JP5996199B2 - Die for drawing - Google Patents

Die for drawing Download PDF

Info

Publication number
JP5996199B2
JP5996199B2 JP2012018865A JP2012018865A JP5996199B2 JP 5996199 B2 JP5996199 B2 JP 5996199B2 JP 2012018865 A JP2012018865 A JP 2012018865A JP 2012018865 A JP2012018865 A JP 2012018865A JP 5996199 B2 JP5996199 B2 JP 5996199B2
Authority
JP
Japan
Prior art keywords
surface roughness
die
corner
straight
tensile force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012018865A
Other languages
Japanese (ja)
Other versions
JP2013154388A (en
Inventor
雅規 竹内
雅規 竹内
佳 余
佳 余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2012018865A priority Critical patent/JP5996199B2/en
Publication of JP2013154388A publication Critical patent/JP2013154388A/en
Application granted granted Critical
Publication of JP5996199B2 publication Critical patent/JP5996199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、多角形容器を成形するための絞り加工用金型に関する。   The present invention relates to a drawing mold for forming a polygonal container.

なお、この明細書および特許請求の範囲において、「アルミニウム」の語は、アルミニウムおよびアルミニウム合金の両方を含む意味で用いる。   In this specification and claims, the term “aluminum” is used to include both aluminum and aluminum alloys.

近年、モバイル電気機器の小型化、軽量化に伴い、これらに搭載されるリチウムイオン電池やリチウムポリマー電池の外装材としては、従来の金属缶に代えて、アルミニウム箔の両面に熱可塑性樹脂フィルムを貼り合わせたラミネート外装材が用いられて軽量化が図られている。   In recent years, with the miniaturization and weight reduction of mobile electrical devices, instead of conventional metal cans, thermoplastic resin films have been used on both sides of aluminum foil as exterior materials for lithium ion batteries and lithium polymer batteries. The laminated laminate material is used to reduce the weight.

図5に示すように、前記外装材(50)は、電池本体部を収容する四角形容器(41)の上面開放口の周縁に封止用周縁部(52)を略水平方向の外方に向けて延ばされた立体形状の第一外装材(51)と、前記第一外装材(51)の封止用周縁部(52)相当寸法の平面形状の第二外装材(53)とにより構成されている。   As shown in FIG. 5, the exterior material (50) has a sealing peripheral edge (52) facing outward in a substantially horizontal direction at the peripheral edge of the upper surface opening of the rectangular container (41) that houses the battery main body. The three-dimensional first exterior material (51) extended and the planar second exterior material (53) having a dimension equivalent to the sealing peripheral edge (52) of the first exterior material (51). Has been.

前記第一外装材(51)は、素材板を絞り加工することによって作製されている(特許文献1、2参照)。   The first exterior material (51) is produced by drawing a material plate (see Patent Documents 1 and 2).

特開2000−133216号公報JP 2000-133216 A 特開2002−208384号公報JP 2002-208384 A

前記第一外装材(53)は、四角形容器(41)の内部容積を確保するために、側壁部(46a)(46b)が高く、かつ2つの側壁部(46a)(46b)と底壁部(47)とが合わさった三面コーナー部(48)が直角に近い角度で曲がっていることが求められる。   The first exterior material (53) has a high side wall portion (46a) (46b) and two side wall portions (46a) (46b) and a bottom wall portion in order to secure the internal volume of the rectangular container (41). It is required that the trihedral corner (48) combined with (47) bends at an angle close to a right angle.

しかしながら、従来の絞り加工においては上記形状に成形しようとすると三面コーナー部(48)が破断するため、所期する形状への成形が困難であった。   However, in the conventional drawing process, if the three-surface corner portion (48) is broken when attempting to mold into the above-mentioned shape, it has been difficult to form the desired shape.

本発明は、上述した従来の絞り加工における素材板の変形挙動を解明し、これにより高い側壁部と可及的に直角に近い三面コーナー部を成形できる絞り加工用金型を提供するものである。   The present invention provides a drawing die capable of elucidating the deformation behavior of a material plate in the above-described conventional drawing, and thereby forming a three-sided corner portion as close to a right angle as possible with a high side wall portion. .

即ち、本発明は下記[1]〜[4]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[4].

[1]素材板を押し込んで多角形容器の内面形状を成形するパンチと、前記パンチに押し込まれた素材板を流入させる多角形の穴を有するダイスと、前記パンチを挿入する多角形の穴を有し、前記ダイスの穴との周囲において素材板を抑えるブランクホルダーとを備える絞り加工用金型であって、
前記ダイスおよびブランクホルダーのうちの少なくとも一方の挟み付け面において、多角形の穴の直線部に面する領域に、表面粗さがコーナー部に面する領域よりも小さい部分を有することを特徴とする絞り加工用金型。
[1] A punch for pressing the material plate to form the inner surface shape of the polygonal container, a die having a polygonal hole for allowing the material plate pressed into the punch to flow, and a polygonal hole for inserting the punch. A die for drawing with a blank holder for holding the blank plate around the die hole,
In the sandwiching surface of at least one of the die and the blank holder, the region facing the linear portion of the polygonal hole has a portion whose surface roughness is smaller than the region facing the corner portion. Die for drawing.

[2]前記直線部に面する領域における表面粗さの小さい部分の表面粗さ(T)とコーナー部に面する領域の表面粗さ(T)との比率(T/T)が0.05〜0.6である前項1に記載の絞り加工用金型。 [2] Ratio (T S / T C ) between the surface roughness (T S ) of the portion having a small surface roughness in the region facing the linear portion and the surface roughness (T C ) of the region facing the corner portion 2. The drawing die according to item 1 above, having a value of 0.05 to 0.6.

[3]前記直線部に面する領域における表面粗さの小さい部分の素材板に対する摩擦係数(CF)とコーナー部に面する領域における素材板に対する摩擦係数(CF)との比率(CF/CF)が0.05〜0.5である前項1に記載の絞り加工用金型。 [3] Ratio (CF S ) of the coefficient of friction (CF S ) with respect to the material plate of the portion having a small surface roughness in the region facing the straight portion and the coefficient of friction (CF C ) with respect to the material plate in the region facing the corner portion 2. The drawing die according to item 1 above, wherein / CF C ) is 0.05 to 0.5.

[4]前記素材板は金属箔と熱可塑性樹脂フィルムとを貼り合わせたラミネート材である前項1〜3のいずれかに記載の絞り加工用金型。   [4] The drawing die according to any one of items 1 to 3, wherein the material plate is a laminate material in which a metal foil and a thermoplastic resin film are bonded together.

上記[1]に記載の発明によれば、ダイスおよびブランクホルダーの多角形の穴の直線部に面する領域に、表面粗さがコーナー部に面する領域よりも小さく形成された部分を有しているので、直線部のフランジ部がダイスの穴に引き込まれ易く、従来の金型よりも引き込み量が大きくなる。   According to the invention described in [1] above, the region facing the linear portion of the polygonal hole of the die and the blank holder has a portion whose surface roughness is smaller than the region facing the corner portion. Therefore, the flange portion of the straight portion is easily drawn into the hole of the die, and the amount of drawing is larger than that of the conventional mold.

