JP5995364B2 - Alkyl zinc halide zinc oxide precursor and zinc oxide thin film deposition method using the same - Google Patents

Alkyl zinc halide zinc oxide precursor and zinc oxide thin film deposition method using the same Download PDF

Info

Publication number
JP5995364B2
JP5995364B2 JP2012251873A JP2012251873A JP5995364B2 JP 5995364 B2 JP5995364 B2 JP 5995364B2 JP 2012251873 A JP2012251873 A JP 2012251873A JP 2012251873 A JP2012251873 A JP 2012251873A JP 5995364 B2 JP5995364 B2 JP 5995364B2
Authority
JP
Japan
Prior art keywords
zinc oxide
thin film
substrate
zinc
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012251873A
Other languages
Japanese (ja)
Other versions
JP2013108177A (en
Inventor
パク スーホー
パク スーホー
キム ソヒュン
キム ソヒュン
パク ジョンウー
パク ジョンウー
パク テジュン
パク テジュン
ユ ユンゾー
ユ ユンゾー
ユン グンサン
ユン グンサン
チョイ ウン−ホ
チョイ ウン−ホ
ウン キム ミョン
ウン キム ミョン
キム ボギョン
キム ボギョン
スー シン ヒュン
スー シン ヒュン
ホー ユ スン
ホー ユ スン
ドー イ サン
ドー イ サン
イック イ サン
イック イ サン
ジュン イム サン
ジュン イム サン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Corning Precision Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Precision Materials Co Ltd filed Critical Corning Precision Materials Co Ltd
Publication of JP2013108177A publication Critical patent/JP2013108177A/en
Application granted granted Critical
Publication of JP5995364B2 publication Critical patent/JP5995364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、酸化亜鉛系薄膜の蒸着のためのアルキル亜鉛ハライド酸化亜鉛前駆体及びこれを用いた酸化亜鉛系薄膜の蒸着方法に関する。   The present invention relates to an alkylzinc halide zinc oxide precursor for vapor deposition of a zinc oxide thin film and a method for vapor deposition of a zinc oxide thin film using the same.

TFT−LCD、PDP、FED、OLEDなどのようなフラットパネルディスプレイ;光電効果を用いる太陽電池;タッチスクリーン;などには、光を遮断しない導電物質、すなわち、透明導電膜(transparent conducting electrode)が要求される。   Flat panel displays such as TFT-LCDs, PDPs, FEDs, OLEDs, etc .; solar cells using photoelectric effects; touch screens; etc. require conductive materials that do not block light, that is, transparent conducting electrodes Is done.

透明導電膜に最も多く用いられる材料は、スズ(Sn)がドープされた酸化インジウム膜(In)、すなわち、酸化インジウムスズ膜(ITO、Indium Tin Oxide)である。酸化インジウムスズ膜(ITO)は、比抵抗(specific resistivity)が約1〜2×10−4Ωmと低いため電気伝導度に優れ、可視光線領域において透過度が高く、且つ化学的安定性に優れているため、透明電極用材料として広く用いられている。しかしながら、酸化インジウムスズ膜の主要構成元素であるインジウム(In)は、スズ(Sn)や亜鉛(Zn)などに比べて埋蔵量が極めて少ないため、価格が銀(Ag)に比肩するほどの高価であるだけでなく、価格の変動も激しいという問題を抱えている。このため、インジウムに代わり得る材料の研究が活発に進められている。 The most frequently used material for the transparent conductive film is an indium oxide film (In 2 O 3 ) doped with tin (Sn), that is, an indium tin oxide film (ITO, Indium Tin Oxide). Indium tin oxide film (ITO) has excellent electrical conductivity because of its low specific resistivity (about 1-2 × 10 −4 Ωm), high transmittance in the visible light region, and excellent chemical stability. Therefore, it is widely used as a transparent electrode material. However, indium (In), which is a main constituent element of an indium tin oxide film, has an extremely small reserve amount compared to tin (Sn), zinc (Zn), and the like, so that the price is as high as that of silver (Ag). In addition to this, there is a problem that prices fluctuate rapidly. For this reason, research on materials that can replace indium is being actively pursued.

近年、酸化インジウムスズ膜(ITO)の代替材料として多く研究されているものは、酸化亜鉛(ZnO)にアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ホウ素(B)などの陽イオン性の第3族金属元素またはフッ素(F)のようなハロゲン元素がドープされた材料である。   In recent years, materials that have been studied extensively as alternative materials for indium tin oxide films (ITO) are cations such as zinc oxide (ZnO), aluminum (Al), gallium (Ga), indium (In), and boron (B). It is a material doped with an elemental group 3 metal element or a halogen element such as fluorine (F).

酸化亜鉛系薄膜は、物理的気相蒸着方法にて基板上に蒸着することができ、当該物理的気相蒸着方法のうちスパッタリング(sputtering)工程を用いる場合、ターゲット物質として酸化亜鉛(ZnO)系ターゲットを用いている(韓国公開特許番号:10-2008-0064269)。   A zinc oxide-based thin film can be deposited on a substrate by a physical vapor deposition method. When a sputtering process is used in the physical vapor deposition method, a zinc oxide (ZnO) -based target material is used. A target is used (Korea published patent number: 10-2008-0064269).

