JP5992744B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP5992744B2
JP5992744B2 JP2012156831A JP2012156831A JP5992744B2 JP 5992744 B2 JP5992744 B2 JP 5992744B2 JP 2012156831 A JP2012156831 A JP 2012156831A JP 2012156831 A JP2012156831 A JP 2012156831A JP 5992744 B2 JP5992744 B2 JP 5992744B2
Authority
JP
Japan
Prior art keywords
elastic member
magnetic field
peripheral surface
resonance imaging
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012156831A
Other languages
Japanese (ja)
Other versions
JP2014018239A (en
Inventor
祐 上田
祐 上田
広太 渡辺
広太 渡辺
博光 高森
博光 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Medical Systems Corp filed Critical Toshiba Medical Systems Corp
Priority to JP2012156831A priority Critical patent/JP5992744B2/en
Publication of JP2014018239A publication Critical patent/JP2014018239A/en
Application granted granted Critical
Publication of JP5992744B2 publication Critical patent/JP5992744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、磁気共鳴イメージング装置に関する。   Embodiments described herein relate generally to a magnetic resonance imaging apparatus.

従来、磁気共鳴イメージング装置における撮像時の騒音対策の1つとして、音の発生源である傾斜磁場コイルの周辺を真空状態にすることで、被検体である患者の耳元へ伝わる音を減らす静音化技術が知られている。このような静音化技術として、例えば、傾斜磁場コイルを密閉容器内に配置し、密閉容器内の空間を真空状態にする方法がある。   Conventionally, as one of noise countermeasures at the time of imaging in a magnetic resonance imaging apparatus, by reducing the sound transmitted to the ear of the patient who is the subject by making the periphery of the gradient magnetic field coil, which is a sound generation source, in a vacuum state, the noise is reduced. Technology is known. As such a noise reduction technique, for example, there is a method in which a gradient magnetic field coil is arranged in a sealed container and the space in the sealed container is brought into a vacuum state.

特開平10−118043号公報JP-A-10-118043

本発明が解決しようとする課題は、傾斜磁場コイル用の密閉容器を用いずに、汎用的なシール部材を用いて傾斜磁場コイルの静音化を実現することができる磁気共鳴イメージング装置を提供することである。   The problem to be solved by the present invention is to provide a magnetic resonance imaging apparatus capable of realizing the quietness of a gradient magnetic field coil by using a general-purpose seal member without using a sealed container for the gradient magnetic field coil. It is.

実施形態に係る磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)装置は、略円筒状の静磁場磁石と、前記静磁場磁石の内周側に配置された略円筒状の傾斜磁場コイルと、前記傾斜磁場コイルの内周側に配置された略円筒状のボアチューブと、リング状のシール部材とを備える。シール部材は、前記静磁場磁石の内周面端部と前記傾斜磁場コイルの外周面端部との間及び前記傾斜磁場コイルの内周面端部と前記ボアチューブの外周面端部との間の少なくとも一方に挿入され、前記静磁場磁石の内周面と前記傾斜磁場コイルの外周面との間及び前記傾斜磁場コイルの内周面と前記ボアチューブの外周面との間の少なくとも一方に密閉空間を形成する。また、シール部材は、第1の弾性部材と、第2の弾性部材と、第3の弾性部材とを有する。第1の弾性部材は、前記傾斜磁場コイルの軸方向に幅を有するリング状に形成され、前記密閉空間側の端部に向かって厚くなり、前記密閉空間側に向かって作用する外力に対して前記軸方向の位置が固定される。第2の弾性部材は、前記傾斜磁場コイルの軸方向に幅を有するリング状に形成され、前記密閉空間側の端部に向かって薄くなり、前記密閉空間側に向かって作用する外力によって前記第1の弾性部材の内周側又は外周側に接触しながら前記軸方向へ移動する。第3の弾性部材は、断面形状が前記密閉空間側に突出する屈曲部を有する略C字状であるリング状に形成され、当該C字断面の両端部で前記第1の弾性部材及び前記第2の弾性部材それぞれの前記密閉空間側の端部を閉塞する。   A magnetic resonance imaging (MRI) apparatus according to an embodiment includes a substantially cylindrical static magnetic field magnet, a substantially cylindrical gradient magnetic field coil disposed on an inner peripheral side of the static magnetic field magnet, and the gradient magnetic field. A substantially cylindrical bore tube disposed on the inner peripheral side of the coil and a ring-shaped seal member are provided. The seal member is between the inner peripheral surface end of the static magnetic field magnet and the outer peripheral surface end of the gradient magnetic field coil, and between the inner peripheral surface end of the gradient magnetic field coil and the outer peripheral surface end of the bore tube. And sealed between at least one of the inner peripheral surface of the static magnetic field magnet and the outer peripheral surface of the gradient magnetic field coil and between the inner peripheral surface of the gradient magnetic field coil and the outer peripheral surface of the bore tube. Create a space. The seal member includes a first elastic member, a second elastic member, and a third elastic member. The first elastic member is formed in a ring shape having a width in the axial direction of the gradient magnetic field coil, becomes thicker toward an end portion on the sealed space side, and acts on an external force acting toward the sealed space side. The axial position is fixed. The second elastic member is formed in a ring shape having a width in the axial direction of the gradient magnetic field coil, is thinned toward an end portion on the sealed space side, and is applied by an external force acting toward the sealed space side. It moves to the said axial direction, contacting the inner peripheral side or outer peripheral side of 1 elastic member. The third elastic member is formed in a ring shape whose cross-sectional shape is a substantially C shape having a bent portion protruding toward the sealed space, and the first elastic member and the first elastic member are formed at both ends of the C-shaped cross section. The ends of the two elastic members on the sealed space side are closed.

図1は、本実施形態に係るMRI装置の全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of the MRI apparatus according to the present embodiment. 図2は、従来のMRI装置における静音化構造の一例を示す図である。FIG. 2 is a diagram showing an example of a noise reduction structure in a conventional MRI apparatus. 図3は、従来のMRI装置における静音化構造の他の例を示す図である。FIG. 3 is a diagram showing another example of a noise reduction structure in a conventional MRI apparatus. 図4は、第1の実施形態に係る静磁場磁石、傾斜磁場コイル及びボアチューブの側端部を示す斜視図である。FIG. 4 is a perspective view showing side end portions of the static magnetic field magnet, the gradient magnetic field coil, and the bore tube according to the first embodiment. 図5は、第1の実施形態に係るシール部材の外観を示す斜視図である。FIG. 5 is a perspective view showing an appearance of the seal member according to the first embodiment. 図6は、第1の実施形態に係るシール部材の断面形状を示す断面図である。FIG. 6 is a cross-sectional view showing a cross-sectional shape of the seal member according to the first embodiment. 図7は、第1の実施形態に係るシール部材に生じる摩擦力を説明するための図である。FIG. 7 is a view for explaining a frictional force generated in the seal member according to the first embodiment. 図8は、第2の実施形態に係るシール部材の形状を示す断面図である。FIG. 8 is a cross-sectional view showing the shape of the seal member according to the second embodiment. 図9は、第2の実施形態に係るシール部材の使用時の形状を示す図である。FIG. 9 is a diagram illustrating a shape of the sealing member according to the second embodiment when used. 図10は、第3の実施形態に係るシール部材の形状を示す外観図である。FIG. 10 is an external view showing the shape of the seal member according to the third embodiment. 図11は、第3の実施形態に係る通気部を示す外観図である。FIG. 11 is an external view showing a ventilation portion according to the third embodiment. 図12は、第2の弾性部材が周方向に断続的に切欠部を有する場合の例を示す図である。FIG. 12 is a diagram illustrating an example in which the second elastic member intermittently has cutout portions in the circumferential direction. 図13は、第4の実施形態に係るシール部材の形状を示す断面図である。FIG. 13 is a cross-sectional view showing the shape of the seal member according to the fourth embodiment. 図14は、第5の実施形態に係るシール部材の形状を示す断面図である。FIG. 14 is a cross-sectional view showing the shape of the seal member according to the fifth embodiment.

(第1の実施形態)
図1は、第1の実施形態に係るMRI装置100の全体構成を示す図である。
(First embodiment)
FIG. 1 is a diagram showing an overall configuration of an MRI apparatus 100 according to the first embodiment.

静磁場磁石1は、概略円筒状に形成され、円筒内に形成される撮像空間に静磁場を発生させる。例えば、静磁場磁石1は、概略円筒形状の真空容器1aと、真空容器1aの中で冷却液に浸漬された超伝導コイル1bとを有する。   The static magnetic field magnet 1 is formed in a substantially cylindrical shape, and generates a static magnetic field in an imaging space formed in the cylinder. For example, the static magnetic field magnet 1 has a substantially cylindrical vacuum vessel 1a and a superconducting coil 1b immersed in a cooling liquid in the vacuum vessel 1a.

傾斜磁場コイル2は、概略円筒状に形成され、静磁場磁石1の内周側に配置される。この傾斜磁場コイル2は、傾斜磁場電源7から供給される電流により、静磁場磁石1によって発生した静磁場に対してX軸,Y軸,Z軸の方向に傾斜磁場を印加する。例えば、傾斜磁場コイル2は、メインコイルとシールドコイルとを有するASGC(Active Shield Gradient Coil)である。ASGCコイルでは、メインコイルが、静磁場に対してX軸,Y軸,Z軸の方向に傾斜磁場を印加し、シールドコイルが、メインコイルからの漏洩磁場をキャンセルする磁場を発生させる。   The gradient magnetic field coil 2 is formed in a substantially cylindrical shape and is disposed on the inner peripheral side of the static magnetic field magnet 1. The gradient magnetic field coil 2 applies a gradient magnetic field to the static magnetic field generated by the static magnetic field magnet 1 in the X-axis, Y-axis, and Z-axis directions by a current supplied from the gradient magnetic field power supply 7. For example, the gradient coil 2 is an ASGC (Active Shield Gradient Coil) having a main coil and a shield coil. In the ASGC coil, the main coil applies a gradient magnetic field in the X-axis, Y-axis, and Z-axis directions with respect to the static magnetic field, and the shield coil generates a magnetic field that cancels the leakage magnetic field from the main coil.

ボアチューブ3は、概略円筒状に形成され、傾斜磁場コイル2の内周側に配置される。   The bore tube 3 is formed in a substantially cylindrical shape and is disposed on the inner peripheral side of the gradient magnetic field coil 2.

RF(Radio Frequency)コイル4は、概略円筒状に形成され、ボアチューブ3の内周側に配置される。このRFコイル4は、送信部8から高周波パルスの供給を受けて、内周側の空間に配置された被検体Pに高周波磁場を印加する。また、RFコイル4は、高周波磁場の影響により水素原子核が励起されることで被検体Pから放射される磁気共鳴信号を受信する。   The RF (Radio Frequency) coil 4 is formed in a substantially cylindrical shape and is disposed on the inner peripheral side of the bore tube 3. The RF coil 4 receives a high-frequency pulse from the transmitter 8 and applies a high-frequency magnetic field to the subject P arranged in the inner space. The RF coil 4 receives a magnetic resonance signal radiated from the subject P when the hydrogen nuclei are excited by the influence of the high-frequency magnetic field.

傾斜磁場コイル支持部5は、傾斜磁場コイル2を下方から支持し、傾斜磁場コイル2の位置を固定する。例えば、傾斜磁場コイル支持部5は、一端が静磁場磁石1の下側の端部に固定され、他端が傾斜磁場コイル2の下側の端部に固定されたアーム状の部材であり、静磁場磁石1及び傾斜磁場コイル2それぞれの下側の両端部に設けられる。   The gradient coil support 5 supports the gradient coil 2 from below and fixes the position of the gradient coil 2. For example, the gradient coil support 5 is an arm-shaped member having one end fixed to the lower end of the static magnetic field magnet 1 and the other end fixed to the lower end of the gradient coil 2. The static magnetic field magnet 1 and the gradient magnetic field coil 2 are provided at both lower ends of each.

天板6は、図示していない寝台に設けられ、操作者からの指示に応じて水平方向へ移動される。この天板6は、撮影時には、被検体Pが載置された状態で撮像空間内へ移動される。   The top plate 6 is provided on a bed (not shown) and is moved in the horizontal direction according to an instruction from the operator. At the time of imaging, the top plate 6 is moved into the imaging space with the subject P placed thereon.

傾斜磁場電源7は、シーケンス制御装置10による制御のもと、傾斜磁場コイル2に電流を供給する。   The gradient magnetic field power supply 7 supplies a current to the gradient magnetic field coil 2 under the control of the sequence control device 10.

送信部8は、シーケンス制御装置10による制御のもと、ラーモア(Larmor)周波数に対応する高周波パルスをRFコイル4に供給する。   The transmission unit 8 supplies the RF coil 4 with a high-frequency pulse corresponding to a Larmor frequency under the control of the sequence control device 10.

受信部9は、シーケンス制御装置10による制御のもと、RFコイル4によって受信された磁気共鳴信号を検出し、検出した磁気共鳴信号をデジタル化して得られる磁気共鳴データをシーケンス制御装置10に送信する。   The receiving unit 9 detects the magnetic resonance signal received by the RF coil 4 under the control of the sequence control device 10, and transmits the magnetic resonance data obtained by digitizing the detected magnetic resonance signal to the sequence control device 10. To do.

シーケンス制御装置10は、計算機システム11による制御のもと、傾斜磁場電源7、送信部8及び受信部9を制御する。具体的には、シーケンス制御装置10は、計算機システム11から送信される撮像条件に基づいて、被検体Pに関する磁気共鳴データを収集するためのパルスシーケンスを生成し、生成したパルスシーケンスにしたがって、傾斜磁場電源7、送信部8及び受信部9を制御する。また、シーケンス制御部10は、受信部9から送信された磁気共鳴データを計算機システム11に転送する。   The sequence control device 10 controls the gradient magnetic field power supply 7, the transmission unit 8, and the reception unit 9 under the control of the computer system 11. Specifically, the sequence control device 10 generates a pulse sequence for collecting magnetic resonance data related to the subject P based on the imaging conditions transmitted from the computer system 11, and in accordance with the generated pulse sequence, The magnetic field power source 7, the transmission unit 8, and the reception unit 9 are controlled. Further, the sequence control unit 10 transfers the magnetic resonance data transmitted from the receiving unit 9 to the computer system 11.

計算機システム11は、操作者から受け付けた各種操作に応じて、MRI装置100全体を制御する。例えば、計算機システム11は、操作者から撮像条件の入力を受け付け、受け付けた撮像条件をシーケンス制御装置10に送信する。また、例えば、計算機システム11は、シーケンス制御装置10から送信される磁気共鳴データに基づいて各種画像を再構成し、再構成した各種画像を記憶部に記憶させる。また、例えば、計算機システム11は、操作者からの要求に応じて、記憶部に記憶された各種画像を表示部に表示させる。   The computer system 11 controls the entire MRI apparatus 100 according to various operations received from the operator. For example, the computer system 11 receives an input of imaging conditions from the operator and transmits the received imaging conditions to the sequence control device 10. Further, for example, the computer system 11 reconstructs various images based on the magnetic resonance data transmitted from the sequence control device 10 and stores the reconstructed various images in the storage unit. Further, for example, the computer system 11 displays various images stored in the storage unit on the display unit in response to a request from the operator.

このような構成のもと、第1の実施形態に係るMRI装置100は、傾斜磁場コイル2の振動による騒音を低減させるため、シール部材12及び13を有する。シール部材12は、静磁場磁石1及び傾斜磁場コイル2の軸方向の両端部において、静磁場磁石1の内周面と傾斜磁場コイル2の外周面との間に挿入され、静磁場磁石1と傾斜磁場コイル2との間に密閉空間を形成する。また、シール部材13は、傾斜磁場コイル2及びボアチューブ3の軸方向の両端部において、傾斜磁場コイル2の内周面とボアチューブ3の外周面との間に挿入され、傾斜磁場コイル2とボアチューブ3との間に密閉空間を形成する。そして、シール部材12及び13によって形成された各密閉空間は、それぞれ図示していない真空ポンプを用いて真空状態に保たれる。なお、ここでいう真空状態には、真空に近い低圧状態も含まれる。   Under such a configuration, the MRI apparatus 100 according to the first embodiment includes the seal members 12 and 13 in order to reduce noise caused by the vibration of the gradient magnetic field coil 2. The seal member 12 is inserted between the inner peripheral surface of the static magnetic field magnet 1 and the outer peripheral surface of the gradient magnetic field coil 2 at both axial ends of the static magnetic field magnet 1 and the gradient magnetic field coil 2. A sealed space is formed with the gradient coil 2. The seal member 13 is inserted between the inner peripheral surface of the gradient magnetic field coil 2 and the outer peripheral surface of the bore tube 3 at both axial ends of the gradient magnetic field coil 2 and the bore tube 3, A sealed space is formed between the bore tube 3. Each sealed space formed by the seal members 12 and 13 is kept in a vacuum state using a vacuum pump (not shown). The vacuum state here includes a low pressure state close to a vacuum.

ここで、従来、MRI装置における撮像時の騒音対策の1つとして、音の発生源である傾斜磁場コイルの周辺を真空状態にすることで、被検体である患者の耳元へ伝わる音を減らす静音化技術が知られている。このような静音化技術では、例えば、以下のような静音化構造が用いられているが、各静音化構造には、それぞれ以下のような課題がある。   Here, conventionally, as one of noise countermeasures at the time of imaging in an MRI apparatus, the noise transmitted to the patient's ear, which is the subject, is reduced by making the periphery of the gradient magnetic field coil, which is a sound generation source, in a vacuum state. Technology is known. In such a silencing technique, for example, the following silencing structure is used, but each silencing structure has the following problems.

図2は、従来のMRI装置における静音化構造の一例を示す図である。図2に示すように、例えば、傾斜磁場コイル2を密閉容器内に配置し、密閉容器内の密閉空間を真空状態にする構造が知られている。図2に示す例では、密閉容器は、密閉カバー21及び22と、ボアチューブ3とから構成される。このような構造では、傾斜磁場コイル2の支持系や傾斜磁場コイル2に接続されるケーブル類を考慮して密閉容器を作製する必要があるため、密閉容器が大きくかつ高価になる。また、一般的に、密閉容器は複数の部品に分割される構造となるため、各部品の接続部それぞれをOリングなどで密閉する必要がある。さらに、傾斜磁場コイル2に接続されるケーブルや水冷ホースなど(例えば、図2に示すケーブル23及び24を参照)が密閉容器を貫通する場合には、その貫通部分を特殊なブッシュなどを用いて密閉する必要がある。すなわち、多数の箇所を密閉することになるため、真空リークが発生する可能性が高くなる。また、真空リークが発生した場合に、リーク箇所を特定するのも困難である。さらに、密閉容器は一般的に重量が重く、着脱作業に多数に作業員が必要になる。また、着脱にかかる時間も長くなり、密閉容器の取り付け時の作業性や取り付け後のメンテナンス性が悪くなる。   FIG. 2 is a diagram showing an example of a noise reduction structure in a conventional MRI apparatus. As shown in FIG. 2, for example, a structure is known in which the gradient magnetic field coil 2 is disposed in a sealed container, and the sealed space in the sealed container is brought into a vacuum state. In the example shown in FIG. 2, the sealed container includes sealed covers 21 and 22 and a bore tube 3. In such a structure, since it is necessary to produce a sealed container in consideration of the support system of the gradient magnetic field coil 2 and the cables connected to the gradient magnetic field coil 2, the sealed container is large and expensive. In general, since the sealed container is divided into a plurality of parts, it is necessary to seal each connection part of each part with an O-ring or the like. Furthermore, when a cable connected to the gradient coil 2 or a water-cooled hose (see, for example, the cables 23 and 24 shown in FIG. 2) penetrates the sealed container, the penetrating portion is used with a special bush or the like. It needs to be sealed. That is, since many places are sealed, there is a high possibility that a vacuum leak will occur. Also, when a vacuum leak occurs, it is difficult to specify the leak location. Furthermore, the sealed container is generally heavy and requires a large number of workers for attaching and detaching operations. In addition, the time required for attaching and detaching becomes long, and workability at the time of attaching the sealed container and maintainability after attachment become worse.

図3は、従来のMRI装置における静音化構造の他の例を示す図である。図3に示すように、例えば、傾斜磁場コイル2に接続されるケーブルや水冷ホースなど(例えば、図3に示すケーブル23及び24を参照)が密閉容器を貫通することを避けるために、傾斜磁場コイル2の端面を大気中に露出させる構造も知られている。例えば、静磁場磁石1及び傾斜磁場コイル2の軸方向の両端部において、静磁場磁石1の内周面と傾斜磁場コイル2の外周面との間の間隙がシール部材32で密閉される。また、傾斜磁場コイル2及びボアチューブ3の軸方向の両端部において、傾斜磁場コイル2の内周面とボアチューブ3の外周面との間の間隙がシール部材33で密閉される。これにより、静磁場磁石1と傾斜磁場コイル2との間、及び、傾斜磁場コイル2とボアチューブ3との間それぞれに密閉空間が形成され、その密閉空間が真空状態に保たれる。このような構造では、静磁場磁石1と傾斜磁場コイル2との間の間隙の大きさ、又は、傾斜磁場コイル2とボアチューブ3との間の間隙の大きさが変わると、それに応じてシール部材33も変える必要がある。しかし、一般的に、MRI装置では、装置の構成によって静磁場磁石、傾斜磁場コイル、及びボアチューブの位置関係が変化するため、このような構造にした場合は、シール部材を汎用的に用いることができない。   FIG. 3 is a diagram showing another example of a noise reduction structure in a conventional MRI apparatus. As shown in FIG. 3, for example, a gradient magnetic field is used in order to prevent a cable connected to the gradient coil 2, a water-cooled hose, etc. (see, for example, cables 23 and 24 shown in FIG. 3) from penetrating the sealed container. A structure in which the end face of the coil 2 is exposed to the atmosphere is also known. For example, the gap between the inner peripheral surface of the static magnetic field magnet 1 and the outer peripheral surface of the gradient magnetic field coil 2 is sealed by the seal member 32 at both axial ends of the static magnetic field magnet 1 and the gradient magnetic field coil 2. Further, the gap between the inner peripheral surface of the gradient magnetic field coil 2 and the outer peripheral surface of the bore tube 3 is sealed with a seal member 33 at both axial ends of the gradient magnetic field coil 2 and the bore tube 3. Thereby, a sealed space is formed between the static magnetic field magnet 1 and the gradient magnetic field coil 2 and between the gradient magnetic field coil 2 and the bore tube 3, and the sealed space is maintained in a vacuum state. In such a structure, when the size of the gap between the static magnetic field magnet 1 and the gradient magnetic field coil 2 or the size of the gap between the gradient magnetic field coil 2 and the bore tube 3 is changed, the seal is changed accordingly. The member 33 also needs to be changed. However, in general, in an MRI apparatus, the positional relationship among a static magnetic field magnet, a gradient magnetic field coil, and a bore tube changes depending on the configuration of the apparatus. Therefore, when such a structure is used, a seal member is generally used. I can't.

このような従来の静音化構造における課題を解決するため、第1の実施形態に係るMRI装置100は、傾斜磁場コイル用の密閉容器を用いずに、汎用的なシール部材を用いて傾斜磁場コイルの静音化を実現する。   In order to solve such a problem in the conventional noise reduction structure, the MRI apparatus 100 according to the first embodiment uses a general-purpose sealing member without using a hermetic container for a gradient magnetic field coil, and uses a gradient magnetic field coil. Realization of noise reduction.

図4は、第1の実施形態に係る静磁場磁石1、傾斜磁場コイル2及びボアチューブ3の側端部を示す斜視図である。図4に示すように、本実施形態では、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間に、シール部材12が挿入される。なお、図4には図示していない反対側の側端部でも同様に、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間に、別のシール部材12が挿入される。これにより、2つのシール部材12は、静磁場磁石1の内周面と傾斜磁場コイル2の外周面との間に密閉空間を形成する。また、本実施形態では、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間に、シール部材13が挿入される。なお、図4には図示していない反対側の側端部でも同様に、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間に、別のシール部材13が挿入される。これにより、2つのシール部材13は、傾斜磁場コイル2の内周面とボアチューブ3の外周面との間に密閉空間を形成する。   FIG. 4 is a perspective view showing side end portions of the static magnetic field magnet 1, the gradient magnetic field coil 2, and the bore tube 3 according to the first embodiment. As shown in FIG. 4, in this embodiment, the seal member 12 is inserted between the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2. Similarly, another seal member 12 is provided between the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2 at the opposite side end not shown in FIG. Is inserted. Thereby, the two sealing members 12 form a sealed space between the inner peripheral surface of the static magnetic field magnet 1 and the outer peripheral surface of the gradient magnetic field coil 2. In this embodiment, the seal member 13 is inserted between the inner peripheral surface end of the gradient magnetic field coil 2 and the outer peripheral surface end of the bore tube 3. Similarly, another seal member 13 is provided between the inner peripheral surface end of the gradient magnetic field coil 2 and the outer peripheral surface end of the bore tube 3 at the opposite side end not shown in FIG. Inserted. Thereby, the two sealing members 13 form a sealed space between the inner peripheral surface of the gradient coil 2 and the outer peripheral surface of the bore tube 3.

図5は、第1の実施形態に係るシール部材12の外観を示す斜視図である。図5に示すように、シール部材12は、周方向に連続するリング状に形成される。または、シール部材12は、周方向の少なくとも一部が欠切されたリング状に形成されてもよい。つまり、シール部材12は、必ずしも周方向に連続するように作製されなくてもよく、周方向の一部が切れた状態に作製されてもよいし、複数の円弧状の部品に分けられて作製されてもよい。   FIG. 5 is a perspective view showing an appearance of the seal member 12 according to the first embodiment. As shown in FIG. 5, the seal member 12 is formed in a ring shape that is continuous in the circumferential direction. Alternatively, the seal member 12 may be formed in a ring shape in which at least a part in the circumferential direction is cut off. In other words, the seal member 12 does not necessarily have to be manufactured so as to be continuous in the circumferential direction, may be manufactured in a state where a part of the circumferential direction is cut off, or is manufactured by being divided into a plurality of arc-shaped parts. May be.

図6は、第1の実施形態に係るシール部材12の断面形状を示す断面図である。なお、図6は、静磁場磁石1の内周面端部及び傾斜磁場コイル2の外周面端部の様子を示しており、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間にシール部材12が挿入された状態を示している。図6に示すように、シール部材12は、第1の弾性部材12a、第2の弾性部材12b、及び第3の弾性部材12cから構成される。各弾性部材は、例えば、ゴムや、プラスチックやPET(Polyethylene terephthalate)などの樹脂で作製される。   FIG. 6 is a cross-sectional view showing a cross-sectional shape of the seal member 12 according to the first embodiment. FIG. 6 shows the state of the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2, and the outer peripheral surface end of the static magnetic field magnet 1 and the outer periphery of the gradient magnetic field coil 2. The state where the seal member 12 is inserted between the surface end portions is shown. As shown in FIG. 6, the seal member 12 includes a first elastic member 12a, a second elastic member 12b, and a third elastic member 12c. Each elastic member is made of a resin such as rubber, plastic, or PET (Polyethylene terephthalate).

なお、本実施形態では、シール部材12において、内周側に第1の弾性部材12aが配置され、外周側に第3の弾性部材12cが配置される場合について説明するが、実施形態はこれに限られない。例えば、本実施形態とは逆に、外内周側に第1の弾性部材12aが配置され、内周側に第3の弾性部材12cが配置されてもよい。   In the present embodiment, the case where the first elastic member 12a is disposed on the inner peripheral side and the third elastic member 12c is disposed on the outer peripheral side in the seal member 12 will be described. Not limited. For example, contrary to the present embodiment, the first elastic member 12a may be disposed on the outer peripheral side, and the third elastic member 12c may be disposed on the inner peripheral side.

第1の弾性部材12aは、傾斜磁場コイル2の軸方向に幅を有するリング状に形成され、かつ、密閉空間S側の端部に向かって厚くなるように形成される。ここで、第1の弾性部材12aは、密閉空間S側に向かって作用する外力に対して、傾斜磁場コイル2の軸方向の位置が固定されるように配置される。   The first elastic member 12a is formed in a ring shape having a width in the axial direction of the gradient magnetic field coil 2, and is formed so as to become thicker toward the end portion on the sealed space S side. Here, the 1st elastic member 12a is arrange | positioned so that the position of the axial direction of the gradient magnetic field coil 2 may be fixed with respect to the external force which acts toward the sealed space S side.

例えば、第1の弾性部材12aは、図6に示すように、シール部材12の半径方向に突出する係合部12dを有する。係合部12dは、断面形状がL字状となるように形成される。第1の弾性部材12aは、この係合部12dが傾斜磁場コイル2の外周面端部に係合することで、密閉空間S側に向かって作用する外力に対して傾斜磁場コイル2の軸方向の位置が固定される。なお、外内周側に第1の弾性部材12aが配置され、内周側に第2の弾性部材12bが配置される場合には、係合部12dは、静磁場磁石1の内周面端部に係合する。   For example, the first elastic member 12a has an engaging portion 12d that protrudes in the radial direction of the seal member 12, as shown in FIG. The engaging portion 12d is formed so that the cross-sectional shape is L-shaped. In the first elastic member 12a, the engaging portion 12d engages with the end portion of the outer peripheral surface of the gradient magnetic field coil 2, so that the axial direction of the gradient magnetic field coil 2 with respect to an external force acting toward the sealed space S side. The position of is fixed. In addition, when the 1st elastic member 12a is arrange | positioned at an outer peripheral side and the 2nd elastic member 12b is arrange | positioned at an inner peripheral side, the engaging part 12d is the inner peripheral surface end of the static magnetic field magnet 1 Engage with the part.

第2の弾性部材12bは、傾斜磁場コイル2の軸方向に幅を有するリング状に形成され、かつ、密閉空間S側の端部に向かって薄くなるように形成される。ここで、第2の弾性部材12bは、密閉空間S側に向かって作用する外力によって、第1の弾性部材12aの外周側に接触しながら、傾斜磁場コイル2の軸方向へ移動するように配置される。なお、外内周側に第1の弾性部材12aが配置され、内周側に第2の弾性部材12bが配置される場合には、第2の弾性部材12bは、第1の弾性部材12aの内周側に接触しながら、傾斜磁場コイル2の軸方向へ移動するように配置される。   The second elastic member 12b is formed in a ring shape having a width in the axial direction of the gradient magnetic field coil 2, and is formed so as to become thinner toward the end portion on the sealed space S side. Here, the second elastic member 12b is arranged so as to move in the axial direction of the gradient magnetic field coil 2 while being in contact with the outer peripheral side of the first elastic member 12a by an external force acting toward the sealed space S side. Is done. In addition, when the 1st elastic member 12a is arrange | positioned at an outer inner peripheral side and the 2nd elastic member 12b is arrange | positioned at an inner peripheral side, the 2nd elastic member 12b is the 1st elastic member 12a. It arrange | positions so that it may move to the axial direction of the gradient magnetic field coil 2, contacting the inner peripheral side.

第3の弾性部材12cは、断面形状が密閉空間S側に突出する屈曲部を有する略C字状であるリング状に形成される。また、第3の弾性部材12cは、C字断面の両端部で第1の弾性部材12a及び第2の弾性部材12bそれぞれの密閉空間S側の端部を閉塞するように、第1の弾性部材12a及び第2の弾性部材12bと一体に形成される。   The third elastic member 12c is formed in a ring shape having a substantially C-shaped cross section having a bent portion protruding toward the sealed space S side. Further, the third elastic member 12c is a first elastic member so as to close the end portions of the first elastic member 12a and the second elastic member 12b on the sealed space S side at both ends of the C-shaped cross section. 12a and the second elastic member 12b are formed integrally.

前述したように、本実施形態では、シール部材12によって静磁場磁石1と傾斜磁場コイル2との間に形成される密閉空間Sが真空状態に保たれる。このように密閉空間が真空状態になることで、シール部材12を密閉空間S側に引き寄せる吸引力が生じる。本実施形態では、この吸引力が、シール部材12と静磁場磁石1との間に生じる摩擦力、及び、シール部材12と傾斜磁場コイル2との間に生じる摩擦力に変換される。   As described above, in the present embodiment, the sealed space S formed between the static magnetic field magnet 1 and the gradient magnetic field coil 2 by the seal member 12 is kept in a vacuum state. Thus, the attraction | suction force which draws the sealing member 12 to the sealed space S side arises because sealed space becomes a vacuum state. In the present embodiment, this attractive force is converted into a friction force generated between the seal member 12 and the static magnetic field magnet 1 and a friction force generated between the seal member 12 and the gradient magnetic field coil 2.

図7は、第1の実施形態に係るシール部材12に生じる摩擦力を説明するための図である。図7に示すように、本実施形態では、静磁場磁石1と傾斜磁場コイル2との間に形成された密閉空間Sが真空状態になると、第3の弾性部材12cに対して、真空によって密閉空間S側へ引き寄せる吸引力が働く(図7に示す矢印A1を参照)。この吸引力によって、第3の弾性部材12cは密閉空間S側へ移動する。第3の弾性部材12cが密閉空間S側へ移動すると、第3の弾性部材12cによって第2の弾性部材12bも密閉空間S側へ引き寄せられる。このとき、第1の弾性部材12aは、密閉空間S側に向かって作用する外力に対して、傾斜磁場コイル2の軸方向の位置が固定されているため、密閉空間S側へは移動しない。ここで、第1の弾性部材12aは、密閉空間S側の端部に向かって厚くなるように形成されており、かつ、第2の弾性部材12bは、密閉空間S側の端部に向かって薄くなるように形成されている。そのため、第2の弾性部材12bのみが密閉空間S側へ移動すると、第1の弾性部材12a及び第2の弾性部材12bが、シール部材12の半径方向へ相対的に離れるように移動する。この結果、第1の弾性部材12aを傾斜磁場コイル2側へ押し付ける力、及び、第2の弾性部材12bを静磁場磁石1側へ押し付ける力がそれぞれ生じることになり(図7に示す矢印A2を参照)、シール部材12と静磁場磁石1との間、及び、シール部材12と傾斜磁場コイル2との間に摩擦力が生じる。   FIG. 7 is a diagram for explaining the frictional force generated in the seal member 12 according to the first embodiment. As shown in FIG. 7, in this embodiment, when the sealed space S formed between the static magnetic field magnet 1 and the gradient magnetic field coil 2 is in a vacuum state, the third elastic member 12c is sealed by vacuum. A suction force attracted toward the space S side works (see arrow A1 shown in FIG. 7). By this suction force, the third elastic member 12c moves to the sealed space S side. When the third elastic member 12c moves to the sealed space S side, the second elastic member 12b is also drawn toward the sealed space S side by the third elastic member 12c. At this time, the first elastic member 12a does not move to the sealed space S side because the axial position of the gradient magnetic field coil 2 is fixed with respect to the external force acting toward the sealed space S side. Here, the 1st elastic member 12a is formed so that it may become thick toward the edge part on the sealed space S side, and the 2nd elastic member 12b is toward the edge part on the sealed space S side. It is formed to be thin. Therefore, when only the second elastic member 12 b moves to the sealed space S side, the first elastic member 12 a and the second elastic member 12 b move so as to be relatively separated in the radial direction of the seal member 12. As a result, a force for pressing the first elastic member 12a to the gradient magnetic field coil 2 side and a force for pressing the second elastic member 12b to the static magnetic field magnet 1 side are generated (see the arrow A2 shown in FIG. 7). See), and a frictional force is generated between the seal member 12 and the static magnetic field magnet 1 and between the seal member 12 and the gradient magnetic field coil 2.

このように、本実施形態では、密閉空間Sが真空状態になることで、第3の弾性部材12cに働く吸引力が、シール部材12と静磁場磁石1との間に生じる摩擦力、及び、シール部材12と傾斜磁場コイル2との間に生じる摩擦力に変換される。つまり、シール部材12は、密閉空間S側に吸引されるほど、大きな摩擦力を発生させることになる。これにより、シール部材12が密閉空間S側に吸い込まれるのを防ぐことができるとともに、静磁場磁石1と傾斜磁場コイル2との間の間隙をより強固に密閉することができる。また、装置の構成によって静磁場磁石1と傾斜磁場コイル2との位置関係が変化した場合でも、静磁場磁石1と傾斜磁場コイル2との間の間隙の大きさに合わせて、第1の弾性部材12a及び第2の弾性部材12bがシール部材12の半径方向へ相対的に離れるように移動するので、静磁場磁石1と傾斜磁場コイル2との間の間隙を適切に密閉することができる。   Thus, in the present embodiment, when the sealed space S is in a vacuum state, the attractive force acting on the third elastic member 12c is a friction force generated between the seal member 12 and the static magnetic field magnet 1, and It is converted into a frictional force generated between the seal member 12 and the gradient coil 2. That is, the seal member 12 generates a larger frictional force as it is attracted to the sealed space S side. As a result, the seal member 12 can be prevented from being sucked into the sealed space S side, and the gap between the static magnetic field magnet 1 and the gradient magnetic field coil 2 can be sealed more firmly. Even when the positional relationship between the static magnetic field magnet 1 and the gradient magnetic field coil 2 changes depending on the configuration of the apparatus, the first elasticity is adjusted in accordance with the size of the gap between the static magnetic field magnet 1 and the gradient magnetic field coil 2. Since the member 12a and the second elastic member 12b move so as to be relatively separated from each other in the radial direction of the seal member 12, the gap between the static magnetic field magnet 1 and the gradient magnetic field coil 2 can be appropriately sealed.

なお、第3の弾性部材12cの硬度は、第1の弾性部材12a及び第2の弾性部材12bの硬度と比べて低くなるように形成されるのが望ましい。例えば、第3の弾性部材12cは、硬度が30°程度であり、厚みが2.5mm程度のクロロプレンゴムを用いて形成される。一方、第1の弾性部材12a及び第2の弾性部材12bは、例えば、硬度が80°程度のクロロプレンゴムを用いて形成される。また、第1の弾性部材12a及び第2の弾性部材12bは、例えば、厚みの傾斜が20°、最大の厚さが3.0mm程度に形成され、第3の弾性部材12cと一体に形成される。   It is desirable that the hardness of the third elastic member 12c be formed so as to be lower than the hardness of the first elastic member 12a and the second elastic member 12b. For example, the third elastic member 12c is formed using chloroprene rubber having a hardness of about 30 ° and a thickness of about 2.5 mm. On the other hand, the first elastic member 12a and the second elastic member 12b are formed using, for example, chloroprene rubber having a hardness of about 80 °. Further, the first elastic member 12a and the second elastic member 12b are formed, for example, with a thickness gradient of 20 ° and a maximum thickness of about 3.0 mm, and are formed integrally with the third elastic member 12c. The

また、第3の弾性部材12cは、シール部材12におけるC字断面の両端部が、静磁場磁石1の内周面及び傾斜磁場コイル2の外周面に密着するように配置されるのが望ましい。このように、第3の弾性部材12cの硬度を低くして静磁場磁石1の内周面及び傾斜磁場コイル2の外周面に密着させることで、静磁場磁石1とシール部材12との間の摩擦力、及び、傾斜磁場コイル2とシール部材12との間の摩擦力を増やすことができる。これにより、静磁場磁石1と傾斜磁場コイル2との間の間隙をより確実に密閉することができる。   The third elastic member 12 c is preferably arranged so that both ends of the C-shaped cross section of the seal member 12 are in close contact with the inner peripheral surface of the static magnetic field magnet 1 and the outer peripheral surface of the gradient magnetic field coil 2. In this way, the hardness of the third elastic member 12c is lowered and brought into close contact with the inner peripheral surface of the static magnetic field magnet 1 and the outer peripheral surface of the gradient magnetic field coil 2, so that the gap between the static magnetic field magnet 1 and the seal member 12 is increased. The friction force and the friction force between the gradient magnetic field coil 2 and the seal member 12 can be increased. Thereby, the gap | interval between the static magnetic field magnet 1 and the gradient magnetic field coil 2 can be sealed more reliably.

また、第1の弾性部材12aと第2の弾性部材12bとの接触面12eには、グリースなどの潤滑剤が塗布されるのが望ましい。これにより、第1の弾性部材12aと第2の弾性部材12bとの間の摩擦力が減り、第1の弾性部材12aをより支障なく滑らかに移動させることができるようになる。   Further, it is desirable that a lubricant such as grease is applied to the contact surface 12e between the first elastic member 12a and the second elastic member 12b. Thereby, the frictional force between the 1st elastic member 12a and the 2nd elastic member 12b reduces, and it becomes possible to move the 1st elastic member 12a more smoothly without trouble.

また、第2の弾性部材12bは、第1の弾性部材12aと比べて傾斜磁場コイル2の軸方向の幅が広くなるように形成されるのが望ましい。これにより、静磁場磁石1と傾斜磁場コイル2との間の間隙が大きい場合でも、第1の弾性部材12aを密閉空間S側により深く移動させることができ、静磁場磁石1と傾斜磁場コイル2との間の間隙をより確実に密閉することができる。   The second elastic member 12b is desirably formed so that the axial width of the gradient magnetic field coil 2 is wider than that of the first elastic member 12a. Thereby, even when the gap between the static magnetic field magnet 1 and the gradient magnetic field coil 2 is large, the first elastic member 12a can be moved deeper to the sealed space S side, and the static magnetic field magnet 1 and the gradient magnetic field coil 2 can be moved. Can be more reliably sealed.

また、第1の弾性部材12aにおいて密閉空間S側の端部に向かって厚くなる傾斜角度と、第2の弾性部材12bにおいて密閉空間S側の端部に向かって薄くなる傾斜角度とは、同一であることが望ましい。これにより、第1の弾性部材12aにおける傾斜磁場コイル2側の密着面と、第2の弾性部材12bにおける静磁場磁石1側の密着面とを平行な状態に保ったまま、第1の弾性部材12aを傾斜磁場コイル2の軸方向へ移動させることができる。このため、第1の弾性部材12aを移動させた場合でも、密閉状態を安定して保つことができる。   In addition, the inclination angle that increases toward the end portion on the sealed space S side in the first elastic member 12a and the inclination angle that decreases toward the end portion on the sealed space S side in the second elastic member 12b are the same. It is desirable that As a result, the first elastic member 12a is kept in parallel with the close contact surface on the gradient magnetic field coil 2 side and the close contact surface on the static magnetic field magnet 1 side of the second elastic member 12b. 12 a can be moved in the axial direction of the gradient coil 2. For this reason, even when the first elastic member 12a is moved, the sealed state can be stably maintained.

また、第3の弾性部材12cは、カーボンブラックが配合されるのが望ましい。これにより、第3の弾性部材12cの強度が高められるので、真空による吸引力によって第3の弾性部材12cが引き裂かれるのを防ぐことができる。   The third elastic member 12c is desirably mixed with carbon black. Thereby, since the intensity | strength of the 3rd elastic member 12c is raised, it can prevent that the 3rd elastic member 12c is torn by the attraction | suction force by a vacuum.

なお、ここでは、シール部材12について説明したが、傾斜磁場コイル2の内周面とボアチューブ3の外周面との間に挿入されるシール部材13も、シール部材12と同様に形成される。すなわち、シール部材13は、密閉する対象が、静磁場磁石1の内周面と傾斜磁場コイル2の外周面との間の間隙ではなく、傾斜磁場コイル2の内周面とボアチューブ3の外周面との間の間隙になるだけで、シール部材12と同様の役割を果たす。   Although the sealing member 12 has been described here, the sealing member 13 inserted between the inner peripheral surface of the gradient magnetic field coil 2 and the outer peripheral surface of the bore tube 3 is also formed in the same manner as the sealing member 12. That is, the sealing member 13 is not the gap between the inner peripheral surface of the static magnetic field magnet 1 and the outer peripheral surface of the gradient magnetic field coil 2, but the inner peripheral surface of the gradient magnetic field coil 2 and the outer periphery of the bore tube 3. Only the gap between the surfaces serves as the seal member 12.

上述したように、第1の実施形態によれば、第1の弾性部材と、第2の弾性部材と、第3の弾性部材とを一体化したシール部材が用いられるので、密閉のために用いられる部品点数を最小にすることができ、シール箇所も最小にすることができる。したがって、真空リークが発生する可能性が減り、真空リークが発生したとしても、リーク箇所を容易に推定することができる。また、シール部材は、密閉空間側に吸引されるほど大きな摩擦力を発生させるので、傾斜磁場コイル用の密閉容器を用いずに、傾斜磁場コイルの周辺を真空状態にすることができるので、メンテナンスなどの作業性を向上させることができる。また、装置の構成によって静磁場磁石、傾斜磁場コイル、及びボアチューブの位置関係が変化した場合でも、静磁場磁石と傾斜磁場コイルとの間の間隙の大きさ、又は、傾斜磁場コイルとボアチューブとの間の間隙の大きさに合わせて、第1の弾性部材及び第2の弾性部材がシール部材の半径方向へ相対的に離れるように移動するので、それぞれの間隙を適切に密閉することができる。つまり、静磁場磁石、傾斜磁場コイル、及びボアチューブの位置関係がずれたり、各種の静磁場磁石、傾斜磁場コイル、及びボアチューブが組み合わせられたりする場合でも、シール部材を汎用的に用いることができる。すなわち、第1の実施形態によれば、傾斜磁場コイル用の密閉容器を用いずに、汎用的なシール部材を用いて傾斜磁場コイルの静音化を実現することができる。   As described above, according to the first embodiment, since the seal member in which the first elastic member, the second elastic member, and the third elastic member are integrated is used, it is used for sealing. The number of parts to be produced can be minimized, and the seal location can also be minimized. Therefore, the possibility of a vacuum leak is reduced, and the leak location can be easily estimated even if a vacuum leak occurs. In addition, since the seal member generates a frictional force that is attracted to the sealed space side, the surrounding area of the gradient magnetic field coil can be evacuated without using a sealed container for the gradient magnetic field coil. The workability such as can be improved. Even when the positional relationship among the static magnetic field magnet, the gradient magnetic field coil, and the bore tube changes depending on the configuration of the apparatus, the size of the gap between the static magnetic field magnet and the gradient magnetic field coil, or the gradient magnetic field coil and the bore tube In accordance with the size of the gap between the first elastic member and the second elastic member, the first elastic member and the second elastic member move relatively away from each other in the radial direction of the seal member. it can. That is, even when the positional relationship between the static magnetic field magnet, the gradient magnetic field coil, and the bore tube is shifted, or when various static magnetic field magnets, the gradient magnetic field coil, and the bore tube are combined, the seal member can be used for general purposes. it can. In other words, according to the first embodiment, it is possible to achieve noise reduction of the gradient magnetic field coil by using a general-purpose seal member without using a sealed container for the gradient magnetic field coil.

以下では、各種の変形例を他の実施形態として説明する。なお、以下で説明する各実施形態に係るMRI装置の全体構成は、基本的には、図1に示したものと同じであるので、以下では詳細な説明を省略する。また、以下で説明する実施形態では、図1〜8に示した構成要素と同じ機能を有する構成要素については、同じ符号を付すこととして、詳細な説明を省略する。   Hereinafter, various modifications will be described as other embodiments. Note that the overall configuration of the MRI apparatus according to each embodiment described below is basically the same as that shown in FIG. Moreover, in embodiment described below, about the component which has the same function as the component shown in FIGS. 1-8, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

(第2の実施形態)
まず、第2の実施形態について説明する。第1の実施形態では、シール部材に含まれる第3の弾性部材があらかじめ略C字状の断面形状を有するように形成される場合の例について説明したが、第2の実施形態では、第3の弾性部材が所定の幅を有するリング状に形成され、傾斜磁場コイル2の軸方向に折り曲げられて用いられる場合の例について説明する。
(Second Embodiment)
First, the second embodiment will be described. In the first embodiment, an example in which the third elastic member included in the seal member is formed in advance so as to have a substantially C-shaped cross-sectional shape has been described, but in the second embodiment, the third elastic member An example in which the elastic member is formed in a ring shape having a predetermined width and is bent in the axial direction of the gradient coil 2 will be described.

図8は、第2の実施形態に係るシール部材の形状を示す断面図である。図8に示すように、本実施形態に係るシール部材は、第1の弾性部材112a、第2の弾性部材112b、及び第3の弾性部材112cから構成される。ここで、第1の弾性部材112aは、第1の実施形態で説明した第1の弾性部材12aと同じ断面形状を有するように形成され、第2の弾性部材112bは、第1の実施形態で説明した第2の弾性部材12bと同じ断面形状を有するように形成される。   FIG. 8 is a cross-sectional view showing the shape of the seal member according to the second embodiment. As shown in FIG. 8, the seal member according to this embodiment includes a first elastic member 112a, a second elastic member 112b, and a third elastic member 112c. Here, the 1st elastic member 112a is formed so that it may have the same cross-sectional shape as the 1st elastic member 12a demonstrated in 1st Embodiment, and the 2nd elastic member 112b is 1st Embodiment. It is formed to have the same cross-sectional shape as the second elastic member 12b described.

また、第3の弾性部材112cは、所定の幅を有するリング状に形成され、幅方向の一方の端部に第1の弾性部材112aが設けられ、他方の端部に第2の弾性部材112bが設けられる。ここで、第3の弾性部材112cは、第1の弾性部材112a及び第2の弾性部材112bと一体に形成される。そして、本実施形態に係るシール部材は、使用時には、第3の弾性部材112cが、第1の弾性部材112aと第2の弾性部材112bとが対向するように、傾斜磁場コイル2の軸方向に折り曲げられて用いられる。   The third elastic member 112c is formed in a ring shape having a predetermined width, the first elastic member 112a is provided at one end in the width direction, and the second elastic member 112b is provided at the other end. Is provided. Here, the third elastic member 112c is formed integrally with the first elastic member 112a and the second elastic member 112b. When the seal member according to the present embodiment is used, the third elastic member 112c is arranged in the axial direction of the gradient magnetic field coil 2 so that the first elastic member 112a and the second elastic member 112b face each other. Used by being bent.

図9は、第2の実施形態に係るシール部材の使用時の形状を示す図である。例えば、図9に示すように、第2の実施形態に係るシール部材は、第2の弾性部材112bを第1の弾性部材112aの外周側へ配置させるように、第3の弾性部材112cを180°折り返して用いられる。または、第2の実施形態に係るシール部材は、第1の弾性部材112aを第2の弾性部材112bの外周側へ配置させるように、第3の弾性部材112cを180°折り返して用いられてもよい。   FIG. 9 is a diagram illustrating a shape of the sealing member according to the second embodiment when used. For example, as shown in FIG. 9, the sealing member according to the second embodiment is configured such that the third elastic member 112c is 180 so that the second elastic member 112b is disposed on the outer peripheral side of the first elastic member 112a. ° Used by folding. Alternatively, the seal member according to the second embodiment may be used by folding the third elastic member 112c 180 ° so that the first elastic member 112a is disposed on the outer peripheral side of the second elastic member 112b. Good.

(第3の実施形態)
次に、第3の実施形態について説明する。第1の実施形態及び第2の実施形態では、シール部材があらかじめリング状に形成される場合の例について説明したが、第3の実施形態では、シール部材が帯状に形成される場合の例について説明する。
(Third embodiment)
Next, a third embodiment will be described. In 1st Embodiment and 2nd Embodiment, although the example in case a seal member was previously formed in ring shape was demonstrated, in 3rd Embodiment, about the example in case a seal member is formed in strip | belt shape. explain.

図10は、第3の実施形態に係るシール部材の形状を示す外観図である。図10に示すように、本実施形態に係るシール部材212は、帯状に形成され、リング状に曲成されて用いられる。ここで、シール部材212に含まれる第3の弾性部材は、第1の実施形態で説明した第3の弾性部材12cと同様に、あらかじめ略C字状の断面形状を有するように形成されてもよいし、第2の実施形態で説明した第3の弾性部材112cと同様に、あらかじめ所定の幅を有するように形成され、傾斜磁場コイル2の軸方向に折り曲げられてもよい。   FIG. 10 is an external view showing the shape of the seal member according to the third embodiment. As shown in FIG. 10, the seal member 212 according to the present embodiment is formed in a band shape and is used by being bent into a ring shape. Here, the third elastic member included in the seal member 212 may be formed to have a substantially C-shaped cross-sectional shape in advance, like the third elastic member 12c described in the first embodiment. Alternatively, like the third elastic member 112c described in the second embodiment, it may be formed in advance so as to have a predetermined width and be bent in the axial direction of the gradient coil 2.

また、第3の実施形態では、MRI装置100は、シール部材212によって形成された密閉空間から空気を引き出すための通気孔を有する通気部を備える。通気孔は、密閉空間とその外部の空間とを貫通しており、この通気孔を介して、真空ポンプを用いて空気を引き出すことで、シール部材212によって形成された密閉空間が真空状態に保たれる。   In the third embodiment, the MRI apparatus 100 includes a ventilation portion having a ventilation hole for drawing air out of the sealed space formed by the seal member 212. The vent hole penetrates the sealed space and the space outside thereof, and the sealed space formed by the seal member 212 is kept in a vacuum state by drawing air through the vent hole using a vacuum pump. Be drunk.

図11は、第3の実施形態に係る通気部を示す外観図である。図11に示すように、通気部220は、通気孔221を有し、シール部材212における周方向の切欠部に設けられる。ここでいう切欠部とは、帯状に形成されたシール部材212をリング状に曲げたときに、シール部材212の両端部が対向する箇所に形成される間隙部分である。   FIG. 11 is an external view showing a ventilation portion according to the third embodiment. As shown in FIG. 11, the ventilation part 220 has a ventilation hole 221 and is provided in a circumferential notch in the seal member 212. The notch here is a gap portion formed at a location where both ends of the seal member 212 face each other when the seal member 212 formed in a band shape is bent into a ring shape.

なお、例えば、シール部材212に含まれる第1の弾性部材212aと第2の弾性部材212bとは、それぞれ硬度が異なるように形成されてもよい。例えば、図11に示すように、第2の弾性部材212bが第1の弾性部材212aの外周側に配置される場合には、第2の弾性部材212bは、第1の弾性部材212aと比べて硬度が低くなるように形成される。逆に、第1の弾性部材212aが第2の弾性部材212bの外周側に配置される場合には、第1の弾性部材212aは、第2の弾性部材212bと比べて硬度が低くなるように形成される。これにより、リング状に曲げられた後の第1の弾性部材212aと第2の弾性部材212bとの周長の違いを吸収することができる。   For example, the first elastic member 212a and the second elastic member 212b included in the seal member 212 may be formed to have different hardnesses. For example, as shown in FIG. 11, when the second elastic member 212b is disposed on the outer peripheral side of the first elastic member 212a, the second elastic member 212b is compared with the first elastic member 212a. It is formed to have a low hardness. Conversely, when the first elastic member 212a is disposed on the outer peripheral side of the second elastic member 212b, the first elastic member 212a has a lower hardness than the second elastic member 212b. It is formed. Thereby, the difference in the circumference of the 1st elastic member 212a and the 2nd elastic member 212b after bending in a ring shape can be absorbed.

または、第1の弾性部材212a及び第2の弾性部材212bのいずれか一方が、周方向に断続的に切欠部を有するように形成されてもよい。   Alternatively, one of the first elastic member 212a and the second elastic member 212b may be formed so as to intermittently have a notch in the circumferential direction.

図12は、第2の弾性部材が周方向に断続的に切欠部を有する場合の例を示す図である。図12に示すように、第2の弾性部材312bが第1の弾性部材312aの外周側に配置される場合には、第2の弾性部材312bが、周方向に断続的に切欠部321fを有するように形成される。逆に、第1の弾性部材312aが第2の弾性部材312bの外周側に配置される場合には、第1の弾性部材312aが、周方向に断続的に切欠部を有するように形成される。これにより、硬度を異ならせる場合と同様に、断続的に設けられた複数の切欠部によって、リング状に曲げられた後の第1の弾性部材312aと第2の弾性部材312bとの周長の違いを吸収することができる。   FIG. 12 is a diagram illustrating an example in which the second elastic member intermittently has cutout portions in the circumferential direction. As shown in FIG. 12, when the second elastic member 312b is disposed on the outer peripheral side of the first elastic member 312a, the second elastic member 312b has intermittent notches 321f in the circumferential direction. Formed as follows. Conversely, when the first elastic member 312a is disposed on the outer peripheral side of the second elastic member 312b, the first elastic member 312a is formed to have intermittent cutout portions in the circumferential direction. . As a result, as in the case of varying the hardness, the circumferential lengths of the first elastic member 312a and the second elastic member 312b after being bent into a ring shape by a plurality of intermittently provided cutout portions. Can absorb the difference.

(第4の実施形態)
次に、第4の実施形態について説明する。第4の実施形態では、シール部材に含まれる第1の弾性部材及び第2の弾性部材が、互いが接触する側の反対側に、少なくとも1つの突起部を有する場合の例について説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described. In the fourth embodiment, an example will be described in which the first elastic member and the second elastic member included in the seal member have at least one protrusion on the side opposite to the side in contact with each other.

図13は、第4の実施形態に係るシール部材の形状を示す断面図である。なお、図13は、静磁場磁石1の内周面端部及び傾斜磁場コイル2の外周面端部の様子を示しており、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間にシール部材が挿入された状態を示している。図13に示すように、本実施形態に係るシール部材は、第1の弾性部材412a、第2の弾性部材412b、及び第3の弾性部材412cから構成される。ここで、第1の弾性部材412a及び第2の弾性部材412bは、互いが接触する側の反対側に、少なくとも1つの突起部を有する。   FIG. 13 is a cross-sectional view showing the shape of the seal member according to the fourth embodiment. FIG. 13 shows the state of the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2, and the outer peripheral surface end of the static magnetic field magnet 1 and the outer periphery of the gradient magnetic field coil 2. A state in which the seal member is inserted between the surface end portions is shown. As shown in FIG. 13, the seal member according to this embodiment includes a first elastic member 412a, a second elastic member 412b, and a third elastic member 412c. Here, the first elastic member 412a and the second elastic member 412b have at least one protrusion on the side opposite to the side in contact with each other.

図13に示す例では、例えば、第1の弾性部材412aが、2つの突起部412gを有し、第2の弾性部材412bが、1つの突起部412hを有する。このように、第1の弾性部材412a及び第2の弾性部材412bに対して、互いが接触する側の反対側に突起部を設けることによって、突起部が設けられた箇所において、静磁場磁石1及び傾斜磁場コイル2に対して働く圧力が局所的に強くなる。これにより、シール部材と静磁場磁石1との間に生じる摩擦力、及び、シール部材と傾斜磁場コイル2との間に生じる摩擦力をより強めることができる。なお、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間に挿入されるシール部材についても、同様に形成することができる。   In the example shown in FIG. 13, for example, the first elastic member 412a has two protrusions 412g, and the second elastic member 412b has one protrusion 412h. As described above, the first magnetic member 412a and the second elastic member 412b are provided with a protrusion on the opposite side to the side in contact with each other, so that the static magnetic field magnet 1 is provided at the position where the protrusion is provided. In addition, the pressure acting on the gradient coil 2 is locally increased. Thereby, the frictional force generated between the seal member and the static magnetic field magnet 1 and the frictional force generated between the seal member and the gradient magnetic field coil 2 can be further increased. The seal member inserted between the inner peripheral surface end of the gradient magnetic field coil 2 and the outer peripheral surface end of the bore tube 3 can be formed in the same manner.

(第5の実施形態)
次に、第5の実施形態について説明する。第5の実施形態では、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間に挿入されるシール部材と、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間に挿入されるシール部材とが一体に形成される場合の例について説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described. In the fifth embodiment, the seal member inserted between the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2, the inner peripheral surface end of the gradient magnetic field coil 2, and the bore An example in which a seal member inserted between the end portion of the outer peripheral surface of the tube 3 is integrally formed will be described.

図14は、第5の実施形態に係るシール部材の形状を示す断面図である。図14に示すように、例えば、リング状に形成された2つのシール部材512及び612がシール中継部712を介して一体に形成される。第1のシール部材512は、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間に挿入され、静磁場磁石1の内周面と傾斜磁場コイル2の外周面との間に密閉空間S1を形成する。第2のシール部材612は、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間に挿入され、傾斜磁場コイル2の内周面とボアチューブ3の外周面との間に密閉空間S2を形成する。そして、第1のシール部材512と第2のシール部材612とは、図14に示すように、傾斜磁場コイル2の側端面を覆うように接続された状態で、一体に形成される。   FIG. 14 is a cross-sectional view showing the shape of the seal member according to the fifth embodiment. As shown in FIG. 14, for example, two seal members 512 and 612 formed in a ring shape are integrally formed via a seal relay portion 712. The first seal member 512 is inserted between the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2, and the inner peripheral surface of the static magnetic field magnet 1 and the outer periphery of the gradient magnetic field coil 2. A sealed space S1 is formed between the surfaces. The second seal member 612 is inserted between the inner peripheral surface end of the gradient magnetic field coil 2 and the outer peripheral surface end of the bore tube 3, and the inner peripheral surface of the gradient magnetic field coil 2 and the outer peripheral surface of the bore tube 3 are A sealed space S2 is formed between the two. Then, as shown in FIG. 14, the first seal member 512 and the second seal member 612 are integrally formed in a state of being connected so as to cover the side end face of the gradient magnetic field coil 2.

以上、第1〜第5の実施形態について説明した。上記実施形態では、シール部材によって形成される密閉空間が真空状態に保たれる場合の例について説明したが、実施形態はこれに限られない。例えば、シール部材によって形成される密閉空間は、大気状態に保たれてもよい。その場合には、真空によってシール部材を密閉空間S側へ引き寄せる吸引力は生じないので、例えば、シール部材に含まれる第2の弾性部材を人力によって密閉空間側に押し込んだ後に、固定具によって第2の弾性部材の位置を固定する。例えば、図6及び7に示した例では、人力によって第2の弾性部材12bを密閉空間S側に押し込むことで、真空による吸引力が働いたときと同様に、シール部材12と静磁場磁石1との間、及び、シール部材12と傾斜磁場コイル2との間に摩擦力が生じる。これにより、シール部材12と静磁場磁石1との間の間隙、及び、シール部材12と傾斜磁場コイル2との間の間隙を確実に密閉することができる。   The first to fifth embodiments have been described above. Although the said embodiment demonstrated the example in case the sealed space formed with a sealing member was maintained in a vacuum state, embodiment is not restricted to this. For example, the sealed space formed by the seal member may be maintained in an atmospheric state. In that case, since the suction force that draws the seal member toward the sealed space S side by vacuum does not occur, for example, after the second elastic member included in the seal member is pushed into the sealed space side by human power, The position of the elastic member 2 is fixed. For example, in the example shown in FIGS. 6 and 7, the second elastic member 12 b is pushed into the sealed space S side by human power, so that the sealing member 12 and the static magnetic field magnet 1 are applied in the same manner as when an attractive force by vacuum is applied. And a frictional force is generated between the sealing member 12 and the gradient coil 2. Thereby, the gap between the seal member 12 and the static magnetic field magnet 1 and the gap between the seal member 12 and the gradient coil 2 can be reliably sealed.

また、上記実施形態では、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間、及び、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間の両方にシール部材が挿入される場合の例について説明したが、実施形態はこれに限られない。例えば、静磁場磁石1の内周面端部と傾斜磁場コイル2の外周面端部との間、及び、傾斜磁場コイル2の内周面端部とボアチューブ3の外周面端部との間の一方が、従来の密閉容器を用いた方法で密閉されてもよい。   Moreover, in the said embodiment, between the inner peripheral surface edge part of the static magnetic field magnet 1 and the outer peripheral surface edge part of the gradient magnetic field coil 2, and the inner peripheral surface edge part of the gradient magnetic field coil 2, and the outer peripheral surface of the bore tube 3 Although an example in which a seal member is inserted between both ends has been described, the embodiment is not limited thereto. For example, between the inner peripheral surface end of the static magnetic field magnet 1 and the outer peripheral surface end of the gradient magnetic field coil 2, and between the inner peripheral surface end of the gradient magnetic field coil 2 and the outer peripheral surface end of the bore tube 3. One of these may be sealed by a method using a conventional sealed container.

また、上記実施形態では、静磁場磁石1及び傾斜磁場コイル2の軸方向の両端部、及び、傾斜磁場コイル2及びボアチューブ3の軸方向の両端部が、それぞれシール部材で密閉される場合の例について説明したが、実施形態はこれに限られない。例えば、静磁場磁石1及び傾斜磁場コイル2の軸方向のいずれか一方の端部がシール部材で密閉され、他方の端部が従来の密閉カバーを用いた方法で密閉されてもよい。同様に、傾斜磁場コイル2及びボアチューブ3の軸方向のいずれか一方の端部がシール部材で密閉され、他方の端部が従来の密閉カバーを用いた方法で密閉されてもよい。   Moreover, in the said embodiment, the both ends of the axial direction of the static magnetic field magnet 1 and the gradient magnetic field coil 2, and the both ends of the axial direction of the gradient magnetic field coil 2 and the bore tube 3 are each sealed with a sealing member. Although the example has been described, the embodiment is not limited thereto. For example, any one end in the axial direction of the static magnetic field magnet 1 and the gradient magnetic field coil 2 may be sealed with a seal member, and the other end may be sealed with a method using a conventional hermetic cover. Similarly, either one end in the axial direction of the gradient magnetic field coil 2 or the bore tube 3 may be sealed with a sealing member, and the other end may be sealed by a method using a conventional sealing cover.

以上説明した少なくともひとつの実施形態によれば、傾斜磁場コイル用の密閉容器を用いずに、汎用的なシール部材を用いて傾斜磁場コイルの静音化を実現することができる。   According to at least one embodiment described above, it is possible to achieve noise reduction of the gradient magnetic field coil by using a general-purpose seal member without using a sealed container for the gradient magnetic field coil.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

100 MRI装置
1 静磁場磁石
2 傾斜磁場コイル
3 ボアチューブ
12,13 シール部材
12a 第1の弾性部材
12b 第2の弾性部材
12c 第3の弾性部材
DESCRIPTION OF SYMBOLS 100 MRI apparatus 1 Static magnetic field magnet 2 Gradient magnetic field coil 3 Bore tube 12, 13 Seal member 12a 1st elastic member 12b 2nd elastic member 12c 3rd elastic member

Claims (15)

略円筒状の静磁場磁石と、
前記静磁場磁石の内周側に配置された略円筒状の傾斜磁場コイルと、
前記傾斜磁場コイルの内周側に配置された略円筒状のボアチューブと、
前記静磁場磁石の内周面端部と前記傾斜磁場コイルの外周面端部との間及び前記傾斜磁場コイルの内周面端部と前記ボアチューブの外周面端部との間の少なくとも一方に挿入され、前記静磁場磁石の内周面と前記傾斜磁場コイルの外周面との間及び前記傾斜磁場コイルの内周面と前記ボアチューブの外周面との間の少なくとも一方に密閉空間を形成するリング状のシール部材とを備え、
前記シール部材は、
前記傾斜磁場コイルの軸方向に幅を有するリング状に形成され、前記密閉空間側の端部に向かって厚くなり、前記密閉空間側に向かって作用する外力に対して前記軸方向の位置が固定された第1の弾性部材と、
前記傾斜磁場コイルの軸方向に幅を有するリング状に形成され、前記密閉空間側の端部に向かって薄くなり、前記密閉空間側に向かって作用する外力によって前記第1の弾性部材の内周側又は外周側に接触しながら前記軸方向へ移動する第2の弾性部材と、
断面形状が前記密閉空間側に突出する屈曲部を有する略C字状であるリング状に形成され、当該C字断面の両端部で前記第1の弾性部材及び前記第2の弾性部材それぞれの前記密閉空間側の端部を閉塞する第3の弾性部材と
を有することを特徴とする磁気共鳴イメージング装置。
A substantially cylindrical static magnetic field magnet;
A substantially cylindrical gradient coil disposed on the inner circumference side of the static magnetic field magnet;
A substantially cylindrical bore tube disposed on the inner peripheral side of the gradient magnetic field coil;
At least one between the inner peripheral surface end of the static magnetic field magnet and the outer peripheral surface end of the gradient magnetic field coil and between the inner peripheral surface end of the gradient magnetic field coil and the outer peripheral surface end of the bore tube. Inserted to form a sealed space between at least one of the inner peripheral surface of the static magnetic field magnet and the outer peripheral surface of the gradient magnetic field coil and between the inner peripheral surface of the gradient magnetic field coil and the outer peripheral surface of the bore tube. A ring-shaped sealing member,
The sealing member is
It is formed in a ring shape having a width in the axial direction of the gradient magnetic field coil, becomes thicker toward the end portion on the sealed space side, and the position in the axial direction is fixed with respect to an external force acting toward the sealed space side. A first elastic member,
An inner circumference of the first elastic member is formed by a ring shape having a width in the axial direction of the gradient magnetic field coil, becomes thinner toward the end portion on the sealed space side, and acts on the sealed space side. A second elastic member that moves in the axial direction while contacting the side or the outer peripheral side;
A cross-sectional shape is formed in a ring shape that is a substantially C-shape having a bent portion protruding toward the sealed space, and the first elastic member and the second elastic member respectively at both ends of the C-shaped cross section. A magnetic resonance imaging apparatus comprising: a third elastic member that closes an end portion on a sealed space side.
前記第3の弾性部材の硬度は、前記第1の弾性部材及び前記第2の弾性部材の硬度と比べて低いことを特徴とする請求項1に記載の磁気共鳴イメージング装置。   2. The magnetic resonance imaging apparatus according to claim 1, wherein the hardness of the third elastic member is lower than the hardness of the first elastic member and the second elastic member. 前記第1の弾性部材は、
前記シール部材の半径方向に突出する係合部を有し、
前記シール部材が前記静磁場磁石の内周面端部と前記傾斜磁場コイルの外周面端部との間に挿入された状態で、前記係合部がいずれか一方の端部に係合することで、前記密閉空間側に向かって作用する外力に対して前記軸方向の位置が固定される、又は
前記シール部材が前記傾斜磁場コイルの内周面端部と前記ボアチューブの外周面端部との間に挿入された状態で、前記係合部がいずれか一方の端部に係合することで、前記密閉空間側に向かって作用する外力に対して前記軸方向の位置が固定される
ことを特徴とする請求項1又は2に記載の磁気共鳴イメージング装置。
The first elastic member is
An engaging portion protruding in a radial direction of the seal member;
In a state of being inserted between an outer peripheral surface end portion of said seal member inner peripheral surface end portion and the gradient magnetic field coils of the field magnet, said engaging portion is engaged with the end portion of either in the position of the axis direction Ru is fixed with respect to the external force acting toward the sealed space side, or,
By the sealing member is to be engaged at one end in the inserted state, the engaging portion either between the inner peripheral surface end portion and the outer peripheral surface end of the bore tube of the gradient coil The magnetic resonance imaging apparatus according to claim 1, wherein the axial position is fixed with respect to an external force acting toward the sealed space side.
前記第2の弾性部材は、前記第1の弾性部材と比べて前記傾斜磁場コイルの軸方向の幅が広いことを特徴とする請求項1、2又は3に記載の磁気共鳴イメージング装置。   4. The magnetic resonance imaging apparatus according to claim 1, wherein the second elastic member is wider in the axial direction of the gradient magnetic field coil than the first elastic member. 5. 前記第1の弾性部材において前記密閉空間側の端部に向かって厚くなる傾斜角度と前記第2の弾性部材において前記密閉空間側の端部に向かって薄くなる傾斜角度とが同一であることを特徴とする請求項1〜4のいずれか1つに記載の磁気共鳴イメージング装置。   In the first elastic member, the inclination angle that increases toward the end portion on the sealed space side and the inclination angle that decreases in the second elastic member toward the end portion on the sealed space side are the same. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus is a magnetic resonance imaging apparatus. 前記シール部材は、
前記静磁場磁石の内周面端部と前記傾斜磁場コイルの外周面端部との間に挿入され、前記静磁場磁石の内周面と前記傾斜磁場コイルの外周面との間に密閉空間を形成するリング状の第1のシール部材と、
前記傾斜磁場コイルの内周面端部と前記ボアチューブの外周面端部との間に挿入され、前記傾斜磁場コイルの内周面と前記ボアチューブの外周面との間に密閉空間を形成するリング状の第2のシール部材とを有し
前記第1のシール部材と前記第2のシール部材とは、それぞれ前記第1の弾性部材、前記第2の弾性部材及び前記第3の弾性部材を有し、傾斜磁場コイルの側端面を覆うように接続された状態で一体に形成されることを特徴とする請求項1〜5のいずれか1つに記載の磁気共鳴イメージング装置。
The sealing member is
Inserted between the inner peripheral surface end of the static magnetic field magnet and the outer peripheral surface end of the gradient magnetic field coil, and a sealed space is formed between the inner peripheral surface of the static magnetic field magnet and the outer peripheral surface of the gradient magnetic field coil. A ring-shaped first seal member to be formed;
It is inserted between the inner peripheral surface end of the gradient magnetic field coil and the outer peripheral surface end of the bore tube, and forms a sealed space between the inner peripheral surface of the gradient magnetic field coil and the outer peripheral surface of the bore tube. and a ring-shaped second sealing member,
The first seal member and the second seal member have the first elastic member, the second elastic member, and the third elastic member, respectively, and cover side end surfaces of the gradient coil. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus is integrally formed in a state where the magnetic resonance imaging apparatus is connected to the magnetic resonance imaging apparatus.
前記第1の弾性部材と前記第2の弾性部材との接触面には、潤滑剤が塗布されていることを特徴とする請求項1〜6のいずれか1つに記載の磁気共鳴イメージング装置。 Wherein the contact surface between the first elastic member and the second elastic member, a magnetic resonance imaging apparatus according to any one of claims 1 to 6 lubricant, characterized in Tei Rukoto applied. 前記第3の弾性部材は、
前記シール部材が前記静磁場磁石の内周面端部と前記傾斜磁場コイルの外周面端部との間に挿入された状態で、前記C字断面の両端部が、前記静磁場磁石の内周面及び前記傾斜磁場コイルの外周面に密着する、又は
前記シール部材が前記傾斜磁場コイルの内周面端部と前記ボアチューブの外周面端部との間に挿入された状態で、前記C字断面の両端部が、前記傾斜磁場コイルの内周面及び前記ボアチューブの外周面に密着する
ことを特徴とする請求項2に記載の磁気共鳴イメージング装置。
The third elastic member is
In a state of being inserted between an outer peripheral surface end portion of said seal member inner peripheral surface end portion and the gradient magnetic field coils of the field magnet, both end portions of the C-shaped cross-section, the inner periphery of the static magnetic field magnet In close contact with the outer surface of the surface and the gradient coil , or
In a state of being inserted between an outer peripheral surface end portion of said sealing member and the inner circumferential surface end of the gradient coil bore tube, both ends of the C-shaped cross-section, the inner peripheral surface of the gradient coil The magnetic resonance imaging apparatus according to claim 2, wherein the magnetic resonance imaging apparatus is in close contact with an outer peripheral surface of the bore tube.
前記シール部材は、周方向に連続するリング状であることを特徴とする請求項1〜8のいずれか1つに記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1, wherein the seal member has a ring shape that is continuous in a circumferential direction. 前記シール部材は、帯状の部材がリング状に曲げられた形状であることを特徴とする請求項1〜8のいずれか1つに記載の磁気共鳴イメージング装置。 The sealing member is a magnetic resonance imaging apparatus according to any one of claims 1 to 8 strip member, characterized in bending was shaped der Rukoto in a ring shape. 前記密閉空間から空気を引き出すための通気孔を有する通気部をさらに備え、
前記シール部材は、周方向の少なくとも一部に切欠部を有し、
前記通気部は、前記シール部材における前記切欠部に設けられることを特徴とする請求項1〜8のいずれか1つに記載の磁気共鳴イメージング装置。
Further comprising a vent having a vent for drawing air out of the sealed space;
The seal member has a notch in at least a part of the circumferential direction,
The vent, a magnetic resonance imaging apparatus according to any one of claims 1 to 8, characterized in that provided in the notch in the seal member.
前記第1の弾性部材と前記第2の弾性部材とは、それぞれ硬度が異なるように形成されることを特徴とする請求項10又は11に記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 10, wherein the first elastic member and the second elastic member are formed to have different hardnesses. 前記第1の弾性部材及び前記第2の弾性部材のいずれか一方が、周方向に断続的に切欠部を有するように形成されることを特徴とする請求項10又は11に記載の磁気共鳴イメージング装置。   12. The magnetic resonance imaging according to claim 10, wherein one of the first elastic member and the second elastic member is formed so as to intermittently have a cutout portion in a circumferential direction. apparatus. 前記第3の弾性部材は、カーボンブラックが配合されることを特徴とする請求項1〜13のいずれか1つに記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 1, wherein the third elastic member is blended with carbon black. 前記第1の弾性部材及び前記第2の弾性部材は、互いが接触する側の反対側に、少なくとも1つの突起部を有することを特徴とする請求項1〜1のいずれか1つに記載の磁気共鳴イメージング装置。 It said first elastic member and the second elastic member, the side opposite to the side in contact with each other, according to any one of claims 1 to 1 4, characterized in that it comprises at least one protrusion Magnetic resonance imaging equipment.
JP2012156831A 2012-07-12 2012-07-12 Magnetic resonance imaging system Active JP5992744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156831A JP5992744B2 (en) 2012-07-12 2012-07-12 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156831A JP5992744B2 (en) 2012-07-12 2012-07-12 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2014018239A JP2014018239A (en) 2014-02-03
JP5992744B2 true JP5992744B2 (en) 2016-09-14

Family

ID=50193825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156831A Active JP5992744B2 (en) 2012-07-12 2012-07-12 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP5992744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472673B2 (en) 2015-01-28 2019-02-20 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8303534A (en) * 1983-10-14 1985-05-01 Philips Nv NUCLEAR SPIN RESONANCE DEVICE.
JPH01194307A (en) * 1988-01-29 1989-08-04 Yokogawa Medical Syst Ltd Supporting mechanism of cylindrical member
DE19722481C2 (en) * 1997-05-28 2000-02-10 Siemens Ag Magnetic resonance scanner and use of a noise reduction device in a magnetic resonance scanner
DE10245942A1 (en) * 2002-09-30 2004-04-08 Siemens Ag magnetic resonance apparatus
JP5586201B2 (en) * 2009-10-05 2014-09-10 株式会社東芝 Magnetic resonance diagnostic equipment
JP5972656B2 (en) * 2012-05-10 2016-08-17 東芝メディカルシステムズ株式会社 Magnetic resonance imaging system

Also Published As

Publication number Publication date
JP2014018239A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
US9939499B2 (en) Magnetic resonance imaging apparatus
US7446533B2 (en) RF shielding method, MRI apparatus, and transmitting/receiving surface coil
JP5992744B2 (en) Magnetic resonance imaging system
US20180166960A1 (en) Linear vibration generating device
US9885767B2 (en) Magnetic resonance imaging apparatus
US8710842B2 (en) Apparatus and method to reduce noise in magnetic resonance imaging systems
US10120046B2 (en) Magnetic resonance imaging apparatus
CN103983928A (en) Magnetic resonance apparatus
JP5586201B2 (en) Magnetic resonance diagnostic equipment
US9510099B2 (en) Speaker device
JP2009061267A (en) Magnetic resonance imaging apparatus
JP3367932B2 (en) Gradient magnetic field unit and magnetic resonance imaging apparatus
JP6759006B2 (en) Magnetic resonance imaging device
JP2018038818A (en) Magnetic resonance imaging apparatus
JP4641757B2 (en) Magnetic resonance imaging system
JPWO2006062028A1 (en) Magnetic resonance imaging system
JP4289261B2 (en) Magnet coupling
US10433065B2 (en) Speaker device
JP2016137151A (en) Sealing member and magnetic resonance imaging device
WO2015170632A1 (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160818

R150 Certificate of patent or registration of utility model

Ref document number: 5992744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160928

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350