JP5999676B2 - Method for producing polyketide compound - Google Patents

Method for producing polyketide compound Download PDF

Info

Publication number
JP5999676B2
JP5999676B2 JP2011178620A JP2011178620A JP5999676B2 JP 5999676 B2 JP5999676 B2 JP 5999676B2 JP 2011178620 A JP2011178620 A JP 2011178620A JP 2011178620 A JP2011178620 A JP 2011178620A JP 5999676 B2 JP5999676 B2 JP 5999676B2
Authority
JP
Japan
Prior art keywords
compound
actinomycetes
gene
polyketide
reveromycin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011178620A
Other languages
Japanese (ja)
Other versions
JP2013039081A (en
Inventor
長田 裕之
裕之 長田
俊二 高橋
俊二 高橋
清水 猛
猛 清水
輝雄 林
輝雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2011178620A priority Critical patent/JP5999676B2/en
Publication of JP2013039081A publication Critical patent/JP2013039081A/en
Application granted granted Critical
Publication of JP5999676B2 publication Critical patent/JP5999676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、新規化合物、並びに、該化合物を含むポリケチド化合物の産生増強剤及びLuxRファミリー転写因子遺伝子の発現増強剤に関する。また、本発明はLuxRファミリー転写因子遺伝子の発現を増強することによりポリケチドなどの二次代謝産物の産生を増強する方法に関する。   The present invention relates to a novel compound, a polyketide compound production enhancer containing the compound, and a LuxR family transcription factor gene expression enhancer. The present invention also relates to a method for enhancing production of secondary metabolites such as polyketides by enhancing the expression of LuxR family transcription factor genes.

生体の生長に必要なエネルギー代謝などの一次代謝によって生成される産物を一次代謝産物と呼ぶのに対し、一次代謝から二次的に枝分かれした代謝経路によって生成される産物を二次代謝産物と呼ぶ。色素や抗生物質などの多くが、二次代謝産物と考えられているが、その中には生体の生長に必須の意義が決められていないものが多い。
二次代謝産物の産生を増強するためには、UV照射により放線菌などの遺伝子配列に変異を導入し、変異株の中から高生産株の選別を行なうこと、さらに、培地組成などの培養条件を検討することなどが行われてきた。二次代謝産物の産生増強のための培養条件は放線菌の種により異なり、その決定には熟練技術者の長い間の経験と培養に関する知識及び技術が必要とされる。
Products produced by primary metabolism such as energy metabolism necessary for the growth of living organisms are called primary metabolites, whereas products produced by metabolic pathways that branch from primary metabolism are called secondary metabolites. . Many pigments and antibiotics are considered secondary metabolites, but many of them do not have an essential significance for the growth of living organisms.
In order to enhance the production of secondary metabolites, mutations are introduced into gene sequences such as actinomycetes by UV irradiation, and high-producing strains are selected from the mutant strains. Have been considered. The culture conditions for enhancing production of secondary metabolites vary depending on the species of actinomycetes, and the determination requires a long experience of skilled technicians and knowledge and techniques related to culture.

近年、ゲノム解析技術の向上により、放線菌が有している二次代謝産物生合成遺伝子クラスターの情報を取得することが可能となってきている。この情報をもとに生合成遺伝子クラスターを見出して、組換えDNA技術を用いて二次代謝産物の産生を増強することが試みられている。しかしながら、制限修飾系の存在などが障害となって形質転換系の開発が困難な放線菌も多く存在し、手法の確立には多大な労力が必要である。それゆえ、組換えDNA技術が適用可能な放線菌は限られている。
放線菌の形態分化と二次代謝を誘導する物質としてゴードスポリンが見いだされており、数nMオーダーで作用することが知られているが、特定の二次代謝産物の産生には適用されていない(非特許文献1)。放線菌の形質転換に頼らない別の方法として、希土類元素スカンジウム処理による二次代謝産物の産生の活性化が報告されている。しかし、これは比較的高い濃度(100μM)で添加するために毒性が生じ、これにより放線菌の生育が阻害されるので、二次代謝産物の大量生産には使用されていない(非特許文献2)。
一方、ストレプトマイシン産生菌 Streptomyces griseusの物質産生は、A-factorと呼ばれる低分子シグナルにより精密に制御されていることが知られている。しかしながら、これは内生の因子による制御機構であるので、外部からの添加によってバイオメディエーターとして作用させて物質生産を制御することには使用されていない(非特許文献3)。
In recent years, it has become possible to acquire information on secondary metabolite biosynthetic gene clusters possessed by actinomycetes by improving genome analysis technology. Attempts have been made to find biosynthetic gene clusters based on this information and enhance the production of secondary metabolites using recombinant DNA technology. However, there are many actinomycetes in which the development of transformation systems is difficult due to the presence of restriction modification systems, etc., and enormous efforts are required to establish the method. Therefore, the actinomycetes to which the recombinant DNA technology can be applied are limited.
Godosporin has been found as a substance that induces morphological differentiation and secondary metabolism of actinomycetes, and is known to act on the order of several nM, but has not been applied to the production of specific secondary metabolites ( Non-patent document 1). As another method not depending on the transformation of actinomycetes, activation of production of secondary metabolites by treatment with rare earth scandium has been reported. However, this is not used for mass production of secondary metabolites because toxicity occurs when added at a relatively high concentration (100 μM), thereby inhibiting the growth of actinomycetes (Non-patent Document 2). ).
On the other hand, it is known that substance production of a streptomycin-producing bacterium Streptomyces griseus is precisely controlled by a low-molecular signal called A-factor. However, since this is a control mechanism by endogenous factors, it is not used to control substance production by acting as a biomediator by external addition (Non-patent Document 3).

Onaka H. et al. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and Characterization, J. Antibiot. 54, 1036-1044, 2001.Onaka H. et al. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and Characterization, J. Antibiot. 54, 1036-1044, 2001. Kawai K. et al. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett. 274: 311-5, 2007.Kawai K. et al. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett. 274: 311-5, 2007. Horinouchi S. Mining and polishing of the treasure trove in the bacterial genus streptomyces. Biosci Biotechnol Biochem. 71(2):283-99, 2007.Horinouchi S. Mining and polishing of the treasure trove in the bacterial genus streptomyces.Biosci Biotechnol Biochem. 71 (2): 283-99, 2007.

ゲノム解析技術の向上により、一つの放線菌には約30種の二次代謝生合成遺伝子群が存在することが見いだされている。しかし、その多くは休眠遺伝子であり、実際に産生される代謝産物はごく一部であることが判明している。近年、新規生理活性物質の取得は困難な状況であるので、遺伝子の活性化手法を開発して、産生されていないか又は微量にしか存在しない微生物代謝産物を利用可能にすることは、次世代の医薬や農薬開発に向けた重要課題である。
放線菌における二次代謝産物の産生増大のためには培養条件の検討や形質転換系の開発による遺伝子操作が行われているが、物質産生を活性化させる小分子バイオメディエーターを開発することが出来れば、経験や知識によらず、微生物二次代謝産物の産生増大が可能となる。
従って、本発明の目的は、放線菌の二次代謝産物の生産性を増大することの出来る新規バイオメディエーター化合物を提供することにある。
本発明の他の目的は、放線菌の二次代謝産物の生産性を効率よく増大させる方法を提供することである。
With the improvement of genome analysis technology, it has been found that about 30 kinds of secondary metabolic biosynthetic genes exist in one actinomycete. However, many of them are dormancy genes, and it has been found that only a small portion of the metabolites actually produced. In recent years, it has been difficult to acquire new physiologically active substances, and therefore, it is difficult to develop microbial metabolites that have not been produced or are present only in trace amounts by developing gene activation methods. It is an important issue for the development of pharmaceuticals and agricultural chemicals.
In order to increase the production of secondary metabolites in actinomycetes, genetic conditions have been studied by examining culture conditions and developing transformation systems, but it is possible to develop small molecule biomediators that activate substance production. For example, production of microbial secondary metabolites can be increased regardless of experience and knowledge.
Accordingly, an object of the present invention is to provide a novel biomediator compound capable of increasing the productivity of actinomycetes secondary metabolites.
Another object of the present invention is to provide a method for efficiently increasing the productivity of actinomycetes secondary metabolites.

本発明者らは、上記課題の解決のために鋭意検討した結果、放線菌におけるLuxRファミリー転写因子遺伝子の発現増強により二次代謝産物であるポリケチド化合物の産生量が増大されること、さらに、放線菌の培養液に特定の化合物を添加することにより、LuxRファミリー転写因子遺伝子の発現が増強され、それにより二次代謝産物であるポリケチド化合物の生産性が向上することを見出した。
すなわち、本発明の要旨は以下のとおりである。
As a result of intensive studies for solving the above problems, the present inventors have found that the production amount of the polyketide compound, which is a secondary metabolite, is increased by enhancing the expression of the LuxR family transcription factor gene in actinomycetes. It has been found that by adding a specific compound to the culture medium of the fungus, the expression of the LuxR family transcription factor gene is enhanced, thereby improving the productivity of the polyketide compound that is a secondary metabolite.
That is, the gist of the present invention is as follows.

(I) 放線菌におけるポリケチド化合物の産生増強剤であって、下記一般式(A)で表される化合物を含むことを特徴とする、前記増強剤。 (I) A potentiator for production of polyketide compounds in actinomycetes, comprising the compound represented by the following general formula (A):

(式中、R1は各々独立にハロゲン原子、OCH3又はNO2を表し;R2はCONH2又はCONH(CH2x−R’を表し;xは0〜5の整数を表し;R’はOH又はOCOR”を表し;R”はCH3又はC25を表し;nは0〜2の整数を表す。)
(II) R1がハロゲン原子であり、R2がCONH2であり、nが0又は1である、上記(I)に記載の増強剤。
(III) 前記ポリケチド化合物がリベロマイシンAである、上記(I)又は(II)に記載の増強剤。
(IV) 前記放線菌がStreptomyces sp. SN-593(受託番号FERM BP−3406)である、上記(I)〜(III)のいずれかに記載の増強剤。
(V) 下記一般式(A)で表される化合物を含む、放線菌におけるLuxRファミリー転写因子遺伝子の発現増強剤。
(Wherein R 1 independently represents a halogen atom, OCH 3 or NO 2 ; R 2 represents CONH 2 or CONH (CH 2 ) x —R ′; x represents an integer of 0 to 5; R 'Represents OH or OCOR ″; R ″ represents CH 3 or C 2 H 5 ; n represents an integer of 0 to 2.)
(II) The enhancer according to (I) above, wherein R 1 is a halogen atom, R 2 is CONH 2 , and n is 0 or 1.
(III) The enhancer according to (I) or (II) above, wherein the polyketide compound is reveromycin A.
(IV) The enhancer according to any one of (I) to (III) above, wherein the actinomycetes is Streptomyces sp. SN-593 (Accession No. FERM BP-3406).
(V) An expression enhancer for a LuxR family transcription factor gene in actinomycetes, comprising a compound represented by the following general formula (A).

(式中、R1は各々独立にハロゲン原子、OCH3又はNO2を表し;R2はCONH2又はCONH(CH2x−R’を表し;xは0〜5の整数を表し;R’はOH又はOCOR”を表し;R”はCH3又はC25を表し;nは0〜2の整数を表す。)
(VI) 下記一般式(A)で表される化合物。
(Wherein R 1 independently represents a halogen atom, OCH 3 or NO 2 ; R 2 represents CONH 2 or CONH (CH 2 ) x —R ′; x represents an integer of 0 to 5; R 'Represents OH or OCOR ″; R ″ represents CH 3 or C 2 H 5 ; n represents an integer of 0 to 2.)
(VI) A compound represented by the following general formula (A).

(式中、R1は各々独立にハロゲン原子、OCH3又はNO2を表し;R2はCONH2又はCONH(CH2x−R’を表し;xは0〜5の整数を表し;R’はOH又はOCOR”を表し;R”はCH3又はC25を表し;nは0〜2の整数を表し;但し、R2がCONH2のとき、R1はフッ素原子、OCH3又はNO2であり;R2がCONH(CH2x−R’であってR’がOHのとき、xは0〜1であり;R2がCONH(CH2x−R’であってR’がOCOR”のとき、xは0〜3であることを条件とする。)
(VII) 下記から選ばれる、上記(VI)に記載の化合物。
(Wherein R 1 independently represents a halogen atom, OCH 3 or NO 2 ; R 2 represents CONH 2 or CONH (CH 2 ) x —R ′; x represents an integer of 0 to 5; R 'Represents OH or OCOR ″; R ″ represents CH 3 or C 2 H 5 ; n represents an integer of 0 to 2; provided that when R 2 is CONH 2 , R 1 is a fluorine atom, OCH 3 Or NO 2 ; when R 2 is CONH (CH 2 ) x —R ′ and R ′ is OH, x is 0 to 1; R 2 is CONH (CH 2 ) x —R ′. When R ′ is OCOR ″, x is 0-3.)
(VII) The compound according to (VI) above, selected from the following.

(VIII) 下記一般式(A)で表される化合物を放線菌の培養液に添加する工程を含む、ポリケチド化合物の製造方法。 (VIII) The manufacturing method of a polyketide compound including the process of adding the compound represented with the following general formula (A) to the culture solution of actinomycetes.

(式中、R1は各々独立にハロゲン原子、OCH3又はNO2を表し;R2はCONH2又はCONH(CH2x−R’を表し;xは0〜5の整数を表し;R’はOH又はOCOR”を表し;R”はCH3又はC25を表し;nは0〜2の整数を表す。)
(IX) 放線菌においてLuxRファミリー転写因子遺伝子の発現を増強させる工程を含む、ポリケチド化合物の製造方法。
(Wherein R 1 independently represents a halogen atom, OCH 3 or NO 2 ; R 2 represents CONH 2 or CONH (CH 2 ) x —R ′; x represents an integer of 0 to 5; R 'Represents OH or OCOR ″; R ″ represents CH 3 or C 2 H 5 ; n represents an integer of 0 to 2.)
(IX) A method for producing a polyketide compound, comprising a step of enhancing the expression of a LuxR family transcription factor gene in actinomycetes.

本発明の化合物を用いたポリケチド化合物などの二次代謝産物の生産は、ゲノム情報の解析や個々の放線菌についての形質転換系の開発の必要もなく応用範囲が広い。また、本発明の化合物は、医薬、農薬などとして利用される可能性が高いポリケチド化合物などの二次代謝産物の産生を容易に誘導又は増強することが出来る。
また、本発明によれば、LuxRファミリー転写因子遺伝子の発現を増強することにより、放線菌の二次代謝産物の生産性を効率よく増大することが出来る。
Production of secondary metabolites such as polyketide compounds using the compounds of the present invention has a wide range of applications without the need for analysis of genome information or development of transformation systems for individual actinomycetes. In addition, the compound of the present invention can easily induce or enhance the production of secondary metabolites such as polyketide compounds that are likely to be used as pharmaceuticals, agricultural chemicals and the like.
In addition, according to the present invention, the productivity of actinomycetes secondary metabolites can be efficiently increased by enhancing the expression of the LuxR family transcription factor gene.

図1は、本発明の実施例2のバイオメディエーター処理及びスクリーニング手法の流れを示すフローチャートである。FIG. 1 is a flowchart showing the flow of the biomediator processing and screening method of Example 2 of the present invention. 図2は、本発明の化合物(1)の解析結果を示す図である。FIG. 2 is a diagram showing an analysis result of the compound (1) of the present invention. 図3は、本発明の化合物(1)を起点とした構造活性相関を示す図である。FIG. 3 is a diagram showing a structure-activity relationship starting from the compound (1) of the present invention. 図4は、β−カルボリン化合物と構造と活性の相関を示す図である。FIG. 4 is a diagram showing the correlation between the β-carboline compound, structure and activity. 図5は、種々のβ−カルボリン化合物の添加量とリベロマイシン類生産量との関係を示す図である。FIG. 5 is a diagram showing the relationship between the amount of various β-carboline compounds added and the amount of reveromycin produced. 図6は、種々のβ−カルボリン化合物を添加した場合の、放線菌増殖量とリベロマイシン類産生量を経時的に示す図である。FIG. 6 is a graph showing the growth amount of actinomycetes and the production amount of reveromycins over time when various β-carboline compounds are added. 図7は、β−カルボリン化合物添加による、リベロマイシン生合成遺伝子クラスター中の各遺伝子の発現量を示す図である。FIG. 7 is a diagram showing the expression level of each gene in the reveromycin biosynthesis gene cluster by adding a β-carboline compound. 図8は、revU遺伝子を破壊した放線菌におけるリベロマイシン類産生を示す図である。FIG. 8 is a diagram showing reveromycin production in actinomycetes in which the revU gene is disrupted. 図9は、revU遺伝子を破壊した放線菌におけるリベロマイシン類産生量を示す図である。FIG. 9 is a diagram showing the production amount of reveromycins in actinomycetes in which the revU gene is disrupted. 図10は、リベロマイシン生合成遺伝子クラスターに含まれる各遺伝子の配置を示す模式図である。FIG. 10 is a schematic diagram showing the arrangement of genes included in the reveromycin biosynthesis gene cluster.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<<ポリケチド化合物の産生増強剤>>
本発明の第一の態様は、ポリケチド化合物の産生増強剤である。
以下、本発明をポリケチド化合物に言及して説明するが、本発明はそれに制限されるものではなく、本発明の化合物(A)の添加又はLuxRファミリー転写因子遺伝子の発現増強によってその産生が増大する任意の産物(例えば二次代謝産物)の産生に本発明を適用することができる。
本明細書及び特許請求の範囲において、「産生増強剤」とは、ポリケチド化合物の放線菌による産生量を、当該物質を添加していないコントロールに比較して増大させる化合物又は組成物を意味する。増大の程度は、好ましくは約1.2倍以上、より好ましくは約2倍以上、さらにより好ましくは約3倍以上、さらにより好ましくは約4倍以上、特には約5倍以上である。
本発明の放線菌によって産生されるポリケチド化合物の産生増強剤に用いられる化合物は、下記一般式(A)で表される化合物(以下、化合物(A)又は本発明の化合物(A)と呼ぶことがある。)である。
<< Polyketide compound production enhancer >>
The first aspect of the present invention is a polyketide compound production enhancer.
Hereinafter, the present invention will be described with reference to a polyketide compound, but the present invention is not limited thereto, and its production is increased by the addition of the compound (A) of the present invention or the enhanced expression of a LuxR family transcription factor gene. The present invention can be applied to the production of any product (eg, secondary metabolite).
In the present specification and claims, the “production enhancer” means a compound or composition that increases the amount of polyketide compound produced by actinomycetes as compared to a control to which the substance is not added. The degree of increase is preferably about 1.2 times or more, more preferably about 2 times or more, even more preferably about 3 times or more, even more preferably about 4 times or more, particularly about 5 times or more.
The compound used as the production enhancer of the polyketide compound produced by the actinomycetes of the present invention is a compound represented by the following general formula (A) (hereinafter referred to as the compound (A) or the compound (A) of the present invention). There is.)

式中、R2はCONH2又はCONH(CH2x−R’を表す。
xは0〜5の整数であり、0〜3が好ましく、0〜2がより好ましく、0が最も好ましい。xが0のとき、−(CH2x−は単結合である。
R’はOH又はOCOR”であり、OHが好ましい。
R”はCH3又はC25であり、CH3が好ましい。
好ましいR2の具体例としては、CONH(CH23OH、CONH(CH22OH、CONH(CH23OCOCH3、CONHOH、CONH2が挙げられる。中でも、R2としては、CONH2が最も好ましい。
In the formula, R 2 represents CONH 2 or CONH (CH 2 ) x —R ′.
x is an integer of 0 to 5, preferably 0 to 3, more preferably 0 to 2, and most preferably 0. When x is 0, — (CH 2 ) x — is a single bond.
R ′ is OH or OCOR ″, preferably OH.
R ″ is CH 3 or C 2 H 5 , preferably CH 3 .
Specific examples of preferable R 2 include CONH (CH 2 ) 3 OH, CONH (CH 2 ) 2 OH, CONH (CH 2 ) 3 OCOCH 3 , CONHOH, and CONH 2 . Among these, as R 2, CONH 2 being most preferred.

1は各々独立にハロゲン原子、OCH3又はNO2を表す。ハロゲン原子としては、塩素原子、臭素原子又はフッ素原子が好ましい。
これらの中でも、R1としては、ハロゲン原子が好ましく、塩素原子、フッ素原子、又は臭素原子が特に好ましい。
Each R 1 independently represents a halogen atom, OCH 3 or NO 2 . As a halogen atom, a chlorine atom, a bromine atom, or a fluorine atom is preferable.
Among these, as R 1 , a halogen atom is preferable, and a chlorine atom, a fluorine atom, or a bromine atom is particularly preferable.

nは0〜2の整数を表し、好ましくは0又は1であり、最も好ましくは0である。また、nが1又は2のとき、R1はメタ位(m−)に配置されることが好ましい。 n represents an integer of 0 to 2, preferably 0 or 1, and most preferably 0. When n is 1 or 2, R 1 is preferably located at the meta position (m−).

以下に、ポリケチド化合物の産生増強剤に好ましく用いることの出来る化合物の構造式を例示する。なお、以下に挙げる式(1)〜(9)で表される化合物(化合物(1)〜(9))は例示であり、上記R1、R2及びnの限定を満たす限り他の化合物も本発明に含まれる。 The structural formulas of compounds that can be preferably used as production enhancers for polyketide compounds are exemplified below. In addition, the compounds (compounds (1) to (9)) represented by the formulas (1) to (9) listed below are exemplifications, and other compounds may be used as long as the above limitations on R 1 , R 2 and n are satisfied. It is included in the present invention.

また、上記式(5)〜(9)の化合物を包含する化合物として、上記一般式(A)で表される化合物であって、R1が各々独立にハロゲン原子、OCH3又はNO2を表し;R2はCONH2又はCONH(CH2x−R’を表し;xが0〜5の整数を表し;R’がOH又はOCOR”を表し;R”がCH3又はC25を表し;nが0〜2の整数を表し;但し、R2がCONH2のとき、R1はフッ素原子、OCH3又はNO2であり;R2がCONH(CH2x−R’であってR’がOHのとき、xは0〜1であり;R2がCONH(CH2x−R’であってR’がOCOR”のとき、xは0〜3であることを条件とする、前記化合物が本発明によって提供され、これらもポリケチド化合物の産生増強剤に好ましく用いられる。 Also, expressed as the equation (5) to the compound includes a compound of the (9), a compound represented by the general formula (A), a halogen atom independently R 1 are each an OCH 3 or NO 2 R 2 represents CONH 2 or CONH (CH 2 ) x —R ′; x represents an integer of 0 to 5; R ′ represents OH or OCOR ″; R ″ represents CH 3 or C 2 H 5 ; N represents an integer of 0 to 2; provided that when R 2 is CONH 2 , R 1 is a fluorine atom, OCH 3 or NO 2 ; and R 2 is CONH (CH 2 ) x -R ′. When R ′ is OH, x is 0 to 1; when R 2 is CONH (CH 2 ) x —R ′ and R ′ is OCOR ″, x is 0-3. These compounds are provided by the present invention, and these are also preferably used as production enhancers of polyketide compounds.

上記化合物(A)は1種または2種以上を組み合わせて用いることが出来る。   The said compound (A) can be used 1 type or in combination of 2 or more types.

(添加量)
本発明のポリケチド化合物産生増強剤における、本発明の化合物(A)の添加量は、放線菌の種類や、培地、温度などの培養条件に応じて適宜選択すればよいが、0.1〜10μg・ml-1の範囲内で放線菌培養液に添加することが好ましく、1〜10μg・ml-1の範囲内で添加することがより好ましい。
化合物(A)は固体のまま放線菌培養液中に添加してもよく、溶媒に溶解させてから培養液に添加してもよい。また、放線菌培養液とは異なる培養液に添加した後、該培養液と放線菌培養液とを混合させてもよい。
溶媒に溶解させてから培養液に添加する場合には、溶媒中の化合物(A)の濃度が0.1〜10μg・ml-1程度になるように溶解させた溶液を用いればよく、使用可能な溶媒の例としてはDMSOが挙げられる。
(Addition amount)
The addition amount of the compound (A) of the present invention in the polyketide compound production enhancer of the present invention may be appropriately selected according to the culture conditions such as actinomycetes, culture medium, temperature, etc., but is 0.1 to 10 μg. it is preferable to add the actinomycetes culture within the · ml -1, and more preferably added in the range of 1-10 [mu] g · ml -1.
Compound (A) may be added to the actinomycete culture solution as a solid, or may be dissolved in a solvent and then added to the culture solution. Moreover, after adding to the culture solution different from actinomycete culture solution, you may mix this culture solution and actinomycete culture solution.
When it is added to a culture solution after being dissolved in a solvent, a solution in which the concentration of the compound (A) in the solvent is about 0.1 to 10 μg · ml −1 may be used, and can be used. An example of a suitable solvent is DMSO.

(放線菌)
「放線菌」は、糸状の菌糸が放射状に伸長することを特徴とする形態分化の進んだ菌糸状の細菌である。本発明には、本発明の化合物(A)の添加またはLuxRファミリー転写因子遺伝子の発現増強によってポリケチド化合物の産生が増強される任意の放線菌を使用することができる。
本発明における使用に好ましい放線菌としては、制限されるものではないが、Streptomyces reveromyceticus、Streptomyces scabies、Streptomyces roseum、Streptomyces griseus、Amycolatopsis mediterranei、Saccharopolyspora erythraea、Streptomyces antibioticus、Streptomyces avermitilis、Streptomyces verticillus、Streptomyces peuceticus、Streptomyces tsukubaensis、Streptomyces hygroscopics、Stereptomyces hygroscopicus var. limoneus、Streptomyces ambofaciens、Streptomyces venezuelae、Streptomyces albus、Streptomyces noursei, Streptomyces nodosus、Streptomyces cinnamonensisなどが挙げられる。これらの中でもStreptomyces reveromyceticus、Streptomyces scabies、Streptomyces roseum、Streptomyces griseusが好ましく、Streptomyces reveromyceticusが特に好ましい。
本明細書では、放線菌を使用する場合について本発明を説明するが、本発明はこれに制限されるものではなく、本発明の化合物(A)の添加又はLuxRファミリー転写因子遺伝子の発現増大によって産物の産生量の増大が観察される任意の生物、例えばグラム陽性細菌などの微生物を本発明において使用することができる。
(Actinomycetes)
“Actinomycetes” are mycelial bacteria with advanced morphological differentiation, characterized by the filamentous hyphae extending radially. In the present invention, any actinomycetes in which production of a polyketide compound is enhanced by addition of the compound (A) of the present invention or enhanced expression of a LuxR family transcription factor gene can be used.
Preferred actinomycetes for use in the present invention include, but are not limited to, Streptomyces reveromyceticus, Streptomyces scabies, Streptomyces roseum, Streptomyces griseus, Amycolatopsis mediterranei, Saccharopolyspora erythraea, Streptomyces antibioticus, Streptomyces arepmitticus Streptomyces arepmitticus Examples include tsukubaensis, Streptomyces hygroscopics, Stereoptomyces hygroscopicus var. limoneus, Streptomyces ambofaciens, Streptomyces venezuelae, Streptomyces albus, Streptomyces noursei, Streptomyces nodosus, Streptomyces cinnamonensis. Among these, Streptomyces reveromyceticus, Streptomyces scabies, Streptomyces roseum, and Streptomyces griseus are preferable, and Streptomyces reveromyceticus is particularly preferable.
In the present specification, the present invention will be described with respect to the case where actinomycetes are used. However, the present invention is not limited to this, and by adding the compound (A) of the present invention or increasing the expression of the LuxR family transcription factor gene. Any organism in which an increase in product yield is observed, for example a microorganism such as a gram positive bacterium, can be used in the present invention.

