JP5995754B2 - Premixed compression ignition type engine and its operation control method - Google Patents

Premixed compression ignition type engine and its operation control method Download PDF

Info

Publication number
JP5995754B2
JP5995754B2 JP2013043315A JP2013043315A JP5995754B2 JP 5995754 B2 JP5995754 B2 JP 5995754B2 JP 2013043315 A JP2013043315 A JP 2013043315A JP 2013043315 A JP2013043315 A JP 2013043315A JP 5995754 B2 JP5995754 B2 JP 5995754B2
Authority
JP
Japan
Prior art keywords
self
ignition timing
combustion chamber
ignition
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013043315A
Other languages
Japanese (ja)
Other versions
JP2014169685A (en
Inventor
大樹 田中
大樹 田中
俊介 染澤
俊介 染澤
孝弘 佐古
孝弘 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013043315A priority Critical patent/JP5995754B2/en
Publication of JP2014169685A publication Critical patent/JP2014169685A/en
Application granted granted Critical
Publication of JP5995754B2 publication Critical patent/JP5995754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、燃焼室に吸気される新気に炭化水素系の主燃料を混合して混合気を形成し、当該混合気を燃焼室で圧縮して自己着火させ燃焼させる予混合圧縮着火式エンジン及びその運転制御方法に関する。   The present invention relates to a premixed compression ignition type engine in which a hydrocarbon-based main fuel is mixed with fresh air sucked into a combustion chamber to form an air-fuel mixture, and the air-fuel mixture is compressed in the combustion chamber to self-ignite and burn. And an operation control method thereof.

低公害且つ高効率を実現し得るエンジンとして、空気と燃料とを予め混合した予混合気を燃焼室に導入し、その予混合気をピストンの断熱圧縮により自己着火させて燃焼させる所謂予混合圧縮着火(HCCI:Homogeneous Charge Compression Ignition)燃焼を行う予混合圧縮着火式エンジンが知られている(例えば、特許文献1及び2を参照。)。
かかる予混合圧縮着火式エンジンは、圧縮比を増加させて効率の向上が可能であると共に、燃料を希薄状態で燃焼させ低NOx化が可能となり、特に、高圧噴射が困難でディーゼルエンジン用燃料としては不向きな天然ガス系都市ガス等の気体燃料を用いても、容易に予混合気を圧縮着火させて燃焼させることができるというメリットを有する。
As an engine that can achieve low pollution and high efficiency, a so-called premixed compression is performed in which a premixed mixture of air and fuel is introduced into a combustion chamber and the premixed mixture is self-ignited by adiabatic compression of the piston and burned. A premixed compression ignition type engine that performs ignition (HCCI) combustion is known (see, for example, Patent Documents 1 and 2).
Such a premixed compression ignition type engine can improve the efficiency by increasing the compression ratio, and can reduce the NOx by burning the fuel in a lean state. Has the merit that the premixed gas can be easily ignited and combusted even when gaseous fuel such as natural gas city gas is used.

予混合圧縮着火式エンジンでは、安定した運転を維持し更には効率を向上させるために、燃焼室において予混合気を上死点近傍の適切な時期に自己着火させることが重要である。例えば、吸気温度が高すぎると、自己着火時期が過剰に進角化してノッキング等が発生し、逆に、吸気温度が低すぎると、自己着火時期が過剰に遅角化して熱効率低下や失火等が発生するという問題がある。
そこで、上記特許文献1及び2に記載の予混合圧縮着火式エンジンは、燃焼室に供給されるメタンを主成分とする天然ガス等の主燃料とは別に、当該主燃料よりも発火点が低い軽油やブタンなどの補助燃料を、添加量制御を伴って添加することで、自己着火時期を目標自己着火時期範囲内に維持するように構成されていた。
In a premixed compression ignition engine, it is important that the premixed gas is self-ignited at an appropriate time in the vicinity of the top dead center in the combustion chamber in order to maintain stable operation and further improve the efficiency. For example, if the intake air temperature is too high, the self-ignition timing will be excessively advanced and knocking will occur. Conversely, if the intake air temperature is too low, the self-ignition timing will be excessively retarded and thermal efficiency will be reduced or misfires will occur. There is a problem that occurs.
Therefore, the premixed compression ignition type engine described in Patent Documents 1 and 2 has a lower ignition point than the main fuel, separately from the main fuel such as natural gas mainly composed of methane supplied to the combustion chamber. By adding auxiliary fuel such as light oil and butane with the addition amount control, the self-ignition timing is maintained within the target self-ignition timing range.

特開2012−057470号公報JP 2012-057470 A 特開2000−274285号公報JP 2000-274285 A

上記従来の予混合圧縮着火式エンジンの自己着火時期の制御では、何れも、主燃料よりも発火点の低い補助燃料を利用していたが、特にエンジン回転速度が非常に高くなる高回転領域において、発火点が低い補助燃料の添加量を増加させても、燃焼室における混合気が十分に着火せずに失火が発生してしまうことがある。そして、かかる失火は、燃焼状態を不安定にしてエンジンのサイクル変動の悪化につながる。
本発明は、かかる点に着目してなされたものであり、その目的は、予混合圧縮着火式エンジンにおいて、高回転領域などの過酷な運転状態においても、自己着火時期を適切な時期に維持しながら、サイクル変動の悪化を抑制することができる技術を提供する点にある。
In the control of the self-ignition timing of the conventional premixed compression ignition type engine, all use auxiliary fuel whose ignition point is lower than that of the main fuel, but particularly in a high rotation region where the engine speed is very high. Even if the amount of auxiliary fuel added with a low ignition point is increased, the air-fuel mixture in the combustion chamber may not be sufficiently ignited and misfire may occur. Such misfires make the combustion state unstable and lead to deterioration of engine cycle fluctuations.
The present invention has been made paying attention to such a point, and its purpose is to maintain the self-ignition timing at an appropriate time even in a severe operating state such as a high rotation region in a premixed compression ignition type engine. However, the present invention is to provide a technique capable of suppressing deterioration of cycle fluctuation.

この目的を達成するための本発明に係る予混合圧縮着火式エンジンは、
燃焼室に吸気される新気に炭化水素系の主燃料を混合して混合気を形成し、当該混合気を燃焼室で圧縮して自己着火させ燃焼させる予混合圧縮着火式エンジンであって、
その第1特徴構成は、
燃焼室における混合気の自己着火時期を検出する自己着火時期検出手段を備えると共に、燃焼室における混合気の自己着火時期を調整可能な自己着火時期調整手段を備え、
サイクル変動の悪化を検出するサイクル変動検出手段を備えると共に、燃焼室における混合気のエタンの含有率を調整可能なエタン含有率調整手段を備え、
前記自己着火時期検出手段で検出される自己着火時期が目標自己着火時期範囲内に維持されるように前記自己着火時期調整手段を制御する自己着火時期制御を実行すると共に、前記サイクル変動検出手段で検出されるサイクル変動の悪化が抑制されるように前記エタン含有率調整手段を制御するサイクル変動抑制制御を実行する制御手段を備えた点にある。
In order to achieve this object, a premixed compression ignition engine according to the present invention comprises:
A premixed compression ignition engine in which a hydrocarbon-based main fuel is mixed with fresh air sucked into a combustion chamber to form an air-fuel mixture, and the air-fuel mixture is compressed in the combustion chamber to self-ignite and burn.
The first characteristic configuration is
Self-ignition timing detection means for detecting the self-ignition timing of the air-fuel mixture in the combustion chamber, and self-ignition timing adjustment means capable of adjusting the self-ignition timing of the air-fuel mixture in the combustion chamber,
Cycle content detecting means for detecting deterioration of cycle fluctuation, and ethane content rate adjusting means capable of adjusting the ethane content rate in the combustion chamber,
Performing self-ignition timing control for controlling the self-ignition timing adjustment means so that the self-ignition timing detected by the self-ignition timing detection means is maintained within a target self-ignition timing range; There is a control means for executing cycle fluctuation suppression control for controlling the ethane content rate adjusting means so that deterioration of the detected cycle fluctuation is suppressed.