多角形容器の絞り加工においては、コーナー部では材料が圧縮されて引き込まれ難いために、側壁部を立ち上げる際には開口縁と底部とを結ぶ方向の引張力(F1)が生じる。一方、直線部においては、パンチの中心から放射方向に引張力が生じる。放射方向の引張力は材料を放射方向に伸ばす力であり、材料が放射方向に伸びると周方向には縮もうとするので、周方向においては材料をコーナー部から直線部に引き寄せる引張力(F3)が生じている。従って、多角形容器の三面コーナー部には(F1、F3)の二軸方向に引張力が生じているので、三面コーナー部が最も破断が発生し易い箇所である。   In drawing processing of a polygonal container, since the material is hardly compressed and drawn in at the corner portion, when the side wall portion is raised, a tensile force (F1) in the direction connecting the opening edge and the bottom portion is generated. On the other hand, in the straight portion, a tensile force is generated in the radial direction from the center of the punch. The tensile force in the radial direction is a force that stretches the material in the radial direction. When the material extends in the radial direction, the material tends to shrink in the circumferential direction. Therefore, in the circumferential direction, the tensile force (F3) pulls the material from the corner portion to the straight portion. ) Has occurred. Accordingly, since the tensile force is generated in the biaxial direction of (F1, F3) at the three-surface corner portion of the polygonal container, the three-surface corner portion is the place where the breakage is most likely to occur.

ところが、本発明の金型では直線部の引き込み量が大きくなるので、放射方向の引張力が小さくなり、それに伴って周方向の引張力(F3)も小さくなる。三面コーナー部に発生する二軸方向に引張力(F1、F3)のうち、一方の引張力(F3)が小さくなることによって、三面コーナー部の破断の発生が抑制される。ひいては、絞り加工において、多角形容器の側壁部をより高く、三面コーナー部の角度を可及的に直角に近づけることができる。   However, in the mold according to the present invention, the pulling amount of the linear portion is increased, so that the radial tensile force is reduced, and accordingly, the circumferential tensile force (F3) is also reduced. Of the tensile forces (F1, F3) generated in the biaxial direction generated at the trihedral corner portion, one of the tensile forces (F3) is reduced, thereby suppressing the occurrence of breakage at the trihedral corner portion. As a result, in the drawing process, the side wall portion of the polygonal container can be made higher and the angle of the three-surface corner portion can be made as close to a right angle as possible.

上記[2][3]に記載の各発明によれば、直線部における引き込み量を大きくして三面コーナー部における破断の発生を抑制しつつ、フランジ部のしわの発生も防止できる。   According to each invention described in the above [2] and [3], it is possible to prevent the occurrence of wrinkles in the flange portion while suppressing the occurrence of breakage in the three-surface corner portion by increasing the pull-in amount in the straight portion.

上記[4]に記載の発明によれば、ラミネート材を成形することによって、側壁部が高くかつ三面コーナー部が可及的に直角に近い電池用外装材を作製することができる。   According to the invention described in [4] above, by forming the laminate material, it is possible to produce a battery exterior material having a high side wall portion and a three-surface corner portion as close to a right angle as possible.

本発明にかかる絞り加工用金型の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the metal mold | die for drawing processing concerning this invention. 図1の絞り加工用金型のダイスおよびブランクホルダーの平面図である。FIG. 2 is a plan view of a drawing die and a blank holder of FIG. 1. 図1の絞り加工用金型を用いた素材板の加工状態を示す断面図である。It is sectional drawing which shows the processing state of the raw material board using the metal mold | die for drawing processing of FIG. 絞り加工品の斜視図である。It is a perspective view of a drawn product. 図4AにおけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. 4A. 図4Aの絞り加工品をフランジ部を上側にした状態を示す斜視図である。It is a perspective view which shows the state which made the flange part the upper side of the drawing processed product of FIG. 4A. 電池用外装材の斜視図である。It is a perspective view of the exterior material for batteries. 絞り加工品のコーナー部およびその近傍において、材料の移動および材料に発生する引張力を示す図である。It is a figure which shows the movement of a material and the tensile force which generate | occur | produces in a material in the corner part of a drawn product, and its vicinity. 本発明にかかる他のダイスおよびブランクホルダーの平面図である。It is a top view of the other dice | dies and blank holder concerning this invention. 本発明にかかるさらに他のダイスおよびブランクホルダーの平面図である。It is a top view of the other dice and blank holder concerning the present invention. 絞り加工のシミュレーションを行うためにメッシュ切りした素材板の1/4平面図である。It is a 1/4 top view of the raw material board cut into a mesh in order to perform a drawing process simulation. 本発明の金型を用いた絞り加工のシミュレーション図である。It is a simulation figure of the drawing process using the metal mold | die of this invention. 比較例の金型を用いた絞り加工のシミュレーション図である。It is a simulation figure of the drawing process using the metal mold | die of a comparative example. 本発明例および比較例において、A点からの距離と歪み値との関係を示すグラフである。It is a graph which shows the relationship between the distance from A point, and a distortion value in the example of this invention and a comparative example. 本発明例および比較例において、四角形容器の成形深さと最大歪み値との関係を示すグラフである。In the example of the present invention and a comparative example, it is a graph which shows the relation between the fabrication depth of a square container, and the maximum distortion value.

[本発明にかかる絞り加工用金型]
図1は本発明にかかる絞り加工用金型の一実施形態を示す分解斜視図であり、図2は絞り加工用金型を構成するダイスおよびブランクホルダーの平面図である。図3は図1の絞り加工用金型(1)を用いた素材板の加工状態を示す断面図であり、図4A〜図4Cは絞り加工品(40)である。図5は電池用外装材(50)であり、前記絞り加工品(40)は立体形状の第二外装材(51)を作製するための中間素材である。
[Drawing die according to the present invention]
FIG. 1 is an exploded perspective view showing an embodiment of a drawing mold according to the present invention, and FIG. 2 is a plan view of a die and a blank holder constituting the drawing mold. FIG. 3 is a cross-sectional view showing a processing state of a material plate using the drawing die (1) of FIG. 1, and FIGS. 4A to 4C are drawing products (40). FIG. 5 shows a battery exterior material (50), and the drawn product (40) is an intermediate material for producing a three-dimensional second exterior material (51).

絞り加工用金型(1)は、素材板(2)を押し込んで四角形容器(41)の内面形状を成形するパンチ(10)と、前記パンチ(10)に押し込まれた素材板(2)を流入させる四角形の穴(21)をするダイス(20)と、前記ダイス(20)の穴(21)と同寸の四角形の穴(31)を有し、穴(21)(31)の周りで素材板(2)を抑えるブランクホルダー(30)とを備えている。   The drawing mold (1) includes a punch (10) for pressing the material plate (2) to form the inner surface of the rectangular container (41), and a material plate (2) pressed into the punch (10). A die (20) for making a square hole (21) to flow in, and a square hole (31) of the same size as the hole (21) of the die (20), around the hole (21) (31) It has a blank holder (30) that holds the blank (2).

図1および図2に示すように、前記ダイス(20)の穴(21)およびブランクホルダー(30)の穴(31)の開口縁は4つのコーナー部(22)(32)と2対の平行な直線部(23)(24)(33)(34)とで形成されている。図2に示すダイス(20)およびブランクホルダー(30)の挟み付け面において、点線は直線部(23)(24)(33)(34)に面する直線部領域(A1)(A2)(B1)(B2)とコーナー部(22)(32)に面するコーナー部領域(A3)(B3)との境界である。前記直線部領域(A1)(A2)(B1)(B2)の表面粗さ(T)はコーナー部領域(A3)(B3)の表面粗さ(T)よりも小さくなるように形成され、素材板(2)に対する摩擦係数が小さくなるように設定されている。表面粗さ(T)(T)の好適範囲については後に詳述する。 As shown in FIGS. 1 and 2, the opening edges of the hole (21) of the die (20) and the hole (31) of the blank holder (30) are four corners (22) (32) and two pairs of parallels. These straight portions (23), (24), (33) and (34) are formed. In the sandwiched surface of the die (20) and the blank holder (30) shown in FIG. 2, the dotted line is the straight part region (A1) (A2) (B1) facing the straight part (23) (24) (33) (34). ) (B2) and a boundary between the corner portions (A3) and (B3) facing the corner portions (22) and (32). The surface roughness (T S ) of the straight line region (A1) (A2) (B1) (B2) is formed to be smaller than the surface roughness (T C ) of the corner region (A3) (B3). The friction coefficient for the material plate (2) is set to be small. A preferable range of the surface roughness (T S ) (T C ) will be described in detail later.