また、酸化亜鉛系薄膜は、化学的気相蒸着方法にて基板上に蒸着することもでき、従来は、DEZ(Dietyl zinc)、DEZオクタン溶液(DEZ Octance solution)などを原料物質として用いていた(韓国公開特許番号:10-2007-0053617、10-2006-0125500)。   Further, the zinc oxide-based thin film can be deposited on the substrate by a chemical vapor deposition method. Conventionally, DEZ (Dietyl zinc), DEZ octane solution, etc. have been used as a raw material. (Korea published patent numbers: 10-2007-0053617, 10-2006-0125500).

図1は、DEZまたはDMZを原料物質として用いて酸化亜鉛系薄膜を蒸着する従来のPECVD装置を概略的に示す図である。   FIG. 1 is a diagram schematically showing a conventional PECVD apparatus for depositing a zinc oxide-based thin film using DEZ or DMZ as a raw material.

同図は、ドープされていないZnO及びF−及びB−ドープされたZnOを蒸着させるためのPECVD装置を例示する。図1のPECVD装置は、揮発性有機金属亜鉛化合物としてDEZまたはDMZ;キャリアガスとしてArまたはHe;酸化剤としてCO;及びドーピング剤としてトリエチルホウ素または三フッ化窒素を導入して反応組成物を形成し、その反応組成物を蒸着チャンバ1に導入して基板5上に酸化亜鉛系薄膜を蒸着する。 The figure illustrates a PECVD apparatus for depositing undoped ZnO and F- and B-doped ZnO. The PECVD apparatus in FIG. 1 introduces a reaction composition by introducing DEZ or DMZ as a volatile organometallic zinc compound; Ar or He as a carrier gas; CO 2 as an oxidizing agent; and triethylboron or nitrogen trifluoride as a doping agent. Then, the reaction composition is introduced into the vapor deposition chamber 1 to deposit a zinc oxide thin film on the substrate 5.

未説明の図面符号2は上部電極、3は下部電極、4は孔、6は開口、7は電力源、8、9、10、11、12、及び13はライン、14、15、16、17、18、及び19は流量調節装置、20は熱保持装置を示す。   Unexplained reference numeral 2 is an upper electrode, 3 is a lower electrode, 4 is a hole, 6 is an opening, 7 is a power source, 8, 9, 10, 11, 12, and 13 are lines, 14, 15, 16, 17 , 18 and 19 are flow control devices, and 20 is a heat holding device.

図2は、DEZを有機溶媒に溶解させて製造した溶液を原料として用いて酸化亜鉛系薄膜を蒸着する従来の蒸着チャンバを概略的に示す図である。   FIG. 2 is a view schematically showing a conventional deposition chamber in which a zinc oxide-based thin film is deposited using a solution prepared by dissolving DEZ in an organic solvent as a raw material.

DMZ(ジメチル亜鉛)またはDEZ(ジエチル亜鉛)を有機溶媒(エーテル、ケトン、エステル、炭化水素またはアルコール)に溶解させて製造した溶液を気化させて供給管24を介してCVD装置に供給し、同時に酸化剤ガス(酸素ガス、オゾンガス、窒素酸化物ガスまたは蒸気)を供給管25を介して蒸着チャンバに供給する。   A solution prepared by dissolving DMZ (dimethylzinc) or DEZ (diethylzinc) in an organic solvent (ether, ketone, ester, hydrocarbon or alcohol) is vaporized and supplied to the CVD apparatus via the supply pipe 24, and at the same time Oxidant gas (oxygen gas, ozone gas, nitrogen oxide gas or vapor) is supplied to the deposition chamber through the supply pipe 25.

未説明の図面符号21は基板、22はサセプタ、23はヒータ、26は回転軸、27は反応ガス排出部、29は反応室を示す。   Unexplained reference numeral 21 denotes a substrate, 22 denotes a susceptor, 23 denotes a heater, 26 denotes a rotating shaft, 27 denotes a reaction gas discharge unit, and 29 denotes a reaction chamber.

しかしながら、図1に示すように、DEZまたはDMZを用いる場合、蒸気圧が高すぎ、高い反応性による引火危険性が高く、薄膜の組成制御が容易ではないという不具合がある。特に、高い反応性による引火危険性により、DEZ、DMZなどの前駆体を用いた酸化亜鉛系薄膜の蒸着は低圧下で実施しなければならず、常圧化学気相蒸着は用いることができないという不具合がある。   However, as shown in FIG. 1, when DEZ or DMZ is used, there is a problem that the vapor pressure is too high, the risk of ignition due to high reactivity is high, and the composition control of the thin film is not easy. In particular, due to the high flammability risk due to high reactivity, the deposition of zinc oxide thin films using precursors such as DEZ and DMZ must be performed under low pressure, and atmospheric pressure chemical vapor deposition cannot be used. There is a bug.