本発明の発明者らは、鋭意研究により、炭化水素のうち、エタンが、プロパンやブタンなどの他の炭化水素と比較して、炭素数が小さく発火点が高いものの、着火に至るまでの着火過程の後期においてOHラジカルの生成速度が高まって温度上昇速度が加速される傾向にあることを発見し、更には、予混合圧縮着火式エンジンにおけるサイクル変動の悪化のメカニズムが、このエタンの含有率が大きく関連していることを発見し、本発明を完成するに至った。
即ち、上記第1特徴構成によれば、上記自己着火時期制御を実行することにより、同時に実行される後述のサイクル変動抑制制御において燃焼室における混合気のエタンの含有率が変化して混合気の着火性が変化した場合でも、燃焼室における混合気の自己着火時期が適切な目標自己着火時期範囲内に維持されることになる。同時に、サイクル変動抑制制御を実行することにより、燃焼室における混合気のエタンの含有率が適切なものに制御されて、サイクル変動の悪化が抑制される。
The inventors of the present invention have intensively studied that, among hydrocarbons, ethane has a lower carbon number and higher ignition point than other hydrocarbons such as propane and butane, but ignition until ignition is reached. In the latter part of the process, it was discovered that the generation rate of OH radicals tends to increase and the rate of temperature rise tends to be accelerated. Furthermore, the mechanism of deterioration of cycle fluctuations in a premixed compression ignition engine is the content of this ethane. Has been found to be greatly related, and the present invention has been completed.
That is, according to the first characteristic configuration, by executing the self-ignition timing control, the ethane content rate of the mixture in the combustion chamber is changed in the cycle fluctuation suppression control that is performed simultaneously, and the mixture Even when the ignitability changes, the self-ignition timing of the air-fuel mixture in the combustion chamber is maintained within an appropriate target self-ignition timing range. At the same time, by executing the cycle fluctuation suppression control, the ethane content of the air-fuel mixture in the combustion chamber is controlled to an appropriate value, and deterioration of the cycle fluctuation is suppressed.

要するに、これら自己着火時期制御とサイクル変動抑制制御とを同時に実行することで、燃焼室における混合気のエタンの含有率が許容範囲内でできるだけ増加して着火過程後期の温度上昇速度が高く維持されて失火によるサイクル変動の悪化が抑制されるのと同時に、そのエタンの含有率の増加に伴う自己着火時期の過剰な変化が適度に抑制されて当時自己着火時期が適切な目標自己着火時期範囲内に維持されることになる。
従って、本発明により、高回転領域などの過酷な運転状態においても、自己着火時期を適切な時期に維持しながら、サイクル変動の悪化を抑制することができる予混合圧縮着火エンジンを実現することができる。
In short, by executing these self-ignition timing control and cycle fluctuation suppression control simultaneously, the ethane content of the mixture in the combustion chamber increases as much as possible within the allowable range, and the temperature rise rate in the late stage of the ignition process is maintained high. As a result, the deterioration of cycle fluctuation due to misfire is suppressed, and at the same time, the excessive change in the self-ignition timing accompanying the increase in the ethane content is moderately suppressed, and the self-ignition timing at that time is within the appropriate target self-ignition timing range. Will be maintained.
Therefore, according to the present invention, it is possible to realize a premixed compression ignition engine capable of suppressing deterioration of cycle fluctuations while maintaining the self-ignition timing at an appropriate time even in a severe operating state such as a high rotation region. it can.

本発明に係る予混合圧縮着火式エンジンの第2特徴構成は、上記第1特徴構成に加えて、
複数の燃焼室を配置した多気筒型に構成され、
前記自己着火時期調整手段が、複数の燃焼室の夫々の自己着火時期を一斉に調整可能な全体自己着火時期調整手段と、複数の燃焼室の夫々の自己着火時期を個別に調整可能な個別自己着火時期調整手段とからなる点にある。
In addition to the first characteristic configuration described above, the second characteristic configuration of the premixed compression ignition type engine according to the present invention includes:
It is configured as a multi-cylinder type with multiple combustion chambers.
The self-ignition timing adjusting means is capable of adjusting the self-ignition timing of each of the plurality of combustion chambers at once, and the individual self-adjustment capable of individually adjusting the self-ignition timing of each of the plurality of combustion chambers. It is in the point which consists of ignition timing adjustment means.

上記第2特徴構成によれば、本発明に係る予混合圧縮自着火式エンジンを多気筒型に構成する場合において、上記全体自己着火時期調整手段と上記個別自己着火時期調整手段との両方を備えることで、複数の燃焼室の夫々の自己着火時期を、高精度且つ迅速に目標自己着火時期範囲内に調整することができる。
即ち、複数の燃焼室の夫々の自己着火時期が、サイクル変動抑制制御によるエタンの含有率の調整により目標自己着火時期範囲から乖離した場合において、先ずは、上記全体自己着火時期調整手段により全ての自己着火時期を目標自己着火時期範囲に近いものに調整し、次に、上記個別自己着火時期調整手段により夫々の自己着火時期を個別に目標自己着火時期範囲内に調整することができる。
According to the second characteristic configuration described above, when the premixed compression self-ignition engine according to the present invention is configured as a multi-cylinder type, the overall self-ignition timing adjusting means and the individual self-ignition timing adjusting means are provided. Thus, the self-ignition timing of each of the plurality of combustion chambers can be adjusted with high accuracy and quickly within the target self-ignition timing range.
That is, when the self-ignition timing of each of the plurality of combustion chambers deviates from the target self-ignition timing range by adjusting the ethane content rate by cycle fluctuation suppression control, first, all the self-ignition timing adjustment means The self-ignition time can be adjusted to a value close to the target self-ignition time range, and then each self-ignition time can be individually adjusted within the target self-ignition time range by the individual self-ignition time adjusting means.

本発明に係る予混合圧縮着火式エンジンの第3特徴構成は、上記第1乃至第2特徴構成の何れかに加えて、
前記エタン含有率調整手段が、燃焼室に対して添加量調整を伴ってエタンを添加可能なエタン添加手段である点にある。
The third characteristic configuration of the premixed compression ignition type engine according to the present invention is in addition to any of the first to second characteristic configurations,
The ethane content rate adjusting means is an ethane addition means capable of adding ethane with adjusting the addition amount to the combustion chamber.

上記第3特徴構成によれば、上記エタン添加手段により、燃焼室に対してエタンを添加すると共にその添加量を調整する形態で、燃焼室における混合気のエタンの含有率を調整することができる。   According to the third characteristic configuration, the ethane content rate in the combustion chamber can be adjusted by adding the ethane to the combustion chamber and adjusting the addition amount by the ethane addition means. .

本発明に係る予混合圧縮着火式エンジンの第4特徴構成は、上記第1乃至第3特徴構成の何れかに加えて、
前記主燃料がメタンを主成分とする天然ガスである点にある。
The fourth characteristic configuration of the premixed compression ignition type engine according to the present invention is in addition to any of the first to third characteristic configurations,
The main fuel is natural gas mainly composed of methane.

上記第4特徴構成によれば、エタンはメタンに対して発火点が低い上に着火過程後期における温度上昇速度が大幅に高いことから、燃焼室に供給される主燃料がそのメタンを主成分とする天然ガスの場合には、上記サイクル変動抑制制御において、燃焼室における混合気のエタンの含有率を調整するだけで、混合気の燃焼安定性を迅速かつ大幅に調整することができ、サイクル変動の悪化を一層確実に抑制することができる。   According to the fourth characteristic configuration, ethane has a low ignition point with respect to methane and has a significantly high temperature rise rate in the late stage of the ignition process. Therefore, the main fuel supplied to the combustion chamber is mainly composed of methane. In the case of natural gas, the combustion stability of the air-fuel mixture can be adjusted quickly and significantly only by adjusting the ethane content of the air-fuel mixture in the combustion chamber in the above-described cycle fluctuation suppression control. Can be more reliably suppressed.

この目的を達成するための本発明に係る予混合圧縮着火式エンジンの運転制御方法は、
燃焼室に吸気される新気に炭化水素系の主燃料を混合して混合気を形成し、当該混合気を燃焼室で圧縮して自己着火させ燃焼させる予混合圧縮着火式エンジンの運転制御方法であって、
その特徴構成は、
燃焼室における混合気の自己着火時期を検出する自己着火時期検出手段を備えると共に、燃焼室における混合気の自己着火時期を調整可能な自己着火時期調整手段を備え、
サイクル変動の悪化を検出するサイクル変動検出手段を備えると共に、燃焼室における混合気のエタンの含有率を調整可能なエタン含有率調整手段を設け、
前記自己着火時期検出手段で検出される自己着火時期が目標自己着火時期範囲内に維持されるように前記自己着火時期調整手段を制御する自己着火時期制御を実行すると共に、前記サイクル変動検出手段で検出されるサイクル変動の悪化が抑制されるように前記エタン含有率調整手段を制御するサイクル変動抑制制御を実行する点にある。
In order to achieve this object, an operation control method for a premixed compression ignition engine according to the present invention includes:
Operation control method of a premixed compression ignition engine in which hydrocarbon-based main fuel is mixed with fresh air sucked into the combustion chamber to form an air-fuel mixture, and the air-fuel mixture is compressed in the combustion chamber to self-ignite and burn Because
Its feature configuration is
Self-ignition timing detection means for detecting the self-ignition timing of the air-fuel mixture in the combustion chamber, and self-ignition timing adjustment means capable of adjusting the self-ignition timing of the air-fuel mixture in the combustion chamber,
Cycle content detecting means for detecting the deterioration of the cycle fluctuation, and ethane content rate adjusting means capable of adjusting the ethane content rate in the combustion chamber are provided.
Performing self-ignition timing control for controlling the self-ignition timing adjustment means so that the self-ignition timing detected by the self-ignition timing detection means is maintained within a target self-ignition timing range; The present invention resides in executing cycle fluctuation suppression control for controlling the ethane content rate adjusting means so as to suppress the deterioration of the detected cycle fluctuation.

上記予混合圧縮着火式エンジンの運転制御方法によれば、上述した本発明に係る予混合圧縮着火式エンジンと同様に、自己着火時期調整手段とエタン含有率調整手段とを設けた上で、自己着火時期制御とサイクル変動抑制制御とを実行するので、当該本発明に係る予混合圧縮着火式エンジンで説明したものと同様の作用効果を奏することができる。   According to the operation control method for the premixed compression ignition type engine, as with the premixed compression ignition type engine according to the present invention described above, the self-ignition timing adjusting means and the ethane content rate adjusting means are provided. Since the ignition timing control and the cycle fluctuation suppression control are executed, the same effects as those described in the premixed compression ignition type engine according to the present invention can be achieved.

予混合圧縮着火式エンジンの概略構成図Schematic configuration diagram of premixed compression ignition engine 炭化水素系燃料の着火遅れ期間を示すグラフ図Graph showing the ignition delay period for hydrocarbon fuels

本発明に係る予混合圧縮着火式エンジン及びその運転制御方法の実施形態を、図面に基づいて説明する。
図1に示す予混合圧縮着火式エンジン(以下、単に「エンジン」と略称する。)1は、複数の燃焼室10を配置した多気筒型に構成さている。夫々の燃焼室10は、詳細な図示は省略するが、シリンダの内面と、シリンダの上部に連結されたシリンダヘッドの下面と、シリンダ内において連結棒を介しクランク軸6に連結されて往復移動自在に収容されたピストンの頂面とで形成されている。
そして、燃焼室10には、吸気路21及び排気路31が開口され、燃焼室10の吸気路21側には吸気弁20が、燃焼室10の排気路31側には排気弁30が設けられている。
An embodiment of a premixed compression ignition type engine and an operation control method thereof according to the present invention will be described based on the drawings.
A premixed compression ignition type engine (hereinafter simply referred to as “engine”) 1 shown in FIG. 1 is configured as a multi-cylinder type in which a plurality of combustion chambers 10 are arranged. Although not shown in detail, each combustion chamber 10 is connected to a crankshaft 6 via a connecting rod in a cylinder, a lower surface of a cylinder head connected to the upper part of the cylinder, and a cylinder, and is freely reciprocally movable. And the top surface of the piston housed in the housing.
An intake passage 21 and an exhaust passage 31 are opened in the combustion chamber 10, an intake valve 20 is provided on the intake passage 21 side of the combustion chamber 10, and an exhaust valve 30 is provided on the exhaust passage 31 side of the combustion chamber 10. ing.

エンジン1の吸気路21には、吸気路21を流通する空気に、外部から供給されたメタンを主成分とする天然ガス系都市ガスである主燃料を、燃料供給弁24による供給量調整を伴って混合して、混合気Mを形成するミキサ23が設けられている。また、吸気路21におけるミキサ23の下流側には、開度調整により燃焼室10への混合気Mの吸気量を調整可能なスロットル弁22が設けられている。また、吸気路21におけるスロットル弁22の下流側には、燃焼室10へ吸気される混合気Mを比較的高温(例えば80℃)のエンジン冷却水との熱交換により加熱する熱交換器25が設けられている。そして、この熱交換器25を通過した混合気Mが、夫々の燃焼室10に分配される。   In the intake passage 21 of the engine 1, main fuel, which is a natural gas-based city gas mainly composed of methane, supplied from the outside to the air flowing through the intake passage 21 is adjusted by the supply amount of the fuel supply valve 24. Are mixed to form an air-fuel mixture M. In addition, a throttle valve 22 is provided on the downstream side of the mixer 23 in the intake passage 21. Further, on the downstream side of the throttle valve 22 in the intake passage 21, there is a heat exchanger 25 that heats the air-fuel mixture M sucked into the combustion chamber 10 by heat exchange with engine coolant having a relatively high temperature (for example, 80 ° C.). Is provided. Then, the air-fuel mixture M that has passed through the heat exchanger 25 is distributed to the respective combustion chambers 10.

吸気弁20を開動作させた状態でピストンが上死点から下降することにより、吸気路21から燃焼室10に混合気Mを吸気する吸気行程が行われ、次に、吸気弁20を閉動作させた状態でピストンが上昇することにより、燃焼室10の混合気Mを圧縮する圧縮行程が行われる。
この圧縮行程の後期では、混合気Mが断熱圧縮により昇温して、主燃料の酸化反応が進み、温度が連鎖分岐反応の発生する主燃料の着火温度まで上昇すると、自己着火が発生し混合気Mが燃焼する、所謂HCCI燃焼が行われる。
そして、圧縮行程に続く膨張行程では、排気弁30を開動作させた状態でピストンが上昇することにより、燃焼室10の排ガスEを排気路31に排出する排気行程が行われる。
このようにして、エンジン1は、吸気行程、圧縮行程、膨張行程、排気行程の順に各行程を行う一連の動作を繰り返し行うように構成されている。
When the intake valve 20 is opened, the piston descends from the top dead center, whereby an intake stroke for taking in the air-fuel mixture M from the intake passage 21 to the combustion chamber 10 is performed, and then the intake valve 20 is closed. When the piston rises in the state of being made, a compression stroke for compressing the air-fuel mixture M in the combustion chamber 10 is performed.
In the latter part of this compression stroke, the mixture M is heated by adiabatic compression, the main fuel oxidation reaction proceeds, and when the temperature rises to the ignition temperature of the main fuel where the chain branching reaction occurs, self-ignition occurs and mixing occurs. So-called HCCI combustion, in which the gas M burns, is performed.
In the expansion stroke following the compression stroke, the piston rises while the exhaust valve 30 is opened, whereby an exhaust stroke in which the exhaust gas E in the combustion chamber 10 is discharged to the exhaust passage 31 is performed.
In this way, the engine 1 is configured to repeatedly perform a series of operations for performing each stroke in the order of the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke.

また、吸気路21に設けられた熱交換器25へのエンジン冷却水の供給量を調整可能な冷却水供給量調整弁26が設けられている。この冷却水供給量調整弁26は、熱交換器25への冷却水の供給量を調整して熱交換器25の混合気Mに対する加熱能力を調整することで、複数の燃焼室10に新気として吸気される混合気Mの温度を調整する新気温度調整手段として機能する。
更に、この冷却水供給量調整弁26により燃焼室10へ吸気される混合気Mの温度を調整することで、複数の燃焼室10において圧縮される混合気Mの温度を一斉に変化させることができることから、この冷却水供給量調整弁26は、複数の燃焼室10の夫々における混合気Mの自己着火時期を一斉に調整する全体自己着火時期調整手段Y1として機能することになる。
Further, a cooling water supply amount adjusting valve 26 capable of adjusting the supply amount of engine cooling water to the heat exchanger 25 provided in the intake passage 21 is provided. The cooling water supply amount adjusting valve 26 adjusts the amount of cooling water supplied to the heat exchanger 25 to adjust the heating capacity of the heat exchanger 25 with respect to the air-fuel mixture M, so that fresh air is supplied to the plurality of combustion chambers 10. It functions as a fresh air temperature adjusting means for adjusting the temperature of the air-fuel mixture M to be sucked.
Further, by adjusting the temperature of the air-fuel mixture M sucked into the combustion chamber 10 by the cooling water supply amount adjusting valve 26, the temperature of the air-fuel mixture M compressed in the plurality of combustion chambers 10 can be changed simultaneously. Therefore, the cooling water supply amount adjustment valve 26 functions as an overall self-ignition timing adjusting means Y1 that simultaneously adjusts the self-ignition timing of the air-fuel mixture M in each of the plurality of combustion chambers 10.

エンジン1には、一般的なHCCI式エンジンと同様に、各種センサとして、燃焼室10の圧力(以下「筒内圧力」と呼ぶ。)を検出する筒内圧力センサ8や、クランク軸6の角度(以下「クランク角」と呼ぶ。)を検出するクランク角センサ7等が設けられている。   The engine 1 includes an in-cylinder pressure sensor 8 that detects the pressure in the combustion chamber 10 (hereinafter referred to as “in-cylinder pressure”) and an angle of the crankshaft 6 as various sensors, as in a general HCCI engine. A crank angle sensor 7 for detecting (hereinafter referred to as “crank angle”) is provided.

夫々の燃焼室10には、火花を発生可能な点火プラグ11が設けられており、この点火プラグ11は、ECU50が制御する点火回路12により電圧が印加されることで、燃焼室1aにて圧縮された混合気M中で火花を発生させて、混合気Mの自着火を誘発(アシスト)することができる。
また、この火花発生時期は混合気Mの自己着火時期に影響を与えることから、この点火回路12は、複数の燃焼室10の夫々に設けられた点火プラグ11による火花発生時期を個別に調整することで、複数の燃焼室10の夫々における混合気Mの自己着火時期を個別に調整する個別自己着火時期調整手段Y2として機能することになる。
Each combustion chamber 10 is provided with a spark plug 11 capable of generating a spark, and this spark plug 11 is compressed in the combustion chamber 1a when a voltage is applied by an ignition circuit 12 controlled by the ECU 50. Sparks can be generated in the air-fuel mixture M and the self-ignition of the air-fuel mixture M can be induced (assisted).
Further, since this spark generation timing affects the self-ignition timing of the air-fuel mixture M, the ignition circuit 12 individually adjusts the spark generation timing by the spark plugs 11 provided in each of the plurality of combustion chambers 10. Thus, the self-ignition timing adjusting means Y2 that individually adjusts the self-ignition timing of the air-fuel mixture M in each of the plurality of combustion chambers 10 functions.

エンジン1の各種制御は、ECU(エンジン・コントロール・ユニット)50によって行われ、かかるECU50は、所定のコンピュータープログラムを実行することにより、燃焼室10における混合気Mの自己着火時期を検出する自己着火時期検出手段51、サイクル変動の悪化を検出するサイクル変動検出手段52、エンジン1の運転制御を実行する制御手段53等として機能する。   Various controls of the engine 1 are performed by an ECU (Engine Control Unit) 50, which detects a self-ignition timing of the mixture M in the combustion chamber 10 by executing a predetermined computer program. It functions as a timing detection means 51, a cycle fluctuation detection means 52 that detects deterioration of cycle fluctuation, a control means 53 that executes operation control of the engine 1, and the like.

上記自己着火時期検出手段51は、クランク角センサ7で検出されるクランク角を参照しながら筒内圧力センサ8で検出された筒内圧力の変化状態を分析して、燃焼質量割合50%時期(50%の燃料の燃焼が完了した時期)や熱発生率の重心時期又は最大熱発生時期などの燃焼時期に関する状況を求め、かかる状況から混合気Mの自己着火時期を検出する。   The self-ignition timing detection means 51 analyzes the change state of the in-cylinder pressure detected by the in-cylinder pressure sensor 8 while referring to the crank angle detected by the crank angle sensor 7, and the combustion mass ratio 50% ( The situation regarding the combustion timing such as the time when the combustion of 50% fuel is completed), the center of gravity timing of the heat generation rate or the maximum heat generation timing is obtained, and the self-ignition timing of the air-fuel mixture M is detected from this situation.

上記サイクル変動検出手段52は、クランク角センサ7で検出されるクランク角を参照しながら筒内圧力センサ8で検出された筒内圧力を分析して、図示平均有効圧力を算出し、その図示平均有効圧力の標準偏差を同圧力の平均値で除算した値を、所定のサイクル数における変動係数COVとして求め、その変動係数COVが許容範囲を超えて増大した状態を、サイクル変動の悪化として検出する。   The cycle fluctuation detecting means 52 analyzes the in-cylinder pressure detected by the in-cylinder pressure sensor 8 while referring to the crank angle detected by the crank angle sensor 7, calculates the indicated mean effective pressure, and shows the indicated mean A value obtained by dividing the standard deviation of the effective pressure by the average value of the same pressure is obtained as a coefficient of variation COV in a predetermined number of cycles, and a state in which the coefficient of variation COV increases beyond an allowable range is detected as deterioration of cycle fluctuation. .

制御手段53は、後述する自己着火時期制御とサイクル変動抑制制御とを同時に実行すると共に、酸素センサ32で検出された排ガスEの酸素濃度に基づいて燃料供給弁24の開度を制御することによって、ミキサ23で生成される混合気Mの空燃比をHCCI燃焼に適した燃料リーンな所望の目標空燃比に維持する空燃比制御や、クランク角センサ7の検出結果から求められるクランク軸6の回転速度が所望の回転速度に維持されるようにスロットル弁22の開度を制御する回転速度維持制御などの各種制御を実行するように構成されている。   The control means 53 simultaneously executes self-ignition timing control and cycle fluctuation suppression control, which will be described later, and controls the opening of the fuel supply valve 24 based on the oxygen concentration of the exhaust gas E detected by the oxygen sensor 32. The air-fuel ratio of the air-fuel ratio M generated by the mixer 23 is maintained at a desired fuel-lean target air-fuel ratio suitable for HCCI combustion, and the rotation of the crankshaft 6 obtained from the detection result of the crank angle sensor 7 Various controls such as a rotational speed maintenance control for controlling the opening degree of the throttle valve 22 are performed so that the speed is maintained at a desired rotational speed.

以上がエンジン1の基本構成であるが、更に、エンジン1は、高回転領域などの過酷な運転状態においても、自己着火時期を適切な時期に維持しながら、サイクル変動の悪化を抑制するための構成として、燃焼室10における混合気Mのエタンの含有率を調整可能なエタン含有率調整手段Xを備えると共に、ECU50が機能する制御手段53が、全体自己着火時期調整手段Y1と個別自己着火時期調整手段Y2とからなる自己着火時期調整手段Y1,Y2を制御する自己着火時期制御を実行すると共に、エタン含有率調整手段Xを制御するサイクル変動抑制制御を実行するように構成されている。
以下、その詳細構成について説明を加える。
The basic configuration of the engine 1 has been described above. Further, the engine 1 is for suppressing deterioration of cycle fluctuations while maintaining the self-ignition timing at an appropriate time even in a severe operating state such as a high rotation region. As a configuration, an ethane content rate adjusting means X capable of adjusting the ethane content rate of the air-fuel mixture M in the combustion chamber 10 is provided, and a control means 53 on which the ECU 50 functions includes an overall self ignition timing adjusting means Y1 and an individual self ignition timing. While performing self-ignition timing control which controls self-ignition timing adjustment means Y1 and Y2 which consist of adjustment means Y2, cycle fluctuation suppression control which controls ethane content rate adjustment means X is performed.
The detailed configuration will be described below.

本実施形態のエンジン1においては、ECU50が機能する制御手段53は、自己着火時期制御を実行するにあたり、自己着火時期検出手段51で検出される自己着火時期が所定の目標自己着火時期範囲内に維持されるように自己着火時期調整手段Y1,Y2を制御する。
具体的に、自己着火時期検出手段51で検出された複数の燃焼室10における夫々の自己着火時期が、上死点近傍の目標自己着火時期範囲(例えば、6°ATDC〜10°ATDCの範囲)に対して進角側に乖離した場合には、全体自己着火時期調整手段Y1として機能する冷却水供給量調整弁26の開度を縮小させて、複数の燃焼室10に吸気される混合気Mの温度を低下させる。すると、混合気Mの温度低下により、複数の燃焼室10における夫々の自己着火時期が一斉に遅角側に移行して上記目標自己着火時期範囲内に復帰することになる。
逆に、自己着火時期検出手段51で検出された複数の燃焼室10における夫々の自己着火時期が、上記目標自己着火時期範囲に対して遅角側に乖離した場合には、冷却水供給量調整弁26の開度を拡大させて、複数の燃焼室10に吸気される混合気Mの温度を上昇させる。すると、混合気Mの温度上昇により、複数の燃焼室10における夫々の自己着火時期が一斉に進角側に移行して上記目標自己着火時期範囲内に復帰することになる。
また、上記全体自己着火時期調整手段Y1により複数の燃焼室10における夫々の自己着火時期を調整しても、一部の燃焼室10における自己着火時期が目標自己着火時期範囲内に復帰しない場合には、当該一部の燃焼室10に対してのみ、個別自己着火時期調整手段Y2として機能する点火回路12を制御して点火プラグ11の火花発生時期を調整することで、自己着火時期を目標自己着火時期範囲内に復帰させる。
In the engine 1 of the present embodiment, when the control means 53 that the ECU 50 functions performs self-ignition timing control, the self-ignition timing detected by the self-ignition timing detection means 51 falls within a predetermined target self-ignition timing range. The self-ignition timing adjusting means Y1, Y2 are controlled so as to be maintained.
Specifically, each self-ignition timing in the plurality of combustion chambers 10 detected by the self-ignition timing detection means 51 is a target self-ignition timing range near the top dead center (for example, a range of 6 ° ATDC to 10 ° ATDC). When the deviation is advanced, the degree of opening of the cooling water supply amount adjustment valve 26 that functions as the overall self-ignition timing adjusting means Y1 is reduced, and the air-fuel mixture M sucked into the plurality of combustion chambers 10 is reduced. Reduce the temperature. Then, due to the temperature drop of the air-fuel mixture M, the respective self-ignition timings in the plurality of combustion chambers 10 are simultaneously shifted to the retard side and returned to the target self-ignition timing range.
Conversely, when the self-ignition timings in the plurality of combustion chambers 10 detected by the self-ignition timing detection means 51 deviate from the target self-ignition timing range toward the retard side, the cooling water supply amount adjustment The temperature of the air-fuel mixture M sucked into the plurality of combustion chambers 10 is increased by increasing the opening of the valve 26. Then, as the temperature of the air-fuel mixture M rises, the respective self-ignition timings in the plurality of combustion chambers 10 shift to the advance side all at once and return to the target self-ignition timing range.
In addition, even when the self-ignition timings in the plurality of combustion chambers 10 are adjusted by the overall self-ignition timing adjusting means Y1, the self-ignition times in some of the combustion chambers 10 do not return within the target self-ignition timing range. Controls the spark generation timing of the spark plug 11 by controlling the ignition circuit 12 that functions as the individual self-ignition timing adjusting means Y2 only for the part of the combustion chambers 10, thereby setting the self-ignition timing to the target self. Return to the ignition timing range.

エタン含有率調整手段Xは、燃焼室10に対して添加量調整を伴ってエタンを添加可能なエタン添加部(エタン添加手段の一例)60で構成されている。
具体的に、天然ガスの蒸留過程などで得られたエタンが可搬式の高圧ガス容器63に加圧状態で蓄えられており、このエタン添加部60は、その高圧ガス容器63に貯留されているエタンを、ミキサ23に供給される主燃料に対して、エタン添加量調整弁61による添加量調整を伴って混合するように構成されている。
The ethane content rate adjusting means X is composed of an ethane addition section (an example of ethane addition means) 60 capable of adding ethane to the combustion chamber 10 with adjustment of the addition amount.
Specifically, ethane obtained in a natural gas distillation process or the like is stored in a pressurized state in a portable high-pressure gas container 63, and the ethane addition unit 60 is stored in the high-pressure gas container 63. Ethane is mixed with the main fuel supplied to the mixer 23 with the addition amount adjustment by the ethane addition amount adjustment valve 61.

次に、今般発明者らが本願を完成するに至った新知見であるエタンの燃焼特性について、図2に基づいて以下に説明を加える。
尚、図2は、天然ガス、並びに、それに含まれるメタン(CH4)、エタン(C26)、プロパン(C38)、イソブタン(iso−C410)、及びノルマルブタン(n−C410)の夫々の燃料について、その燃料と空気との混合気を定容系において自己着火させた場合の着火遅れ期間を示したグラフ図である。尚、初期条件では、混合気の当量比が0.5であり、混合気の圧力が6.08MPaであり、混合気の温度が1200Kである。また、図2において、着火過程前期とは、着火後において各燃料の温度が1200Kから1210Kまで上昇するまでの着火過程における時間幅を示し、着火過程後期とは、各燃焼の温度が1210Kから着火までの着火過程における時間幅を示す。
エタンは、プロパン及びブタン(イソ又はノルマル)と同様に、天然ガスの主成分であるメタンと比較して発火点が低い。即ち、燃焼室10で燃焼する混合気Mにおいて、エタンの含有率が低くなるほど、自己着火時期が遅角側に移行する。
しかし、エタンは、同様に発火点が低いプロパン、イソブタン、ノルマルブタンと比較して、図2に示すように、着火遅れ期間における着火過程前期の時間幅が大きいものの、着火過程後期の時間幅が最も小さい。これは、エタンは、他の炭化水素と比較して、OHラジカルの生成速度が着火過程後期において高まって温度上昇速度が加速される傾向にあることに起因する。即ち、燃焼室10で燃焼する混合気Mにおいて、エタンの含有率が高くなるほど、燃焼室10における着火過程後期の連鎖分岐反応の凍結が抑制されることから、サイクル変動の悪化が抑制されることになる。
Next, the combustion characteristics of ethane, which is a new finding that the present inventors have completed the present application, will be described below with reference to FIG.
2 shows natural gas and methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), isobutane (iso-C 4 H 10 ), and normal butane ( for n-C 4 H 10) fuel of each of the a graph showing the ignition delay period when allowed to self-ignite constant volume system a mixture of its fuel and air. In the initial conditions, the equivalence ratio of the air-fuel mixture is 0.5, the pressure of the air-fuel mixture is 6.08 MPa, and the temperature of the air-fuel mixture is 1200K. In FIG. 2, the first stage of the ignition process indicates a time width in the ignition process until the temperature of each fuel rises from 1200 K to 1210 K after ignition, and the second stage of the ignition process indicates that the temperature of each combustion starts from 1210 K. The time width in the ignition process up to is shown.
Like propane and butane (iso or normal), ethane has a lower ignition point than methane, which is the main component of natural gas. That is, in the air-fuel mixture M combusted in the combustion chamber 10, the self-ignition timing shifts to the retard side as the ethane content rate decreases.
However, compared with propane, isobutane, and normal butane, which have low ignition points, ethane has a larger time width in the early ignition process in the ignition delay period as shown in FIG. Smallest. This is due to the fact that ethane tends to increase the rate of OH radical generation late in the ignition process and accelerate the temperature rise rate compared to other hydrocarbons. That is, in the air-fuel mixture M combusted in the combustion chamber 10, the higher the ethane content rate, the more the chain branching reaction in the combustion chamber 10 is prevented from freezing in the later stage of the ignition process. become.

そして、本実施形態のエンジン1においては、ECU50が機能する制御手段53は、上記自己着火時期制御と同時に、下記に説明するサイクル変動抑制制御を実行する。
具体的に、サイクル変動抑制制御では、上述したサイクル変動検出手段52でサイクル変動の悪化が検出される場合に、エタン添加量調整弁61の開度を増加させることでミキサ23に供給される主燃料に対するエタンの添加量を増加させて、燃焼室10における混合気Mのエタンの含有率を増加させる形態で、エタン含有率調整手段Xを制御する。
即ち、燃焼室10における混合気Mのエタンの含有率が、サイクル変動の悪化を抑制できる適切な調整範囲の下限界を下回って減少することが回避されることになる。
And in the engine 1 of this embodiment, the control means 53 which ECU50 functions performs the cycle fluctuation suppression control demonstrated below simultaneously with the said self-ignition timing control.
Specifically, in the cycle fluctuation suppression control, when deterioration of cycle fluctuation is detected by the cycle fluctuation detecting means 52 described above, the main amount supplied to the mixer 23 by increasing the opening of the ethane addition amount adjusting valve 61 is increased. The ethane content rate adjusting means X is controlled in such a manner that the ethane content rate in the combustion chamber 10 is increased by increasing the amount of ethane added to the fuel.
That is, it is avoided that the ethane content of the air-fuel mixture M in the combustion chamber 10 decreases below the lower limit of an appropriate adjustment range in which deterioration of cycle fluctuation can be suppressed.

更に、上記サイクル変動抑制制御では、サイクル変動の抑制を重視するために、自己着火時期制御により実際の自己着火時期が目標自己着火時期範囲内に維持される限度において、燃焼室10における混合気Mのエタンの含有率をできるだけ大きくする。具体的には、自己着火時期制御において、冷却水供給量調整弁26の開度調整による混合気Mの温度調整が限界に達するまで、サイクル変動抑制制御において、エタン添加量調整弁61の開度を漸次拡大して、サイクル変動の抑制を図る。
尚、主燃料となる天然ガス系都市ガスは、メタンを主成分としており、そのメタンは、エタンよりも発火点が高いことから、燃焼室10における混合気Mのエタンの添加率が高くなるほど、当該混合気Mの着火性は高くなって、自己着火時期は進角側に変移することになる。
従って、上記サイクル変動抑制制御において、そのエタン添加量調整弁61の開度を漸次拡大してエタンの添加量を増加させた場合には、上記自己着火時期制御において、自己着火時期の進角側の変移を防止するべく、冷却水供給量調整弁26の開度が漸次縮小されて、混合気Mの温度が例えば常温を限度として低下側に調整されることになる。
Further, in the cycle fluctuation suppression control, in order to emphasize the suppression of cycle fluctuation, the air-fuel mixture M in the combustion chamber 10 is limited to the extent that the actual self-ignition timing is maintained within the target self-ignition timing range by the self-ignition timing control. Increase the ethane content of as much as possible. Specifically, in the self-ignition timing control, in the cycle fluctuation suppression control, the opening degree of the ethane addition amount adjustment valve 61 until the temperature adjustment of the air-fuel mixture M by the opening degree adjustment of the cooling water supply amount adjustment valve 26 reaches a limit. Is gradually expanded to suppress cycle fluctuations.
In addition, the natural gas type | system | group city gas used as a main fuel has methane as a main component, and since the methane has a higher ignition point than ethane, the higher the ethane addition rate of the mixture M in the combustion chamber 10, The ignitability of the air-fuel mixture M becomes high, and the self-ignition timing is shifted to the advance side.
Therefore, in the cycle fluctuation suppression control, when the ethane addition amount adjustment valve 61 is gradually enlarged to increase the ethane addition amount, the self-ignition timing control advances the advance side of the self-ignition timing. In order to prevent this change, the opening degree of the cooling water supply amount adjusting valve 26 is gradually reduced, and the temperature of the air-fuel mixture M is adjusted to the lower side, for example, at a normal temperature limit.

〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記実施形態では、エタン含有率調整手段Xを、燃焼室10に対して添加量調整を伴ってエタンを添加可能なエタン添加部60として構成したが、例えば、エタン含有率調整手段Xを、燃焼室10に供給される燃料から分離量調整を伴ってエタンを分離することで、燃焼室における混合気のエタンの含有率の調整を行っても構わない。
[Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.
(1) In the above embodiment, the ethane content rate adjusting means X is configured as the ethane addition unit 60 that can add ethane to the combustion chamber 10 with the addition amount adjustment. Alternatively, the ethane content in the combustion chamber may be adjusted by separating ethane from the fuel supplied to the combustion chamber 10 with the separation amount adjustment.

(2)上記実施形態では、エタン添加部60は、高圧ガス容器63に蓄えられたエタンを添加するように構成したが、主燃料即ち天然ガスの一部を取り出し、その天然ガスから、公知の酸化カップリング法(例えば特開平05−070372号公報参照)や、膜分離法及び加圧凝縮法などの精製法(例えば特開2009−167411号公報参照)などによりエタンを分離して、エタン添加部60に供給するように構成しても構わない。
また、主燃料以外の原料を外部から供給し、その原料を合成してエタンを得るように構成しても構わない。尚、この場合、原料としてのエチレンの水素化反応によりエタンを得ることができ、更に、そのエチレンをエタノールの脱水処理により得ることもできる。
また、エタン添加部60から供給されるエタンは、必ずしもエタン100%でなくてもよく、例えば主燃料よりもエタンの濃度が高く、それを燃焼室10に添加することで当該燃焼室10における混合気のエタンの含有率を上昇せる程度にエタンを含むものであればよい。
(2) In the above embodiment, the ethane addition unit 60 is configured to add ethane stored in the high-pressure gas container 63. However, a part of the main fuel, that is, natural gas is taken out, and the known gas is extracted from the natural gas. Separation of ethane by an oxidative coupling method (for example, see JP-A-05-070372) or a purification method such as a membrane separation method or a pressure condensation method (for example, see JP-A-2009-167411) You may comprise so that it may supply to the part 60. FIG.
Further, it may be configured such that raw materials other than the main fuel are supplied from the outside, and the raw materials are synthesized to obtain ethane. In this case, ethane can be obtained by a hydrogenation reaction of ethylene as a raw material, and the ethylene can also be obtained by a dehydration treatment of ethanol.
The ethane supplied from the ethane addition unit 60 is not necessarily 100% ethane. For example, the ethane concentration is higher than that of the main fuel, and by adding it to the combustion chamber 10, the mixing in the combustion chamber 10 is performed. Any substance may be used as long as it contains ethane to the extent that the content of methane is increased.

(3)上記実施形態では、主燃料を、エタンよりも発火点が高いメタンを主成分とする天然ガスとしたが、天然ガス以外に、ガソリンや軽油などの他の炭化水素系燃料を主燃料としても構わない。
尚、エタンよりも発火点が低い炭化水素を主成分とする燃料を主燃料とした場合には、上記サイクル変動抑制制御において、そのエタン添加量調整弁61の開度を漸次拡大してエタンの添加量を増加させた場合に、上記自己着火時期制御において、自己着火時期の遅角側の変移を防止するべく、冷却水供給量調整弁26の開度が漸次拡大されて、混合気Mの温度が上昇側に調整されることになる。また、この場合において、混合気Mの温度の上昇側の限度は、冷却水供給量調整弁26の開度を全開とした時点となり、例えば80℃程度となる。
(3) In the above embodiment, the main fuel is a natural gas mainly composed of methane having a higher ignition point than ethane. However, in addition to natural gas, other hydrocarbon fuels such as gasoline and light oil are used as the main fuel. It does not matter.
When the main fuel is a hydrocarbon whose ignition point is lower than that of ethane, the opening of the ethane addition amount adjustment valve 61 is gradually increased in the cycle fluctuation suppression control. When the addition amount is increased, in the self-ignition timing control, the degree of opening of the cooling water supply amount adjustment valve 26 is gradually increased in order to prevent the retarded side shift of the self-ignition timing, and the mixture M The temperature will be adjusted to the rising side. In this case, the upper limit of the temperature of the air-fuel mixture M is the time when the opening of the cooling water supply amount adjusting valve 26 is fully opened, and is about 80 ° C., for example.

(4)上記実施形態では、複数の燃焼室10に新気として吸気される混合気Mの温度を調整するにあたり、熱交換器25において比較的高温のエンジン冷却水との熱交換により混合気Mを加熱し、その加熱量を調整するように構成したが、例えば混合気Mの温度が例えば過給などにより比較的高温である場合には、その混合気を比較的低温の冷却水との熱交換により冷却し、その冷却量を調整するように構成しても構わない。 (4) In the above embodiment, when adjusting the temperature of the air-fuel mixture M taken as fresh air into the plurality of combustion chambers 10, the air-fuel mixture M is exchanged by heat exchange with the relatively high-temperature engine coolant in the heat exchanger 25. However, when the temperature of the air-fuel mixture M is relatively high due to, for example, supercharging, the air-fuel mixture is heated with the relatively low-temperature cooling water. You may comprise so that it may cool by replacement | exchange and the amount of cooling may be adjusted.

(5)上記実施形態では、複数の燃焼室10の夫々の自己着火時期を一斉に調整可能な全体自己着火時期調整手段Y1として、吸気路21に設けられた熱交換器25へのエンジン冷却水の供給量を調整可能な冷却水供給量調整弁26のように、複数の燃焼室10に新気として吸気される混合気Mの温度を調整する新気温度調整手段を設けたが、別の構成で複数の燃焼室10の夫々の自己着火時期を一斉に調整しても構わない。例えば、全体自己着火時期調整手段Y1としては、複数の燃焼室に新気として吸気される混合気の圧力を調整する新気圧力調整手段、複数の燃焼室に対する排ガスの還流率(EGR率)を調整するEGR率調整手段、同混合気の空燃比を調整する空燃比調整手段、複数の燃焼室における有効圧縮比を調整する有効圧縮比調整手段などを採用することができる。尚、夫々の手段はその目的に応じて公知の構成を採用することができる。
また、この全体自己着火時期調整手段Y1は適宜省略しても構わない。
(5) In the above embodiment, the engine cooling water to the heat exchanger 25 provided in the intake passage 21 is used as the overall self-ignition timing adjusting means Y1 that can adjust the self-ignition timing of each of the plurality of combustion chambers 10 at once. A fresh air temperature adjusting means for adjusting the temperature of the air-fuel mixture M taken as fresh air into the plurality of combustion chambers 10 is provided, such as a cooling water supply amount adjusting valve 26 capable of adjusting the supply amount of In the configuration, the self-ignition timings of the plurality of combustion chambers 10 may be adjusted all at once. For example, as the overall self-ignition timing adjusting means Y1, the fresh air pressure adjusting means for adjusting the pressure of the air-fuel mixture sucked as fresh air into the plurality of combustion chambers, the exhaust gas recirculation rate (EGR rate) to the plurality of combustion chambers, An EGR rate adjusting means for adjusting, an air-fuel ratio adjusting means for adjusting the air-fuel ratio of the air-fuel mixture, an effective compression ratio adjusting means for adjusting an effective compression ratio in a plurality of combustion chambers, and the like can be adopted. In addition, each means can employ | adopt a well-known structure according to the objective.
Further, this overall self-ignition timing adjusting means Y1 may be omitted as appropriate.

(6)上記実施形態では、複数の燃焼室10の夫々の自己着火時期を個別に調整可能な個別自己着火時期調整手段Y2として、複数の燃焼室10の夫々に設けられた点火プラグ11による火花発生時期を個別に調整する点火回路12を設けたが、別の構成で複数の燃焼室10の夫々の自己着火時期を個別に調整しても構わない。例えば、個別自己着火時期調整手段Y2としては、複数の燃焼室の夫々の吸気ポートに配置した燃料噴射弁を採用することができる。即ち、夫々の燃料噴射弁により夫々の吸気ポートにおける燃料噴射量を個別に調整して、複数の燃焼室における混合気の空燃比を個別に調整することで、複数の燃焼室の夫々の自己着火時期を個別に調整することができる。
また、この個別自己着火時期調整手段Y2は適宜省略しても構わない。
(6) In the above-described embodiment, the individual self-ignition timing adjusting means Y2 that can individually adjust the self-ignition timing of each of the plurality of combustion chambers 10 serves as a spark by the spark plug 11 provided in each of the plurality of combustion chambers 10. Although the ignition circuit 12 for individually adjusting the generation timing is provided, the self-ignition timing of each of the plurality of combustion chambers 10 may be individually adjusted with another configuration. For example, as the individual self-ignition timing adjusting means Y2, a fuel injection valve arranged at each intake port of a plurality of combustion chambers can be employed. That is, by individually adjusting the fuel injection amount in each intake port by each fuel injection valve and individually adjusting the air-fuel ratio of the air-fuel mixture in the plurality of combustion chambers, the self-ignition of each of the plurality of combustion chambers The time can be adjusted individually.
The individual self-ignition timing adjusting means Y2 may be omitted as appropriate.

(7)上記実施形態では、本発明に係る予混合圧縮着火エンジンを、多気筒型に構成したが、当然単気筒型に構成しても構わない。 (7) In the above-described embodiment, the premixed compression ignition engine according to the present invention is configured as a multi-cylinder type.

本発明は、燃焼室に吸気される新気に炭化水素系の主燃料を混合して混合気を形成し、当該混合気を燃焼室で圧縮して自己着火させ燃焼させる予混合圧縮着火式エンジン及びその運転制御方法として好適に利用可能である。   The present invention relates to a premixed compression ignition type engine in which a hydrocarbon-based main fuel is mixed with fresh air sucked into a combustion chamber to form an air-fuel mixture, and the air-fuel mixture is compressed in the combustion chamber to self-ignite and burn. And the operation control method thereof can be suitably used.

1 :予混合圧縮着火エンジン
7 :クランク角センサ
8 :筒内圧力センサ
10 :燃焼室
21 :吸気路
23 :ミキサ
24 :燃料供給弁
25 :熱交換器
26 :冷却水供給量調整弁(新気温度調整手段)
31 :排気路
51 :自己着火時期検出手段
52 :サイクル変動検出手段
53 :制御手段
60 :エタン添加部(エタン添加手段)
61 :エタン添加量調整弁
M :混合気
X :エタン含有率調整手段
Y1、Y2:自己着火時期調整手段
1: Premixed compression ignition engine 7: Crank angle sensor 8: In-cylinder pressure sensor 10: Combustion chamber 21: Intake passage 23: Mixer 24: Fuel supply valve 25: Heat exchanger 26: Coolant supply amount adjustment valve (fresh air) Temperature adjustment means)
31: Exhaust passage 51: Self-ignition timing detection means 52: Cycle fluctuation detection means 53: Control means 60: Ethane addition section (ethane addition means)
61: Ethane addition amount adjusting valve M: Gas mixture X: Ethane content rate adjusting means Y1, Y2: Self-ignition timing adjusting means

Claims (5)

燃焼室に吸気される新気に炭化水素系の主燃料を混合して混合気を形成し、当該混合気を燃焼室で圧縮して自己着火させ燃焼させる予混合圧縮着火式エンジンであって、
燃焼室における混合気の自己着火時期を検出する自己着火時期検出手段を備えると共に、燃焼室における混合気の自己着火時期を調整可能な自己着火時期調整手段を備え、
サイクル変動の悪化を検出するサイクル変動検出手段を備えると共に、燃焼室における混合気のエタンの含有率を調整可能なエタン含有率調整手段を備え、
前記自己着火時期検出手段で検出される自己着火時期が目標自己着火時期範囲内に維持されるように前記自己着火時期調整手段を制御する自己着火時期制御を実行すると共に、前記サイクル変動検出手段で検出されるサイクル変動の悪化が抑制されるように前記エタン含有率調整手段を制御するサイクル変動抑制制御を実行する制御手段を備えた予混合圧縮着火式エンジン。
A premixed compression ignition engine in which a hydrocarbon-based main fuel is mixed with fresh air sucked into a combustion chamber to form an air-fuel mixture, and the air-fuel mixture is compressed in the combustion chamber to self-ignite and burn.
Self-ignition timing detection means for detecting the self-ignition timing of the air-fuel mixture in the combustion chamber, and self-ignition timing adjustment means capable of adjusting the self-ignition timing of the air-fuel mixture in the combustion chamber,
Cycle content detecting means for detecting deterioration of cycle fluctuation, and ethane content rate adjusting means capable of adjusting the ethane content rate in the combustion chamber,
Performing self-ignition timing control for controlling the self-ignition timing adjustment means so that the self-ignition timing detected by the self-ignition timing detection means is maintained within a target self-ignition timing range; A premixed compression ignition type engine comprising control means for executing cycle fluctuation suppression control for controlling the ethane content rate adjusting means so that deterioration of detected cycle fluctuation is suppressed.
複数の燃焼室を配置した多気筒型に構成され、
前記自己着火時期調整手段が、複数の燃焼室の夫々の自己着火時期を一斉に調整可能な全体自己着火時期調整手段と、複数の燃焼室の夫々の自己着火時期を個別に調整可能な個別自己着火時期調整手段とからなる請求項1に記載の予混合圧縮着火式エンジン。
It is configured as a multi-cylinder type with multiple combustion chambers.
The self-ignition timing adjusting means is capable of adjusting the self-ignition timing of each of the plurality of combustion chambers at once, and the individual self-adjustment capable of individually adjusting the self-ignition timing of each of the plurality of combustion chambers. The premixed compression ignition type engine according to claim 1, further comprising ignition timing adjusting means.
前記エタン含有率調整手段が、燃焼室に対して添加量調整を伴ってエタンを添加可能なエタン添加手段である請求項1又は2に記載の予混合圧縮着火式エンジン。   The premixed compression ignition type engine according to claim 1 or 2, wherein the ethane content rate adjusting means is an ethane addition means capable of adding ethane to the combustion chamber by adjusting the addition amount. 前記主燃料がメタンを主成分とする天然ガスである請求項1〜3の何れか1項に記載の予混合圧縮着火式エンジン。   The premixed compression ignition type engine according to any one of claims 1 to 3, wherein the main fuel is natural gas mainly containing methane. 燃焼室に吸気される新気に炭化水素系の主燃料を混合して混合気を形成し、当該混合気を燃焼室で圧縮して自己着火させ燃焼させる予混合圧縮着火式エンジンの運転制御方法であって、
燃焼室における混合気の自己着火時期を検出する自己着火時期検出手段を備えると共に、燃焼室における混合気の自己着火時期を調整可能な自己着火時期調整手段を備え、
サイクル変動の悪化を検出するサイクル変動検出手段を備えると共に、燃焼室における混合気のエタンの含有率を調整可能なエタン含有率調整手段を設け、
前記自己着火時期検出手段で検出される自己着火時期が目標自己着火時期範囲内に維持されるように前記自己着火時期調整手段を制御する自己着火時期制御を実行すると共に、前記サイクル変動検出手段で検出されるサイクル変動の悪化が抑制されるように前記エタン含有率調整手段を制御するサイクル変動抑制制御を実行する予混合圧縮着火式エンジンの運転制御方法。
Operation control method of a premixed compression ignition engine in which hydrocarbon-based main fuel is mixed with fresh air sucked into the combustion chamber to form an air-fuel mixture, and the air-fuel mixture is compressed in the combustion chamber to self-ignite and burn Because
Self-ignition timing detection means for detecting the self-ignition timing of the air-fuel mixture in the combustion chamber, and self-ignition timing adjustment means capable of adjusting the self-ignition timing of the air-fuel mixture in the combustion chamber,
Cycle content detecting means for detecting the deterioration of the cycle fluctuation, and ethane content rate adjusting means capable of adjusting the ethane content rate in the combustion chamber are provided.
Performing self-ignition timing control for controlling the self-ignition timing adjustment means so that the self-ignition timing detected by the self-ignition timing detection means is maintained within a target self-ignition timing range; An operation control method for a premixed compression ignition type engine that executes cycle fluctuation suppression control for controlling the ethane content rate adjusting means so that deterioration of detected cycle fluctuation is suppressed.
JP2013043315A 2013-03-05 2013-03-05 Premixed compression ignition type engine and its operation control method Active JP5995754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043315A JP5995754B2 (en) 2013-03-05 2013-03-05 Premixed compression ignition type engine and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043315A JP5995754B2 (en) 2013-03-05 2013-03-05 Premixed compression ignition type engine and its operation control method

Publications (2)

Publication Number Publication Date
JP2014169685A JP2014169685A (en) 2014-09-18
JP5995754B2 true JP5995754B2 (en) 2016-09-21

Family

ID=51692223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043315A Active JP5995754B2 (en) 2013-03-05 2013-03-05 Premixed compression ignition type engine and its operation control method

Country Status (1)

Country Link
JP (1) JP5995754B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984719B2 (en) * 2013-03-05 2016-09-06 大阪瓦斯株式会社 Spark ignition engine and operation control method thereof
JP2015074983A (en) * 2013-10-04 2015-04-20 大阪瓦斯株式会社 Premixing compression ignition type engine, and operation control method thereof
JP6338362B2 (en) * 2013-12-03 2018-06-06 大阪瓦斯株式会社 Premixed compression ignition type engine and its operation control method
JP2019074054A (en) * 2017-10-18 2019-05-16 ダイハツディーゼル株式会社 Fuel supply device for engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010070B2 (en) * 1981-02-21 1985-03-14 貞利 大部 Fuel composition for gasoline engines
JPH10121070A (en) * 1996-10-22 1998-05-12 Cosmo Sogo Kenkyusho:Kk Gas composition
EP0983433B1 (en) * 1998-02-23 2007-05-16 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
JP3991789B2 (en) * 2002-07-04 2007-10-17 トヨタ自動車株式会社 An internal combustion engine that compresses and ignites the mixture.
JP5051031B2 (en) * 2008-07-04 2012-10-17 日産自動車株式会社 Combustion control device for premixed compression ignition engine
JP5239565B2 (en) * 2008-07-07 2013-07-17 日産自動車株式会社 Combustion control device for premixed compression ignition engine
JP5002034B2 (en) * 2010-04-26 2012-08-15 三菱電機株式会社 Fuel control device for internal combustion engine
JP5984719B2 (en) * 2013-03-05 2016-09-06 大阪瓦斯株式会社 Spark ignition engine and operation control method thereof

Also Published As

Publication number Publication date
JP2014169685A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
Subramanian et al. Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fuelled spark ignition engine
Singh et al. Effect of pilot injection timing, pilot quantity and intake charge conditions on performance and emissions for an advanced low-pilot-ignited natural gas engine
US10641190B2 (en) Method for operating a spark ignited engine
US9249744B2 (en) Method for operating an engine
KR20160041010A (en) Method for operating a compression ignition engine
WO2005095768A1 (en) Control device for internal combustion engine enabling premixed compression self-ignition operation
US20160097338A1 (en) Method for operating an internal combustion engine
JP5995754B2 (en) Premixed compression ignition type engine and its operation control method
JP2016075275A5 (en)
US11125180B2 (en) Auto-ignition control in a combustion engine
JP2021102962A (en) Low-load operation method for operating reciprocating piston internal combustion engine, computer program product, and reciprocating piston internal combustion engine
Zhu et al. Experimental evaluation of performance of heavy-duty SI pure methanol engine with EGR
US11578684B2 (en) Method for operating an engine
de Tablan Diesel and compressed natural gas dual fuel engine operating envelope for heavy duty application
JP6338362B2 (en) Premixed compression ignition type engine and its operation control method
US10458347B2 (en) Power train system
Zhang et al. Comparison of performance, efficiency and emissions between gasoline and E85 in a two-stroke poppet valve engine with lean boost CAI operation
JP2015074983A (en) Premixing compression ignition type engine, and operation control method thereof
Lata et al. Experimental investigations on the performance of a dual fuel diesel engine with hydrogen and LPG as secondary fuels
JP2004278428A (en) Diesel engine and its operation method
JP5984719B2 (en) Spark ignition engine and operation control method thereof
Sierens et al. EGR and lean combustion strategies for a single cylinder hydrogen fuelled IC engine
JP6245965B2 (en) Spark ignition engine and operation control method thereof
Yu et al. Effects of dual injection strategies on combustion, heat-work conversion process and emissions of a spark ignition engine fuelled with E20 blends
JP2005105944A (en) Premixed compression ignition engine and method of controlling operation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150