[絞り加工における変形挙動]
絞り加工は、ダイス(20)の穴(21)に素材板(2)をパンチ(10)で押し込み、パンチ(10)からの引張力によって素材板(2)のフランジ部(45a)(45b)を穴(21)内に引き込むことによって側壁部(46a)(46b)を形成する加工方法である。図4A〜4Cに示す絞り加工品(40)において、四角形容器(41)の開口縁(42)は1/4円のコーナー部(43)と一対の長辺および一対の短辺からなる直線部(44a)(44b)とによって形成され、絞り加工における変形挙動はコーナー部(43)と直線部(44a)(44b)とで異なっている。即ち、コーナー部(43)ではフランジ部(45a)に対してパンチ(10)からの半径方向の引張力によって円周方向に圧縮力が生じることによって材料が集中し、集中した材料が絞り抵抗になるために殆ど引き込まれない。一方、直線部(44a)(44b)はパンチ(10)の肩部とダイス(20)の肩部とによる曲げ変形であるから、パンチ(10)からの引張力に対して絞り抵抗が小さくフランジ部(45b)が引き込まれやすい。従って、四角形の素材板(2)から四角形容器(41)を絞り成形した加工品(40)は、材料が多く引き込まれる直線部(44a)(44b)の中央部でフランジ部(45b)の幅が狭くなっている。なお、図5の第一外装材(51)は前記絞り加工品(40)のフランジ部(45a)(45b)を切り整えて封止用周縁部(52)を成形したものである。
[Deformation behavior in drawing]
For drawing, the blank plate (2) is pushed into the hole (21) of the die (20) with the punch (10), and the flange (45a) (45b) of the blank plate (2) is pulled by the tensile force from the punch (10). Is a processing method for forming the side wall portions (46a) and (46b) by drawing the wire into the hole (21). In the drawn product (40) shown in FIGS. 4A to 4C, the opening edge (42) of the quadrangular container (41) has a 1/4 circle corner portion (43), a straight portion composed of a pair of long sides and a pair of short sides. (44a) and (44b), and the deformation behavior in the drawing is different between the corner portion (43) and the straight portions (44a) and (44b). That is, in the corner portion (43), the material is concentrated by the compressive force generated in the circumferential direction by the radial tensile force from the punch (10) with respect to the flange portion (45a), and the concentrated material becomes the drawing resistance. It is hardly pulled in to become. On the other hand, since the straight portions (44a) and (44b) are bending deformations due to the shoulder of the punch (10) and the shoulder of the die (20), the squeezing resistance is small with respect to the tensile force from the punch (10). Part (45b) is easy to be pulled in. Therefore, the processed product (40) obtained by drawing the rectangular container (41) from the rectangular material plate (2) is the width of the flange portion (45b) at the center of the straight portion (44a) (44b) where much material is drawn. Is narrower. In addition, the 1st exterior | packing material (51) of FIG. 5 shape | molds the peripheral part (52) for sealing by trimming the flange parts (45a) (45b) of the said draw-processed goods (40).

発明者は、上述した四角形容器の絞り加工における変形挙動を分析し、2つの側壁部(46a)(46b)と底壁部(47)との三面コーナー部(48)で破断が生じる原因を解明するとともに、この原因を緩和することによって三面コーナー部(48)を可及的に直角に近づけ、かつ高い側壁部(46a)(46b)を形成することに成功した。以下の説明において図6を参照する。   The inventor analyzed the deformation behavior of the above-described rectangular container during drawing, and elucidated the cause of breakage at the three-surface corner (48) of the two side walls (46a) (46b) and the bottom wall (47). At the same time, by mitigating this cause, the trihedral corner portion (48) was made as close to a right angle as possible, and a high side wall portion (46a) (46b) was successfully formed. In the following description, reference is made to FIG.

図6は絞り加工品(40)の要部拡大図であり、点線で囲まれた(60)は開口縁(42)の丸み、(61)は側壁部(46a)(46b)と底壁部(47)との境界部の丸み、(62)は側壁部(46a)と側壁部(46b)との境界部の丸みを示している。コーナー部(43)ではフランジ部(45a)が殆ど引き込まれないので、コーナー部(43)から立ち上がる側壁部(62)は底壁部(47)からの材料移動(矢印M1)および側壁部(46a)(46b)の境界近傍からの材料移動(矢印M2、M3)によって形成されると考えられる。このとき、容器底部の三面コーナー部(48)においては開口縁(42)のコーナー部(43)および底壁部(47)に向かう歪みが生じ、矢印F1で表される引張力が生じる。一方、直線部(44a)(44b)のフランジ部(45b)および側壁部(46a)(46b)においては、底壁部(47)の中心から放射方向(径方向)の引張力(F2)が生じるが、この引張力(F2)によって材料が放射方向に伸びようとすると周方向には縮もうとするので、周方向においては材料をコーナー部(43)の側壁部(62)から直線部(44a)(44b)の側壁部(46a)(46b)側に引き寄せる引張力(F3)が生じる。放射方向の引張力(F2)が大きくなって放射方向の材料の伸びが大きくなるほど、周方向の縮みが大きくなって周方向の引張力(F3)が大きくなり、コーナー部(43)の側壁部(62)の材料を直線部(44a)(44b)側に引っ張る力が大きくなる。従って、容器底部の三面コーナー部(48)では、上述した方向の歪みによる引張力(F1)力に加えて周方向の引張力(F3)が加わり、二軸方向の引張力(F1)(F3)によって応力が増大するので破断し易くなる。また、前記引張力(F1)(F3)は側壁部(46a)(46b)が高くなるほど大きくなり、また三面コーナー部(48)の角度が鈍角から直角に近くなるほど大きくなるから、このような形状に成形しようとすれば破断が起きやすくなる。なお、三面コーナー部(48)における歪み量は側壁部(62)と底壁部の丸み(61)との境界部(63)で最大となるので、破断は三面コーナー部(48)の頂点ではなくこの境界部(63)から発生しやすい。   FIG. 6 is an enlarged view of the main part of the drawn product (40). (60) surrounded by a dotted line is rounded opening edge (42), (61) is side wall (46a) (46b) and bottom wall (47) indicates the roundness of the boundary portion, and (62) indicates the roundness of the boundary portion between the side wall portion (46a) and the side wall portion (46b). Since the flange portion (45a) is hardly drawn in the corner portion (43), the side wall portion (62) rising from the corner portion (43) is moved from the bottom wall portion (47) (arrow M1) and the side wall portion (46a). ) (46b) is considered to be formed by material movement (arrows M2, M3) from the vicinity of the boundary. At this time, in the three-surface corner portion (48) of the container bottom portion, distortion toward the corner portion (43) and the bottom wall portion (47) of the opening edge (42) is generated, and a tensile force represented by an arrow F1 is generated. On the other hand, in the flange part (45b) and the side wall part (46a) (46b) of the straight part (44a) (44b), the radial direction (radial direction) tensile force (F2) from the center of the bottom wall part (47). However, when the material tries to extend in the radial direction by the tensile force (F2), the material tends to shrink in the circumferential direction, so that the material is removed from the side wall portion (62) of the corner portion (43) to the straight portion ( A tensile force (F3) is generated that pulls toward the side wall portions (46a) and (46b) of 44a and 44b. The greater the radial tensile force (F2) and the greater the radial material elongation, the greater the circumferential shrinkage and the greater the circumferential tensile force (F3), and the corner (43) side wall. The force which pulls the material of (62) to the linear part (44a) (44b) side becomes large. Accordingly, in the three-surface corner portion (48) at the bottom of the container, the tensile force (F3) in the circumferential direction is applied in addition to the tensile force (F1) due to the strain in the above-described direction, and the tensile force (F1) (F3) in the biaxial direction. ), The stress increases, and it is easy to break. Further, the tensile force (F1) (F3) increases as the side wall portions (46a) (46b) become higher, and increases as the angle of the three-surface corner portion (48) becomes closer to a right angle from the obtuse angle. If it is going to be molded, breakage tends to occur. In addition, since the amount of distortion at the trihedral corner portion (48) is the maximum at the boundary portion (63) between the side wall portion (62) and the roundness of the bottom wall portion (61), the fracture is at the apex of the trihedral corner portion (48). It tends to occur from this boundary (63).

[本発明の絞り金型による変形挙動]
三面コーナー部(48)に発生する二軸方向の引張力(F1)(F3)のうちの少なくとも一方を小さくすれば、三面コーナー部(48)における破断の発生を抑制することができ、ひいては、四多角形容器(41)の側壁部(46a)(46b)をより高く、三面コーナー部(48)の角度を可及的に直角に近づけることができる。本発明の金型(1)においては、周方向の引張力(F3)が小さくなるような変形を実現することによって三面コーナー部(48)の破断の発生を抑制する。
[Deformation behavior by the drawing die of the present invention]
If at least one of the biaxial tensile forces (F1) (F3) generated at the trihedral corner portion (48) is reduced, the occurrence of breakage at the trihedral corner portion (48) can be suppressed, The side wall portions (46a) and (46b) of the quadrangular container (41) can be made higher, and the angle of the three-surface corner portion (48) can be made as close to a right angle as possible. In the metal mold | die (1) of this invention, generation | occurrence | production of the fracture | rupture of a trihedral corner part (48) is suppressed by implement | achieving a deformation | transformation that the tensile force (F3) of the circumferential direction becomes small.

上述したように、周方向の引張力(F3)は直線部(44a)(44b)における放射方向の引張力(F2)に伴って生じるものであり、直線部(44a)(44b)における放射方向の引張力(F2)が小さくなるようにすれば周方向の引張力(F3)も小さくなる。放射方向の引張力(F2)は直線部(44a)(44b)における材料の伸びによるものであり、側壁部(46a)(46b)の高さが一定であれば、直線部(44a)(44b)においてより多くの材料をダイス(20)の穴(21)に送り込むようにすれば放射方向の引張力(F2)を小さくすることができる。   As described above, the circumferential tensile force (F3) is generated along with the radial tensile force (F2) in the linear portions (44a) and (44b), and the radial direction in the linear portions (44a) and (44b). If the tensile force (F2) is reduced, the circumferential tensile force (F3) is also reduced. The radial tensile force (F2) is due to the elongation of the material in the straight portions (44a) and (44b). If the side walls (46a) and (46b) have a constant height, the straight portions (44a) and (44b) ), If more material is fed into the hole (21) of the die (20), the radial tensile force (F2) can be reduced.

本発明においては、ダイス(20)およびブランクホルダー(30)の直線部領域(A1)(A2)(B1)(B2)に、表面粗さ(T)がコーナー部領域(A3)(B3)の表面粗さ(T)よりも小さく平滑性の高い部分を形成することにより、摩擦抵抗を小さくして直線部のフランジ部(45b)が穴(21)に送り込まれ易くなるようにしている。 In the present invention, the surface roughness (T S ) is the corner area (A3) (B3) in the linear area (A1) (A2) (B1) (B2) of the die (20) and the blank holder (30). by forming the surface roughness (T C) less highly smooth portion than the flange portion of the straight portion to reduce the frictional resistance (45b) is made to be easily fed into the bore (21) .

ダイス(20)およびブランクホルダー(30)の挟み付け面における表面粗さを算術平均高さ(R)で規定した場合、コーナー部領域(A3)(B3)の表面粗さ(T)は0.5〜2.0μm、直線部領域(A1)(A2)(B1)(B2)の表面粗さ(T)は0.06〜0.3μmが好ましく、特に好ましい表面粗さは(T)が1.0〜1.7μm、(T)が0.1〜0.15μmである。また、これらの表面粗さ(T)(T)の比率(T/T)は、0.05〜0.6の範囲に設定することが好ましく、特に0.1〜0.2の範囲に設定することが好ましい。 When the surface roughness at the clamping surface of the die (20) and the blank holder (30) is defined by the arithmetic average height (R a ), the surface roughness (T C ) of the corner area (A3) (B3) is The surface roughness (T S ) of the straight region (A1) (A2) (B1) (B2) is preferably 0.06 to 0.3 μm, and the particularly preferable surface roughness is (T C ) is 1.0 to 1.7 μm, and (T S ) is 0.1 to 0.15 μm. Further, the ratio (T S / T C ) of these surface roughnesses (T C ) (T S ) is preferably set in the range of 0.05 to 0.6, particularly 0.1 to 0.2. It is preferable to set in the range.

また、挟み付け面における表面粗さ(T)(T)の好適範囲は素材板(2)に対する摩擦係数で規定することもできる。直線部領域(A1)(A2)(B1)(B2)における摩擦係数(CF)とコーナー部領域(A3)(B3)における摩擦係数(CF)との比率(CF/CF)は0.05〜0.5となるよう設定することが好ましく、特に好ましい摩擦係数の比率(CF/CF)は0.1〜0.2である。 Moreover, the suitable range of the surface roughness (T S ) (T C ) on the sandwiching surface can be defined by the coefficient of friction with respect to the material plate (2). Linear region (A1) (A2) (B1 ) (B2) Friction coefficient at (CF S) and the corner region (A3) the ratio of the coefficient of friction (CF C) in (B3) (CF S / CF C) is It is preferable to set it to be 0.05 to 0.5, and a particularly preferable friction coefficient ratio (CF S / CF C ) is 0.1 to 0.2.

いずれの基準で表面粗さを規定した場合においても、ブランクホルダー(30)に所定の押圧力を付与して素材板(2)を挟み付けると、直線部領域(A1)(A2)(B1)(B2)の表面粗さとコーナー部領域(A3)(B3)の表面粗さとの差または比率が小さくなるほど材料の送り込み量が少なく三面コーナー部(48)の破断抑制効果も小さくなる。一方、表面粗さの差または比率が大きくなるほど送り込み量が多くなって、破断抑制効果は向上するが、その反面フランジ部(45b)のしわを抑制するというブランクホルダー本来の効果が損なわれるおそれがある。電池用の外装材(50)においては絞り加工品(40)のフランジ部(45a)(45b)を封止用周縁部(52)として利用するので、直線部領域(A1)(A2)(B1)(B2)においてもしわの発生を抑制するに足りる表面粗さが必要である。表面粗さの比率(T/T)および摩擦係数の比率(CF/CF)が上述した範囲内に設定されていれば、直線部における引き込み量を大きくして三面コーナー部における破断の発生を抑制しつつ、フランジ部のしわの発生も防止できる
なお、ダイスおよびブランクホルダーの挟み付け面における表面粗さは、表面研磨等の周知の表面処理によって適宜調節すれば良く、調節手段は問わない。
Regardless of which surface roughness is defined by any of the criteria, if a blank plate (30) is applied with a predetermined pressing force and the material plate (2) is sandwiched, the straight region (A1) (A2) (B1) As the difference or ratio between the surface roughness of (B2) and the surface roughness of the corner areas (A3) and (B3) decreases, the amount of material fed decreases and the effect of suppressing the breakage of the three-surface corner section (48) also decreases. On the other hand, as the surface roughness difference or ratio increases, the amount of feed increases, and the effect of suppressing breakage is improved. On the other hand, the original effect of suppressing the wrinkle of the flange (45b) may be impaired. is there. In the battery exterior material (50), since the flange portions (45a) and (45b) of the drawn product (40) are used as the sealing peripheral portion (52), the straight portion regions (A1) (A2) (B1) ) (B2) also requires a surface roughness sufficient to suppress the generation of wrinkles. If the surface roughness ratio (T S / T C ) and the friction coefficient ratio (CF S / CF C ) are set within the above-described ranges, the pull-in amount in the straight portion is increased and the break in the three-surface corner portion It is possible to prevent the occurrence of wrinkles in the flange part while suppressing the occurrence of wrinkles.Note that the surface roughness on the clamping surface of the die and the blank holder may be appropriately adjusted by a known surface treatment such as surface polishing. It doesn't matter.