また、図2に示すように、DEZ、DMZなどの前駆体を有機溶媒に希釈して用いる方法では、自然発火を抑制することができるという利点はあるものの、亜鉛の含量が低いためによる低い蒸着速度によって歩留まりが低いという不具合がある。また、低温蒸着の際に揮発されていない溶媒により引火性が高くなるため、高温蒸着でしか使用できないという短所がある。   In addition, as shown in FIG. 2, the method of diluting a precursor such as DEZ or DMZ in an organic solvent has an advantage that spontaneous ignition can be suppressed, but low deposition due to low zinc content. There is a problem that the yield is low depending on the speed. Further, since the flammability is increased by a solvent that is not volatilized at the time of low temperature vapor deposition, there is a disadvantage that it can be used only at high temperature vapor deposition.

本発明は、前記した問題点を解決するためになされたものであって、その目的は、従来のDEZまたはDMZに代わり得る有機化合物であるアルキル亜鉛ハライドを合成して酸化亜鉛系薄膜の化学気相蒸着に適用できるようにすることにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to synthesize an alkyl zinc halide, which is an organic compound that can replace conventional DEZ or DMZ, and to chemistry the zinc oxide thin film. It is to be applicable to phase deposition.

薄膜の化学気相蒸着工程において、熱的、化学的不安定性による工程上の問題点を改善し、優れた熱的、化学的安定性と高い蒸気圧を有し、水分及び空気などに引火しない新たな原料物質を提供するとともに反応ガスと蒸着温度の変化などといった工程条件だけを変化させることで炭素などの不純物がない純粋な酸化亜鉛系薄膜を蒸着させることにその目的がある。   In the chemical vapor deposition process of thin films, it improves the process problems due to thermal and chemical instability, has excellent thermal and chemical stability and high vapor pressure, and does not ignite moisture and air The purpose is to deposit a pure zinc oxide-based thin film free of impurities such as carbon by providing new raw materials and changing only process conditions such as reaction gas and deposition temperature.

特に、高速の蒸着速度と高い生産性のため量産工程に適合した常圧気相蒸着にて酸化亜鉛系薄膜を量産できるようにすることに本発明の目的がある。   In particular, it is an object of the present invention to enable mass production of a zinc oxide-based thin film by atmospheric pressure vapor deposition suitable for a mass production process due to a high deposition rate and high productivity.

前記目的を達成するために、本発明は、酸化亜鉛系薄膜の蒸着に用いられる前駆体であって、下記の化学式で示されるアルキル亜鉛ハライドであることを特徴とするアルキル亜鉛ハライド酸化亜鉛前駆体を提供する。
In order to achieve the above object, the present invention provides a precursor for use in vapor deposition of a zinc oxide-based thin film, which is an alkylzinc halide represented by the following chemical formula: I will provide a.

前記式中、Rはアルキル基(C2n+1)を表し、Xはハロゲン基を表す。 In the above formula, R represents an alkyl group (C n H 2n + 1 ), and X represents a halogen group.

好ましくは、前記アルキル基のnは1〜4であり、より好ましくは、前記アルキル基は、メチル基、エチル基、i−プロピル基、またはt−ブチル基を含む。   Preferably, n of the alkyl group is 1 to 4, and more preferably, the alkyl group includes a methyl group, an ethyl group, an i-propyl group, or a t-butyl group.

好ましくは、前記ハロゲン基は、F、Br、Cl、またはIを含む。   Preferably, the halogen group includes F, Br, Cl, or I.

また、本発明は、蒸着チャンバ内に基板を配置させる段階と、前記アルキル亜鉛ハライド酸化亜鉛前駆体と酸化剤を前記蒸着チャンバに供給し、基板上に酸化亜鉛系薄膜を化学気相蒸着する段階と、を含むことを特徴とする酸化亜鉛系薄膜の蒸着方法を提供する。   The present invention also includes a step of disposing a substrate in a vapor deposition chamber, a step of supplying the alkylzinc halide zinc oxide precursor and an oxidizing agent to the vapor deposition chamber, and performing chemical vapor deposition of a zinc oxide-based thin film on the substrate. And a method for vapor-depositing a zinc oxide-based thin film.

好ましくは、常圧化学気相蒸着にて前記基板上に前記酸化亜鉛系薄膜を蒸着する。   Preferably, the zinc oxide thin film is deposited on the substrate by atmospheric pressure chemical vapor deposition.

前記構成によれば、本発明に係るアルキル亜鉛ハライド有機金属化合物は、酸化剤による反応の際に生成される副産物の引火性がDEZまたはDMZの前駆体酸化副産物であるエタンガスまたはメタンガスの引火性よりも低いため、比較的安全に常圧化学気相蒸着に適用することができる。   According to the above configuration, the alkylzinc halide organometallic compound according to the present invention has a flammability of a by-product generated in the reaction with an oxidant from the flammability of ethane gas or methane gas, which is a precursor oxidation by-product of DEZ or DMZ. Therefore, it can be applied to atmospheric pressure chemical vapor deposition relatively safely.

低い引火性により、炭化水素類の溶媒に希釈する必要がないため、高い亜鉛含量の前駆体による高速の蒸着速度により高い歩留まりを得ることができる。   Due to the low flammability, there is no need to dilute in hydrocarbon solvents, so high yields can be obtained with high deposition rates with high zinc content precursors.

DEZまたはDMZを原料物質として用いて酸化亜鉛系薄膜を蒸着する従来のPECVD装置を概略的に示す図である。It is a figure which shows roughly the conventional PECVD apparatus which vapor-deposits a zinc oxide type thin film using DEZ or DMZ as a raw material. DEZを有機溶媒に溶解させて製造した溶液を原料として用いて酸化亜鉛系薄膜を蒸着する他の従来の蒸着チャンバを概略的に示す図である。It is a figure which shows roughly the other conventional vapor deposition chamber which vapor-deposits a zinc oxide type thin film using the solution manufactured by melt | dissolving DEZ in the organic solvent as a raw material. 本発明の種々のアルキル亜鉛ハライドを示す図である。It is a figure which shows the various alkyl zinc halides of this invention. 本発明の一実施形態に従って製造されたエチル亜鉛クロリドを分析した結果を示す図である。It is a figure which shows the result of having analyzed the ethyl zinc chloride manufactured according to one Embodiment of this invention. 本発明の一実施形態に係るCVD装置を概略的に示す図である。It is a figure showing roughly the CVD device concerning one embodiment of the present invention. 図5のキャニスターの一例を概略的に示す図である。It is a figure which shows roughly an example of the canister of FIG. 図5のキャニスターの一例を概略的に示す図である。It is a figure which shows roughly an example of the canister of FIG. 第1の実施形態に従って蒸着された酸化亜鉛系薄膜の分析結果を示す図である。It is a figure which shows the analysis result of the zinc oxide type thin film vapor-deposited according to 1st Embodiment. 第1の実施形態に従って蒸着された酸化亜鉛系薄膜の分析結果を示す図である。It is a figure which shows the analysis result of the zinc oxide type thin film vapor-deposited according to 1st Embodiment. 第1の実施形態に従って蒸着された酸化亜鉛系薄膜の分析結果を示す図である。It is a figure which shows the analysis result of the zinc oxide type thin film vapor-deposited according to 1st Embodiment. 第2の実施形態に従って蒸着された酸化亜鉛系薄膜の分析結果を示す図である。It is a figure which shows the analysis result of the zinc oxide type thin film vapor-deposited according to 2nd Embodiment. 第2の実施形態に従って蒸着された酸化亜鉛系薄膜の分析結果を示す図である。It is a figure which shows the analysis result of the zinc oxide type thin film vapor-deposited according to 2nd Embodiment. 第2の実施形態に従って蒸着された酸化亜鉛系薄膜の分析結果を示す図である。It is a figure which shows the analysis result of the zinc oxide type thin film vapor-deposited according to 2nd Embodiment.

本発明では、既存に用いられていたDEZ、DMZなどの酸化亜鉛前駆体に代わり得る有機金属化合物として、化学式1で示されるアルキル亜鉛ハライド(Alkyl Zinc Halide)を用いて化学気相蒸着(Chemical Vapor Deposition、CVD)を実施する。
In the present invention, as an organometallic compound that can be used in place of a zinc oxide precursor such as DEZ and DMZ that has been used, chemical vapor deposition (Chemical Vapor) using an alkyl zinc halide represented by Chemical Formula 1 is used. (Deposition, CVD).

前記式中、Rはアルキル基(C2n+1)を表し、Xはハロゲン基を表す。 In the above formula, R represents an alkyl group (C n H 2n + 1 ), and X represents a halogen group.

このときのnは、好ましくは1〜4であり、例えば、前記Rはメチル基、エチル基、i−プロピル基、及びt−ブチル基のいずれかである。Xは、好ましくは、F、Br、Cl、及びIのいずれかである。図3は、前記アルキル基及び前記ハロゲン基を有する本発明の種々のアルキル亜鉛ハライドを示す。   In this case, n is preferably 1 to 4, and for example, R is any one of a methyl group, an ethyl group, an i-propyl group, and a t-butyl group. X is preferably any one of F, Br, Cl, and I. FIG. 3 shows various alkyl zinc halides of the present invention having the alkyl group and the halogen group.

前記化学式1で示されるアルキル亜鉛ハライドを原料として用いる場合、DEZに対する原料の低い反応性及び引火性により炭化水素類の溶媒に希釈する必要がないため、高い亜鉛含量による高速の蒸着速度により高い歩留まりを得ることができる。また、酸化剤による反応の際に生成される副産物の引火性がDEZ、DMZなどの前駆体酸化副産物であるエタンガス、メタンガスなどの引火性よりも低いため、比較的安全に化学気相蒸着(Chemical Vapor Deposition、CVD)に適用して酸化亜鉛系薄膜を蒸着することができる。   When the alkylzinc halide represented by the chemical formula 1 is used as a raw material, it is not necessary to dilute the hydrocarbon solvent with the low reactivity and flammability of the raw material with respect to DEZ. Can be obtained. In addition, since the flammability of the by-product generated in the reaction with the oxidant is lower than the flammability of ethane gas, methane gas, etc., which are precursor oxidation by-products such as DEZ and DMZ, chemical vapor deposition (Chemical vapor deposition) Zinc oxide thin films can be deposited by applying to Vapor Deposition (CVD).

前記化学式1の化学式で示される化合物のうち、特にRがメチル基またはエチル基を有する化合物は、高い蒸気圧を持っていることから前駆体の供給及び流量制御が容易であり、且つ低い温度の工程条件で蒸着することができるという長所がある。特に、メチル亜鉛クロリド(沸点:67℃)及び図4のエチル亜鉛クロリド(沸点:215℃)は、化学気相蒸着の原料として用いるのにより好ましい。   Among the compounds represented by the chemical formula 1, the compound in which R has a methyl group or an ethyl group has a high vapor pressure, so that it is easy to supply the precursor and control the flow rate, and at a low temperature. There is an advantage that it can be deposited under process conditions. In particular, methylzinc chloride (boiling point: 67 ° C.) and ethyl zinc chloride (boiling point: 215 ° C.) in FIG. 4 are more preferably used as raw materials for chemical vapor deposition.

不活性ガス雰囲気下で亜鉛ハライドを有機溶媒を用いて分散溶液として製造した後、有機溶媒に希釈されたジアルキル亜鉛(dialkylzinc)を添加して、再分配反応を起こすことで、アルキル亜鉛ハライドを製造することができる。また、亜鉛ハライドを有機溶媒を用いて分散溶液を製造した後、アルカリ金属またはアルカリ土類金属を添加して置換反応を起こすことでアルキル亜鉛ハライドを製造することができる。   After producing zinc halide as a dispersion solution in an inert gas atmosphere using an organic solvent, dialkylzinc diluted in the organic solvent is added to cause a redistribution reaction, thereby producing an alkyl zinc halide. can do. Moreover, after producing a dispersion solution of zinc halide using an organic solvent, an alkyl zinc halide can be produced by adding an alkali metal or an alkaline earth metal to cause a substitution reaction.

図5は、本発明の一実施形態に係るCVD装置の概略的な構造を示す図である。   FIG. 5 is a diagram showing a schematic structure of a CVD apparatus according to an embodiment of the present invention.

CVD装置は、アルキル亜鉛ハライドを気化させるために、図6に示すような浸漬チューブ(dip tube)または図7に示すようなチューブがあるキャニスター(canister)113、または気化器を含んでいてよい。i)ガス供給部111から浸漬チューブまたはチューブを介してキャニスター113にガスを供給してアルキル亜鉛ハライドの気化を助けるか、ii)ガス供給なしに蒸気のみを発生させて得られた、気体状態のアルキル亜鉛ハライドをキャリアガスとともに供給する。   The CVD apparatus may include a canister 113 with a dip tube as shown in FIG. 6 or a tube as shown in FIG. 7, or a vaporizer to vaporize the alkyl zinc halide. i) A gas is supplied from the gas supply unit 111 to the canister 113 through a dip tube or a tube to help vaporize the alkyl zinc halide, or ii) a gas state obtained by generating only steam without supplying the gas. Alkyl zinc halide is supplied together with a carrier gas.

このとき、酸化剤供給部115、117から酸化剤ガス(酸素ガス、オゾンガス、窒素酸化物ガス、水蒸気、またはアルコールの蒸気)を蒸着チャンバ101に一緒に供給する。   At this time, an oxidant gas (oxygen gas, ozone gas, nitrogen oxide gas, water vapor, or alcohol vapor) is supplied to the vapor deposition chamber 101 from the oxidant supply units 115 and 117.

上部電極102は、シャワーヘッドの形態を有する。シャワーヘッドは、前駆体などを蒸着チャンバ101へ排出する複数の開口を有するチャンバ、プレナム(plenum)、またはその他構造物を言う。   The upper electrode 102 has the form of a shower head. A showerhead refers to a chamber, plenum, or other structure having a plurality of openings through which precursors and the like are discharged into the deposition chamber 101.

基板105は、シリコン基板、サファイア基板、セラミックス基板、ガラス基板、金属酸化物基板、金属基板などであってよい。酸化亜鉛系薄膜を効率よく形成するために、基板の温度は100〜400℃に設定すればよく、好ましくは、250〜350℃に設定する。供給された前記有機亜鉛化合物を前記温度にて加熱されている基板に化学気相蒸着させることにより、再現性ある酸化亜鉛系薄膜を形成することができる。   The substrate 105 may be a silicon substrate, a sapphire substrate, a ceramic substrate, a glass substrate, a metal oxide substrate, a metal substrate, or the like. In order to efficiently form the zinc oxide-based thin film, the temperature of the substrate may be set to 100 to 400 ° C, and preferably set to 250 to 350 ° C. A reproducible zinc oxide thin film can be formed by chemical vapor deposition of the supplied organozinc compound on a substrate heated at the temperature.

ドーパント(例えば、ガリウムなど)がドープされた酸化亜鉛系薄膜を得るためには、蒸着チャンバ101にドーピング剤を導入して一緒に蒸着するか、または、後続工程としてドーピング工程を実施することができる。   In order to obtain a zinc oxide-based thin film doped with a dopant (eg, gallium), a doping agent may be introduced into the deposition chamber 101 and deposited together, or a doping process may be performed as a subsequent process. .

(第1の実施形態)
CVD装置の蒸着チャンバの加熱部にガラス基板をセットし、蒸着チャンバ内の真空度を1.0×10−6torrに設定した後、キャニスター内部の温度を50℃温度に設定するとともに基板の温度を300℃に保持した。ガス流量制御器にて20sccm/minの流量でガスをエチル亜鉛クロリド前駆体に供給して原料の気化を助けるとともに、80℃に加熱されたキャリアガス供給ラインを介してアルゴンガスを50sccm/minの流量で供給し、酸素ガスを13sccm/minの流量で供給して、数分間ガラス基板上に酸化亜鉛系薄膜を形成させた。
(First embodiment)
After setting the glass substrate in the heating part of the vapor deposition chamber of the CVD apparatus and setting the degree of vacuum in the vapor deposition chamber to 1.0 × 10 −6 torr, the temperature inside the canister is set to 50 ° C. and the temperature of the substrate Was kept at 300 ° C. The gas flow controller supplies gas to the ethyl zinc chloride precursor at a flow rate of 20 sccm / min to help vaporize the raw material, and argon gas is supplied at 50 sccm / min through a carrier gas supply line heated to 80 ° C. A zinc oxide thin film was formed on the glass substrate for several minutes by supplying oxygen gas at a flow rate of 13 sccm / min.

このようにして得られた酸化亜鉛系薄膜を走査電子顕微鏡で分析した結果、薄膜厚さ344nmの円柱構造を有するc−軸方向に成長した結晶性が示された(図8及び図9)。また、X−線回折分析した結果、2θ(degrees)値34.4付近でc−軸方向の(002)の結晶面が示された(図10)。また、面抵抗測定器にて分析した結果、6.686×10Ω/sq(比抵抗2.3×10−4ΩCm)が示された。また、赤外線分光分析器にて分析した結果、可視光線領域で80%以上の透過率を有すると示された。 As a result of analyzing the thus obtained zinc oxide-based thin film with a scanning electron microscope, crystallinity grown in the c-axis direction having a cylindrical structure with a thin film thickness of 344 nm was shown (FIGS. 8 and 9). Further, as a result of X-ray diffraction analysis, a (002) crystal plane in the c-axis direction was shown in the vicinity of a 2θ (degrees) value of 34.4 (FIG. 10). Moreover, as a result of analyzing with a surface resistance measuring device, 6.686 × 10 1 Ω / sq (specific resistance 2.3 × 10 −4 ΩCm) was shown. Moreover, as a result of analyzing with an infrared spectroscopic analyzer, it was shown to have a transmittance of 80% or more in the visible light region.

結果的に、キャリア移動度の面において優れたc−軸方向の(002)結晶面を有し、高い光透過度と低い抵抗を有する透明導電性酸化亜鉛系薄膜を得ることができた。     As a result, it was possible to obtain a transparent conductive zinc oxide-based thin film having a (002) crystal plane in the c-axis direction that is excellent in terms of carrier mobility and having high light transmittance and low resistance.

(第2の実施形態)
CVD装置の加熱部にガラス基板をセットし、CVD装置を常圧に設定した後、キャニスター内部の温度を50℃温度に設定するとともに、基板の温度を350℃に保持した。ガス流量制御器にて500sccm/minの流量でガスをエチル亜鉛クロリド前駆体に供給して原料の気化を助けるとともに、80℃に加熱されたキャリアガス供給ラインを介してアルゴンガスを200sccm/minの流量で供給し、酸素ガスを130sccm/minの流量で供給して、数分間ガラス基板上に酸化亜鉛系薄膜を形成させた。
(Second Embodiment)
After setting the glass substrate in the heating part of the CVD apparatus and setting the CVD apparatus to normal pressure, the temperature inside the canister was set to 50 ° C., and the temperature of the substrate was maintained at 350 ° C. The gas flow controller supplies gas to the ethyl zinc chloride precursor at a flow rate of 500 sccm / min to help vaporize the raw material, and argon gas is supplied at 200 sccm / min via a carrier gas supply line heated to 80 ° C. The zinc oxide thin film was formed on the glass substrate for several minutes by supplying oxygen gas at a flow rate of 130 sccm / min.

このようにして得られた酸化亜鉛系薄膜を走査電子顕微鏡で分析した結果、薄膜厚さ875nmの円柱構造を有するc−軸方向に成長した結晶性が示された(図11及び図12)。また、X−線回折分析した結果、2θ(degrees)値34.4付近でc−軸方向の(002)の結晶面が示された(図13)。また、面抵抗測定器にて分析した結果、8.0×10Ω/sq(比抵抗7×10−4ΩCm)が示された。また、赤外線分光分析器にて分析した結果、可視光線領域で80%以上の透過率を有すると示された。 As a result of analyzing the obtained zinc oxide thin film with a scanning electron microscope, the crystallinity grown in the c-axis direction having a columnar structure with a thin film thickness of 875 nm was shown (FIGS. 11 and 12). Further, as a result of X-ray diffraction analysis, a (002) crystal plane in the c-axis direction was shown in the vicinity of a 2θ (degrees) value of 34.4 (FIG. 13). Moreover, as a result of analyzing with a surface resistance measuring device, 8.0 × 10 1 Ω / sq (specific resistance 7 × 10 −4 ΩCm) was shown. Moreover, as a result of analyzing with an infrared spectroscopic analyzer, it was shown to have a transmittance of 80% or more in the visible light region.

結果的に、キャリア移動度の面において優れたc−軸方向の(002)結晶面を有し、高い光透過度と低い抵抗を有する透明導電性酸化亜鉛系薄膜を得ることができた。     As a result, it was possible to obtain a transparent conductive zinc oxide-based thin film having a (002) crystal plane in the c-axis direction that is excellent in terms of carrier mobility and having high light transmittance and low resistance.

101:蒸着チャンバ
102:上部電極
103:下部電極
105:基板
111:キャリアガス供給部
113:キャニスター
115、117:酸化剤供給部
101: Deposition chamber 102: Upper electrode 103: Lower electrode 105: Substrate 111: Carrier gas supply unit 113: Canister 115, 117: Oxidant supply unit

Claims (7)

酸化亜鉛系薄膜の蒸着に用いられる前駆体であって、下記の化学式で示されるアルキル亜鉛ハライドであることを特徴とするアルキル亜鉛ハライド酸化亜鉛前駆体
(前記式中、Rはアルキル基(CnH2n+1)を表し、Xはハロゲン基を表し、前記アルキル基はメチル基またはエチル基であり、前記ハロゲン基はClである。
A precursor used in the deposition of the zinc oxide based thin film, wherein the to luer alkyl zinc halides zinc oxide precursor an alkyl zinc halide represented by the following chemical formula.
(Wherein, R represents an alkyl group (Cn H2n + 1), X is table a halogen group, the alkyl group is a methyl or ethyl group, the halogen group is Cl.)
常圧化学気相蒸着用の酸化亜鉛前駆体であることを特徴とする請求項1に記載のアルキル亜鉛ハライド酸化亜鉛前駆体 A alkyl zinc halides zinc oxide precursor of claim 1, wherein the zinc oxide precursor atmospheric pressure chemical vapor for deposition. 蒸着チャンバ内に基板を配置させる段階と、
請求項1または2に記載のアルキル亜鉛ハライド酸化亜鉛前駆体と酸化剤を前記蒸着チャンバに供給し、基板上に酸化亜鉛系薄膜を化学気相蒸着する段階と、
を含むことを特徴とする酸化亜鉛系薄膜の蒸着方法。
Placing a substrate in a deposition chamber;
Comprising the steps of claim 1 or 2 A alkyl zinc halides zinc oxide precursor and an oxidizing agent according to supplied to the deposition chamber, to chemical vapor deposition of zinc oxide based thin film on a substrate,
A method for depositing a zinc oxide-based thin film, comprising:
常圧化学気相蒸着にて前記基板上に前記酸化亜鉛系薄膜を蒸着することを特徴とする請求項に記載の酸化亜鉛系薄膜の蒸着方法。 4. The method for depositing a zinc oxide-based thin film according to claim 3 , wherein the zinc oxide-based thin film is deposited on the substrate by atmospheric pressure chemical vapor deposition. 記アルキル亜鉛ハライド酸化亜鉛前駆体を気化した後、気体状態で前記蒸着チャンバに供給することを特徴とする請求項またはに記載の酸化亜鉛系薄膜の蒸着方法。 After vaporizing before Kia alkyl zinc halides zinc oxide precursor, the method of deposition zinc oxide-based thin film according to claim 3 or 4, characterized in that supplied to the deposition chamber in a gas state. 前記酸化剤は、酸素ガス、オゾンガス、窒素酸化物ガス、水蒸気、及びアルコールの蒸気のうち少なくとも一種であることを特徴とする請求項乃至の何れか一項に記載の酸化亜鉛系薄膜の蒸着方法。 The zinc oxide-based thin film according to any one of claims 3 to 5 , wherein the oxidizing agent is at least one of oxygen gas, ozone gas, nitrogen oxide gas, water vapor, and alcohol vapor. Deposition method. 前記基板は、シリコン基板、サファイア基板、セラミックス基板、ガラス基板、金属酸化物基板、または金属基板であることを特徴とする請求項乃至の何れか一項に記載の酸化亜鉛系薄膜の蒸着方法。 The zinc oxide thin film deposition according to any one of claims 3 to 6 , wherein the substrate is a silicon substrate, a sapphire substrate, a ceramic substrate, a glass substrate, a metal oxide substrate, or a metal substrate. Method.
JP2012251873A 2011-11-17 2012-11-16 Alkyl zinc halide zinc oxide precursor and zinc oxide thin film deposition method using the same Expired - Fee Related JP5995364B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110120424A KR101357595B1 (en) 2011-11-17 2011-11-17 Alkyl zinc halide zinc oxide precursor and method of depositing zinc oxide-based thin film using the same
KR10-2011-0120424 2011-11-17

Publications (2)

Publication Number Publication Date
JP2013108177A JP2013108177A (en) 2013-06-06
JP5995364B2 true JP5995364B2 (en) 2016-09-21

Family

ID=48427213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251873A Expired - Fee Related JP5995364B2 (en) 2011-11-17 2012-11-16 Alkyl zinc halide zinc oxide precursor and zinc oxide thin film deposition method using the same

Country Status (4)

Country Link
US (1) US8858694B2 (en)
JP (1) JP5995364B2 (en)
KR (1) KR101357595B1 (en)
CN (1) CN103122453B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943345B2 (en) * 2012-07-27 2016-07-05 東京エレクトロン株式会社 ZnO film manufacturing apparatus and method
JP6007861B2 (en) 2012-08-06 2016-10-12 株式会社リコー Optical deflector and image projection apparatus
JP6514568B2 (en) * 2015-05-19 2019-05-15 東ソー・ファインケム株式会社 Solution containing dialkyl zinc partial hydrolyzate and method for producing zinc oxide thin film using this solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722720B2 (en) 2004-12-08 2010-05-25 Rohm And Haas Electronic Materials Llc Delivery device
JP2009200112A (en) * 2008-02-19 2009-09-03 Sekisui Chem Co Ltd Method of producing group iii element added zinc oxide, and substrate
JP5355221B2 (en) 2009-05-25 2013-11-27 スタンレー電気株式会社 Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
KR101357595B1 (en) 2014-02-05
US8858694B2 (en) 2014-10-14
CN103122453B (en) 2016-01-20
CN103122453A (en) 2013-05-29
JP2013108177A (en) 2013-06-06
KR20130054811A (en) 2013-05-27
US20130129923A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
US7709056B2 (en) Synthesis of transparent conducting oxide coatings
WO2015023137A1 (en) Deposition method for zinc oxide-based thin film
JP2002146536A (en) Low-temperature deposition method for thin film of tin oxide
JP5995364B2 (en) Alkyl zinc halide zinc oxide precursor and zinc oxide thin film deposition method using the same
JP2013108178A (en) Zinc oxide precursor, and method for vapor deposition of zinc oxide thin film using the same
Suh et al. Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films
Johnson et al. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide
JP2018090855A (en) Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition
TW202112794A (en) Bis(ethylcyclopentadienyl) tin, raw materials for chemical vapor deposition, method for producing thin film containing tin, and method for producing tin oxide thin film
Feng et al. Transparent conducting SnO2: Sb epitaxial films prepared on α-Al2O3 (0001) by MOCVD
JP2014077197A (en) Zinc oxide precursor and method of depositing zinc oxide-based thin film using the same
CN105779971A (en) Method for depositing p-type semi-conductor zinc oxide film on atomic layer
CN109545476B (en) Method for improving stability of silver nanowire electrode by atomic deposition of zinc oxide
CN105908127A (en) P-type doped tin dioxide transparent conductive film and preparation method thereof
KR101366630B1 (en) Precursor for depositing zinc oxide-based thin film, method of fabicating thereof and method of depositing zinc oxide-based thin film using the same
CN1400331A (en) Method for growing ZnO film by solid source chemical gas-phase deposition
KR20150025580A (en) MANUFACTURING METHOD FOR PREPARING ZnO THIN FILMS AND ZnO THIN FILMS THEREOF
CN106968015A (en) A kind of UV transparent conductive film and its manufacture method
KR101311801B1 (en) Method for manufacturing transparent conductive film using direct liquid injection-metal-organic chemical vapor deposition(dli-mocvd) and transparent conductive film manufactured by the method
JP5698263B2 (en) Method of vacuum coating a substrate having a transparent and conductive metal alloy oxide and a transparent and conductive layer made of metal alloy oxide
JP6875992B2 (en) Precipitation method
JP2005302356A (en) Transparent conductive film and transparent conductive film formation material
WO2020116182A1 (en) Bis(alkyl tetramethylcyclopentadienyl)zinc, raw material for chemical vapor deposition, and production method for zinc-containing thin film
Poodt Anusha Varanasi
JP2011210499A (en) Transparent conductive film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5995364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees