Solder balls are arranged between the wiring board and the semiconductor that face each other, and the whole is heated to reflow (melt connection) the solder, and the wiring board and the semiconductor are connected and mounted. In this method, higher heat is applied to the wiring board and the like during solder reflow. At this time, in the wiring board formed using the conventional curable resin composition as a material, the wiring board is thermally contracted, and a large stress is generated in the solder ball connecting the wiring board and the semiconductor, resulting in poor connection of the wiring. There was a case. Against this background, a curable resin composition having a low coefficient of thermal expansion is desired.

さらに環境問題に対する法規制等により、鉛を使用しない高融点はんだが主流となりつつあるが、この鉛フリーはんだは従来の共晶はんだよりも使用温度が約20〜40℃高くなることから、硬化性樹脂組成物にはこれまで以上に高い耐熱性が要求されている。   Furthermore, high melting point solder that does not use lead is becoming mainstream due to laws and regulations for environmental problems, etc., but this lead-free solder has a use temperature of about 20 to 40 ° C. higher than that of conventional eutectic solder, so it is curable. Resin compositions are required to have higher heat resistance than ever before.

これらの要求を実現可能な材料として、特定の構造を有するナフトールノボラック型エポキシ樹脂と特定の構造を有するシアネートエステル化合物からなる硬化性樹脂組成物が知られている(例えば、特許文献1参照。)。   A curable resin composition comprising a naphthol novolak type epoxy resin having a specific structure and a cyanate ester compound having a specific structure is known as a material that can realize these requirements (see, for example, Patent Document 1). .

上記特許文献1で開示されている硬化性樹脂組成物は、エポキシ樹脂として一般的なフェノールノボラック型エポキシ樹脂を用いた場合と比較して架橋密度が高く、低熱線膨張性や耐熱性はある程度改善されるものの、未だ高耐熱化、低熱線膨張化について近年要求されるレベルには達していないのが現状であった。   The curable resin composition disclosed in Patent Document 1 has a higher crosslink density compared to the case where a general phenol novolac type epoxy resin is used as an epoxy resin, and the low thermal expansion and heat resistance are improved to some extent. However, the current situation is that the level required in recent years has not yet been achieved for high heat resistance and low thermal linear expansion.

特開平9−100393号公報Japanese Patent Application Laid-Open No. 9-100393

従って、本発明が解決しようとする課題は、硬化物の熱膨張率が低く、且つ耐熱性にも優れる硬化物が得られる硬化性樹脂組成物と、この組成物を硬化させた硬化物及び、プリント配線基板に関する。   Therefore, the problem to be solved by the present invention is a curable resin composition that provides a cured product having a low coefficient of thermal expansion and excellent heat resistance, a cured product obtained by curing the composition, and The present invention relates to a printed wiring board.

本発明者らは、上記課題を解決するため、鋭意検討した結果、エポキシ樹脂としてナフトールノボラック樹脂のポリグリシジルエーテルであって、特定構造の3量体を含むエポキシ樹脂を用いることにより、得られる硬化性樹脂組成物は熱膨張率が低く、且つ耐熱性にも優れる硬化物となること、該組成物はプリント配線基板の製造に最適であること等を見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the above problems, the present inventors have found that a cured product obtained by using an epoxy resin that is a polyglycidyl ether of a naphthol novolak resin as an epoxy resin and contains a trimer having a specific structure. The present inventors have found that the functional resin composition has a low coefficient of thermal expansion and is excellent in heat resistance, and that the composition is optimal for the production of printed wiring boards, and has completed the present invention.

即ち、本発明は、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドの重縮合体をポリグリシジルエーテル化したエポキシ樹脂であって、該エポキシ樹脂中に下記構造式(1)   That is, the present invention is an epoxy resin obtained by polyglycidyl etherification of a polycondensate of an α-naphthol compound, a β-naphthol compound, and formaldehyde, and the following structural formula (1)

Figure 0006002987
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表す。)
で表される3量体(x1)を含有するエポキシ樹脂(A)と、シアン酸エステル化合物(B)とを含有することを特徴とする硬化性樹脂組成物を提供するものである。
Figure 0006002987
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Gr represents a glycidyl group.)
The curable resin composition characterized by containing the epoxy resin (A) containing the trimer (x1) represented by these, and the cyanate ester compound (B) is provided.

また、本発明は、前記硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物を提供するものである。   The present invention also provides a cured product obtained by curing reaction of the curable resin composition.

更に、本発明は、前記硬化性樹脂組成物に、更に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板を提供するものである。   Furthermore, the present invention relates to a printed wiring obtained by impregnating a reinforcing base material with a resin composition obtained by further blending an organic solvent with the curable resin composition, and then laminating the copper foil and heat-pressing it. A substrate is provided.

本発明によれば、その硬化物において熱膨張率が低く、且つ耐熱性にも優れる硬化物が得られる硬化性樹脂組成物を提供できる。加えて、本発明で提供できる組成物は、プリント配線基板の製造に好適に用いることもできる。   According to the present invention, it is possible to provide a curable resin composition from which a cured product having a low coefficient of thermal expansion and excellent heat resistance can be obtained. In addition, the composition that can be provided by the present invention can be suitably used for the production of a printed wiring board.

以下、本発明を詳細に説明する。
本発明で用いるエポキシ樹脂(A)は、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドの重縮合体をポリグリシジルエーテル化したエポキシ樹脂であって、該エポキシ樹脂中に下記構造式(1)
Hereinafter, the present invention will be described in detail.
The epoxy resin (A) used in the present invention is an epoxy resin obtained by polyglycidyl etherification of a polycondensation product of an α-naphthol compound, a β-naphthol compound, and formaldehyde, and the following structural formula (1) is contained in the epoxy resin.

Figure 0006002987
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表す。)
で表される3量体(x1)を含有するものである。
Figure 0006002987
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Gr represents a glycidyl group.)
Containing a trimer (x1).

本発明で用いるエポキシ樹脂(A)の中でも、更に、下記構造式(2)   Among the epoxy resins (A) used in the present invention, the following structural formula (2)

Figure 0006002987
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表す。)
で表される2量体(x2)を含有し、エポキシ樹脂(A)中の前記3量体(x1)の含有率がGPC測定における面積比率で15〜35%となる割合であり、前記2量体(x2)の含有率がGPC測定における面積比率で1〜25%となる割合であるエポキシ樹脂が、誘電率と誘電正接が低く、且つ、耐熱性にも優れる硬化物が得られる硬化性樹脂組成物となることから好ましい。このようなエポキシ樹脂は、エポキシ樹脂中に前記3量体(x1)を含むことから、分子レベルでの配向性が高く、その硬化物において優れた低熱膨張性を発現すると共に、該3量体(x1)自体の反応性が高いために、硬化物における熱履歴後の耐熱性変化が少なく、プリント配線基板用途におけるリフロー後の物性変化が少ない材料となる利点もある。
Figure 0006002987
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Gr represents a glycidyl group.)
Is a ratio in which the content of the trimer (x1) in the epoxy resin (A) is 15 to 35% in terms of an area ratio in GPC measurement, Epoxy resin having a content ratio of the monomer (x2) of 1 to 25% in terms of area ratio in GPC measurement has a low dielectric constant and dielectric loss tangent, and a curability that provides a cured product with excellent heat resistance. Since it becomes a resin composition, it is preferable. Since such an epoxy resin contains the trimer (x1) in the epoxy resin, the orientation at the molecular level is high, and the cured product exhibits excellent low thermal expansion, and the trimer. (X1) Since the reactivity of itself is high, there is also an advantage that there is little change in heat resistance after heat history in the cured product, and the material becomes a material with little change in physical properties after reflow in printed wiring board applications.

本発明で用いるエポキシ樹脂(A)が有する3量体(x1)としては、具体的には、下記構造式(1−1)〜(1−6)   Specific examples of the trimer (x1) contained in the epoxy resin (A) used in the present invention include the following structural formulas (1-1) to (1-6).

Figure 0006002987
で表される化合物等が挙げられる。これらのなかでも特に前記構造式1−1で表されるもの、即ち、前記構造式(1)におけるR及びRが、全て水素原子であるものが、硬化物における熱履歴後の耐熱性変化が小さくなる点から好ましい。
Figure 0006002987
And the like. Among these, particularly those represented by the structural formula 1-1, that is, those in which R 1 and R 2 in the structural formula (1) are all hydrogen atoms, the heat resistance after the heat history in the cured product. This is preferable from the viewpoint of small change.

本発明で用いるエポキシ樹脂(A)は、更に、前記3量体(x1)、前記2量体(x2)に加え、更に下記構造式(3)   In addition to the trimer (x1) and the dimer (x2), the epoxy resin (A) used in the present invention further has the following structural formula (3).

Figure 0006002987
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表し、nは繰り返し単位であって2〜10の整数である。)
で表されるカリックスアレーン化合物(x3)を、エポキシ樹脂中GPC測定における面積比率で1〜40%となる割合で含有することが、硬化物における低線膨張性が一層良好なものとなる点から好ましい。
Figure 0006002987
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Gr represents a glycidyl group, and n is a repeating group. It is a unit and is an integer of 2 to 10.)
From the point that the low linear expansion property in the cured product is further improved by containing the calixarene compound (x3) represented by the formula (1) at a ratio of 1 to 40% in the area ratio in the GPC measurement in the epoxy resin. preferable.

ここで、前記構造式(3)中のR及びRは、前記構造式(1)におけるものと同義である。繰り返し単位nは、2〜10の整数であるが、本発明のエポキシ樹脂の硬化物における低線膨張性が一層優れたものとなる点から、nは4であることが好ましい。 Here, R 1 and R 2 in the structural formula (3) are synonymous with those in the structural formula (1). Although the repeating unit n is an integer of 2 to 10, n is preferably 4 from the viewpoint that the low linear expansion in the cured epoxy resin of the present invention is further improved.

本発明における前記3量体(x1)、前記2量体(x2)、及び前記カリックスアレーン化合物(x3)のエポキシ樹脂中の含有率とは、下記の条件によるGPC測定によって計算される、本発明のエポキシ樹脂の全ピーク面積に対する、前記各構造体のピーク面積の存在割合である。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
The content of the trimer (x1), the dimer (x2), and the calixarene compound (x3) in the epoxy resin in the present invention is calculated by GPC measurement under the following conditions. The ratio of the peak area of each structure to the total peak area of the epoxy resin.
<GPC measurement conditions>
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).

本発明で用いるエポキシ樹脂(A)は、上記した、前記3量体(x1)、前記2量体(x2)、及びカリックスアレーン化合物(x3)の他、高分子量成分(x4)を含んでいてもよい。   The epoxy resin (A) used in the present invention contains the high molecular weight component (x4) in addition to the trimer (x1), the dimer (x2), and the calixarene compound (x3) described above. Also good.

斯かる高分子量成分(x4)は、本発明で用いるエポキシ樹脂(A)中、前記(x1)〜(x3)を除く高分子量成分であり、具体的には、下記構造式(I)   Such a high molecular weight component (x4) is a high molecular weight component excluding the above (x1) to (x3) in the epoxy resin (A) used in the present invention, and specifically, the following structural formula (I)

Figure 0006002987

(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表す。)
で表される構造ユニット(I)と、
下記、構造式(II)
Figure 0006002987

(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Gr represents a glycidyl group.)
A structural unit (I) represented by:
Structural formula (II) below

Figure 0006002987

(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表し、mは繰り返し単位であり、0以上の整数である。)
で表される構造ユニット(II)とが、メチレン結合により結節され、高分子量化した基本構造を有するエポキシ樹脂等を例示することができる。
Figure 0006002987

(Wherein R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Gr represents a glycidyl group, and m is a repeating group) Unit, an integer greater than or equal to 0.)
And an epoxy resin having a basic structure in which the structural unit (II) represented by the formula is knotted by a methylene bond and has a high molecular weight.

GPC測定によって保持時間が長い順に、前記2量体(x2)、3量体(x1)、カリックスアレーン化合物(x3)の順に検出され、前記高分子量成分(x4)は、カリックスアレーン化合物(x3)より、保持時間の短い領域に検出される成分である。高分子量成分(x4)のエポキシ樹脂(A)中の存在割合は、GPC測定における面積比率で、40〜75質量%の範囲であることが該エポキシ樹脂(A)の溶剤溶解性に優れる点から好ましい。また、前記高分子量成分(x4)の具体的構造としては、前記構造ユニット(I)と構造ユニット(II)とがメチレン結合を介して交互に結合する樹脂構造(x4−1)、及び前記構造ユニット(I)の両末端に構造ユニット(II)がメチレン結合を介して結合する樹脂構造(x4−2)が挙げられるが、本発明では低熱膨張の硬化物が得られることから樹脂構造(x4−2)を有するものが好ましい。なお、樹脂構造(x4−2)において、構造ユニット(II)は前記した通り、該構造の両末端に位置するが、構造ユニット(II)の2本の結合手のうちメチレン結合と結合していない結合手には水素原子が結合するものである。   The dimer (x2), the trimer (x1), and the calixarene compound (x3) are detected in this order from the longest retention time by GPC measurement, and the high molecular weight component (x4) is the calixarene compound (x3). Therefore, it is a component detected in a region having a short holding time. The proportion of the high molecular weight component (x4) in the epoxy resin (A) is an area ratio in GPC measurement, and is in the range of 40 to 75% by mass because the epoxy resin (A) has excellent solvent solubility. preferable. The specific structure of the high molecular weight component (x4) includes a resin structure (x4-1) in which the structural unit (I) and the structural unit (II) are alternately bonded via a methylene bond, and the structure. A resin structure (x4-2) in which the structural unit (II) is bonded to both ends of the unit (I) via a methylene bond is exemplified. In the present invention, a cured product having a low thermal expansion is obtained. -2) is preferred. In the resin structure (x4-2), the structural unit (II) is located at both ends of the structure as described above, but is bonded to a methylene bond among the two bonds of the structural unit (II). A hydrogen atom is bonded to a non-bonded hand.

また、前記重縮合体の原料成分として、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドに加え、更に他のノボラック樹脂を併用する場合には、前記高分子量成分(x4)は、前記構造ユニット(I)、前記構造ユニット(II)、及び当該他のノボラック樹脂が、相互にメチレン結合を介して結節し高分子量化したものとなる。なお、前記重縮合体の原料成分として、当該他のノボラック樹脂を製造時に併用する場合、その使用量は、原料となるα−ナフトール化合物及びβ−ナフトール化合物の総質量100質量部あたり、5〜30質量部であることが、最終的に得られるエポキシ樹脂の反応性に優れる点から好ましい。   In addition to the α-naphthol compound, β-naphthol compound, and formaldehyde as a raw material component of the polycondensate, when the other novolak resin is used in combination, the high molecular weight component (x4) is the structural unit. (I), the structural unit (II), and the other novolak resin are knotted to each other through a methylene bond to have a high molecular weight. In addition, when using the said other novolak resin together as a raw material component of the said polycondensate at the time of manufacture, the usage-amount is 5 per 100 mass parts of total mass of (alpha) -naphthol compound and (beta) -naphthol compound used as a raw material. It is preferable that it is 30 mass parts from the point which is excellent in the reactivity of the epoxy resin finally obtained.

以上詳述した本発明で用いるエポキシ樹脂(A)は、その軟化点95〜140℃の範囲であることが、エポキシ樹脂(A)自体の溶剤溶解性に優れる点から好ましく、よって、前記高分子量成分(x4)の分子量もエポキシ樹脂(A)の軟化点が前記範囲に入るように適宜調整すればよい。また、前記軟化点は、低熱膨張性及び溶剤溶解性を高度に兼備できる点から、特に100〜135℃の範囲であることが好ましい。   The epoxy resin (A) used in the present invention described in detail above preferably has a softening point in the range of 95 to 140 ° C. from the viewpoint of excellent solvent solubility of the epoxy resin (A) itself. What is necessary is just to adjust suitably the molecular weight of a component (x4) so that the softening point of an epoxy resin (A) may enter into the said range. The softening point is particularly preferably in the range of 100 to 135 ° C. from the viewpoint that the low thermal expansion property and the solvent solubility can be highly combined.

また、本発明で用いるエポキシ樹脂は、そのエポキシ当量が210〜300g/eqの範囲であることが、硬化物の、誘電率と誘電正接が低く、且つ、耐熱性にも優れる硬化物となるのに加え、低熱膨張性が良好となることから好ましく、特に220〜260g/eqの範囲であることが好ましい。   In addition, the epoxy resin used in the present invention has an epoxy equivalent in the range of 210 to 300 g / eq, so that the cured product has a low dielectric constant and dielectric loss tangent and is excellent in heat resistance. In addition, the low thermal expansion property is preferable, and the range of 220 to 260 g / eq is particularly preferable.

以上詳述した本発明で用いるエポキシ樹脂(A)は、例えば、下記方法1又は方法2によって製造することができる。   The epoxy resin (A) used in the present invention described in detail above can be produced by, for example, the following method 1 or method 2.

方法1:有機溶剤及びアルカリ触媒の存在下、β−ナフトール化合物とホルムアルデヒドとを反応させ、次いで、ホルムアルデヒドの存在下、α−ナフトール化合物を加え反応させて、ナフトール樹脂を得(工程1)、次いで、得られたナフトール樹脂にエピハロヒドリンを反応させて(工程2)、目的とするエポキシ樹脂を得る方法。   Method 1: A β-naphthol compound and formaldehyde are reacted in the presence of an organic solvent and an alkali catalyst, and then an α-naphthol compound is added and reacted in the presence of formaldehyde to obtain a naphthol resin (step 1). A method of obtaining the target epoxy resin by reacting the obtained naphthol resin with epihalohydrin (step 2).

方法2:有機溶剤及びアルカリ触媒の存在下、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドを反応させてナフトール樹脂を得(工程1)、次いで、得られたナフトール樹脂にエピハロヒドリンを反応させて(工程2)、目的とするエポキシ樹脂を得る方法。   Method 2: α-naphthol compound, β-naphthol compound, and formaldehyde are reacted in the presence of an organic solvent and an alkali catalyst to obtain a naphthol resin (step 1), and then the obtained naphthol resin is reacted with epihalohydrin. (Step 2), a method for obtaining a target epoxy resin.

本発明では、上記方法1又は2の工程1において、反応触媒として、アルカリ触媒を用いること、及び、有機溶剤を原料成分に対して少なく使用することにより、前記3量体(x1)、前記2量体(x2)、及び前記カリックスアレーン化合物(x3)のエポキシ樹脂中の存在割合を所定範囲に調整することができ、かつ、前記高分子量成分の存在比率も適性範囲となる。   In the present invention, the trimer (x1) and the 2 are obtained by using an alkali catalyst as a reaction catalyst in Step 1 of the method 1 or 2 and using an organic solvent in a small amount with respect to the raw material components. The abundance ratio of the monomer (x2) and the calixarene compound (x3) in the epoxy resin can be adjusted to a predetermined range, and the abundance ratio of the high molecular weight component is also in an appropriate range.

ここで用いるアルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、金属ナトリウム、金属リチウム、水素化ナトリウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ類などが挙げられる。その使用量は、原料成分であるα−ナフトール化合物、β−ナフトール化合物、及び必要により前記他のノボラック樹脂のフェノール性水酸基の総数に対して、モル基準で0.01〜2.0倍量となる範囲であることが好ましい。   Examples of the alkali catalyst used herein include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, inorganic alkalis such as metal sodium, metal lithium, sodium hydride, sodium carbonate, and potassium carbonate. The amount used is 0.01 to 2.0 times the amount of the raw material components α-naphthol compound, β-naphthol compound, and, if necessary, the total number of phenolic hydroxyl groups of the other novolak resin on a molar basis. It is preferable that it is the range.

また、有機溶剤としては、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられる。これらのなかでもとりわけ比較的重縮合体が高分子量化する点からイソプロピルアルコールが好ましい。
本発明における有機溶剤の使用量は、原料成分であるα−ナフトール化合物及びβ−ナフトール化合物、更に、他のノボラック樹脂を併用する場合には、原料となるα−ナフトール化合物及びβ−ナフトール化合物の総質量100質量部あたり、5〜70質量部の範囲であることが、前記3量体(x1)、前記2量体(x2)、及び前記カリックスアレーン化合物(x3)のエポキシ樹脂中の存在割合を所定範囲に調整し易い点から好ましい。
Examples of the organic solvent include methyl cellosolve, isopropyl alcohol, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone. Of these, isopropyl alcohol is particularly preferred from the viewpoint of relatively high molecular weight of the polycondensate.
In the present invention, the amount of the organic solvent used is that of the raw material components α-naphthol compound and β-naphthol compound, and when the other novolak resin is used in combination, the raw material α-naphthol compound and β-naphthol compound are used. The proportion of the trimer (x1), the dimer (x2), and the calixarene compound (x3) in the epoxy resin is in the range of 5 to 70 parts by mass per 100 parts by mass of the total mass. Is preferable because it is easy to adjust to a predetermined range.

原料成分であるα−ナフトール化合物は、具体的には、α−ナフトール及びこれらにメチル基、エチル基、プロピル基、t−ブチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基が核置換した化合物等が挙げられ、また、β−ナフトール化合物は、β−ナフトール及びこれらにメチル基、エチル基、プロピル基、t−ブチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基が核置換した化合物等が挙げられるこれらのなかでも置換基を有しないα−ナフトール、及びβ−ナフトールが、最終的に得られるエポキシ樹脂の硬化物における熱履歴後の耐熱性変化が少なくなる点から好ましい。   Specifically, the α-naphthol compound which is a raw material component includes α-naphthol and an alkyl group such as a methyl group, an ethyl group, a propyl group and a t-butyl group, and an alkoxy group such as a methoxy group and an ethoxy group. In addition, the β-naphthol compound includes β-naphthol and alkyl groups such as a methyl group, an ethyl group, a propyl group, and a t-butyl group, and an alkoxy group such as a methoxy group and an ethoxy group. Among these, compounds having a nucleus substituted, etc. Among these, α-naphthol having no substituent and β-naphthol are less heat resistance change after heat history in the cured epoxy resin obtained finally. preferable.

一方、ここで用いるホルムアルデヒドは、水溶液の状態であるホルマリン溶液でも、固形状態であるパラホルムアルデヒドでもよい。   On the other hand, the formaldehyde used here may be a formalin solution in an aqueous solution state or paraformaldehyde in a solid state.

前記方法1又は方法2の工程1におけるα−ナフトール化合物と、β−ナフトール化合物との使用割合は、モル比(α−ナフトール化合物/β−ナフトール化合物)が[1/0.4]〜[1/1.2]となる範囲であることが最終的に得られるエポキシ樹脂中の各成分比率の調整が容易であることが好ましい。   The ratio of α-naphthol compound and β-naphthol compound used in Step 1 of Method 1 or Method 2 is such that the molar ratio (α-naphthol compound / β-naphthol compound) is [1 / 0.4] to [1. /1.2] It is preferable that the ratio of each component in the finally obtained epoxy resin is easily adjusted.

ホルムアルデヒドの反応仕込み比率は、α−ナフトール化合物及びβ−ナフトール化合物の総モル数に対して、ホルムアルデヒドが、モル基準で0.6〜2.0倍量となる割合であること、特に、低熱膨張性に優れる点から、0.6〜1.5倍量となる割合であることが好ましい。   The reaction charge ratio of formaldehyde is a ratio of 0.6 to 2.0 times the amount of formaldehyde on a molar basis with respect to the total number of moles of α-naphthol compound and β-naphthol compound, in particular, low thermal expansion. From the viewpoint of excellent properties, the ratio is preferably 0.6 to 1.5 times the amount.

また、本発明では、前記した通り、原料成分としてα−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドに加え、更に、他のノボラック樹脂を一部併用することができる。ここで、用いる他のノボラック樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂が挙げられ、これらを一部併用することにより最終的に得られるエポキシ樹脂の溶剤溶解性を飛躍的に向上させることができる。これらフェノールノボラック樹脂及びクレゾールノボラック樹脂は、本発明における低線膨張性といった性能を低下させることなく、溶剤溶解性を高めることができる点から軟化点60〜120℃のものであることが好ましい。   In the present invention, as described above, in addition to the α-naphthol compound, β-naphthol compound, and formaldehyde as raw material components, another novolak resin can be used in combination. Here, as other novolak resins to be used, for example, phenol novolak resins and cresol novolak resins can be mentioned, and by using these in combination, the solvent solubility of the epoxy resin finally obtained can be dramatically improved. Can do. These phenol novolak resins and cresol novolak resins are preferably those having a softening point of 60 to 120 ° C. from the viewpoint that the solvent solubility can be improved without reducing the performance such as low linear expansion in the present invention.

当該他のノボラック樹脂を原料の一部として使用する場合、前記方法1又は方法2の工程1における各原料成分の反応仕込み比率は、モル比(α−ナフトール化合物とβ−ナフトール化合物/他のノボラック樹脂中の芳香核数)が[1/0.06]〜[1/0.36]となる範囲であることが最終的に得られるエポキシ樹脂中の各成分比率の調整が容易である点から好ましく、また、ホルムアルデヒドの使用量は、他のノボラック樹脂中の芳香核数、α−ナフトール化合物、β−ナフトール化合物の総モル数に対して、当該ホルムアルデヒドが、モル基準で0.6〜2.0倍量となる割合であること、特に、耐熱性と溶剤溶解性とのバランスに優れる点から、0.6〜1.5倍量となる割合となる範囲であることが好ましい。   When the other novolak resin is used as a part of the raw material, the reaction charge ratio of each raw material component in Step 1 of Method 1 or Method 2 is a molar ratio (α-naphthol compound and β-naphthol compound / other novolaks). Since the number of aromatic nuclei in the resin is within the range of [1 / 0.06] to [1 / 0.36], it is easy to adjust the ratio of each component in the epoxy resin finally obtained. Preferably, the amount of formaldehyde used is 0.6 to 2.2 on a molar basis with respect to the total number of moles of aromatic nuclei, α-naphthol compounds and β-naphthol compounds in other novolak resins. It is preferable that the amount be 0 times the amount, in particular, the range where the amount becomes 0.6 to 1.5 times the amount from the viewpoint of excellent balance between heat resistance and solvent solubility.

前記方法1の工程1では、反応容器に、所定量のβ−ナフトール化合物、ホルムアルデヒド、有機溶剤、及びアルカリ触媒と仕込み、40〜100℃にて反応させ、反応終了後、α−ナフトール化合物(必要に応じて、更にホルムアルデヒド)を加え、40〜100℃の温度条件下に反応させて目的とする重縮合体を得ることができる。この場合他のノボラック樹脂を併用する場合には、α−ナフトール化合物と共に反応容器に加えることが好ましい。   In Step 1 of Method 1, a reaction vessel is charged with a predetermined amount of β-naphthol compound, formaldehyde, an organic solvent, and an alkali catalyst and reacted at 40 to 100 ° C. After the reaction is completed, an α-naphthol compound (required) Depending on the case, formaldehyde) can be further added and reacted under the temperature condition of 40 to 100 ° C. to obtain the desired polycondensate. In this case, when another novolak resin is used in combination, it is preferably added to the reaction vessel together with the α-naphthol compound.

工程1の反応終了後は、反応混合物のpH値が4〜7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよく、例えば酢酸、燐酸、燐酸ナトリウム等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、減圧加熱下で有機溶剤を留去し目的とする重縮合体を得ることができる。   After completion of the reaction in Step 1, the reaction mixture is neutralized or washed with water until the pH value of the reaction mixture becomes 4-7. The neutralization treatment and the water washing treatment may be performed according to conventional methods. For example, acidic substances such as acetic acid, phosphoric acid, and sodium phosphate can be used as the neutralizing agent. After neutralization or water washing treatment, the organic solvent is distilled off under reduced pressure heating to obtain the desired polycondensate.

前記方法2の工程1では、反応容器に、所定量のβ−ナフトール化合物、α−ナフトール化合物、ホルムアルデヒド、有機溶剤、アルカリ触媒、及び、他のノボラック樹脂を併用する場合には該ノボラック樹脂を仕込み、40〜100℃にて反応させて目的とする重縮合体を得ることができる。この場合他のノボラック樹脂を併用する場合には、α−ナフトール化合物と共に反応容器に加えることが好ましい。   In step 1 of Method 2, when a predetermined amount of β-naphthol compound, α-naphthol compound, formaldehyde, an organic solvent, an alkali catalyst, and other novolak resins are used in combination in the reaction vessel, the novolak resin is charged. The desired polycondensate can be obtained by reacting at 40 to 100 ° C. In this case, when another novolak resin is used in combination, it is preferably added to the reaction vessel together with the α-naphthol compound.

工程1の反応終了後は、反応混合物のpH値が4〜7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよく、例えば酢酸、燐酸、燐酸ナトリウム等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、減圧加熱下で有機溶剤を留去し目的とする重縮合体を得ることができる。   After completion of the reaction in Step 1, the reaction mixture is neutralized or washed with water until the pH value of the reaction mixture becomes 4-7. The neutralization treatment and the water washing treatment may be performed according to conventional methods. For example, acidic substances such as acetic acid, phosphoric acid, and sodium phosphate can be used as the neutralizing agent. After neutralization or water washing treatment, the organic solvent is distilled off under reduced pressure heating to obtain the desired polycondensate.

次いで、前記方法1又は方法2の工程2は、工程1で得られた重縮合体と、エピハロヒドリンとを反応させることによって目的とするエポキシ樹脂(A)を製造する工程である。斯かる工程2は、具体的には、重縮合体中のフェノール性水酸基のモル数に対し、エピハロヒドリンを2〜10倍量(モル基準)となる割合で添加し、更に、フェノール性水酸基のモル数に対し0.9〜2.0倍量(モル基準)の塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に、反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリンは反応混合物中に連続的に戻す方法でもよい。   Next, Step 2 of Method 1 or Method 2 is a step of producing the target epoxy resin (A) by reacting the polycondensate obtained in Step 1 with epihalohydrin. Specifically, in the step 2, epihalohydrin is added in a ratio of 2 to 10 times (molar basis) with respect to the number of moles of the phenolic hydroxyl group in the polycondensate, and further the mole of the phenolic hydroxyl group. A method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding or gradually adding 0.9 to 2.0 times (molar basis) of the basic catalyst to the number is mentioned. The basic catalyst may be solid or an aqueous solution thereof. When an aqueous solution is used, it is continuously added and water and epihalohydrins are continuously distilled from the reaction mixture under reduced pressure or normal pressure. Alternatively, the solution may be separated and further separated to remove water and the epihalohydrin is continuously returned to the reaction mixture.

なお、工業生産を行う際、エポキシ樹脂(A)生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。   In addition, when industrial production is performed, all of the epihalohydrins used for charging are new in the first batch of epoxy resin (A) production, but after the next batch, the reaction with epihalohydrins recovered from the crude reaction product It is preferable to use in combination with new epihalohydrins corresponding to the amount consumed when consumed. At this time, the epihalohydrin used is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, and the like. Of these, epichlorohydrin is preferred because it is easily available industrially.

また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール化合物、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル化合物、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜2種以上を併用してもよい。   Specific examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. In particular, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity of the epoxy resin synthesis reaction, and examples thereof include sodium hydroxide and potassium hydroxide. In use, these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass, or in the form of a solid. Moreover, the reaction rate in the synthesis | combination of an epoxy resin can be raised by using an organic solvent together. Examples of such organic solvents include, but are not limited to, ketones such as acetone and methyl ethyl ketone, alcohol compounds such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol, and tertiary butanol, methyl Examples thereof include cellosolves such as cellosolve and ethyl cellosolve, ether compounds such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotic polar solvents such as acetonitrile, dimethyl sulfoxide and dimethylformamide. These organic solvents may be used alone or in combination of two or more kinds in order to adjust the polarity.

前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂100質量部に対して0.1〜3.0質量部となる割合であることが好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより目的とする本発明で用いるエポキシ樹脂(A)を得ることができる。   After the reaction product of the epoxidation reaction is washed with water, unreacted epihalohydrin and the organic solvent to be used in combination are distilled off by distillation under heating and reduced pressure. Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the obtained epoxy resin is again dissolved in an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. Further reaction can be carried out by adding an aqueous solution of the product. At this time, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount used is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the epoxy resin used. After completion of the reaction, the produced salt is removed by filtration, washing with water, and the solvent such as toluene and methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain the target epoxy resin (A) used in the present invention. Can do.

本発明の硬化性樹脂組成物に用いるシアン酸エステル化合物(B)は、分子構造中にシアナト基を有する化合物であればよい。本発明では、前記エポキシ樹脂(A)のエポキシ基濃度が低いにも拘わらず、硬化剤としてシアン酸エステル化合物(B)を用いた場合に優れた高耐熱性、低膨張率を発現することは特筆すべき点である。   The cyanate ester compound (B) used in the curable resin composition of the present invention may be a compound having a cyanate group in the molecular structure. In the present invention, despite the low epoxy group concentration of the epoxy resin (A), when the cyanate ester compound (B) is used as the curing agent, it exhibits excellent high heat resistance and low expansion coefficient. It should be noted.

かかるシアン酸エステル化合物(B)は、具体的には、塩基性物質存在下、フェノール性水酸基含有化合物とハロゲン化シアンとを反応させて得られる化合物が挙げられ、その一部が3量化していてもよい。   Specifically, the cyanate ester compound (B) includes a compound obtained by reacting a phenolic hydroxyl group-containing compound with cyanogen halide in the presence of a basic substance, and a part thereof is trimerized. May be.

ここで用いるハロゲン化シアンは、塩化シアン、臭化シアン等が挙げられる。   Examples of the cyanogen halide used here include cyanogen chloride and cyanogen bromide.

一方、ハロゲン化シアンと反応させるフェノール性水酸基含有化合物は、例えば、ビスフェノールA、ビスフェノールF、フルオレンビスフェノール、ビス(4−ヒドロキシフェニル)メンタン、ビス(4−ヒドロキシフェニル)ジシクロペンタン、4,4’−ジヒドロキシベンゾフェノン、ビス(4−ヒドロキジフェニル)エーテル、ビス(4−ヒドロキシ−3−メチルフェニル)エーテル、ビス(3,5−ジメチル−4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロヘキサン、1,1’−ビス(3−t−ブチル−6−メチル−4−ヒドロキシフェニル)ブタン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)エタン、4,4’−ヘキサフルオロイソプロピリデンジフェノール等のビスフェノール類;ビフェノール誘導体、1、1’−ビナフタレン−2,2’−ジオール等のビフェノール類、1,1’−ビス(2−ヒドロキシ−1−ナフチル)メタン(b)、1,1’−ビス(2−ヒドロキシ−1−ナフチル−6メチル)メタン、1,1’−ビス(2−ヒドロキシ−1−ナフチル−7エチル)ブタン等のビスナフトール類;トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等のノボラック型フェノール樹脂が挙げられる。   On the other hand, phenolic hydroxyl group-containing compounds to be reacted with cyanogen halide are, for example, bisphenol A, bisphenol F, fluorene bisphenol, bis (4-hydroxyphenyl) menthane, bis (4-hydroxyphenyl) dicyclopentane, 4,4 ′. -Dihydroxybenzophenone, bis (4-hydroxydiphenyl) ether, bis (4-hydroxy-3-methylphenyl) ether, bis (3,5-dimethyl-4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, Bis (4-hydroxy-3-methylphenyl) sulfide, bis (3,5-dimethyl-4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (3,5-dimethyl-4-hydroxyphenyl) Methane, 1 1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, 1,1 '-Bis (3-tert-butyl-6-methyl-4-hydroxyphenyl) butane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ethane, 4,4'- Bisphenols such as hexafluoroisopropylidenediphenol; biphenol derivatives, biphenols such as 1,1′-binaphthalene-2,2′-diol, 1,1′-bis (2-hydroxy-1-naphthyl) methane (b ), 1,1′-bis (2-hydroxy-1-naphthyl-6methyl) methane, 1,1′-bis (2-hydride) Bisnaphthols such as xyl-1-naphthyl-7ethyl) butane; tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak And the like.

これらの中でも、ビスフェノールA、ビス(3,5−ジメチル−4−ヒドロキシフェニル)エーテル、フェノールノボラック樹脂がハロゲン化シアンとの反応性、反応物の溶解性、相溶性の点で好ましい。   Among these, bisphenol A, bis (3,5-dimethyl-4-hydroxyphenyl) ether, and phenol novolak resin are preferable in terms of reactivity with cyanogen halide, solubility of the reaction product, and compatibility.

そして、前記シアン酸エステル化合物(B)は、ビスフェノールAとハロゲン化シアンとを反応させて得られる化合物、ビス(3,5−ジメチル−4−ヒドロキシフェニル)エーテルとハロゲン化シアンとを反応させて得られる化合物またはフェノールノボラック樹脂とハロゲン化シアンとを反応させて得られる化合物が好ましく、ビスフェノールAとハロゲン化シアンとを反応させて得られる化合物またはフェノールノボラック樹脂とハロゲン化シアンとを反応させて得られる化合物がより好ましい。   The cyanate ester compound (B) is obtained by reacting bisphenol A and cyanogen halide, bis (3,5-dimethyl-4-hydroxyphenyl) ether and cyanogen halide. A compound obtained by reacting the obtained compound or phenol novolac resin with cyanogen halide is preferred, and obtained by reacting bisphenol A with cyanogen halide or reacting phenol novolac resin with cyanogen halide. The compound obtained is more preferred.

また、上記反応は、塩基性触媒の存在下を行うことが、反応性が良好となる点から好ましく、ここで用いる塩基性触媒としては、トリエチルアミンやトリメチルアミン等の3級アミン類;水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物などの塩基性物質が挙げられる。   The above reaction is preferably performed in the presence of a basic catalyst from the viewpoint of good reactivity. Examples of the basic catalyst used here include tertiary amines such as triethylamine and trimethylamine; sodium hydroxide and the like Examples include basic substances such as alkali metal hydroxides such as potassium hydroxide.

具体的には、例えばフェノール化合物中のフェノール性水酸基の1モルに対し、ハロゲン化シアンを1.05モル〜1.5モルとなる割合で反応させることによって得ることができる。   Specifically, it can be obtained, for example, by reacting cyanogen halide at a ratio of 1.05 mol to 1.5 mol with respect to 1 mol of the phenolic hydroxyl group in the phenol compound.

上記反応においては、有機溶媒存在下で反応することが好ましい。その際使用する有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族系溶媒やメチルエチルケトンやメチルイソブチルケトンなどのケトン系溶媒が挙げられる。   In the above reaction, the reaction is preferably performed in the presence of an organic solvent. Examples of the organic solvent used in this case include aromatic solvents such as benzene, toluene and xylene, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone.

上記条件にて反応を行った後に、反応液に適量の水を加えて生成塩を溶解する。その後、水洗を繰り返して系内の生成塩を除去した後に、脱水や濾別でさらに精製して、有機溶媒を蒸留で除去して目的とするシアン酸エステル系化合物(B)を得ることができる。   After carrying out the reaction under the above conditions, an appropriate amount of water is added to the reaction solution to dissolve the produced salt. Thereafter, washing with water is repeated to remove the generated salt in the system, and further purification is performed by dehydration or filtration, and the organic solvent is removed by distillation to obtain the desired cyanate ester compound (B). .

本発明の硬化性樹脂組成物におけるエポキシ樹脂(A)とシアン酸エステル化合物(B)の配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂(A)のエポキシ基の合計1当量に対して、シアン酸エステル系化合物(B)中のシアナト基が0.5〜2.5当量になる量であることが好ましい。   The blending amount of the epoxy resin (A) and the cyanate ester compound (B) in the curable resin composition of the present invention is not particularly limited, but it is an epoxy from the point that the obtained cured product characteristics are good. It is preferable that the amount of cyanate groups in the cyanate ester compound (B) is 0.5 to 2.5 equivalents relative to a total of 1 equivalent of epoxy groups in the resin (A).

本発明の硬化性樹脂組成物には、シアン酸エステル化合物(B)以外の硬化剤を本発明の硬化を損なわない範囲で加えることもできる。   A curing agent other than the cyanate ester compound (B) can be added to the curable resin composition of the present invention within a range that does not impair the curing of the present invention.

前記シアン酸エステル化合物(B)以外の硬化剤としては、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などが挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられる。 Examples of the curing agent other than the cyanate ester compound (B) include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like. Specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivatives.

前記アミド系化合物としては、例えば、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。   Examples of the amide compound include polyamide resins synthesized from dimer of dicyandiamide and linolenic acid and ethylenediamine.

前記酸無水物系化合物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。   Examples of the acid anhydride compound include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, And methyl hexahydrophthalic anhydride.

前記フェノール系化合物としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。   Examples of the phenolic compounds include phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins (Zylok resins), and resorcin novolac resins. Polyhydric phenol novolak resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin synthesized from polyvalent hydroxy compound and formaldehyde , Biphenyl modified phenolic resin (polyhydric phenol compound with phenolic nuclei linked by bismethylene group), biphenyl modified naphthol resin ( Polyvalent naphthol compounds with phenolic nuclei linked by smethylene groups), aminotriazine-modified phenolic resins (polyhydric phenolic compounds with phenolic nuclei linked by melamine, benzoguanamine, etc.) and alkoxy group-containing aromatic ring-modified novolak resins (phenolic with formaldehyde) And a polyphenol compound such as a polyphenol compound having a nucleus and an alkoxy group-containing aromatic ring linked to each other.

また必要に応じて本発明の硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。   Moreover, a hardening accelerator can also be suitably used together with the curable resin composition of this invention as needed. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor encapsulating material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, etc., so that triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines. -[5.4.0] -undecene (DBU) is preferred.

本発明の硬化性樹脂組成物において、エポキシ樹脂成分として、前記したエポキシ樹脂(A)を単独で用いてもよいが、本発明の効果を損なわない範囲で他のエポキシ樹脂を使用してもよい。具体的には、エポキシ樹脂成分の全質量に対して前記した本発明のエポキシ樹脂が30質量%以上、好ましくは40質量%以上となる範囲で他のエポキシ樹脂を併用することができる。   In the curable resin composition of the present invention, the above-described epoxy resin (A) may be used alone as an epoxy resin component, but other epoxy resins may be used as long as the effects of the present invention are not impaired. . Specifically, the epoxy resin of the present invention described above can be used in combination with another epoxy resin within a range of 30% by mass or more, preferably 40% by mass or more with respect to the total mass of the epoxy resin component.

ここで前記エポキシ樹脂と併用され得る他のエポキシ樹脂としては、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、   Here, as other epoxy resins that can be used in combination with the epoxy resin, various epoxy resins can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type Epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type Epoxy resin, naphthol novolac type epoxy resin,

ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。これらのなかでもフェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂や、ナフタレン骨格を含有するナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂や、結晶性のビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、キサンテン型エポキシ樹脂や、アルコキシ基含有芳香環変性ノボラック型エポキシ樹脂(ホルムアルデヒドでグリシジル基含有芳香環及びアルコキシ基含有芳香環が連結された化合物)等が耐熱性に優れる硬化物が得られる点から特に好ましい。 Examples thereof include a naphthol aralkyl type epoxy resin, a naphthol-phenol co-condensed novolac type epoxy resin, a naphthol-cresol co-condensed novolac type epoxy resin, an aromatic hydrocarbon formaldehyde resin-modified phenol resin type epoxy resin, and a biphenyl novolac type epoxy resin. Among these, phenol aralkyl type epoxy resins, biphenyl novolak type epoxy resins, naphthol novolak type epoxy resins containing a naphthalene skeleton, naphthol aralkyl type epoxy resins, naphthol-phenol co-condensed novolac type epoxy resins, naphthol-cresol co-condensed novolacs. Type epoxy resin, crystalline biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, xanthene type epoxy resin, alkoxy group-containing aromatic ring-modified novolak type epoxy resin (formaldehyde glycidyl group-containing aromatic ring and alkoxy group-containing aromatic ring Are particularly preferable in that a cured product having excellent heat resistance can be obtained.

以上詳述した本発明の硬化性樹脂組成物は、優れた溶剤溶解性を発現する。従って、該硬化性樹脂組成物は、上記各成分の他に有機溶剤を配合することが好ましい。ここで使用し得る前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。   The curable resin composition of the present invention described in detail above exhibits excellent solvent solubility. Therefore, the curable resin composition preferably contains an organic solvent in addition to the above components. Examples of the organic solvent that can be used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, etc. The amount used can be appropriately selected depending on the application. For example, in printed wiring board applications, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, dimethylformamide, and the non-volatile content of 40 to 80% by mass. It is preferable to use in the ratio which becomes. On the other hand, in build-up adhesive film applications, as organic solvents, for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, It is preferable to use carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like, and the nonvolatile content is 30 to 60% by mass. It is preferable to use in proportions.

また、上記熱硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。   The thermosetting resin composition is a non-halogen flame retardant that substantially does not contain a halogen atom in order to exert flame retardancy, for example, in the field of printed wiring boards, as long as the reliability is not lowered. May be blended.

前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。   Examples of the non-halogen flame retardants include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. The flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.

前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。   As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。   The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.

前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。   Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7- Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins.

それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。   The blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. In 100 parts by mass of curable resin composition containing all of halogen-based flame retardant and other fillers and additives, 0.1 to 2.0 parts by mass of red phosphorus is used as a non-halogen flame retardant. It is preferable to mix in the range, and when using an organophosphorus compound, it is preferably mixed in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. It is preferable to do.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。   In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.

前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。   Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。   Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, sulfate (Iii) co-condensates of phenols such as phenol, cresol, xylenol, butylphenol and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine and formguanamine and formaldehyde, (iii) (Ii) a mixture of a co-condensate of (ii) and a phenolic resin such as a phenol formaldehyde condensate, (iv) those obtained by further modifying (ii) and (iii) with paulownia oil, isomerized linseed oil, etc. It is.

前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。   Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。   The compounding amount of the nitrogen-based flame retardant is appropriately selected according to the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, an epoxy resin, It is preferable to mix in the range of 0.05 to 10 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix | blend in the range of 1-5 mass parts.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。   Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.

前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。   The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.

前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。   The amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, an epoxy resin, It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.

前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.

前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。   Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.

前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。   Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.

前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。   Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.

前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。   Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.

前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。   Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Specific examples of the low-melting-point glass include, for example, Ceeley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, lead borosilicate, etc. The glassy compound can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。   The amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. For example, an epoxy resin, It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix | blend in 5-15 mass parts.

前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。   Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。   The amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. In 100 parts by mass of the curable resin composition in which all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives are blended, it is preferably blended in the range of 0.005 to 10 parts by mass. .

本発明の硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   An inorganic filler can be mix | blended with the curable resin composition of this invention as needed. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the curable resin composition. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。   Various compounding agents, such as a silane coupling agent, a mold release agent, a pigment, an emulsifier, can be added to the curable resin composition of this invention as needed.

本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。   The curable resin composition of the present invention can be obtained by uniformly mixing the above-described components. The curable resin composition of the present invention in which the epoxy resin of the present invention, a curing agent, and further, if necessary, a curing accelerator are blended can be easily made into a cured product by a method similar to a conventionally known method. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.

本発明の硬化性樹脂組成物が用いられる用途としては、プリント配線板材料、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム等が挙げられる。また、これら各種用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、熱履歴後の耐熱性変化が小さい、低熱膨張性、及び溶剤溶解性といった特性からプリント配線板材料やビルドアップ用接着フィルムに用いることが好ましい。   Applications for which the curable resin composition of the present invention is used include printed wiring board materials, resin casting materials, adhesives, interlayer insulation materials for build-up substrates, and adhesive films for build-ups. Among these various applications, in printed circuit boards, insulating materials for electronic circuit boards, and adhesive films for build-up, passive parts such as capacitors and active parts such as IC chips are embedded in so-called electronic parts. It can be used as an insulating material for a substrate. Among these, it is preferable to use for the printed wiring board material and the adhesive film for buildup from the characteristics, such as a small heat resistance change after heat history, low thermal expansibility, and solvent solubility.

ここで、本発明の硬化性樹脂組成物からプリント回路基板を製造するには、前記有機溶剤を含むワニス状の硬化性樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。   Here, in order to produce a printed circuit board from the curable resin composition of the present invention, the varnish-like curable resin composition containing the organic solvent is impregnated into a reinforcing base material, and a copper foil is overlaid and thermocompression bonded. A method is mentioned. Examples of the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. If this method is described in further detail, first, the varnish-like curable resin composition is heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C., thereby being a prepreg which is a cured product. Get. The mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60% by mass. Next, the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and then subjected to thermocompression bonding at a pressure of 1 to 10 MPa at 170 to 250 ° C. for 10 minutes to 3 hours, A desired printed circuit board can be obtained.

本発明の硬化性樹脂組成物をレジストインキとして使用する場合には、例えば該硬化性樹脂組成物の硬化剤としてカチオン重合触媒を用い、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   When the curable resin composition of the present invention is used as a resist ink, for example, a cationic polymerization catalyst is used as a curing agent for the curable resin composition, and a pigment, talc, and filler are further added to form a resist ink composition. After making it into a product, after applying on a printed board by a screen printing method, a method of forming a resist ink cured product can be mentioned.

本発明の硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When the curable resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the curable resin composition to obtain a composition for anisotropic conductive film, liquid at room temperature And a paste resin composition for circuit connection and an anisotropic conductive adhesive.

本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   As a method for obtaining an interlayer insulating material for a build-up substrate from the curable resin composition of the present invention, for example, the curable resin composition appropriately blended with rubber, filler, etc., spray coating method on a wiring board on which a circuit is formed, After applying using a curtain coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。   The method for producing an adhesive film for buildup from the curable resin composition of the present invention is, for example, a multilayer printed wiring board in which the curable resin composition of the present invention is applied on a support film to form a resin composition layer. And an adhesive film for use.

本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。   When the curable resin composition of the present invention is used for a build-up adhesive film, the adhesive film is softened under the temperature condition of the laminate in the vacuum laminating method (usually 70 ° C. to 140 ° C.), and simultaneously with the lamination of the circuit board, It is important to show fluidity (resin flow) that allows resin filling in via holes or through holes present in a circuit board, and it is preferable to blend the above-described components so as to exhibit such characteristics.

ここで、多層プリント配線板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。   Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. It is usually preferable to allow resin filling in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.

上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(X)を形成させることにより製造することができる。   Specifically, the method for producing the adhesive film described above is, after preparing the varnish-like curable resin composition of the present invention, coating the varnish-like composition on the surface of the support film (Y), Further, it can be produced by drying the organic solvent by heating or blowing hot air to form the layer (X) of the curable resin composition.

形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。   The thickness of the formed layer (X) is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.

なお、本発明における層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   In addition, the layer (X) in this invention may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. Moreover, it is preferable that the thickness of a protective film shall be 1-40 micrometers.

上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。   The support film (Y) described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.

次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer (X) is protected by a protective film, after peeling these layers ( X) is laminated on one side or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum laminating method. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×104〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 Lamination conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C., a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2), and air pressure. Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.

本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、20〜250℃程度の温度範囲で加熱すればよい。   The method for obtaining the cured product of the present invention may be based on a general curing method for a curable resin composition, but for example, the heating temperature condition may be appropriately selected depending on the kind of curing agent to be combined and the use. However, what is necessary is just to heat the composition obtained by the said method in the temperature range about 20-250 degreeC.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度及びGPC、NMR、MSスペクトルは以下の条件にて測定した。   Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “parts” and “%” are based on mass unless otherwise specified. The melt viscosity at 150 ° C. and GPC, NMR and MS spectra were measured under the following conditions.

1)軟化点測定法:JIS K7234   1) Softening point measurement method: JIS K7234

2)GPC:測定条件は以下の通り。
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
3)13C−NMR:測定条件は以下の通り。
装置:日本電子(株)製 AL−400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45℃パルス
試料濃度 :30wt%
積算回数 :10000回
4)MS :日本電子株式会社製 JMS−T100GC
2) GPC: Measurement conditions are as follows.
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).
3) 13 C-NMR: Measurement conditions are as follows.
Device: AL-400 manufactured by JEOL Ltd.
Measurement mode: SGNNE (1H complete decoupling method of NOE elimination)
Solvent: Dimethyl sulfoxide Pulse angle: 45 ° C pulse Sample concentration: 30 wt%
Accumulation count: 10,000 times 4) MS: JMS-T100GC manufactured by JEOL Ltd.

合成例1〔エポキシ樹脂(A)の合成〕
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、β−ナフトール144部(1.0モル)、イソプロピルアルコール150部、37%ホルマリン水溶液130部(1.6モル)、49%水酸化ナトリウム41部(0.5モル)を仕込み、室温から80℃まで攪拌しながら昇温し、80℃で1時間撹拌した。続いて、α−ナフトール144部(1.0モル)を仕込み、さらに80℃で1時間攪拌した。反応終了後、第1リン酸ソーダ60質量部を添加して中和した後、メチルイソブチルケトン600部加え、水150質量部で3回洗浄を繰り返した後に、加熱減圧下乾燥してナフトール樹脂290質量部得た。得られたナフトール樹脂の水酸基当量は153グラム/当量であった。
Synthesis Example 1 [Synthesis of Epoxy Resin (A)]
In a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer, 144 parts of β-naphthol (1.0 mole), 150 parts of isopropyl alcohol, 130 parts of 37% formalin aqueous solution (1.6 moles) , 49 parts of sodium hydroxide (41 parts, 0.5 mol) was added, the temperature was raised from room temperature to 80 ° C with stirring, and the mixture was stirred at 80 ° C for 1 hour. Subsequently, 144 parts (1.0 mol) of α-naphthol was charged and further stirred at 80 ° C. for 1 hour. After completion of the reaction, 60 parts by mass of first sodium phosphate was added to neutralize, 600 parts of methyl isobutyl ketone was added, and after washing three times with 150 parts by mass of water, drying was performed under reduced pressure by heating to naphthol resin 290. A mass part was obtained. The hydroxyl group equivalent of the obtained naphthol resin was 153 g / equivalent.

次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたナフトール樹脂153質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n−ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn−ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去してエポキシ樹脂(A−1)200質量部を得た。得られたエポキシ樹脂(A−1)のエポキシ当量は234グラム/当量、軟化点113℃であったGPCチャートから3量体(x1)の含有率は25.3%、2量体(x2)の含有率は5.3%、カリックスアレーン化合物(x3)の含有率は7.4%、高分子量体(x4)の含有率は62.0%であった。   Next, 153 parts by mass of naphthol resin (hydroxyl group 1.0 equivalent) and 463 parts by mass of epichlorohydrin (5.0 mol) obtained by the above reaction while performing nitrogen gas purging on a flask equipped with a thermometer, a condenser, and a stirrer, 53 parts by mass of n-butanol was charged and dissolved while stirring. After the temperature was raised to 50 ° C., 220 parts by mass of a 20% aqueous sodium hydroxide solution (1.10 mol) was added over 3 hours, and the reaction was further continued at 50 ° C. for 1 hour. After completion of the reaction, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was resumed, and unreacted epichlorohydrin was distilled off under reduced pressure at 150 ° C. Then, 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to the resulting crude epoxy resin and dissolved. Further, 15 parts by mass of a 10% by mass sodium hydroxide aqueous solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with 100 parts by mass of water was repeated three times until the pH of the cleaning solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain 200 parts by mass of epoxy resin (A-1). The epoxy equivalent of the obtained epoxy resin (A-1) was 234 g / equivalent, and the content of the trimer (x1) was 25.3% from the GPC chart having a softening point of 113 ° C. The dimer (x2) Was 5.3%, the calixarene compound (x3) content was 7.4%, and the high molecular weight product (x4) content was 62.0%.

合成例2(同上)
β−ナフトール72部(0.5モル)、イソプロピルアルコール130部、37%ホルマリン水溶液142部(1.75モル)、49%水酸化ナトリウム24部(0.3モル)に変更した以外は、実施例1と同様にしてエポキシ樹脂(A−2)200質量部を得た。得られたエポキシ樹脂(A−2)のエポキシ当量は242グラム/当量、軟化点134℃であった。GPCチャートから3量体(x1)の含有率は15.8%、2量体(x2)の含有率は3.0%、カリックスアレーン化合物(x3)の含有率は33.0%、高分子量体(x4)の含有率は48.2%であった。
Synthesis example 2 (same as above)
Except for changing to β-naphthol 72 parts (0.5 mol), isopropyl alcohol 130 parts, 37% formalin aqueous solution 142 parts (1.75 mol), 49% sodium hydroxide 24 parts (0.3 mol) In the same manner as in Example 1, 200 parts by mass of epoxy resin (A-2) was obtained. The epoxy equivalent of the obtained epoxy resin (A-2) was 242 grams / equivalent, and the softening point was 134 ° C. From the GPC chart, the content of the trimer (x1) is 15.8%, the content of the dimer (x2) is 3.0%, the content of the calixarene compound (x3) is 33.0%, and the high molecular weight The content rate of body (x4) was 48.2%.

合成例3(同上)
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、α−ナフトール505質量部(3.50モル)、水158質量部、蓚酸5質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液177質量部(2.45モル)を1時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去しナフトール樹脂498質量部を得た。得られたナフトール樹脂の軟化点は133℃(B&R法)、水酸基当量は154グラム/当量であった。
Synthesis example 3 (same as above)
A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube and a stirrer was charged with 505 parts by mass of α-naphthol (3.50 mol), 158 parts by mass of water, and 5 parts by mass of oxalic acid. The mixture was stirred while raising the temperature in 45 minutes. Subsequently, 177 parts by mass (2.45 mol) of a 42 mass% formalin aqueous solution was added dropwise over 1 hour. After completion of dropping, the mixture was further stirred at 100 ° C. for 1 hour, and then heated to 180 ° C. in 3 hours. After completion of the reaction, water remaining in the reaction system was removed under reduced pressure by heating to obtain 498 parts by mass of naphthol resin. The obtained naphthol resin had a softening point of 133 ° C. (B & R method) and a hydroxyl group equivalent of 154 grams / equivalent.

次いで、ナフトール樹脂154質量部(水酸基1.0当量)とエピクロルヒドリンを実施例1と同様に反応させ、エポキシ樹脂(A−3)193質量部を得た。得られたエポキシ樹脂(A−3)のエポキシ当量は236グラム/当量、軟化点133℃であった   Next, 154 parts by mass of naphthol resin (1.0 equivalent of hydroxyl group) and epichlorohydrin were reacted in the same manner as in Example 1 to obtain 193 parts by mass of epoxy resin (A-3). The epoxy equivalent of the obtained epoxy resin (A-3) was 236 g / equivalent, and the softening point was 133 ° C.

合成例4(同上)
攪拌機、温度計、4つ口フラスコにα−ナフトール58g(0.4モル)、β−ナフトール230g(1.6モル)、メチルイソブチルケトン288gを入れ、攪拌溶解した。すなわちα−ナフトール/β−ナフトール=2/8の配合割合である。それに49%NaOH8.2g(0.1モル)を添加後、41%ホルマリン95g(1.3モル)を50〜100℃に昇温しながら滴下し、その後100℃で昇温して2時間攪拌した。次いで36%塩酸10.1g(0.1モル)を添加して中和した。その後150℃にてMIBKを蒸留回収し、褐色の固体樹脂を得た
Synthesis example 4 (same as above)
A stirrer, a thermometer, and 58 g (0.4 mol) of α-naphthol, 230 g (1.6 mol) of β-naphthol and 288 g of methyl isobutyl ketone were placed in a four-necked flask and dissolved by stirring. That is, the blending ratio of α-naphthol / β-naphthol = 2/8. After adding 8.2 g (0.1 mol) of 49% NaOH, 95 g (1.3 mol) of 41% formalin was added dropwise while raising the temperature to 50 to 100 ° C., then the temperature was raised at 100 ° C. and stirred for 2 hours. did. Next, 10.1 g (0.1 mol) of 36% hydrochloric acid was added for neutralization. Thereafter, MIBK was recovered by distillation at 150 ° C. to obtain a brown solid resin.

次いでこれにエピクロルヒドリン925g(10モル)添加溶解し、80℃で20%NaOH440g(2.2モル)を3時間かけて攪拌しながら滴下し、さらに30分間攪拌を続けてその後静置した。下層の食塩水を棄却し、エピクロルヒドリンを150℃で蒸留回収した後、粗樹脂にMIBK500gを加え、さらに水150gを加え80℃にて水洗した。そして下層の水洗水を棄却した後、脱水、濾過を経てメチルイソブチルケトンを150℃で脱溶剤してエポキシ樹脂(A−4)381gを得た。   Next, 925 g (10 mol) of epichlorohydrin was added and dissolved therein, and 440 g (2.2 mol) of 20% NaOH was added dropwise at 80 ° C. with stirring over 3 hours, followed by further stirring for 30 minutes and then standing still. The lower layer saline was discarded and epichlorohydrin was recovered by distillation at 150 ° C., and then 500 g of MIBK was added to the crude resin, and 150 g of water was further added, followed by washing at 80 ° C. And after discarding the washing water of a lower layer, after dehydrating and filtering, methyl isobutyl ketone was desolventized at 150 degreeC and 381 g of epoxy resins (A-4) were obtained.

得られたエポキシ樹脂(A−4)のエポキシ当量は236グラム/当量、軟化点88℃であった。   The epoxy equivalent of the obtained epoxy resin (A-4) was 236 grams / equivalent, and the softening point was 88 ° C.

実施例1〜3、参考例1〜2、及び比較例1、2
エポキシ樹脂(A)とシアン酸エステル化合物(B)と硬化促進剤を第1表に示す割合で配合し、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して、硬化性樹脂組成物を調製した。これらの硬化性組成物を用いて下記の条件で硬化させて積層板を作製した。これらの積層板の耐熱性、誘電率及び誘電正接を下記方法に従って評価した。評価結果を第1表に示す。
Examples 1 to 3, Reference Examples 1 to 2, and Comparative Examples 1 and 2
An epoxy resin (A), a cyanate ester compound (B), and a curing accelerator are blended in the proportions shown in Table 1, so that the nonvolatile content (N.V.) of each composition is finally 58% by mass. by blending a methyl ethyl ketone to prepare a hardening resin composition. Using these curable compositions was cured under the following conditions to prepare a laminate. The heat resistance, dielectric constant and dielectric loss tangent of these laminates were evaluated according to the following methods. The evaluation results are shown in Table 1.

<積層板作製条件>
基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
プライ数:6 プリプレグ化条件:160℃
硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<Laminate production conditions>
Base material: Glass cloth “# 2116” (210 × 280 mm) manufactured by Nitto Boseki Co., Ltd.
Number of plies: 6 Condition of prepreg: 160 ° C
Curing conditions: 200 ° C., 40 kg / cm 2 for 1.5 hours, post-molding plate thickness: 0.8 mm

<耐熱性(ガラス転移温度)の評価方法>
粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。このガラス転移温度が高いほど、耐熱性に優れる。
<Method of evaluating heat resistance (glass transition temperature)>
Using a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device RSAII manufactured by Rheometric, rectangular tension method; frequency 1 Hz, heating rate 3 ° C./min), the elastic modulus change is maximized (tan δ change rate is the highest). The (large) temperature was evaluated as the glass transition temperature. The higher the glass transition temperature, the better the heat resistance.

<熱膨張係数の評価方法>
熱機械分析装置(TMA:セイコーインスツルメント社製「SS−6100」)を用いて、圧縮モードで熱機械分析を行った。(測定架重:88.8mN、昇温速度:3℃/分で2回、測定温度範囲:−50℃から300℃) 2回目の測定における、線膨張係数(40℃から60℃の温度範囲における平均膨張係数)を評価した。
<Method of evaluating thermal expansion coefficient>
Thermomechanical analysis was performed in a compression mode using a thermomechanical analyzer (TMA: “SS-6100” manufactured by Seiko Instruments Inc.). (Measurement weight: 88.8 mN, temperature increase rate: twice at 3 ° C./min, measurement temperature range: −50 ° C. to 300 ° C.) Linear expansion coefficient (temperature range from 40 ° C. to 60 ° C.) in the second measurement Average expansion coefficient).

Figure 0006002987
Figure 0006002987


第1表の脚注
エポキシ樹脂(a−1):DIC株式会社製のクレゾール型エポキシ樹脂であるN−680.エポキシ当量201g/eq
シアネートエステル化合物(1):2,2−ビス(4−シアネートフェニル)プロパンのプレポリマー(BA−200:Lonza製)
シアネートエステル化合物(1):フェノールノボラック型シアネート(PT−30:Lonza社製)
フェノールノボラック樹脂:DIC株式会社製のフェノールノボラック型樹脂であるバーカム TD−2131
2E4MZ:2−エチル−4−メチルイミダゾール
Footnotes in Table 1 Epoxy resin (a-1): N-680. Which is a cresol type epoxy resin manufactured by DIC Corporation. Epoxy equivalent 201 g / eq
Cyanate ester compound (1): 2,2-bis (4-cyanatephenyl) propane prepolymer (BA-200: manufactured by Lonza)
Cyanate ester compound (1): Phenol novolac type cyanate (PT-30: manufactured by Lonza)
Phenol novolac resin: Barcom TD-2131, a phenol novolac resin manufactured by DIC Corporation
2E4MZ: 2-ethyl-4-methylimidazole

Claims (8)

α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドの重縮合体をポリグリシジルエーテル化したエポキシ樹脂であって、該エポキシ樹脂中に下記構造式(1)
Figure 0006002987
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表す。)
で表される3量体(x1)を含有し、軟化点が95〜140℃の範囲であるエポキシ樹脂(A)と、シアン酸エステル化合物(B)とを含有することを特徴とする硬化性樹脂組成物。
An epoxy resin obtained by polyglycidyl etherification of a polycondensation product of an α-naphthol compound, a β-naphthol compound, and formaldehyde, in which the following structural formula (1)
Figure 0006002987
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Gr represents a glycidyl group.)
And a curable resin comprising an epoxy resin (A) having a softening point in a range of 95 to 140 ° C. and a cyanate ester compound (B). Resin composition.
前記エポキシ樹脂(A)が、更に、下記構造式(2)
Figure 0006002987
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Grはグリシジル基を表す。)
で表される2量体(x2)を含有し、エポキシ樹脂(A)中の前記3量体(x1)の含有率がGPC測定における面積比率で15〜35%となる割合であり、前記2量体(x2)の含有率がGPC測定における面積比率で1〜25%となる割合である請求項1記載の硬化性樹脂組成物。
The epoxy resin (A) further comprises the following structural formula (2)
Figure 0006002987
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Gr represents a glycidyl group.)
Is a ratio in which the content of the trimer (x1) in the epoxy resin (A) is 15 to 35% in terms of an area ratio in GPC measurement, The curable resin composition according to claim 1, wherein the content of the monomer (x2) is a ratio of 1 to 25% in terms of an area ratio in GPC measurement.
前記エポキシ樹脂(A)のエポキシ当量が210〜300g/eqの範囲である請求項1記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, wherein an epoxy equivalent of the epoxy resin (A) is in a range of 210 to 300 g / eq. 前記シアン酸エステル化合物(B)が、ビスフェノールAとハロゲン化シアンとの反応物、またはフェノールノボラック樹脂とハロゲン化シアンとの反応物である請求項1記載の硬化性樹脂組成物。 The cyanate ester compound (B) is the reaction product of bisphenol A and cyanogen halide, or phenol novolak resin and the reaction product is a claim 1 curable resin composition according to the cyanogen halide. 前記エポキシ樹脂(A)とシアン酸エステル化合物(B)の配合量が、エポキシ樹脂(A)のエポキシ基の合計1当量に対して、シアン酸エステル化合物(B)中のシアナト基が0.5〜2.5当量になる量である請求項1〜のいずれか1項記載の硬化性樹脂組成物。 The blending amount of the epoxy resin (A) and the cyanate ester compound (B) is 0.5% of cyanate groups in the cyanate ester compound (B) with respect to 1 equivalent of the total epoxy groups of the epoxy resin (A). The amount of the curable resin composition according to any one of claims 1 to 4 , wherein the curable resin composition is in an amount of ~ 2.5 equivalents. 請求項1〜5のいずれか1項記載の硬化性樹脂組成物の硬化物。 Hardened | cured material of the curable resin composition of any one of Claims 1-5. 請求項1〜5のいずれか1項記載の硬化性樹脂組成物に、更に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させるプリント配線基板の製造方法。   The printed wiring which makes the reinforcing base material impregnate the resin composition which mix | blended the curable resin composition of any one of Claims 1-5 with the organic solvent further, and wraps copper foil and heat-presses it. A method for manufacturing a substrate. 請求項1〜5のいずれか1項記載の硬化性樹脂組成物と補強基材とを有する含浸基材と、銅箔とからなるプリント配線基板。   The printed wiring board which consists of an impregnation base material which has a curable resin composition of any one of Claims 1-5, and a reinforcement base material, and copper foil.
JP2012051648A 2012-03-08 2012-03-08 Curable resin composition, cured product thereof, and printed wiring board Active JP6002987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051648A JP6002987B2 (en) 2012-03-08 2012-03-08 Curable resin composition, cured product thereof, and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051648A JP6002987B2 (en) 2012-03-08 2012-03-08 Curable resin composition, cured product thereof, and printed wiring board

Publications (2)

Publication Number Publication Date
JP2013185081A JP2013185081A (en) 2013-09-19
JP6002987B2 true JP6002987B2 (en) 2016-10-05

Family

ID=49386811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051648A Active JP6002987B2 (en) 2012-03-08 2012-03-08 Curable resin composition, cured product thereof, and printed wiring board

Country Status (1)

Country Link
JP (1) JP6002987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107860833A (en) * 2017-10-20 2018-03-30 广东生益科技股份有限公司 The assay method of cyanate ester monomer content

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008992B2 (en) * 1991-04-15 2000-02-14 三菱瓦斯化学株式会社 Heat resistant resin dust
JPH05287052A (en) * 1992-04-10 1993-11-02 Dainippon Ink & Chem Inc Epoxy resin composition, preparation of epoxy resin, and semiconductor sealing material
JPH07216052A (en) * 1994-01-25 1995-08-15 Dai Ichi Kogyo Seiyaku Co Ltd Epoxy resin and epoxy resin composition
JP3588836B2 (en) * 1994-12-26 2004-11-17 日立化成工業株式会社 Thermosetting resin composition
JP3104589B2 (en) * 1995-10-02 2000-10-30 信越化学工業株式会社 Thermosetting resin composition and semiconductor device
JP5428232B2 (en) * 2008-07-24 2014-02-26 住友ベークライト株式会社 Prepreg, laminated board, multilayer printed wiring board, and semiconductor device
EP2669310B1 (en) * 2011-09-21 2015-11-25 DIC Corporation Epoxy resin, curable resin composition and cured product thereof, and printed wiring substrate

Also Published As

Publication number Publication date
JP2013185081A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP4591801B2 (en) Curable resin composition, cured product thereof, printed wiring board, epoxy resin, and production method thereof
JP5071602B2 (en) Epoxy compound, curable composition, and cured product thereof
JP5293911B1 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5561571B1 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5402091B2 (en) Curable resin composition, cured product thereof, printed wiring board, novel phenol resin, and production method thereof
JP2014024977A (en) Curable resin composition, cured product and printed wiring board
JP5516008B2 (en) Novel epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5515878B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP5263039B2 (en) Epoxy resin, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5532368B1 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP6083169B2 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5858277B2 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP2012041396A (en) Epoxy resin composition, curable resin composition, its cured product, and printed wiring board
JP2012201732A (en) Epoxy resin, curable resin composition, cured product of the composition, and printed wiring board
JP2014005338A (en) Curable composition, cured product, and printed wiring board
JP5958104B2 (en) Curable composition, cured product, and printed wiring board
JP5929660B2 (en) Biphenol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP6257020B2 (en) Phenylphenol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP5994474B2 (en) Curable resin composition, cured product, and printed wiring board
JP5348060B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP6002987B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP6155587B2 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP6048035B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP6002991B2 (en) Process for producing modified naphthol novolac resin, process for producing epoxy resin
JP6032476B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160817

R151 Written notification of patent or utility model registration

Ref document number: 6002987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250