本発明は、素材板(2)の材質や厚みを限定するものではなく、アルミニウムやステンレス等の金属の薄板または箔、金属薄板または金属箔と熱可塑性樹脂フィルムとを貼り合わせたラミネート材の絞り加工に好適に広く利用できる。また、素材板(2)の厚みにも制限はないが、絞り加工に適した厚み(t)として50〜300μmの範囲を推奨できる。また、アルミニウム箔と熱可塑性樹脂フィルムとを貼り合わせたラミネート材は電池用外装材として好適に用いられる材料であり、本発明の絞り加工用金型で成形することによって側壁部が高くかつ三面コーナー部が可及的に直角に近い電池用外装材を作製することができる。   The present invention is not limited to the material and thickness of the material plate (2), but is a thin plate or foil of a metal such as aluminum or stainless steel, or a diaphragm of a laminate material obtained by bonding a metal thin plate or metal foil and a thermoplastic resin film. It can be widely used suitably for processing. Moreover, although there is no restriction | limiting also in the thickness of a raw material board (2), the range of 50-300 micrometers can be recommended as thickness (t) suitable for drawing processing. Further, a laminate material obtained by laminating an aluminum foil and a thermoplastic resin film is a material that is suitably used as a battery exterior material. By molding with the drawing mold of the present invention, the side wall portion is high and the three-surface corner is used. It is possible to produce a battery outer packaging material that is as close to a right angle as possible.

[表面粗さの小さい部分の領域]
また、挟み付け面における表面粗さの小さい部分の領域は図2に示す直線部領域(A1)(A2)(B1)(B2)と一致していることに限定されるものではなく、コーナー部領域(A3)(B3)に跨がっている場合や直線部領域(A1)(A2)(B1)(B2)の一部に形成されている場合も本発明に含まれる。
[Area with small surface roughness]
Moreover, the area | region of the part with small surface roughness in a clamping surface is not limited to agree | coinciding with the linear part area | region (A1) (A2) (B1) (B2) shown in FIG. The present invention includes a case where the region extends over the regions (A3) and (B3) and a case where the region (A1), (A2), (B1), and (B2) are partially formed.

図7および図8はダイス(70)(80)およびブランクホルダー(75)(85)の挟み付け面を示す平面図であり、図2と同じく、点線は直線部(23)(24)(33)(34)に面する直線部領域(A1)(A2)(B1)(B2)とコーナー部(22)(32)に面するコーナー部領域(A3)(B3)との境界を示している。これらの図において、実線は表面粗さの小さい部分と大きい部分との境界を示している。即ち、図7のダイス(70)およびブランクホルダー(75)は、表面粗さよりの小さい部分が直線部領域(A1)(A2)(B1)(B2)とコーナー部領域(A3)(B3)とに跨がっており、直線部領域(A1)(A2)(B1)(B2)の全域と直線部領域(A1)(A2)(B1)(B2)に隣接するコーナー部領域(A3)(B3)の一部の表面粗さがコーナー部領域(A3)(B3)の残りの部分の表面粗さよりも小さく形成されている。前記境界線(実線)は直線部(23)(24)(33)(34)の延長線上に在り、コーナー部領域(A3)(B3)のコーナー部(22)(32)に臨む部分は表面粗さの大きい部分である。また、図8のダイス(80)およびブランクホルダー(85)は、直線部領域(A1)(A2)(B1)(B2)の一部に表面粗さの小さい部分が形成されており、直線部領域(A1)(A2)(B1)(B2)の残りの部分はコーナー部領域(A3)(B3)と同じ表面粗さに形成されている。これらのダイス(70)(80)およびブランクホルダー(75)(85)は、表面粗さの大きい部分がコーナー部領域(A3)(B3)に存在し、直線部領域(A1)(A2)(B1)(B2)においてコーナー部領域(A3)(B3)よりも表面粗さの小さい部分が存在しているので、直線部においてフランジ部の引き込み量が大きくなる。   7 and 8 are plan views showing the clamping surfaces of the dies (70) (80) and the blank holders (75) (85), and the dotted lines are straight lines (23) (24) (33) as in FIG. ) (34) indicates the boundary between the straight area (A1) (A2) (B1) (B2) and the corner area (A3) (B3) facing the corner (22) (32). . In these drawings, a solid line indicates a boundary between a portion having a small surface roughness and a portion having a large surface roughness. That is, in the dice (70) and the blank holder (75) of FIG. 7, the portions smaller than the surface roughness are the straight region (A1) (A2) (B1) (B2) and the corner region (A3) (B3). And the corner area (A3) (A3) (A1) (A2) (B1) (B2) and the adjacent straight area (A1) (A2) (B1) (B2). The surface roughness of a part of B3) is formed to be smaller than the surface roughness of the remaining part of the corner area (A3) (B3). The boundary line (solid line) is on the extended line of the straight part (23) (24) (33) (34), and the part facing the corner part (22) (32) of the corner part region (A3) (B3) is the surface. It is a part with a large roughness. Further, the dice (80) and the blank holder (85) of FIG. 8 are formed with a portion having a small surface roughness in a part of the straight line region (A1) (A2) (B1) (B2). The remaining portions of the regions (A1), (A2), (B1), and (B2) are formed with the same surface roughness as the corner regions (A3) and (B3). In these dies (70) (80) and blank holders (75) (85), a portion having a large surface roughness exists in the corner region (A3) (B3), and the straight region (A1) (A2) ( In B1) and (B2), there is a portion having a surface roughness smaller than that of the corner regions (A3) and (B3).

なお、図8のように直線部領域(A1)(A2)(B1)(B2)の一部に表面粗さの小さい部分を形成する場合は、引張力(F2)を小さくして十分に材料を送り込むには開口縁における直線部の長さの90%以上に表面粗さの小さい部分を設けることが好ましい。   In addition, when forming a part with small surface roughness in a part of linear part area | region (A1) (A2) (B1) (B2) like FIG. 8, it is enough material by making tensile force (F2) small. It is preferable to provide a portion having a small surface roughness at 90% or more of the length of the linear portion at the opening edge.

図1、2、7、8の絞り金型は、ダイス(20)(70)(80)とブランクホルダー(30)(75)(85)の両方に表面粗さの小さい部分を形成しているが、どちらか一方にのみ表面粗さの小さい部分を形成した金型も本発明に含まれる。どちらか一方にのみ表面粗さの小さい部分を形成すれば、直線部における引き込み量を増大させることができる。また、ダイスおよびブランクホルダーの両方に表面粗さの小さい部分を形成する場合、ダイスおよびブランクホルダーにおいて表面粗さの小さい部分を形成する領域および表面粗さの比率が一致していることは要さず、両者で異なる領域に形成されている場合や異なる比率で表面粗さが設定されている場合も本発明に含まれる。   1, 2, 7 and 8 have small surface roughness portions on both the dies (20) (70) (80) and the blank holders (30) (75) (85). However, a mold in which a portion having a small surface roughness is formed on only one of them is also included in the present invention. If a portion having a small surface roughness is formed only on one of them, the pull-in amount at the straight portion can be increased. In addition, when forming a portion with a small surface roughness on both the die and the blank holder, it is necessary that the ratio of the surface roughness and the area for forming the portion with a small surface roughness on the die and the blank holder must match. In addition, the present invention includes a case where the two are formed in different regions or a case where the surface roughness is set at a different ratio.

また、全ての直線部領域に表面粗さの小さい部分を形成することにも限定されず、四角形容器であれば、対向する2辺にのみ表面粗さの小さい部分を形成しても良い。対向する2辺に表面粗さの小さい部分を形成してこれらの辺における引張力(F2)を小さくすればその辺において生じる周方向の引張力(F3)も小さくなるからである。また、多角形容器が長方形である場合は、フランジ部が引き込まれ易い2つの長辺側の直線部領域(A1)(B1)に表面粗さの小さい部分を設けることが好ましい。   Moreover, it is not limited to forming a part with small surface roughness in all the linear part area | regions, If a rectangular container, you may form a part with small surface roughness only in two opposing sides. This is because if a portion having a small surface roughness is formed on two opposing sides and the tensile force (F2) at these sides is reduced, the circumferential tensile force (F3) generated at those sides is also reduced. Moreover, when a polygonal container is a rectangle, it is preferable to provide a part with small surface roughness in two long side linear part area | region (A1) (B1) where a flange part is easy to be drawn.

また、表面粗さの小さい部分と大きい部分とが一線を境にして分けられている必要はなく、コーナー部領域(A3)(B3)から直線部領域(A1)(A2)(B1)(B2)へと表面粗さが徐々に小さくなるように形成されていても良い。   Further, it is not necessary that the portion having a small surface roughness and the portion having a large surface roughness are separated from each other with a line as a boundary. ), The surface roughness may be gradually reduced.

また、パンチの形状、即ち成形する多角形容器は四角形に限定されるものではなく、三角形や五角形以上の容器を成形する金型も本発明に含まれる。   Further, the shape of the punch, that is, the polygonal container to be formed is not limited to a quadrangle, and a mold for forming a triangular or pentagonal container is also included in the present invention.

[絞り加工のシミュレーション]
本発明例として、挟み付け面の表面粗さが一定のダイス(図示なし)と、図7に示したブランクホルダー(75)とを組み合わせた絞り加工用金型を用いて絞り加工のシミュレーションを行った。前記ブランクホルダー(75)の挟み付け面は、表面粗さの小さい部分が直線部領域(B1)(B2)の全域とコーナー部領域(B3)に跨がって形成されている。表面粗さを算術平均高さ(R)で表すと、表面粗さの小さい部分の表面粗さ(T)が0.1であり、表面粗さの大きい部分の表面粗さ(T)が1.0である。これらの表面粗さ(T)(T)の比率(T/T)は0.1である。また、表面粗さの小さい部分の摩擦係数(CF)と表面粗さの大きい部分の摩擦係数(CF)の比率(CF/CF)は0.1である。
[Drawing simulation]
As an example of the present invention, a drawing process simulation was performed using a drawing mold in which a die (not shown) having a fixed surface roughness on the sandwiching surface and a blank holder (75) shown in FIG. 7 were combined. It was. The sandwiching surface of the blank holder (75) is formed so that a portion with a small surface roughness extends over the entire straight region (B1) (B2) and the corner region (B3). When the surface roughness is expressed by the arithmetic average height (R a ), the surface roughness (T S ) of the portion with the small surface roughness is 0.1, and the surface roughness (T C) of the portion with the large surface roughness. ) Is 1.0. The ratio (T S / T C ) of these surface roughnesses (T C ) (T S ) is 0.1. Further, the ratio (CF S / CF C ) of the friction coefficient (CF S ) of the portion having a small surface roughness and the friction coefficient (CF C ) of the portion having a large surface roughness is 0.1.

また、比較例として、前記発明例と同じダイスと挟み付け面の表面粗さが一定のブランクホルダー(図示なし)とを組み合わせた絞り加工用金型を用いた絞り加工のシミュレーションを行った。比較例のブランクホルダーの表面粗さは本発明例のブランクホルダー(75)における表面粗さの大きい部分と同値である。   In addition, as a comparative example, a drawing process simulation was performed using a drawing mold in which the same die as the above-described invention example and a blank holder (not shown) having a fixed surface roughness of the sandwiched surface were combined. The surface roughness of the blank holder of the comparative example is the same as that of the portion having a large surface roughness in the blank holder (75) of the present invention.

全てのダイスおよびブランクホルダーの外寸は、長辺120mm×短辺80mmの長方形であり、それぞれの穴は、長辺側直線部が50.4mm、短辺側直線部が29.8mm、コーナー部が半径2.25mmの1/4円で形成されている。また、成形する四角形容器の側壁部の高さ(成形深さ)は8mmとした。   The outer dimensions of all dies and blank holders are a rectangle with a long side of 120 mm x a short side of 80 mm. Each hole has a long side straight part of 50.4 mm, a short side straight part of 29.8 mm, and a corner part. Is formed of a quarter circle with a radius of 2.25 mm. Moreover, the height (molding depth) of the side wall of the rectangular container to be molded was 8 mm.

素材板(2)は厚さ40μmのアルミニウム箔の両面に熱可塑性樹脂フィルムを貼り合わせた総厚(t):105μmのラミネート材とした。ラミネート材(2)の寸法はダイスおよびブランクホルダーの外寸と同じ長辺120mm×短辺80mmの長方形である。   The material plate (2) was a laminate having a total thickness (t) of 105 μm in which a thermoplastic resin film was bonded to both surfaces of an aluminum foil having a thickness of 40 μm. The dimension of the laminate material (2) is a rectangle having a long side of 120 mm and a short side of 80 mm, which is the same as the outer dimensions of the die and the blank holder.

図9〜図11は材料の移動状態を解析するためにメッシュ切りを行ったラミネート材(2)の1/4図であり、四角形容器の開口縁近傍は変形量が大きいと予測されるのでメッシュを細かくした。各メッシュ図の長辺はラミネート材(2)の長辺:120mmの1/2の60mmである。   9 to 11 are quarter views of the laminate material (2) obtained by cutting the mesh in order to analyze the movement state of the material, and the mesh near the opening edge of the rectangular container is predicted to have a large amount of deformation. Was finely divided. The long side of each mesh figure is 60 mm which is 1/2 of the long side of the laminate material (2): 120 mm.

図9は加工前の状態であり、「○」は材料移動を検証するためのマーカーである。   FIG. 9 shows a state before processing, and “◯” is a marker for verifying material movement.

図10は挟み付け面の表面粗さが一定のダイスと挟み付け面の直線部領域を含む領域に表面粗さの小さい部分を形成したブランクホルダー(75)を用いて絞り加工した時のシミュレーション図(以下、「本発明例」または「本発明例のシミュレーション図」という)である。「●」は加工前の「○」が加工後に移動した位置を示すマーカーであり、○−●間の距離は移動量を示している。また、フランジ部では○−●間の距離が材料の移動量を示しているが、容器内側では材料が固定されているために○−●間の距離は伸び量を示している。   FIG. 10 is a simulation diagram when drawing is performed using a blank holder (75) in which a portion having a small surface roughness is formed in a region including a die having a constant surface roughness of the sandwiching surface and a linear region of the sandwiching surface. (Hereinafter referred to as “example of the present invention” or “simulation diagram of example of the present invention”). “●” is a marker indicating the position where “◯” before processing is moved after processing, and the distance between “◯” and “●” indicates the amount of movement. In the flange portion, the distance between ◯ and ● indicates the amount of movement of the material, but since the material is fixed inside the container, the distance between ◯ and ● indicates the amount of elongation.

図11は挟み付け面の表面粗さを一定に形成したダイスとブランクホルダーを用いて絞り加工した時のシミュレーション図(以下、「比較例」または「比較例のシミュレーション図」という)である。「▲」は加工前の「○」が加工後に移動した位置を示すマーカーであり、○−▲間の距離が移動量を示している。また、フランジ部では○−▲間の距離が材料の移動量を示しているが、容器内側では材料が固定されているために○−▲間の距離は伸び量を示している。   FIG. 11 is a simulation diagram (hereinafter referred to as “comparative example” or “simulation diagram of comparative example”) when drawing is performed using a die and a blank holder in which the surface roughness of the sandwiched surface is formed constant. “▲” is a marker indicating the position where “◯” before processing is moved after processing, and the distance between “◯” and “▲” indicates the amount of movement. In the flange portion, the distance between ◯ and ▲ indicates the amount of movement of the material, but since the material is fixed inside the container, the distance between ◯ and ▲ indicates the amount of elongation.

図9〜11において、ブランクホルダーにおける直線部領域とコーナー部領域との境界に対応する線を点線で示し、本発明例のブランクホルダーにおける表面粗さの小さい部分と大きい部分との境界に対応する線を実線で示す。図10および図11において、メッシュが近接して太線として表されている部分が四角形容器の開口縁に対応する。また、移動量を比較するために、図10の本発明例のシミュレーション図にも比較例の移動位置を示す「▲」を記載した。   In FIGS. 9-11, the line corresponding to the boundary of the linear part area | region and corner part area | region in a blank holder is shown with a dotted line, and it respond | corresponds to the boundary of the part with a small surface roughness in the blank holder of this invention example, and a large part. The line is shown as a solid line. In FIG. 10 and FIG. 11, the portion where the mesh is close and represented as a thick line corresponds to the opening edge of the rectangular container. Further, in order to compare the movement amounts, “「 ”indicating the movement position of the comparative example is also shown in the simulation diagram of the present invention example of FIG.

以下に、本発明例および比較例のシミュレーション図を比較する。   The simulation diagrams of the present invention example and the comparative example are compared below.

2つのシミュレーション図は、直線部は材料の移動量が大きく、コーナー部では材料の移動が少なく、コーナー部の側壁は底壁部および直線部の側壁部からの材料移動によって形成されている、という共通の特徴を示している。また、直線部における移動量は直線部の中央で最大となることも共通している。しかし、直線部における移動量を比較すると、本発明は比較例よりも移動量が大きく、フランジ部の引き込み量が大きいことを示している。直線部の中央における引き込み量(S)は、本発明例の0.89mmに対して比較例では3.52mmである。また、コーナー部においては、比較例が殆ど移動していないのに対し、本発明例では材料移動が認められる。これは、本発明例がコーナー部においてもフランジ部が引き込まれて側壁部の形成に寄与していることを示している。   In the two simulation diagrams, the straight part has a large amount of material movement, the corner part has little material movement, and the side wall of the corner part is formed by the material movement from the bottom wall part and the side wall part of the straight part. It shows common features. In addition, it is common that the amount of movement in the straight line portion is maximized at the center of the straight line portion. However, when the movement amount in the straight portion is compared, the present invention shows that the movement amount is larger than that of the comparative example and the pull-in amount of the flange portion is larger. The pull-in amount (S) at the center of the straight portion is 3.52 mm in the comparative example, compared to 0.89 mm in the present invention example. Further, in the corner portion, the comparative example hardly moves, whereas in the example of the present invention, material movement is recognized. This indicates that the example of the present invention contributes to the formation of the side wall portion by pulling in the flange portion even at the corner portion.

なお、2つのシミュレーション図において、短辺側の外周部の位置に変化がなく短辺側ではフランジ部が引き込まれていないように見える。これは、素材板(2)においてダイスの肩部に対応する位置から外周(輪郭)までの距離で表されるフランジ幅が長辺側よりも短辺側の方が長いために、ダイスの肩部の近くの材料が引き込まれても外周近くの材料は殆ど移動しないためである。フランジ部はその幅方向において均一に伸びるのではなく、肩部に近い部分の伸び(歪み)が大きいので、フランジ幅が大きい場合は輪郭が変化しない。本シミュレーションはそのようなケースであり、長辺側および短辺側のフランジ幅は以下に計算されるとおり、短辺側のフランジ幅の方が約10mm大きく、短辺側の外周近くの材料は殆ど移動せず輪郭は殆ど変化しない。   In the two simulation diagrams, there is no change in the position of the outer peripheral portion on the short side, and it appears that the flange portion is not pulled in on the short side. This is because the flange width expressed by the distance from the position corresponding to the shoulder of the die to the outer periphery (contour) in the blank plate (2) is longer on the short side than on the long side, so This is because the material near the outer periphery hardly moves even when the material near the portion is drawn. Since the flange portion does not extend uniformly in the width direction, but the elongation (distortion) of the portion close to the shoulder portion is large, the contour does not change when the flange width is large. This simulation is such a case, and the flange width on the long side and the short side is about 10 mm larger as calculated below, and the material near the outer periphery on the short side is Almost no movement and the contour hardly changes.

長辺側のフランジ幅(mm)={素材板の短辺(80)−穴の短辺側直線部(29.8)−コーナ部の半径(2.25)×2}/2=22.85mm
短辺側のフランジ幅(mm)={素材板の長辺(120)−穴の長辺側直線部(50.4)−コーナー部の半径(2.25)×2}/2=32.55mm
このように、長辺と短辺とでフランジ幅が異なる場合は引き込み量に差が生じるが、長辺または短辺のどちらかにおいて歪み低減の効果を得れば三面コーナー部の引張力を低下させることができる。
Long side flange width (mm) = {Short side of material plate (80) −Short side straight portion of hole (29.8) −Corner radius (2.25) × 2} / 2 = 22. 85mm
Flange width on the short side (mm) = {Long side of the blank plate (120) −Long side straight portion (50.4) of the hole−Radius of the corner portion (2.25) × 2} / 2 = 32. 55mm
In this way, when the flange width is different between the long side and the short side, there is a difference in the pull-in amount, but if the effect of reducing distortion is obtained on either the long side or the short side, the tensile force at the trihedral corner will be reduced. Can be made.

図12は容器内のA点からフランジ部のB点を結ぶ直線上において、A点からの距離とシミュレーションによって計算した歪み値との関係を示すグラフである。本発明例の歪み値は比較例よりも低く、破断が生じにくいことを示している。なお、本発明例の歪み値が比較例を上回っている部分もあるが、これは本発明例と比較例とでは移動量(フランジ部の引き込み量)が異なるので、A点からの距離が同じでも加工前の素材板に対応する位置が異なり、歪み値が異なるためであると考えられる。また、破断が発生するのは歪み値が最大となる点であるから、歪み値の低い位置で本発明例が比較例を上回っても破断が生じることにはならない。   FIG. 12 is a graph showing the relationship between the distance from point A and the strain value calculated by simulation on a straight line connecting point A in the container to point B of the flange. The strain value of the example of the present invention is lower than that of the comparative example, which indicates that breakage is unlikely to occur. In addition, although there is a part where the distortion value of the example of the present invention exceeds the comparative example, the distance from the point A is the same because the amount of movement (the pulling amount of the flange portion) is different between the example of the present invention and the comparative example. However, it is considered that the position corresponding to the material plate before processing is different and the distortion value is different. Further, since the breakage occurs at the point where the strain value is maximized, the breakage does not occur even if the inventive example exceeds the comparative example at a position where the strain value is low.

以上より、本発明例では直線部における材料の引き込み量が大きく、図6に示した放射向の引張力(F2)が低減し、ひいては周方向の引張力(F3)を低減させることができる。また、コーナー部でもフランジ部が引き込まれていることから、三面コーナー部(48)を通る引張力(F1)も低減すると考えられる。従って、三面コーナー部(48)の破断原因となる引張力(F1)(F2)が低減し、より高い側壁部と可及的に直角に近い三面コーナー部を形成することができる。   As described above, in the example of the present invention, the amount of the material drawn in the linear portion is large, the radial tensile force (F2) shown in FIG. 6 is reduced, and the circumferential tensile force (F3) can be reduced. Further, since the flange portion is also drawn in the corner portion, it is considered that the tensile force (F1) passing through the three-surface corner portion (48) is also reduced. Therefore, the tensile force (F1) (F2) that causes the breakage of the three-surface corner portion (48) is reduced, and a three-surface corner portion that is as close to a right angle as possible with a higher side wall portion can be formed.

また、図13は、容器の成形深さを変化させた場合において、成形深さ(側壁部の高さ)とシミュレーションによって計算した最大歪み値との関係を示すグラフである。本図に示すように、本発明例の最大歪み値は比較例よりも低い。特に成形深さの大きい場合に本発明例と比較例との差が大きく、破断が発生しやすい深い成形における本発明の優位性を裏付けている。   FIG. 13 is a graph showing the relationship between the forming depth (side wall height) and the maximum strain value calculated by simulation when the forming depth of the container is changed. As shown in the figure, the maximum distortion value of the present invention example is lower than that of the comparative example. In particular, when the forming depth is large, the difference between the inventive example and the comparative example is large, confirming the superiority of the present invention in deep forming where breakage easily occurs.

本発明の絞り加工用金型はラミネート材による多角形容器の成形に好適に利用できる。   The drawing die of the present invention can be suitably used for forming a polygonal container using a laminate material.

1…絞り加工用金型
2…素材板
10…パンチ
20、70、80…ダイス
21、31…穴
22、32…コーナー部
23、24、33、34…直線部
30、75、85…ブランクホルダー
40…絞り加工品
41…四角形容器
42…開口縁
43…コーナー部
44a、44b…直線部
45a、45b…フランジ部
46a、46b…側壁部
47…底壁部
48…三面コーナー部
50…外装材
51…第一外装材
52…封止用周縁部
53…第二外装材
A1、A2、B1、B2…直線部領域
A3、B3…コーナー部領域
1 ... Die for drawing
2 ... Material board
10 ... Punch
20, 70, 80 ... dice
21, 31 ... hole
22, 32 ... Corner
23, 24, 33, 34 ... straight section
30, 75, 85 ... Blank holder
40 ... drawn products
41 ... Rectangular container
42 ... Open edge
43… Corner
44a, 44b ... Linear part
45a, 45b ... Flange
46a, 46b ... sidewall
47… Bottom wall
48… Three corners
50… Exterior material
51… First exterior material
52 ... Peripheral edge for sealing
53 ... 2nd exterior material A1, A2, B1, B2 ... Linear part area | region A3, B3 ... Corner part area | region

Claims (3)

素材板を押し込んで多角形容器の内面形状を成形するパンチと、前記パンチに押し込まれた素材板を流入させる多角形の穴を有するダイスと、前記パンチを挿入する多角形の穴を有し、前記ダイスの穴との周囲において素材板を抑えるブランクホルダーとを備える絞り加工用金型であって、
前記素材板は金属箔の両面に熱可塑性樹脂フィルムを貼り合わせたラミネート材であり、
前記ダイスおよびブランクホルダーのうちの少なくとも一方の挟み付け面において、多角形の穴の直線部に面する領域に、表面粗さがコーナー部に面する領域よりも小さい部分を有し、
前記直線部に面する領域の表面粗さの小さい部分の表面粗さ(T )とコーナー部に面する領域の表面粗さ(T )との比率(T /T )が0.05〜0.6であり
前記直線部に面する領域の表面粗さの小さい部分の素材板に対する摩擦係数(CF )とコーナー部に面する領域における素材板に対する摩擦係数(CF )との比率(CF /CF )が0.05〜0.5であることを特徴とする絞り加工用金型。
A punch for pressing the material plate to form the inner surface shape of the polygonal container, a die having a polygonal hole for allowing the material plate pressed into the punch to flow in, and a polygonal hole for inserting the punch, A drawing die having a blank holder for holding a material plate around the hole of the die,
The material plate is a laminate material in which a thermoplastic resin film is bonded to both surfaces of a metal foil,
At least one of pinching surface of said die and blank holder, in a region facing the straight portion of the polygonal hole, the surface roughness have a portion smaller than the area facing the corner portion,
The ratio (T S / T C ) between the surface roughness (T S ) of the portion having a small surface roughness of the region facing the straight portion and the surface roughness (T C ) of the region facing the corner portion is 0. 05-0.6 ,
The ratio (CF S / CF C ) of the coefficient of friction (CF S ) for the material plate of the portion having a small surface roughness in the region facing the straight part and the coefficient of friction (CF C ) for the material plate in the region facing the corner part ) Is a die for drawing.
前記ラミネート材の金属箔がアルミニウム箔である請求項1に記載の絞り加工用金型。  The die for drawing according to claim 1, wherein the metal foil of the laminate material is an aluminum foil. 前記ラミネート材の厚みが50〜300μmである請求項1または2に記載の絞り加工用金型。  The drawing die according to claim 1 or 2, wherein the thickness of the laminate material is 50 to 300 µm.
JP2012018865A 2012-01-31 2012-01-31 Die for drawing Active JP5996199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012018865A JP5996199B2 (en) 2012-01-31 2012-01-31 Die for drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018865A JP5996199B2 (en) 2012-01-31 2012-01-31 Die for drawing

Publications (2)

Publication Number Publication Date
JP2013154388A JP2013154388A (en) 2013-08-15
JP5996199B2 true JP5996199B2 (en) 2016-09-21

Family

ID=49050110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018865A Active JP5996199B2 (en) 2012-01-31 2012-01-31 Die for drawing

Country Status (1)

Country Link
JP (1) JP5996199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949522A (en) * 2014-04-24 2014-07-30 上海理工大学 Design method of blank holder and edge pressing device
JP6798650B1 (en) * 2019-05-17 2020-12-09 大日本印刷株式会社 Manufacturing equipment and manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264427A (en) * 1985-09-18 1987-03-23 Honda Motor Co Ltd Metallic die device for press working
JP2003126919A (en) * 2001-10-18 2003-05-08 Showa Denko Kk Squeeze-processing method for resin-laminated aluminum foil, squeeze-processed products and squeeze-processing equipment

Also Published As

Publication number Publication date
JP2013154388A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP6016368B2 (en) Die for drawing
JP4306774B2 (en) Press molding die and press molding method
JPWO2015199231A1 (en) Manufacturing method of press-molded product and press mold
EP3175971A1 (en) Film molded article, film packaged body using same, manufacturing method for film molded article and manufacturing method for film packaged body
JP5996199B2 (en) Die for drawing
JP6944062B2 (en) Paper lid manufacturing method
JPS6258806B2 (en)
JP5996198B2 (en) Die for drawing
JP2018051575A (en) Manufacturing method of rectangular can
KR20170117495A (en) Press-forming method and press-forming tool
JP2018043260A (en) Apparatus and method for manufacturing three-dimensional molding formed of aluminum resin composite laminated plate
WO2017016100A1 (en) Drawing process for arc corner connecting rib of metal box casing
WO2016006403A1 (en) Molding device for laminated film and molding method for laminated film
JP6052054B2 (en) Method of bending metal sheet
KR20160024590A (en) Molding apparatus and battery tray thereof
JP2018202435A (en) Method for manufacturing press molding product
JP2021158014A (en) Manufacturing method of battery case
JP6331522B2 (en) Drawing apparatus and drawing method
KR101498798B1 (en) Stamper Metallic Mold Having Micro Pattern, and Method of Making the Same
JP7098202B2 (en) Blister container sealing method and sealing structure
JP6785161B2 (en) Container and manufacturing method of container
JP6332274B2 (en) Resin laminate
JP3170410U (en) Packaging container
JP5945473B2 (en) Sheet forming container and manufacturing method thereof
JP2003311339A (en) Press molded article, its manufacturing method and device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250