(ポリケチド化合物)
「ポリケチド化合物」とは、アセチルCoAを出発物質とし、主にマロニルCoA及びメチルマロニルCoAを伸張物質としてポリケトン鎖を合成した後、様々な修飾を受けて生合成された化合物の総称である。
ポリケチド化合物は医薬、農薬などとしての利用可能性の高い二次代謝産物であり、リベロマイシン類のほか、抗生物質としてのエリスロマイシンA及びリファマイシンS;抗癌剤としてのドキソルビシン及びエポチロン;コレステロール低減剤としてのロバスタチン;駆虫剤としてのアベルメクチン;抗真菌剤としてのアンフォテリシンB、殺虫剤としてのスピノシンA、免疫抑制剤としてのラパマイシン及びタクロリムスなどが代表的なポリケチド化合物として知られている。その他のポリケチド化合物については、例えばWeissman, K.J. & Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3, 925-936 (2005).を参照することが出来る。
リベロマイシン類(本明細書においてリベロマイシンともいう)には、リベロマイシンA、リベロマイシンB、リベロマイシンC、リベロマイシンD、リベロマイシンE、リベロマイシンT、リベロマイシンA1aなどが知られている。リベロマイシンAは、放線菌Streptomyces reveromyceticus SN-593(Streptomyces sp. SN-593ともいう)から単離された分子量660からなるポリケチド化合物である(特開平4−49296号公報)。破骨細胞に選択的に取り込まれ、標的分子のイソロイシルtRNA合成酵素の活性を阻害し、タンパク質合成を阻害することで、アポトーシスを誘導する(特開平7−223945号公報)。構造的特徴として、多くの不斉炭素中心をもつスピロアセタール環、トリカルボン酸を有している。合成化学的にも興味深い化合物であり、多くの有機合成化学者により化学合成が報告されている。
本発明により、これらの既知のポリケチド化合物の生産を増強することができる。さらに、本発明により、その生合成遺伝子がほとんど又は全く発現されていないポリケチド化合物の生産を誘導又は増強することができる。
(Polyketide compound)
The “polyketide compound” is a general term for compounds synthesized by biomodification with various modifications after synthesizing a polyketone chain using acetyl CoA as a starting material, mainly malonyl CoA and methylmalonyl CoA as extension substances.
Polyketide compounds are secondary metabolites with high availability as pharmaceuticals, agricultural chemicals and the like, and in addition to reveromycin, erythromycin A and rifamycin S as antibiotics; doxorubicin and epothilone as anticancer agents; Typical polyketide compounds include lovastatin; avermectin as an anthelmintic agent; amphotericin B as an antifungal agent, spinosyn A as an insecticide, rapamycin and tacrolimus as immunosuppressants. For other polyketide compounds, reference can be made, for example, to Weissman, KJ & Leadlay, PF Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3, 925-936 (2005).
Examples of reveromycin (also referred to herein as reveromycin) include reveromycin A, reveromycin B, reberomycin C, reveromycin D, reberomycin E, reberomycin T, reveromycin A1a, and the like. Reveromycin A is a polyketide compound having a molecular weight of 660 isolated from Streptomyces reveromyceticus SN-593 (also referred to as Streptomyces sp. SN-593) (Japanese Patent Laid-Open No. 4-49296). It is selectively taken up by osteoclasts, inhibits the activity of the target molecule isoleucyl-tRNA synthetase, and inhibits protein synthesis to induce apoptosis (Japanese Patent Laid-Open No. 7-223945). As structural features, it has a spiroacetal ring with many asymmetric carbon centers and a tricarboxylic acid. It is also an interesting compound in synthetic chemistry, and many organic synthetic chemists have reported chemical synthesis.
According to the present invention, production of these known polyketide compounds can be enhanced. Furthermore, the present invention can induce or enhance the production of polyketide compounds in which little or no biosynthetic gene is expressed.

<<化合物(A)を用いた、ポリケチド化合物の製造方法>>
本発明の第二の態様は、前記一般式(A)で表される化合物(化合物(A))を放線菌に添加する工程を含む、ポリケチド化合物の製造方法である。
<< Production Method of Polyketide Compound Using Compound (A) >>
2nd aspect of this invention is a manufacturing method of a polyketide compound including the process of adding the compound (compound (A)) represented by the said general formula (A) to actinomycetes.

上記方法における工程として、例えば、(a)放線菌の培養液を用意する工程、(b)該培養液に化合物(A)を添加する工程、(c)該培養液を培養して放線菌にポリケチド化合物を生合成させる工程、(d)培養液からポリケチド化合物を抽出、精製する工程を採用することが出来る。これにより、ポリケチド化合物を大量且つ容易に製造することが出来る。   The steps in the above method include, for example, (a) a step of preparing a culture solution of actinomycetes, (b) a step of adding compound (A) to the culture solution, and (c) culturing the culture solution into actinomycetes. A step of biosynthesizing the polyketide compound and a step (d) of extracting and purifying the polyketide compound from the culture solution can be employed. Thereby, a polyketide compound can be manufactured in large quantities and easily.

(培養条件)
上記方法によりポリケチド化合物を製造する際の放線菌の培養条件(培養温度、培養時間、培地)は、特に制限されず、放線菌が増殖する限りにおいて適宜選択することができる。例えば、放線菌を通常の培養液内で28〜30℃で48〜72時間程度前培養し、本培養開始と同時に該培養液に化合物(A)を添加した後、ポリケチド化合物を産生させるために28〜30℃で3〜5日更に培養すればよい。
(Culture conditions)
The culture conditions (culture temperature, culture time, medium) of actinomycetes when producing the polyketide compound by the above method are not particularly limited and can be appropriately selected as long as the actinomycetes grow. For example, in order to produce a polyketide compound after pre-culturing actinomycetes in a normal culture solution at 28-30 ° C. for 48-72 hours, adding compound (A) to the culture solution simultaneously with the start of the main culture What is necessary is just to further culture | cultivate at 28-30 degreeC for 3 to 5 days.

本発明の化合物(A)の添加量は上記のとおりである。   The addition amount of the compound (A) of the present invention is as described above.

(抽出・精製)
放線菌培養液からポリケチド化合物を得る方法は既に知られており、そのいずれの方法を用いてもよい。例として、培養液に対して等量のアセトンを加え、超音波処理で菌体を破砕する。その後、アセトンを除去し、等量の酢酸エチルを加えて抽出を行い粗抽出物を得る。さらに、HPLCにて精製を行う手法が挙げられる。簡易検出法としては、アセトン処理、超音波処理、遠心分離後の上清を直接LC-MS解析する方法が挙げられる。
(Extraction / Purification)
Methods for obtaining polyketide compounds from actinomycete cultures are already known, and any of these methods may be used. As an example, an equal amount of acetone is added to the culture solution, and the cells are disrupted by ultrasonic treatment. Thereafter, acetone is removed, and an equivalent amount of ethyl acetate is added for extraction to obtain a crude extract. Furthermore, the method of refine | purifying in HPLC is mentioned. Simple detection methods include acetone treatment, ultrasonic treatment, and direct LC-MS analysis of the supernatant after centrifugation.

<<LuxRファミリー転写因子遺伝子発現増強剤>>
本発明の第三の態様は、上記一般式(A)で表される化合物を含む、LuxRファミリー転写因子遺伝子の発現増強剤である。
一般式(A)中のR1、R2及びnの定義や化合物(A)の添加量は、上記と同様である。
<< LuxR family transcription factor gene expression enhancer >>
The third aspect of the present invention is a LuxR family transcription factor gene expression enhancer comprising a compound represented by the above general formula (A).
The definitions of R 1 , R 2 and n in general formula (A) and the amount of compound (A) added are the same as described above.

本発明の化合物(A)を含む発現増強剤を放線菌に添加することにより、化合物(A)を添加しないコントロールに比較して好ましくは約1.2倍以上、より好ましくは約2倍以上、さらにより好ましくは約3倍以上、さらにより好ましくは約4倍以上、特には約5倍以上、放線菌におけるLuxRファミリー転写因子遺伝子の発現量を増大させることが出来る。   By adding an expression enhancer containing the compound (A) of the present invention to actinomycetes, it is preferably about 1.2 times or more, more preferably about 2 times or more, compared to a control without adding the compound (A), Even more preferably, the expression level of the LuxR family transcription factor gene in actinomycetes can be increased by about 3 times or more, even more preferably about 4 times or more, particularly about 5 times or more.

(LuxRファミリー転写因子)
「LuxRファミリー転写因子」とは、Vibrio fischeriのLuxRタンパク質に対するアミノ酸配列相同性を示す、N末端にATP結合ドメインを、C末端にヘリックス−ターン−ヘリックス(HTH)モチーフを有する一群のATP結合性転写調節因子を指す(De Schrijver, A. et al. A subfamily of MalT-related ATP-dependent regulators in the LuxR family, Microbiology, 1999, 145, 1287-1288; Stevens, A.M. Mechanisms and synthetic modulators of AHL-dependent gene regulation, Chem. Rev., 2011, 111, 4-27)。
LuxRファミリー転写因子は当初グラム陰性細菌におけるクオラムセンシングの調節に関与する因子として見出されたが、放線菌においてもポリケチド化合物などの二次代謝物の生合成の調節に関与し得るLuxRファミリー転写因子が見出されている。既知のポリケチド化合物の生合成遺伝子クラスターに含まれるLuxRファミリー転写因子の例としては、例えば以下の表1に示すようなものが知られている。
(LuxR family transcription factor)
“LuxR family transcription factors” refers to a group of ATP-binding transcription having an ATP binding domain at the N-terminus and a helix-turn-helix (HTH) motif at the C-terminus, showing amino acid sequence homology to the LuxR protein of Vibrio fischeri. De Schrijver, A. et al. A subfamily of MalT-related ATP-dependent regulators in the LuxR family, Microbiology, 1999, 145, 1287-1288; Stevens, AM Mechanisms and synthetic modulators of AHL-dependent gene regulation, Chem. Rev., 2011, 111, 4-27).
The LuxR family transcription factor was initially found as a factor involved in the regulation of quorum sensing in Gram-negative bacteria, but the LuxR family transcription can also be involved in the regulation of secondary metabolites such as polyketide compounds in actinomycetes. Factors have been found. Examples of LuxR family transcription factors included in known polyketide compound biosynthetic gene clusters include those shown in Table 1 below, for example.

L. Laureti et al., Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens., Proc Natl Acad Sci U S A. 2011, 108(15):6258-63.にはこれらを含む44個の放線菌由来のLuxRファミリー転写因子やその他のいくつかの潜在的なファミリーメンバーが記載されている。本発明において、LuxRファミリー転写因子としてこれらの任意のものを使用することができる。
本発明の発現増強剤により発現が増強されるrevU遺伝子は、リベロマイシン生合成遺伝子クラスター(図10参照)に存在する21種のrev遺伝子の1つであり(Takahashi S. et al., Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation., Nature Chemical Biology. 7, 461-468 (2011))、その遺伝子産物(RevU)は配列相同性に基づいて上記LuxRファミリーに属すると考えられる。revU遺伝子の塩基配列を配列番号1に、それによってコードされるRevUタンパク質のアミノ酸配列を配列番号2に示す。本発明におけるLuxRファミリー転写因子は、ポリケチド生合成遺伝子の発現制御機能を有する限り、配列番号2に示すアミノ酸配列に対して、例えば60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、なお好ましくは95%以上の同一性を示すものでもよい。
本発明者らは、revU遺伝子の発現量を増大させることによりリベロマイシン生合成遺伝子の発現が増大することを初めて見出した。
リベロマイシン生合成は以下のように制御されていると考えられる。LuxRファミリー転写因子の1つであるrevU遺伝子産物が、リベロマイシン類の生合成に関わる遺伝子(ポリケチド生合成遺伝子(revB及びrevC);前駆体生合成遺伝子(revR及びrevS);及びポストポリケチド修飾遺伝子(post polyketide tailoring genes)(revG、revI、revJ、revK、revL))の発現を正に制御する。その結果、リベロマイシン生合成タンパク質群が協調的・連続的に作用し、放線菌におけるリベロマイシン類の生産量を増大させる。
L. Laureti et al., Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens., Proc Natl Acad Sci US A. 2011, 108 (15): 6258-63. Including 44 actinomycetes derived LuxR family transcription factors and several other potential family members have been described. In the present invention, any of these can be used as a LuxR family transcription factor.
The revU gene whose expression is enhanced by the expression enhancer of the present invention is one of 21 rev genes present in the reveromycin biosynthesis gene cluster (see FIG. 10) (Takahashi S. et al., Reveromycin A). biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation., Nature Chemical Biology. 7, 461-468 (2011)), and its gene product (RevU) is considered to belong to the LuxR family based on sequence homology. The nucleotide sequence of the revU gene is shown in SEQ ID NO: 1, and the amino acid sequence of the RevU protein encoded thereby is shown in SEQ ID NO: 2. The LuxR family transcription factor in the present invention is, for example, 60% or more, preferably 70% or more, more preferably 80% or more with respect to the amino acid sequence shown in SEQ ID NO: 2 as long as it has a function of controlling the expression of the polyketide biosynthesis gene. More preferably, it may be 90% or more, more preferably 95% or more.
The present inventors have found for the first time that the expression of a reveromycin biosynthesis gene is increased by increasing the expression level of the revU gene.
It is thought that reveromycin biosynthesis is controlled as follows. The revU gene product, one of the LuxR family transcription factors, is a gene involved in the biosynthesis of reveromycins (polyketide biosynthesis genes (revB and revC); precursor biosynthesis genes (revR and revS); and post-polyketide modification genes The expression of (post polyketide tailoring genes) (revG, revI, revJ, revK, revL) is positively controlled. As a result, the reveromycin biosynthetic protein group acts cooperatively and continuously, increasing the production of reveromycins in actinomycetes.

リベロマイシン生合成遺伝子クラスターに存在する上記revU遺伝子と同一性又は相同性の高い配列は、他の放線菌におけるポリケチド化合物生合成遺伝子クラスターにも存在する。
従って、本発明の化合物(A)を用いることにより、リベロマイシン類以外の二次代謝産物(例えばポリケチド化合物)の生産性も高めることができる。
放線菌には、ゲノム配列解析から、4〜5個のLuxRファミリー転写因子遺伝子がポリケチド生合成遺伝子クラスター中に存在することが知られている。発現量が低いか又は全く発現していない生合成遺伝子群(休眠遺伝子クラスター)を活性化することで、これまで取得が困難であったポリケチド化合物などの二次代謝産物の利用が可能となる。
下記の実施例に示すように、本発明の化合物(A)は、LuxRファミリー転写因子遺伝子の1つであるrevU遺伝子の発現量を増大させる。発現が増大したrevU遺伝子産物(RevU)はポリケチド化合物であるリベロマイシン類の生合成遺伝子の発現を正に制御し、ポリケチド化合物の生合成を促進する。さらに、RevUホモログを有する別の放線菌の培養液に本発明の化合物(A)を添加した場合でも、代謝産物の産生量を増強できることが確認されている。このように、放線菌に化合物(A)を作用させてLuxRファミリー転写因子遺伝子の発現を増強することによって、ポリケチド化合物を大量且つ容易に取得することができる。
A sequence having high identity or homology with the revU gene present in the reveromycin biosynthesis gene cluster is also present in the polyketide compound biosynthesis gene cluster in other actinomycetes.
Therefore, by using the compound (A) of the present invention, the productivity of secondary metabolites (for example, polyketide compounds) other than reveromycins can also be increased.
In Actinomycetes, it is known from genome sequence analysis that 4-5 LuxR family transcription factor genes are present in the polyketide biosynthesis gene cluster. By activating a biosynthetic gene group (dormant gene cluster) whose expression level is low or not expressed at all, it is possible to use secondary metabolites such as polyketide compounds that have been difficult to obtain.
As shown in the Examples below, the compound (A) of the present invention increases the expression level of the revU gene, which is one of the LuxR family transcription factor genes. The revU gene product (RevU) having increased expression positively regulates the expression of the biosynthetic genes of reveromycins, which are polyketide compounds, and promotes biosynthesis of polyketide compounds. Furthermore, it has been confirmed that even when the compound (A) of the present invention is added to a culture solution of another actinomycetes having a RevU homolog, the production amount of metabolites can be enhanced. Thus, the polyketide compound can be easily obtained in large quantities by enhancing the expression of the LuxR family transcription factor gene by causing the compound (A) to act on actinomycetes.

<<LuxRファミリー転写因子遺伝子の発現を増強する方法>>
本発明の第四の態様は、前記一般式(A)で表される化合物を放線菌の培養液に添加する工程を含む、LuxRファミリー転写因子遺伝子の発現量を増大する方法である。
<< Method for Enhancing Expression of LuxR Family Transcription Factor Gene >>
A fourth aspect of the present invention is a method for increasing the expression level of a LuxR family transcription factor gene, comprising the step of adding the compound represented by the general formula (A) to a culture solution of actinomycetes.

上記方法における工程として、例えば、放線菌の培養液を用意する工程、該培養液に化合物(A)を添加する工程、該培養液を培養してLuxRファミリー転写因子遺伝子を発現させる工程を採用することが出来る。また、発現量は、リアルタイムPCR(RT−PCT)により測定することが出来る。   As the steps in the above method, for example, a step of preparing a culture solution of actinomycetes, a step of adding compound (A) to the culture solution, and a step of culturing the culture solution to express a LuxR family transcription factor gene are adopted. I can do it. The expression level can be measured by real-time PCR (RT-PCT).

放線菌の培養条件や化合物(A)の添加量は上記のとおりである。   The culture conditions of actinomycetes and the amount of compound (A) added are as described above.

<ポリケチド化合物の製造方法>
本発明の第五の態様は、LuxRファミリー転写因子遺伝子の発現を増強させる工程を含む、ポリケチド化合物の製造方法である。
<Method for producing polyketide compound>
5th aspect of this invention is a manufacturing method of a polyketide compound including the process of enhancing the expression of a LuxR family transcription factor gene.

LuxRファミリー転写因子遺伝子の発現を増強させるには、例えば、本発明の化合物(A)を放線菌に添加すればよい。あるいは、LuxRファミリー転写因子遺伝子を含む多コピーベクター、ゲノム組み込み型ベクターを用いて放線菌にLuxRファミリー転写因子遺伝子を導入すること、LuxRファミリー転写因子遺伝子に強いプロモーターやエンハンサーを作動可能に連結すること、又はLuxRファミリー転写因子遺伝子の発現量を増大することのできる他の化合物を添加することなどによってLuxRファミリー転写因子遺伝子の発現を増強してもよい。LuxRファミリー転写因子の発現を増強させることが出来るのであれば、いずれの方法を用いてもポリケチド化合物などの二次代謝産物の生産量を増大させることができる。
LuxRファミリー転写因子遺伝子の発現を増強する工程以外の工程については、上記第二の態様の工程(a)、(c)、(d)と同様の工程を採用することが出来る。
In order to enhance the expression of the LuxR family transcription factor gene, for example, the compound (A) of the present invention may be added to actinomycetes. Alternatively, introducing a LuxR family transcription factor gene into actinomycetes using a multi-copy vector containing a LuxR family transcription factor gene or a genome-integrated vector, or operably linking a strong promoter or enhancer to the LuxR family transcription factor gene Alternatively, the expression of the LuxR family transcription factor gene may be enhanced by adding another compound capable of increasing the expression level of the LuxR family transcription factor gene. As long as the expression of the LuxR family transcription factor can be enhanced, the production of secondary metabolites such as polyketide compounds can be increased by any method.
For steps other than the step of enhancing the expression of the LuxR family transcription factor gene, the same steps as in steps (a), (c) and (d) of the second aspect can be employed.

放線菌の培養条件や化合物(A)の添加量は上記のとおりである。
Streptomyces ambofaciensにおいてLuxRファミリーに属すると推定されるタンパク質をコードするsamR484遺伝子を強い構成性プロモーターの制御下に配置することにより、51員グリコシル化マクロライドの生産性が増大されたことが報告されている(L. Laureti et al., Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens., Proc Natl Acad Sci U S A. 2011, 108(15):6258-63.)。しかし、この文献における発現増強は組換えDNA技術に依存していた。
一方、本発明者らは、複数の放線菌を使用した実験により、形質転換系の開発が困難な放線菌においても、本発明の化合物(A)のようなバイオメディエーターの添加によって、一般にLuxRファミリー転写因子の発現増大によりポリケチド化合物の産生が達成されることを明らかにした。
The culture conditions of actinomycetes and the amount of compound (A) added are as described above.
In Streptomyces ambofaciens, it has been reported that the productivity of 51-membered glycosylated macrolides has been increased by placing the samR484 gene encoding a protein presumed to belong to the LuxR family under the control of a strong constitutive promoter. (L. Laureti et al., Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens., Proc Natl Acad Sci US A. 2011, 108 (15): 6258-63.). However, the enhanced expression in this document relied on recombinant DNA technology.
On the other hand, the present inventors generally conducted the LuxR family by adding a biomediator such as the compound (A) of the present invention even in actinomycetes where development of a transformation system is difficult by experiments using a plurality of actinomycetes. It was clarified that production of polyketide compounds was achieved by increasing the expression of transcription factors.

[製造例]
以下に本発明のrevU遺伝子の発現増強剤に用いることの出来るβ−カルボリン化合物及び本実施例で用いられるβ−カルボリン化合物の製造方法の一例を示すが、本発明の化合物の製造方法はこれらの実施例に限定されない。
[Production example]
Examples of the β-carboline compound that can be used as the revU gene expression enhancer of the present invention and the method for producing the β-carboline compound used in this example are shown below. The method for producing the compound of the present invention is described below. The present invention is not limited to the examples.

<β−カルボリン化合物の化学合成>
一連のアリル置換β−カルボリンを、市場で入手可能なL−トリプトファン及び適切なハロ置換ベンズアルデヒドを用いて設計・合成した。合成経路の概要を、スキーム1に記載する。L−トリプトファン誘導体とハロ置換ベンズアルデヒドのピクテ・スペングラー(Pictet−Spengler)反応の後に、トリクロロシアン酸(TCCA)を用いて酸化することにより、β−カルボリン−3−カルボキシレートを得る。これらのβ−カルボリン−3−カルボキシレートを種々のアミンで処理して、所望のβ−カルボリン−3−カルボキサミドを得る。得られた化合物の化学構造は、MS及び1H NMRのデータにより確認した。
<Chemical synthesis of β-carboline compound>
A series of allyl-substituted β-carbolines were designed and synthesized using commercially available L-tryptophan and the appropriate halo-substituted benzaldehyde. An overview of the synthetic route is described in Scheme 1. After the Pictet-Spengler reaction of the L-tryptophan derivative and the halo-substituted benzaldehyde, β-carboline-3-carboxylate is obtained by oxidation using trichlorocyanic acid (TCCA). These β-carboline-3-carboxylates are treated with various amines to give the desired β-carboline-3-carboxamide. The chemical structure of the obtained compound was confirmed by MS and 1 H NMR data.

全ての反応は、窒素雰囲気下で行われ、0.25mmのプレコートされたシリカゲルプレート60F254 Art 105715 (Merck, Darmstadt, Germany)を用いた薄層クロマトグラフィ(TLC)でモニターした。分取用クロマトグラフィ(PLC)では、60F254 Art 5744 (0.5 mm)及び60F254 113895 (1mm)が用いられた。カラムクロマトグラフィ(C.C.)では、シリカゲル60N (Kanto Chemical Co., Inc., Tokyo, Japan)が用いられた。1H NMRのスペクトルはJEOL JNM AL 300及び/又は400スペクトロメーターで記録した。FAB質量スペクトルは、JMS-HX 110質量分析計を用いて得られた。ESI質量スペクトルは、Bioapex-II (Brucker Daltonics)フーリエ変換イオンサイクロトロン共鳴質量分析計を用いて得られた。電子イオン化(EI)質量スペクトルは、JMS-HX/HX110 (JEOL)質量分析計を用いて得られた。 All reactions were performed under a nitrogen atmosphere and monitored by thin layer chromatography (TLC) using 0.25 mm precoated silica gel plates 60F 254 Art 105715 (Merck, Darmstadt, Germany). For preparative chromatography (PLC), 60F 254 Art 5744 (0.5 mm) and 60F 254 113895 (1 mm) were used. In column chromatography (CC), silica gel 60N (Kanto Chemical Co., Inc., Tokyo, Japan) was used. 1 H NMR spectra were recorded on a JEOL JNM AL 300 and / or 400 spectrometer. FAB mass spectra were obtained using a JMS-HX 110 mass spectrometer. ESI mass spectra were obtained using a Bioapex-II (Brucker Daltonics) Fourier transform ion cyclotron resonance mass spectrometer. Electron ionization (EI) mass spectra were obtained using a JMS-HX / HX110 (JEOL) mass spectrometer.

<L−トリプトファンメチルエステルの合成>
50mlの乾燥MeOH中のL−トリプトファン(2.04g,10mmol)の攪拌溶液に、SOCl2(3.57g,30mmol)を0℃で15分かけて滴下添加した。その後、反応混合液を室温で3.5時間攪拌した。減圧下でMeOHを除去し、残渣を水(25ml)に溶解した。該溶液のpHを飽和NaHCO3溶液を用いて9〜10に調節し、混合液全体をEtOAcで抽出した。混合有機相を生理食塩水で洗浄し、MgSO4で乾燥した。減圧下で濃縮させて、L−トリプトファンメチルエステルを無色の結晶性固体の形態で得た。これを更に精製することなく次の工程に用いた。
1H NMR (400 MHz, CDCl3) δ: 8.12 (brs, 1H), 7.60 (d, 1H, J = 8.0 Hz), 7.34 (d, 1H, J = 7.6 Hz), 7.20 - 7.09 (m, 2H), 7.05 (s, 1H), 3.82 (brs, 1H), 3.69 (s, 3H), 3.27 (d, 1H, J = 14.0 Hz), 3.04 (dd, 1H, J = 14.0, 7.6 Hz).
<Synthesis of L-tryptophan methyl ester>
To a stirred solution of L-tryptophan (2.04 g, 10 mmol) in 50 ml dry MeOH was added SOCl 2 (3.57 g, 30 mmol) dropwise at 0 ° C. over 15 minutes. The reaction mixture was then stirred at room temperature for 3.5 hours. MeOH was removed under reduced pressure and the residue was dissolved in water (25 ml). The pH of the solution was adjusted to 9-10 with saturated NaHCO 3 solution and the entire mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over MgSO 4. Concentration under reduced pressure gave L-tryptophan methyl ester in the form of a colorless crystalline solid. This was used in the next step without further purification.
1 H NMR (400 MHz, CDCl 3 ) δ: 8.12 (brs, 1H), 7.60 (d, 1H, J = 8.0 Hz), 7.34 (d, 1H, J = 7.6 Hz), 7.20-7.09 (m, 2H ), 7.05 (s, 1H), 3.82 (brs, 1H), 3.69 (s, 3H), 3.27 (d, 1H, J = 14.0 Hz), 3.04 (dd, 1H, J = 14.0, 7.6 Hz).

<β−カルボリン−3−カルボキシレートの合成>
乾燥CH2Cl2(1ml)中の置換ベンズアルデヒド(1mmol)の溶液を、窒素雰囲気下、乾燥CH2Cl2(10ml)中のL−トリプトファンメチルエステル(1mmol)、CF3COOH(0.02ml)及び粉末状の乾燥モレキュラーシーブ4Å(400mg)の懸濁液に添加し、一晩攪拌した。混合液全体を濾過し、CH2Cl2で洗浄した後、混合溶液を濃縮させて残渣をDMF(2ml)で取り出し、必要に応じてトリエチルアミンで中和した。テトラヒドロβ−カルボリン中間体を精製することなく更に酸化させた。トリエチルアミン(0.5ml)を添加した後、溶液を−15℃に冷却した。その後、TCCA(1mmol)を含むDMF(1ml)をゆっくりと加えた。該反応混合液を同一温度で15分間攪拌し、反応温度を0℃まで徐々に上げていった(1.5時間)。混合液を更に1.5時間0℃で攪拌した。減圧下で溶媒を完全に除去し、強く攪拌しながら冷水(25ml)を注ぎ、β−カルボリン−3−カルボキシレートを得た。これを再結晶(MeOH又はMeOH/CH2Cl2)又はPLCで更に精製した。
<Synthesis of β-carboline-3-carboxylate>
Solution in dry CH 2 Cl 2 (1ml) solution of substituted benzaldehyde (1 mmol) under a nitrogen atmosphere, dry CH 2 Cl 2 (10ml) solution of L- tryptophan methyl ester (1mmol), CF 3 COOH ( 0.02ml) And added to a suspension of powdered dry molecular sieve 4 乾燥 (400 mg) and stirred overnight. The whole mixture was filtered and washed with CH 2 Cl 2 , then the mixture was concentrated and the residue was taken up with DMF (2 ml) and neutralized with triethylamine as necessary. The tetrahydro β-carboline intermediate was further oxidized without purification. After adding triethylamine (0.5 ml), the solution was cooled to −15 ° C. Then, DMF (1 ml) containing TCCA (1 mmol) was slowly added. The reaction mixture was stirred at the same temperature for 15 minutes, and the reaction temperature was gradually raised to 0 ° C. (1.5 hours). The mixture was further stirred at 0 ° C. for 1.5 hours. The solvent was completely removed under reduced pressure, and cold water (25 ml) was poured with vigorous stirring to obtain β-carboline-3-carboxylate. This was further purified by recrystallization (MeOH or MeOH / CH 2 Cl 2 ) or PLC.

<β−カルボリン−3−カルボキサミドの合成>
上記で得られたβ−カルボリン−3−カルボキシレートのMeOH溶液に、10倍以上過剰のアミン(濃縮NH4OH、NH2OH又はアルキルアミン)を添加し、その混合液を2〜3日室温又は45℃で攪拌した。減圧下で反応混合液を濃縮し、淡黄色又は茶色の残渣をカラムクロマトグラフィー又は分取用クロマトグラフィーにより精製した。
<Synthesis of β-carboline-3-carboxamide>
A 10-fold excess of amine (concentrated NH 4 OH, NH 2 OH or alkylamine) was added to the MeOH solution of β-carboline-3-carboxylate obtained above, and the mixture was allowed to cool to room temperature for 2-3 days. Or it stirred at 45 degreeC. The reaction mixture was concentrated under reduced pressure and the pale yellow or brown residue was purified by column chromatography or preparative chromatography.

<アセテートの合成>
乾燥ピリジン(0.5ml)中のN−(3−ヒドロキシプロピル)−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(10mg,0.026mmol)及びAc2O(80mg,0.78mmol)の溶液を室温で一晩攪拌した。水を添加し、5分間強く攪拌した。混合液をジクロロメタンで3回抽出し、合わせた。Na2SO4で乾燥した後、溶媒を蒸発して固体を得た。これをPLC(EtOAc:Hexane=1:1)で更に精製し、無色の粉末としてアセテートを得た。
<Synthesis of acetate>
N- (3-hydroxypropyl) -1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (10 mg, 0.026 mmol) and Ac in dry pyridine (0.5 ml) A solution of 2 O (80 mg, 0.78 mmol) was stirred overnight at room temperature. Water was added and stirred vigorously for 5 minutes. The mixture was extracted 3 times with dichloromethane and combined. After drying over Na 2 SO 4 , the solvent was evaporated to give a solid. This was further purified by PLC (EtOAc: Hexane = 1: 1) to give acetate as a colorless powder.

<メチルエーテルの合成>
CH2Cl2(2ml)中のN−(3−ヒドロキシプロピル)−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(10mg,0.026mmol)の溶液に、48%水性フルオロホウ酸(FBA)(10μl,0.053mmol)及びトリメチルシリルジアゾメタン(ヘキサン溶液中0.6M,0.1ml,0.06mmol)を0℃で添加し、30分間攪拌した。水を添加し、混合液全体を30分間強く攪拌した後、0.1%のNaHCO3水溶液で中和した。該混合液をCH2Cl2で抽出し、Na2SO4で乾燥した後に濃縮した。残渣をPLCで精製して、O−シリル化化合物と共にメチルエーテルを得た。
<Synthesis of methyl ether>
CH 2 Cl 2 (2 ml) solution of N- (3- hydroxypropyl) -1- (3-chlorophenyl) -9H- pyrido [3,4-b] indole-3-carboxamide (10 mg, 0.026 mmol) solution of 48% aqueous fluoroboric acid (FBA) (10 μl, 0.053 mmol) and trimethylsilyldiazomethane (0.6 M in hexane solution, 0.1 ml, 0.06 mmol) were added at 0 ° C. and stirred for 30 minutes. Water was added and the whole mixture was stirred vigorously for 30 minutes and then neutralized with 0.1% aqueous NaHCO 3 solution. The mixture was extracted with CH 2 Cl 2 , dried over Na 2 SO 4 and concentrated. The residue was purified by PLC to give methyl ether with O-silylated compound.

以下の質量及びNMRデータに基づいて、合成した化合物1〜18の構造を決定した。
1. メチル−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
無色の固体;
1H NMR (300 MHz, d6-DMSO)δ: 12.04 (s, 1H), 8.95 (s, 1H), 8.44 (1H, d, J = 8.1 Hz), 8.01(s, 1H), 7.99 (dd, 1H, J = 8.7, 1.8 Hz), 7.71 - 7.59 (m, 4H), 7.33 (dd, 1H, J = 7.8, 6.9 Hz), 3.93 (s, 3H);
ESI-MS [M+H] + for C19H14ClN2O2 : 337.07, found 337.07.
Based on the following mass and NMR data, the structures of the synthesized compounds 1 to 18 were determined.
1. Methyl-1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxylate:
Colorless solid;
1 H NMR (300 MHz, d 6 -DMSO) δ: 12.04 (s, 1H), 8.95 (s, 1H), 8.44 (1H, d, J = 8.1 Hz), 8.01 (s, 1H), 7.99 (dd , 1H, J = 8.7, 1.8 Hz), 7.71-7.59 (m, 4H), 7.33 (dd, 1H, J = 7.8, 6.9 Hz), 3.93 (s, 3H);
ESI-MS [M + H] + for C 19 H 14 ClN 2 O 2 : 337.07, found 337.07.

2. メチル−1−(4−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
淡黄色の固体;
1H NMR (300 MHz, CDCl3) δ: 8.73 (s, 1H), 8.17 (d, 1H, J = 7.5 Hz), 7.91 (d, 2H, J = 8.4 Hz), 7.65 - 7.52 (m, 2H), 7.55 (d, 2H, J = 8.4 Hz), 7.37 (dd, 1H, J = 7.8, 7.5 Hz), 4.04 (s, 3H).
2. Methyl-1- (4-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxylate:
Pale yellow solid;
1 H NMR (300 MHz, CDCl 3 ) δ: 8.73 (s, 1H), 8.17 (d, 1H, J = 7.5 Hz), 7.91 (d, 2H, J = 8.4 Hz), 7.65-7.52 (m, 2H ), 7.55 (d, 2H, J = 8.4 Hz), 7.37 (dd, 1H, J = 7.8, 7.5 Hz), 4.04 (s, 3H).

3. メチル−1−(3−ブロモフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
淡黄色の固体;
1H NMR (400 MHz, d6-DMSO) δ: 12.02 (s, 1H), 8.95 (s, 1H), 8.44 (1H, d, J = 7.6 Hz), 8.13 (s, 1H), 8.03 (d, 1H, J = 7.6 Hz), 7.77 (d, 1H, J = 9.2 Hz), 7.69 (d, 1H, J = 8.4 Hz), 7.63 (d, 1H, J = 3.2 Hz), 7.60 (m, 2H), 7.34 (m, 1H) 3.93 (s, 3H).
3. Methyl-1- (3-bromophenyl) -9H-pyrido [3,4-b] indole-3-carboxylate:
Pale yellow solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 12.02 (s, 1H), 8.95 (s, 1H), 8.44 (1H, d, J = 7.6 Hz), 8.13 (s, 1H), 8.03 (d , 1H, J = 7.6 Hz), 7.77 (d, 1H, J = 9.2 Hz), 7.69 (d, 1H, J = 8.4 Hz), 7.63 (d, 1H, J = 3.2 Hz), 7.60 (m, 2H ), 7.34 (m, 1H) 3.93 (s, 3H).

4. メチル−1−(3−フルオロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
無色の固体;
1H NMR (400 MHz, d6-DMSO) δ: 11.98 (s, 1H), 8.95 (s, 1H), 8.43 (d, 1H, J = 8.0 Hz), 7.87 (d, 1H, J = 7.2 Hz), 7.80 (d, 1H, J = 10.0 Hz), 7.69 (dd, 1H, J = 8.0, 6.4 Hz), 7.65 - 7.59 (m, 1H), 7.40 (m, 1H), 7.34 (dd, 1H, J = 7.6, 7.2 Hz), 3.93 (s, 3H).
4). Methyl-1- (3-fluorophenyl) -9H-pyrido [3,4-b] indole-3-carboxylate:
Colorless solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 11.98 (s, 1H), 8.95 (s, 1H), 8.43 (d, 1H, J = 8.0 Hz), 7.87 (d, 1H, J = 7.2 Hz ), 7.80 (d, 1H, J = 10.0 Hz), 7.69 (dd, 1H, J = 8.0, 6.4 Hz), 7.65-7.59 (m, 1H), 7.40 (m, 1H), 7.34 (dd, 1H, J = 7.6, 7.2 Hz), 3.93 (s, 3H).

5. メチル−1−(3−メトキシフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
淡黄色の固体;
1H NMR (400 MHz, d6-DMSO) δ: 11.91 (s, 1H), 8.92 (s, 1H), 8.42 (d, 1H, J = 8.0 Hz), 7.69 (d, 1H, J = 8.4 Hz), 7.61 - 7.57 (m, 1H), 7.52 (brs, 1H), 7.32 (m, 1H), 7.15 - 7.12 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H).
5. Methyl-1- (3-methoxyphenyl) -9H-pyrido [3,4-b] indole-3-carboxylate:
Pale yellow solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 11.91 (s, 1H), 8.92 (s, 1H), 8.42 (d, 1H, J = 8.0 Hz), 7.69 (d, 1H, J = 8.4 Hz ), 7.61-7.57 (m, 1H), 7.52 (brs, 1H), 7.32 (m, 1H), 7.15-7.12 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H).

6. メチル−1−(3−ニトロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
茶色がかった黄色の固体;
1H NMR (400 MHz, d6-DMSO)δ: 12.15 (s, 1H), 9.00 (s, 1H), 8.77 (s, 1H), 8.46 (d, 2H, J = 7.6 Hz), 8.40 (d, 1H, J = 7.6 Hz), 7.93 (dd, 1H, J = 8.0, 8.4 Hz), 7.70 (m, 1H), 7.63 (dd, 1H, J = 6.4, 8.0 Hz), 7.35 (dd, 1H, J = 7.6, 7.2 Hz), 3.94 (s, 3H).
6). Methyl-1- (3-nitrophenyl) -9H-pyrido [3,4-b] indole-3-carboxylate:
A brownish yellow solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 12.15 (s, 1H), 9.00 (s, 1H), 8.77 (s, 1H), 8.46 (d, 2H, J = 7.6 Hz), 8.40 (d , 1H, J = 7.6 Hz), 7.93 (dd, 1H, J = 8.0, 8.4 Hz), 7.70 (m, 1H), 7.63 (dd, 1H, J = 6.4, 8.0 Hz), 7.35 (dd, 1H, J = 7.6, 7.2 Hz), 3.94 (s, 3H).

7. メチル−1−フェニル−9H−ピリド[3,4−b]インドール−3−カルボキシレート:
無色の固体(156mg、収率51.5%)
1H-NMR (400 MHz, d6-DMSO) δ: 11.94 (s, 1H), 8.93 (s, 1H), 8.43 (d, 1H, J = 8.0 Hz), 8.02 (d, 2H, J = 7.6 Hz), 7.70 - 7.54 (m, 3H), 7.63 (d, 2H, J = 7.6 Hz), 7.33 (dd, 1H, J = 7.6, 6.8 Hz), 3.93 (s, 3H).
7). Methyl-1-phenyl-9H-pyrido [3,4-b] indole-3-carboxylate:
Colorless solid (156 mg, 51.5% yield)
1 H-NMR (400 MHz, d 6 -DMSO) δ: 11.94 (s, 1H), 8.93 (s, 1H), 8.43 (d, 1H, J = 8.0 Hz), 8.02 (d, 2H, J = 7.6 Hz), 7.70-7.54 (m, 3H), 7.63 (d, 2H, J = 7.6 Hz), 7.33 (dd, 1H, J = 7.6, 6.8 Hz), 3.93 (s, 3H).

8. N−ヒドロキシ−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(6)):
淡黄色の固体;
1H NMR (300 MHz, d6-DMSO) δ: 11.99(s, 1H), 9.05 (s, 1H), 8.79 (s, 1H), 8.42 (d, 1H, J = 7.5 Hz), 8.34 (brs, 1H), 8.16(d, 1H, J = 7.5 Hz), 7.70 - 7.57 (m, 4H), 7.31 (t, 1H, J = 7.5 Hz);
FAB-MS [M+H]+ calcd. for C18H13ClN3O2 338.06, found 338.04.
8). N-hydroxy-1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (6)):
Pale yellow solid;
1 H NMR (300 MHz, d 6 -DMSO) δ: 11.99 (s, 1H), 9.05 (s, 1H), 8.79 (s, 1H), 8.42 (d, 1H, J = 7.5 Hz), 8.34 (brs , 1H), 8.16 (d, 1H, J = 7.5 Hz), 7.70-7.57 (m, 4H), 7.31 (t, 1H, J = 7.5 Hz);
FAB-MS [M + H] + calcd. For C 18 H 13 ClN 3 O 2 338.06, found 338.04.

9. N−(2−ヒドロキシエチル)−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(2)):
無色の固体;
1H NMR (300 MHz, CDCl3) δ: 8.84 (s, 1H), 8.76 (s, 1H), 8.53 (brs, 1H), 8.09 (d, 1H, J = 7.5 Hz), 7.90 (t, 1H, J = 1.8 Hz), 8.10 (ddd, 1H, J = 7.5, 1.8, & 1.2 Hz), 7.60 - 7.40 (m, 1H), 3.85 (t, 2H, J = 16 Hz), 3.70 (t, 2H, J = 16 Hz).
9. N- (2-hydroxyethyl) -1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (2)):
Colorless solid;
1 H NMR (300 MHz, CDCl 3 ) δ: 8.84 (s, 1H), 8.76 (s, 1H), 8.53 (brs, 1H), 8.09 (d, 1H, J = 7.5 Hz), 7.90 (t, 1H , J = 1.8 Hz), 8.10 (ddd, 1H, J = 7.5, 1.8, & 1.2 Hz), 7.60-7.40 (m, 1H), 3.85 (t, 2H, J = 16 Hz), 3.70 (t, 2H , J = 16 Hz).

10. N−(3−ヒドロキシプロピル)−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(1)):
白色の固体;
1H NMR (400 MHz, CDCl3)δ: 8.92 (brs, 1H), 8.84 (m, 1H), 8.42 (brs, 1H), 8.15 (d, 1H, J=8.4), 7.94 (brs, 1H), 7.85 (m, 1H), 7.57 - 7.49 (m, 3H), 7.34 (brs, 1H), 3.69 (br s, 4H), 1.66 (brs, 2H).
10. N- (3-hydroxypropyl) -1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (1)):
White solid;
1 H NMR (400 MHz, CDCl 3 ) δ: 8.92 (brs, 1H), 8.84 (m, 1H), 8.42 (brs, 1H), 8.15 (d, 1H, J = 8.4), 7.94 (brs, 1H) , 7.85 (m, 1H), 7.57-7.49 (m, 3H), 7.34 (brs, 1H), 3.69 (br s, 4H), 1.66 (brs, 2H).

11. 1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(3)):
淡黄色の固体;
1H NMR (300 MHz, d6-DMSO)δ:11.91 (s, 1H), 8.85 (s, 1H), 8.40 (d, 1H, J = 7.5 Hz), 8.21 (s, 2H), 8.12 (d, 1H, J = 6.9 Hz), 7.70 - 7.52 (m, 5H), 7.32 (1H, dd, J = 7.5, 7.2 Hz);
FAB-MS [M+H] calcd. for C18H13ClN3O 322.07, found 322.03.
11. 1- (3-Chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (3)):
Pale yellow solid;
1 H NMR (300 MHz, d 6 -DMSO) δ: 11.91 (s, 1H), 8.85 (s, 1H), 8.40 (d, 1H, J = 7.5 Hz), 8.21 (s, 2H), 8.12 (d , 1H, J = 6.9 Hz), 7.70-7.52 (m, 5H), 7.32 (1H, dd, J = 7.5, 7.2 Hz);
FAB-MS [M + H] calcd. For C 18 H 13 ClN 3 O 322.07, found 322.03.

12. N−(3−アセトキシプロピル)−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(5)):
無色の粉末;
1H NMR (300 MHz, CDCl3)δ: 8.88 (s, 1H), 8.76 (s, 1H), 8.36 (brs, 1H), 8.19 (d, 1H, J = 7.8 Hz), 7.95 (s, 1H), 7.85 (d, 1H, J = 7.5 Hz), 7.61 - 7.47 (m, 4H), 7.35 (dd, 1H, J = 8.1, 6.3 Hz), 4.20 (t, 2H, J = 6.0 Hz), 3.63 (q, 2H, J = 6.6 Hz), 2.00 (s, 3H), 1.23 (m, 2H);
FAB-MS [M+H]+ calcd. for C23H21ClN3O3 : 422.12, found 422.10.
12 N- (3-acetoxypropyl) -1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (5)):
Colorless powder;
1 H NMR (300 MHz, CDCl 3 ) δ: 8.88 (s, 1H), 8.76 (s, 1H), 8.36 (brs, 1H), 8.19 (d, 1H, J = 7.8 Hz), 7.95 (s, 1H ), 7.85 (d, 1H, J = 7.5 Hz), 7.61-7.47 (m, 4H), 7.35 (dd, 1H, J = 8.1, 6.3 Hz), 4.20 (t, 2H, J = 6.0 Hz), 3.63 (q, 2H, J = 6.6 Hz), 2.00 (s, 3H), 1.23 (m, 2H);
FAB-MS [M + H] + calcd. For C 23 H 21 ClN 3 O 3 : 422.12, found 422.10.

13. N−(3−メトキシプロピル)−1−(3−クロロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド:
無色の固体;
1H NMR (300 MHz, CDCl3) δ: 8.90 (s, 1H), 8.69 (s, 1H), 8.59 (brs, 1H), 8.20 (d, 1H, J = 7.8 Hz), 8.01 (s, 1H), 7.87 (d, 1H, J = 7.8 Hz), 7.61 - 7.47 (m, 4H), 7.35 (ddd, 1H, J = 8.1, 6.6 & 1.5 Hz). 3.68 - 3.62 (m, 2H), 3.56 (t, 2H, J = 6.0 Hz), 3.38 (s, 3H), 1.98 - 1.90 (m, 2H);
FAB-MS [M+H]+ calcd. for C22H21ClN3O2 : 394.12, found 394.12.
13. N- (3-methoxypropyl) -1- (3-chlorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide:
Colorless solid;
1 H NMR (300 MHz, CDCl 3 ) δ: 8.90 (s, 1H), 8.69 (s, 1H), 8.59 (brs, 1H), 8.20 (d, 1H, J = 7.8 Hz), 8.01 (s, 1H ), 7.87 (d, 1H, J = 7.8 Hz), 7.61-7.47 (m, 4H), 7.35 (ddd, 1H, J = 8.1, 6.6 & 1.5 Hz). 3.68-3.62 (m, 2H), 3.56 ( t, 2H, J = 6.0 Hz), 3.38 (s, 3H), 1.98-1.90 (m, 2H);
FAB-MS [M + H] + calcd. For C 22 H 21 ClN 3 O 2 : 394.12, found 394.12.

14. 1−(3−ブロモフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド:
茶色がかった黄色の固体;
1H NMR (300 MHz, d6-DMSO) δ: 11.90 (s, 1H), 8.85 (s, 1H), 8.40 (d, 2H, J = 6.6 Hz), 8.32 (brs, 1H), 8.20 - 8.12 (m, 2H), 7.75 - 7.69 (m, 2H), 7.62 - 7.51 (m, 3H), 7.31 (dd, 1H, J = 6.9, 8.1 Hz);
EI-HRMS [M+] calcd. for C18H12BrN3O: 365.0160, found 365.0162.
14 1- (3-Bromophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide:
A brownish yellow solid;
1 H NMR (300 MHz, d 6 -DMSO) δ: 11.90 (s, 1H), 8.85 (s, 1H), 8.40 (d, 2H, J = 6.6 Hz), 8.32 (brs, 1H), 8.20-8.12 (m, 2H), 7.75-7.69 (m, 2H), 7.62-7.51 (m, 3H), 7.31 (dd, 1H, J = 6.9, 8.1 Hz);
EI-HRMS [M + ] calcd. For C 18 H 12 BrN 3 O: 365.0160, found 365.0162.

15. 1−(3−フルオロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(7)):
無色の固体;
1H NMR (400 MHz, d6-DMSO) δ: 11.88 (s, 1H), 8.85 (s, 1H), 8.40 (d, 1H, J = 8.0 Hz), 8.18 (s, 1H), 8.02 (m, 1H), 8.01 (s, 1H), 7.68 (dd, 1H, J = 8.4, 8.8 Hz), 7.64 - 7.58 (m, 1H), 7.38 (m, 1H), 7.32 (t, 1H, J = 7.6 Hz);
EI-HRMS [M+] calcd. for C18H12FN3O: 305.0964, found 305.0959.
15. 1- (3-Fluorophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (7)):
Colorless solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 11.88 (s, 1H), 8.85 (s, 1H), 8.40 (d, 1H, J = 8.0 Hz), 8.18 (s, 1H), 8.02 (m , 1H), 8.01 (s, 1H), 7.68 (dd, 1H, J = 8.4, 8.8 Hz), 7.64-7.58 (m, 1H), 7.38 (m, 1H), 7.32 (t, 1H, J = 7.6 Hz);
EI-HRMS [M + ] calcd. For C 18 H 12 FN 3 O: 305.0964, found 305.0959.

16. 1−(3−メトキシフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(8)):
淡黄色の固体;
1H NMR (400 MHz, d6-DMSO) δ: 11.80 (s, 1H), 8.83 (s, 1H), 8.39 (d, 1H, J = 8.0 Hz), 8.30 (s, 1H), 8.10 (s, 1H), 7.68 (d, 2H, J = 8.8 Hz), 7.64 (brs, 1H), 7.60 - 7.52 (m, 2H), 7.51 (brs, 1H), 7.30 (dd, 1H, J = 7.2, 7.6 Hz), 7.12 (dd, 1H, J = 8.0, 2.4 Hz);
EI-HRMS [M+] calcd. for C19H15N3O2:: 317.1165, found: 317.1165.
16. 1- (3-methoxyphenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (8)):
Pale yellow solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 11.80 (s, 1H), 8.83 (s, 1H), 8.39 (d, 1H, J = 8.0 Hz), 8.30 (s, 1H), 8.10 (s , 1H), 7.68 (d, 2H, J = 8.8 Hz), 7.64 (brs, 1H), 7.60-7.52 (m, 2H), 7.51 (brs, 1H), 7.30 (dd, 1H, J = 7.2, 7.6 Hz), 7.12 (dd, 1H, J = 8.0, 2.4 Hz);
EI-HRMS [M +] calcd for C 19 H 15 N 3 O 2:.: 317.1165, found: 317.1165.

17. 1−(3−ニトロフェニル)−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(9)):
淡黄色の固体;
1H NMR (400 MHz, d6-DMSO)δ: 12.02 (s, 1H), 8.91 (s, 1H), 8.87 (brs, 1H), 8.60 (d, 1H, J = 7.2 Hz), 8.44 (d, 1H, J = 7.2 Hz), 8.39 (d, 1H, J = 8.4 Hz), 8.21 (brs, 1H), 7.92 (dd, 1H, J = 7.6, 8.4 Hz), 7.69 - 7.60 (m, 2H), 7.56 (brs, 1H), 7.33 (t, 1H, J = 7.6 Hz);
EI-HRMS [M+] calcd. for C18H12N4O3: 332.0910, found: 332.0906.
17. 1- (3-nitrophenyl) -9H-pyrido [3,4-b] indole-3-carboxamide (compound (9)):
Pale yellow solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 12.02 (s, 1H), 8.91 (s, 1H), 8.87 (brs, 1H), 8.60 (d, 1H, J = 7.2 Hz), 8.44 (d , 1H, J = 7.2 Hz), 8.39 (d, 1H, J = 8.4 Hz), 8.21 (brs, 1H), 7.92 (dd, 1H, J = 7.6, 8.4 Hz), 7.69-7.60 (m, 2H) , 7.56 (brs, 1H), 7.33 (t, 1H, J = 7.6 Hz);
EI-HRMS [M + ] calcd. For C 18 H 12 N 4 O 3 : 332.0910, found: 332.0906.

18. 1−フェニル−9H−ピリド[3,4−b]インドール−3−カルボキサミド(化合物(4)):
無色の固体;
1H NMR (400 MHz, d6-DMSO)δ: 11.82 (s, 1H), 8.83 (s, 1H), 8.39 (d, 1H, J = 8.0 Hz), 8.15 (d, 2H, J = 7.2, 7.6 Hz), 7.69 -7.53 (m, 5H), 7.51 (brs, 1H), 7.30 (dd, 1H, J = 7.2, 7.6 Hz);
EI-HRMS [M+] calcd. for C18H13N3O: 287.1059, found 287.1058.
18. 1-phenyl-9H-pyrido [3,4-b] indole-3-carboxamide (compound (4)):
Colorless solid;
1 H NMR (400 MHz, d 6 -DMSO) δ: 11.82 (s, 1H), 8.83 (s, 1H), 8.39 (d, 1H, J = 8.0 Hz), 8.15 (d, 2H, J = 7.2, 7.6 Hz), 7.69 -7.53 (m, 5H), 7.51 (brs, 1H), 7.30 (dd, 1H, J = 7.2, 7.6 Hz);
EI-HRMS [M + ] calcd. For C 18 H 13 N 3 O: 287.1059, found 287.1058.

[実施例1]
<<リベロマイシン類生産量の評価試験>>
リベロマイシン類生産増大をハイスループットで調べる事が出来る二つのスクリーニング系(スクリーニング1、スクリーニング2)を構築した。理研天然化合物バンク(RIKEN NPDepo)を利用し、下記手順によりリベロマイシン類生産を活性化する因子の探索を行った。
[Example 1]
<< Evaluation test for production of reveromycins >>
Two screening systems (Screening 1 and Screening 2) were constructed that can examine the increase in reveromycin production at high throughput. Using the RIKEN natural compound bank (RIKEN NPDepo), the following procedure was used to search for a factor that activates reveromycin production.

図1に示すフローチャートに従って、リベロマイシン類生産菌(Streptomyces reveromyceticus SN-593)に理研天然化合物バンクに存在する各化合物を添加して培養し、リベロマイシン類の生産を誘導した。Streptomyces reveromyceticus SN-593はStreptomyces sp. SN-593と表示され日本国茨城県つくば市東1丁目1番3号(郵便番号305)の通商産業省工業技術院微生物工業技術研究所(現、日本国茨城県つくば市東1−1−1つくばセンター中央第6(郵便番号305−8566)独立行政法人産業技術総合研究所 特許生物寄託センター)に平成2年6月5日(原寄託日)に寄託されている。その後、アセトン抽出と濃縮を行ってバイオメディエーター処理溶液(BTB)を得た。その後、いもち病菌(Magnaporthe oryzae Kita1)及びsrcts−NRK細胞を用いて、リベロマイシン類の生産誘導を評価した(スクリーニング1、スクリーニング2)。 According to the flowchart shown in FIG. 1, each compound present in the RIKEN natural compound bank was added to a reveromycin-producing bacterium (Streptomyces reveromyceticus SN-593) and cultured to induce the production of reveromycins. Streptomyces reveromyceticus SN-593 is designated as Streptomyces sp. SN-593 and is located in 1-3-1 Higashi 1-chome, Tsukuba City, Ibaraki, Japan (Postal Code 305). Prefectural Tsukuba City East 1-1-1 Tsukuba Center Chuo No. 6 (Postal Code 305-8656) National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, deposited on June 5, 1990 (original deposit date) Yes. Thereafter, acetone extraction and concentration were performed to obtain a biomediator treatment solution (BTB). Then, by using the blast fungus (Magnaporthe oryzae Kita1) and src ts -NRK cells was evaluated production induced reveromycin compound (Screening 1 Screening 2).

<スクリーニング1>
・いもち病菌(Magnaporthe oryzae Kita1)を用いた活性スクリーニング
前培養プレートからのアガロース片を含む菌体をYG培地(10ml)に入れて、50mlファルコンチューブ中で、27℃、150r.p.m.で3日間培養した。0.2%寒天を含むポテトデキストロース培地で50倍に希釈し、96穴プレートに200μl分注した。バイオメディエーター処理をしたリベロマイシン類生産菌のアセトン抽出液(BTB)を5μl添加してさらに5日間培養した。リベロマイシンA(RM−A)の生産が増大したフラクションはいもち病菌に対して抗菌活性を示すため、抗菌活性の有無でリベロマイシン類の生産が増強されたかを判断した。
<Screening 1>
・ Activity screening using rice blast fungus (Magnaporthe oryzae Kita1) The cells containing agarose pieces from the pre-culture plate were placed in YG medium (10 ml) and placed in a 50 ml falcon tube at 27 ° C., 150 r. p. m. For 3 days. The mixture was diluted 50-fold with a potato dextrose medium containing 0.2% agar, and 200 μl was dispensed into a 96-well plate. 5 μl of an acetone extract (BTB) of a reveromycin-producing bacterium treated with a biomediator was added and further cultured for 5 days. Since the fraction in which the production of reveromycin A (RM-A) was increased showed antibacterial activity against blast fungus, it was determined whether the production of reveromycin was enhanced with or without antibacterial activity.

<スクリーニング2>
リベロマイシンAは、srcts−NRK細胞の形態を正常化させることが知られている。そこで、srcts−NRK細胞の形態正常化を検討することによりリベロマイシン類生産評価を行った。
1.6x104個のsrcts−NRK細胞(200μl)を96穴プレートに入れ、10%calf serum (CS)を含むMEM(Eagle's minimal essential medium)培地で32℃、5時間CO2インキュベーターで培養した。次にバイオメディエーター処理をしたリベロマイシン類生産菌のアセトン抽出液(BTB)を5μl添加してさらに2日間培養し、癌細胞様形態から正常細胞様形態に復帰させる活性を評価した。
<Screening 2>
Reveromycin A is known to normalize the morphology of src ts -NRK cells. Therefore, the production of reveromycin was evaluated by examining the morphological normalization of src ts -NRK cells.
1.6 × 10 4 src ts -NRK cells (200 μl) were placed in a 96-well plate and cultured in a MEM (Eagle's minimal essential medium) medium containing 10% calf serum (CS) at 32 ° C. for 5 hours in a CO 2 incubator. . Next, 5 μl of an acetone extract (BTB) of a reveromycin-producing bacterium treated with a biomediator was added and further cultured for 2 days to evaluate the activity of returning from a cancer cell-like morphology to a normal cell-like morphology.

<スクリーニング3>
スクリーニング1及び2でヒットした化合物で再度リベロマイシン類生産菌を処理し、生産誘導されるリベロマイシン類をLC−MSを用いて解析した。
スクリーニング1〜3の結果を以下の表3に示す。
<Screening 3>
The reveromycin-producing bacteria were treated again with the compounds hit in screenings 1 and 2, and the production-induced reveromycin was analyzed using LC-MS.
The results of screenings 1 to 3 are shown in Table 3 below.

<結果>
3155種の化合物をスクリーニングした結果、リベロマイシンA及びリベロマイシンB(RM−A及びRM−Bと呼ぶことがある)の生産を誘導する下記化合物(1)を見出した(図2a参照)。化合物(1)を上記リベロマイシン類生産菌に添加処理した場合における、リベロマイシン類産生誘導をLC−MSを用いて解析した結果を図2のb、cに示す。
<Result>
As a result of screening 3155 compounds, the following compound (1) that induces the production of reveromycin A and reveromycin B (sometimes referred to as RM-A and RM-B) was found (see FIG. 2a). The results of analyzing the induction of reveromycin production using LC-MS when compound (1) is added to the above-mentioned reveromycin production bacteria are shown in FIGS.

次に、化合物(1)に類似したβ−カルボリン化合物を理研天然化合物バンク(RIKEN NPDepo)より収集し、化合物(A)のR1、R2が異なる種々の化合物についてsrcts−NRK細胞を用いたスクリーニングを行った。ポジティブ化合物については、リベロマイシン(RM)類の生産増強に関与するか否かLC−MSを用いて確認した。下記表4にその要約を示す。 Next, use the src ts -NRK cells for the β- carboline compounds analogous to Compound (1) were collected from Riken natural compounds Bank (RIKEN NPDepo), R 1, R 2 are different variety of compounds of Compound (A) Screening was performed. About the positive compound, it was confirmed using LC-MS whether it was involved in the production enhancement of reveromycin (RM). The summary is shown in Table 4 below.

表4中、(−)は、tsNRK細胞アッセイでポジティブな結果が得られなかった化合物(LC−MS未解析)に付されている。(+)は、srctsNRK細胞アッセイでポジティブな結果が得られた化合物で、リベロマイシン類の生産量が40mg・L-1以下の化合物に付されている。tsNRK細胞アッセイポジティブでRM類(リベロマイシン類)の生産量が40mg・L-1以上の化合物には、実際に得られた生産量が数字で示されている。なお、表4には示していないが、通常、β−カルボリン化合物を添加しないコントロールでは、約12mg・L-1のリベロマイシン類が産生される。 In Table 4, (-) is attached to a compound (LC-MS unanalyzed) for which a positive result was not obtained in the tsNRK cell assay. (+) Is a compound that gave a positive result in the src ts NRK cell assay, and is attached to a compound having a production amount of reveromycin of 40 mg · L −1 or less. For compounds with positive tsNRK cell assay and production of RMs (reveromycins) of 40 mg · L −1 or higher, the actual production yields are indicated numerically. In addition, although not shown in Table 4, normally, about 12 mg · L −1 of reveromycin is produced in the control to which no β-carboline compound is added.

この結果、R2の炭素鎖が短い化合物(2)が、化合物(1)よりもリベロマイシン類の産生を増強するバイオメディエーターとしての活性が強い傾向が判明したため、化合物(2)の構造を起点として構造活性相関研究を行った。その結果を図3及び図4に示す。
図3から判るように、R2の炭素鎖を更に短く改変した化合物(3)は、化合物(2)よりも強いバイオメディエーター活性を示した。また、化合物(3)の構造を起点としてR1のメタ位の構造活性相関を調べたところ、化合物(4)が最も強い活性を示した。
以下に、化合物(2)、(3)、(4)の構造(それぞれ下記式(2)、(3)、(4))を示す。
As a result, it was found that the compound (2) having a short R 2 carbon chain tends to have a stronger activity as a biomediator that enhances the production of reveromycins than the compound (1). As a structure-activity relationship study. The results are shown in FIGS.
As can be seen from FIG. 3, the compound (3) in which the carbon chain of R 2 was further shortened showed a stronger biomediator activity than the compound (2). Further, when the structure-activity relationship of the meta position of R 1 was examined starting from the structure of the compound (3), the compound (4) showed the strongest activity.
The structures of the compounds (2), (3) and (4) (the following formulas (2), (3) and (4), respectively) are shown below.

[実施例2]
<β−カルボリン化合物とリベロマイシン類の生産量の関係>
野生株をSK2培地(70 ml)で28℃、150rpmでO.D.600値が6-8になるように48〜72時間前培養を行った。その後、化合物(2)、(3)、(4)をそれぞれ0〜10μg・ml-1の最終濃度となるように添加したSY−B培地(1ml)に1/100量の前培養液を添加し、96穴ディープウェル中で28℃、1000rpmで72時間培養した。その後、培養液に等量のアセトンを加え、超音波破砕し、遠心分離後に上清(20μl)をLC-MS解析しリベロマイシン類の生産量を測定した。その結果を図5に示す。図5(a)は化合物(2)を、図5(b)は化合物(3)を、図5(c)は化合物(4)を添加した場合の結果を示す。
*:コントロールに対してp<0.05;
**:コントロールに対してp<0.001。
[Example 2]
<Relationship between production amount of β-carboline compound and reveromycin>
Wild strains were precultured in SK2 medium (70 ml) at 28 ° C. and 150 rpm for an OD600 value of 6-8 for 48 to 72 hours. Thereafter, 1/100 amount of preculture solution was added to SY-B medium (1 ml) to which compounds (2), (3), and (4) were added to a final concentration of 0 to 10 μg · ml −1. The cells were cultured in a 96-well deep well at 28 ° C. and 1000 rpm for 72 hours. Thereafter, an equal volume of acetone was added to the culture medium, and the mixture was ultrasonically disrupted. After centrifugation, the supernatant (20 μl) was analyzed by LC-MS to determine the production of reveromycin. The result is shown in FIG. FIG. 5 (a) shows the result when compound (2) is added, FIG. 5 (b) shows the result when compound (3) is added, and FIG. 5 (c) shows the result when compound (4) is added.
*: P <0.05 vs. control;
**: p <0.001 relative to control.

その結果、化合物(2)、(3)及び(4)のいずれも、0.1〜10μg・ml-1の範囲内の濃度でリベロマイシン類の生産を誘導することが判った。また、化合物(2)を3μg・ml-1添加した場合を除き、基本的に化合物の濃度が高くなるにつれてリベロマイシン類生産量も増大した。 As a result, it was found that all of the compounds (2), (3) and (4) induce the production of reveromycins at a concentration in the range of 0.1 to 10 μg · ml −1 . In addition, except for the case where 3 μg · ml −1 of the compound (2) was added, the production amount of reveromycin was basically increased as the concentration of the compound was increased.

次に、化合物(2)、(3)又は(4)を1μg・ml-1添加した場合の、S. reveromyceticus SN-593の細胞増殖量(図6a)及びリベロマイシン類生産量(図6b)を時系列で解析した。その結果を図6に示す(*:コントロールに対して p<0.001)。図6中、NCはネガティブコントロールを表す。
上記化合物でS. reveromyceticus SN-593を処理すると、培養初期の24時間細胞増殖が低下したが、その後は非治療群(コントロール)と類似した増殖速度を示した(図6a)。
一方、培養48時間後以降で細胞質量がコントロールと類似しているにもかかわらず、バイオメディエーター化合物(2)〜(4)で処理したS. reveromyceticus SN-593のリベロマイシン類生産量は、コントロールに比べて顕著に増大していた(図6b)。
Next, when 1 μg · ml −1 of the compound (2), (3) or (4) is added, the amount of cell growth of S. reveromyceticus SN-593 (FIG. 6a) and the production amount of reveromycins (FIG. 6b) Were analyzed in time series. The results are shown in FIG. 6 (*: p <0.001 with respect to the control). In FIG. 6, NC represents a negative control.
When S. reveromyceticus SN-593 was treated with the above compound, cell proliferation decreased for 24 hours at the beginning of the culture, but thereafter showed a growth rate similar to that of the non-treated group (control) (FIG. 6a).
On the other hand, the production of reveromycins of S. reveromyceticus SN-593 treated with biomediator compounds (2) to (4) was similar to that of control even though the cell mass was similar to control after 48 hours of culture. (Fig. 6b).

この結果から、化合物(2)〜(4)のバイオメディエーター活性が、単に細胞質量の増大によるものではないことが示唆された。増殖速度の低減は、二次代謝を引き起こす重要なシグナルであるという一般的な概念があるため、培養の初期段階における細胞増殖抑制は、リベロマイシン生合成遺伝子クラスターの発現を誘導するシグナルとして作用していると考えられた。   From these results, it was suggested that the biomediator activities of the compounds (2) to (4) were not merely due to an increase in cell mass. Since there is a general notion that reduced growth rate is an important signal that triggers secondary metabolism, cell growth inhibition in the early stages of culture acts as a signal inducing the expression of the reveromycin biosynthetic gene cluster. It was thought that

[実施例3]
<<リベロマイシン生合成遺伝子クラスターの発現増強試験>>
そこで、次に、バイオメディエーター化合物で処理した場合に、リベロマイシン生合成遺伝子クラスターが発現増強されるか否かを調べた。
生合成遺伝子の発現は、経路特異的な制御遺伝子によって調節されている。そこで、まず最初に、リベロマイシン生合成の経路特異的制御遺伝子であると推定されるrevP、revQ及びrevU遺伝子の転写量を評価した。
化合物(4)(1μg・ml-1)でS. reveromyceticus SN-593を処理してから24時間後にmRNAを抽出し、上記3種の遺伝子発現量を定量的RT−PCRを用いて調べた。RT−PCRで使用したプライマーを下記表5に示す。各遺伝子の発現量は、内部コントロールhrdB(主要転写シグマ因子)で校正した(*:コントロールに対してp<0.001)。
[Example 3]
<< Expression enhancement test of reveromycin biosynthesis gene cluster >>
Then, next, it was investigated whether or not the expression of the reveromycin biosynthesis gene cluster was enhanced when treated with a biomediator compound.
Biosynthetic gene expression is regulated by pathway-specific regulatory genes. Therefore, first, the transcription amounts of the revP, revQ, and revU genes, which are presumed to be pathway-specific regulatory genes for reveromycin biosynthesis, were evaluated.
After treating S. reveromyceticus SN-593 with compound (4) (1 μg · ml −1 ), mRNA was extracted 24 hours later, and the expression levels of the three genes were examined using quantitative RT-PCR. The primers used in RT-PCR are shown in Table 5 below. The expression level of each gene was calibrated with an internal control hrdB (major transcription sigma factor) (*: p <0.001 with respect to the control).

その結果、本発明の化合物(A)で処理することにより、特にrevU遺伝子の発現量が増強されることが判った(図7a)。revU遺伝子産物(RevU)はLuxRファミリー転写因子であることから、本発明の化合物(A)はLuxRファミリー転写因子の遺伝子発現を制御すること、及びポリケチド化合物であるリベロマイシン類産生はLuxRファミリー転写因子の1つであるRevUを介して制御されることが示唆された。   As a result, it was found that the expression level of the revU gene was particularly enhanced by treatment with the compound (A) of the present invention (FIG. 7a). Since the revU gene product (RevU) is a LuxR family transcription factor, the compound (A) of the present invention controls gene expression of the LuxR family transcription factor, and the production of reveromycins, which are polyketide compounds, is a LuxR family transcription factor. It was suggested that it is controlled through RevU, which is one of the above.

次に、リベロマイシン生合成遺伝子に対する本発明の化合物の効果について調査した。リベロマイシン類の生合成に必要な遺伝子として、上記制御遺伝子3種及びリベロマイシン生合成遺伝子18種の合計21種の遺伝子が同定されている(Takahashi S. et al., Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation., Nature Chemical Biology. 7, 461-468 (2011))。
そこで、リベロマイシン生合成遺伝子について培養開始24時間後の転写量を調査した。使用したプライマーは上記表5の通りである。
Next, the effect of the compound of the present invention on the reveromycin biosynthesis gene was investigated. As genes necessary for the biosynthesis of reveromycins, a total of 21 genes including 3 regulatory genes and 18 reveromycin biosynthesis genes have been identified (Takahashi S. et al., Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation., Nature Chemical Biology. 7, 461-468 (2011)).
Accordingly, the amount of transcription of the reveromycin biosynthesis gene was investigated 24 hours after the start of culture. The primers used are as shown in Table 5 above.

その結果、上記転写因子3種をコードする遺伝子以外の18種の遺伝子うち、ポリケチド生合成に関与する遺伝子(revB及びrevC);前駆体生合成に関与する遺伝子(revR及びrevS);及びポストポリケチド修飾遺伝子(post polyketide tailoring genes)(revG、revI、revJ、revK、revL)の発現が、ネガティブコントロールに対して少なくとも4倍上方に制御されることが判った(図7b)。
以上から、本発明の化合物は、LuxRファミリー転写因子量を増大させるように作用し、増大したLuxRファミリー転写因子がポリケチド化合物の合成・修飾に関与する遺伝子群の発現量を増大することにより、ポリケチド化合物の生産量が増大することが強く示唆された。
As a result, among 18 genes other than the genes encoding the above three transcription factors, genes involved in polyketide biosynthesis (revB and revC); genes involved in precursor biosynthesis (revR and revS); and post-polyketides It was found that expression of post polyketide tailoring genes (revG, revI, revJ, revK, revL) was controlled at least 4 times higher than the negative control (FIG. 7b).
From the above, the compound of the present invention acts to increase the amount of the LuxR family transcription factor, and the increased LuxR family transcription factor increases the expression level of the gene group involved in the synthesis and modification of the polyketide compound. It was strongly suggested that the production amount of the compound increased.

[実施例4]
<revU遺伝子ノックアウト試験>
RevUがリベロマイシン生合成の正の制御因子であること確認するために遺伝子ノックアウトおよび相補試験を行った。revU遺伝子破壊株は、revU遺伝子の一部をaphII遺伝子に置き換えた構築物を含むベクターで形質転換したE. coli GM2929 hsdS::Tn10(pUB307::Tn7)をS. reveromyceticus SN-593との接合により伝達することにより作製し、遺伝子破壊をサザンハイブリダイゼーションにより確認した(図8(a)及び(b))。相補試験は、aphIIプロモーターの制御下にrevU遺伝子を含むpTYM19ベクター(pTYM−revU)を野生株又は上記revU遺伝子破壊株に導入することにより行った。使用した株およびプラスミドを以下の表6にまとめる。S. reveromyceticus SN-593、ΔrevU、ΔrevU::revU、SN-593::revUについての結果をそれぞれ図8(c)、(d)、(e)、(f)に示す。
[Example 4]
<RevU gene knockout test>
Gene knockout and complementation studies were performed to confirm that RevU is a positive regulator of reveromycin biosynthesis. The revU gene-disrupted strain was obtained by conjugating E. coli GM2929 hsdS :: Tn10 (pUB307 :: Tn7) transformed with a vector containing a construct in which part of the revU gene was replaced with the aphII gene to S. reveromyceticus SN-593. The gene disruption was confirmed by Southern hybridization (FIGS. 8A and 8B). The complementation test was performed by introducing the pTYM19 vector (pTYM-revU) containing the revU gene under the control of the aphII promoter into the wild strain or the revU gene disrupted strain. The strains and plasmids used are summarized in Table 6 below. The results for S. reveromyceticus SN-593, ΔrevU, ΔrevU :: revU, SN-593 :: revU are shown in FIGS. 8 (c), (d), (e), and (f), respectively.

revU遺伝子の破壊によりリベロマイシン類の生産が完全に消失し、aphIIプロモーターの制御下のrevU遺伝子のrevU遺伝子破壊株への組み込み(1コピー)により、野生株に匹敵するレベルのリベロマイシン類の産生が回復した。また、aphIIプロモーターの制御下のrevU遺伝子を野生株に組み込んだ場合、リベロマイシン生産量が増加した。これらの結果は、RevUがリベロマイシン生合成において正の制御因子として重要な役割を果たしており、revU遺伝子の発現増強によりリベロマイシン類の生産が増大することを示す。
次に、野生株及びrevU遺伝子破壊株(ΔrevU)をSK2培地(70ml)で28℃、150rpmで2日間、前培養した。バイオメディエーター(化合物(4))添加又は無添加のSY−B培地(10ml)に、前培養液1/100量添加し、28℃、150rpmで3日間培養を継続した。培養液に等量のアセトンを加え、超音波破砕し、遠心分離後に上清をLC−MS解析した。その結果を図9に示す。
なお、図9(a)〜(d)は以下の通りである。
・図9(a):野生株にDMSOに溶解した化合物(4)を1μg・ml-1添加した場合。
・図9(b):野生株にDMSOのみを加えた場合。
・図9(c):revU遺伝子破壊株(ΔrevU)にDMSOに溶解した化合物(4)を1μg・ml-1添加した場合。
・図9(d):ΔrevUにDMSOのみを加えた場合。
Disruption of the revU gene completely abolished the production of reveromycin, and the incorporation of the revU gene under the control of the aphII promoter into the revU gene disruption strain (1 copy) produced a level of reveromycin that was comparable to the wild strain Recovered. In addition, when the revU gene under the control of the aphII promoter was incorporated into a wild type strain, the production amount of reveromycin was increased. These results indicate that RevU plays an important role as a positive regulator in reveromycin biosynthesis, and that enhanced expression of the revU gene increases the production of reveromycins.
Next, the wild strain and the revU gene disruption strain (ΔrevU) were pre-cultured in SK2 medium (70 ml) at 28 ° C. and 150 rpm for 2 days. 1/100 volume of the preculture solution was added to the SY-B medium (10 ml) with or without the biomediator (compound (4)), and the culture was continued at 28 ° C. and 150 rpm for 3 days. An equal amount of acetone was added to the culture medium, and the mixture was sonicated and centrifuged, and the supernatant was analyzed by LC-MS. The result is shown in FIG.
9A to 9D are as follows.
FIG. 9 (a): When 1 μg · ml −1 of the compound (4) dissolved in DMSO is added to the wild type strain.
-FIG.9 (b): When only DMSO is added to a wild strain.
FIG. 9 (c): When 1 μg · ml −1 of the compound (4) dissolved in DMSO is added to the revU gene disruption strain (ΔrevU).
FIG. 9D: When only DMSO is added to ΔrevU.

その結果、野生株では、化合物(4)存在下でリベロマイシン類の生産増強が見られた(図9a:2種の大きなピークはそれぞれリベロマイシンA(左)、リベロマイシンB(右)を示す)。しかしながら、revU遺伝子破壊株では、化合物(4)の有無に関わらずリベロマイシン類の生産増強は認められなかった。従って、本発明の化合物(A)は、revU遺伝子の発現増強を介して、リベロマイシン類の生産性を高めることが明らかとなった。   As a result, in the wild strain, enhanced production of reveromycin was observed in the presence of compound (4) (FIG. 9a: two large peaks indicate reveromycin A (left) and reberomycin B (right), respectively. ). However, in the revU gene-disrupted strain, no enhanced production of reveromycin was observed regardless of the presence or absence of compound (4). Therefore, it has been clarified that the compound (A) of the present invention increases the productivity of reveromycins through enhanced expression of the revU gene.

[実施例5]
<LuxRファミリー転写因子を有する放線菌での、化合物(A)処理による代謝産物増強試験>
リベロマイシン生合成遺伝子クラスターを有するS. reveromyceticus SN-593以外の、LuxRファミリー転写因子遺伝子を含むポリケチド化合物生合成遺伝子クラスターを有する放線菌においても本発明の化合物(A)によりポリケチド化合物の生産性が増大するか否かを調べるために、別のStreptomyces属放線菌の培養液に本発明の化合物(4)を添加し、代謝産物をHPLCで解析したところ、代謝産物の生産性が増大することが確かめられた。
[Example 5]
<Metabolite enhancement test by compound (A) treatment with actinomycetes having LuxR family transcription factors>
In the actinomycetes having a polyketide compound biosynthesis gene cluster containing a LuxR family transcription factor gene other than S. reveromyceticus SN-593 having a reveromycin biosynthesis gene cluster, the productivity of the polyketide compound can be increased by the compound (A) of the present invention. In order to investigate whether or not it increases, when the compound (4) of the present invention is added to another Streptomyces actinomycetes culture solution and the metabolite is analyzed by HPLC, the productivity of the metabolite may increase. It was confirmed.

本発明の化合物による二次代謝産物生産は、ゲノム情報解読や遺伝子機能アノテーション情報を必要とせず、各放線菌について形質転換手法を確立する必要もなく応用範囲が広い。また、本発明の化合物は、薬剤として利用の可能性が高いポリケチド化合物を二次代謝産物として誘導することが出来る。   Secondary metabolite production by the compounds of the present invention does not require genome information decoding or gene function annotation information, and does not require the establishment of transformation methods for each actinomycetes, and has a wide range of applications. In addition, the compound of the present invention can induce a polyketide compound that is highly likely to be used as a drug as a secondary metabolite.

Claims (7)

下記一般式(A)で表される化合物を含む、放線菌におけるポリケチド化合物の産生増強剤であって、前記ポリケチド化合物がリベロマイシンである、前記増強剤。
(式中、R1はハロゲン原子を表し;R2はCONH2を表し;nは0又は1を表す。)
A potentiator of production of polyketide compounds in actinomycetes, comprising a compound represented by the following general formula (A), wherein the polyketide compound is reveromycin.
(Wherein R 1 represents a halogen atom; R 2 represents CONH 2 ; n represents 0 or 1 )
前記ポリケチド化合物がリベロマイシンAである、請求項1に記載の増強剤。   The potentiator of claim 1, wherein the polyketide compound is reveromycin A. 前記放線菌がStreptomyces sp. SN-593(受託番号FERM BP−3406)である、請求項1又は2に記載の増強剤。 The enhancer according to claim 1 or 2 , wherein the actinomycetes is Streptomyces sp. SN-593 (Accession No. FERM BP-3406). 下記一般式(A)で表される化合物を含む、放線菌におけるLuxRファミリー転写因子遺伝子の発現増強剤。
(式中、R1はハロゲン原子を表し;R2はCONH2を表し;nは0又は1を表す。)
An agent for enhancing the expression of a LuxR family transcription factor gene in actinomycetes, comprising a compound represented by the following general formula (A):
(Wherein R 1 represents a halogen atom; R 2 represents CONH 2 ; n represents 0 or 1 )
下記から選ばれる化合物。
A compound selected from the following .
下記一般式(A)で表される化合物を放線菌の培養液に添加する工程を含む、ポリケチド化合物の製造方法であって、前記ポリケチド化合物がリベロマイシンである、前記製造方法。
(式中、R1はハロゲン原子を表し;R2はCONH2を表し;nは0又は1を表す。)
A method for producing a polyketide compound, comprising a step of adding a compound represented by the following general formula (A) to a culture solution of actinomycetes, wherein the polyketide compound is reveromycin.
(Wherein R 1 represents a halogen atom; R 2 represents CONH 2 ; n represents 0 or 1 )
下記一般式(A)で表される化合物を放線菌の培養液に添加する工程を含む、放線菌においてLuxRファミリー転写因子遺伝子の発現を増強させる方法。
(式中、R1はハロゲン原子を表し;R2はCONH2を表し;nは0又は1を表す。)
A method for enhancing the expression of a LuxR family transcription factor gene in actinomycetes, comprising a step of adding a compound represented by the following general formula (A) to a culture solution of actinomycetes.
(Wherein R 1 represents a halogen atom; R 2 represents CONH 2 ; n represents 0 or 1 )
JP2011178620A 2011-08-17 2011-08-17 Method for producing polyketide compound Expired - Fee Related JP5999676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178620A JP5999676B2 (en) 2011-08-17 2011-08-17 Method for producing polyketide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178620A JP5999676B2 (en) 2011-08-17 2011-08-17 Method for producing polyketide compound

Publications (2)

Publication Number Publication Date
JP2013039081A JP2013039081A (en) 2013-02-28
JP5999676B2 true JP5999676B2 (en) 2016-09-28

Family

ID=47888118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178620A Expired - Fee Related JP5999676B2 (en) 2011-08-17 2011-08-17 Method for producing polyketide compound

Country Status (1)

Country Link
JP (1) JP5999676B2 (en)

Also Published As

Publication number Publication date
JP2013039081A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
Panter et al. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria
Scherlach et al. Triggering cryptic natural product biosynthesis in microorganisms
Fguira et al. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80
Sosio et al. Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics
Jung et al. A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253
Khebizi et al. Oligomycins A and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil
Jungmann et al. Two of a Kind The Biosynthetic Pathways of Chlorotonil and Anthracimycin
Paulus et al. New alpiniamides from Streptomyces sp. IB2014/011-12 assembled by an unusual hybrid non-ribosomal peptide synthetase trans-AT polyketide synthase enzyme
Raju et al. Nocardiopsins C and D and nocardiopyrone A: new polyketides from an Australian marine-derived Nocardiopsis sp.
Li et al. Characterization of the positive SARP family regulator PieR for improving piericidin A1 production in Streptomyces piomogeues var. Hangzhouwanensis
Charousová et al. Streptomyces globosus DK15 and Streptomyces ederensis ST13 as new producers of factumycin and tetrangomycin antibiotics
US8980587B2 (en) Process for producing reveromycin A or a synthetic intermediate thereof, process for producing compounds containing a spiroketal ring and novel antineoplastics, fungicides and therapeutic agents for bone disorders
El-Hawary et al. Elicitation for activation of the actinomycete genome's cryptic secondary metabolite gene clusters
WO2012010606A1 (en) Hexacyclic polyketides as kinase inhibitors
Ordóñez-Robles et al. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes
Xu et al. PreQ0 base, an unusual metabolite with anti-cancer activity from Streptomyces qinglanensis 172205
CN109195971B (en) Antimicrobial compounds
CN107001241A (en) New sporangiocyst bacterium acid amides
JP5999676B2 (en) Method for producing polyketide compound
Phongsopitanun et al. Marine Streptomyces chumphonensis KK1-2 T produces piericidin A1 as the major secondary metabolite.
CN104427870A (en) Uk-2 biosynthetic genes and method for improving uk-2 productivity using same
Wang et al. Genome-directed discovery of antiproliferative bafilomycins from a deepsea-derived Streptomyces samsunensis
US11629174B2 (en) Cryptic metabolites and method for activating silent biosynthetic gene clusters in actinomycete bacteria
CN117024611B (en) Construction and activity application of oligosaccharide antibiotics everninomicin high-yield strain
Hou et al. Discovery of an Unusual Fatty Acid Amide from the Streptomyces ndgRyo Gene Mutant youssoufiensis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5999676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees