JP5990310B1 - ONU detection apparatus and ONU detection method - Google Patents

ONU detection apparatus and ONU detection method Download PDF

Info

Publication number
JP5990310B1
JP5990310B1 JP2015156675A JP2015156675A JP5990310B1 JP 5990310 B1 JP5990310 B1 JP 5990310B1 JP 2015156675 A JP2015156675 A JP 2015156675A JP 2015156675 A JP2015156675 A JP 2015156675A JP 5990310 B1 JP5990310 B1 JP 5990310B1
Authority
JP
Japan
Prior art keywords
onu
light
light intensity
unit
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015156675A
Other languages
Japanese (ja)
Other versions
JP2017038116A (en
Inventor
良 小山
良 小山
和樹 池田
和樹 池田
山田 裕介
裕介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone West Corp
Original Assignee
Nippon Telegraph and Telephone West Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone West Corp filed Critical Nippon Telegraph and Telephone West Corp
Priority to JP2015156675A priority Critical patent/JP5990310B1/en
Application granted granted Critical
Publication of JP5990310B1 publication Critical patent/JP5990310B1/en
Publication of JP2017038116A publication Critical patent/JP2017038116A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

【課題】S/N比劣化による検知失敗や誤検知が生じないONU検知装置および検知方法を提供する。【解決手段】ONU(Optical Network Unit)検知装置40は、ONU30を検知する装置であって、光ケーブル70を変形させ、変形部分から漏れる光を受光し、電気信号を生成する受光部42と、受光部で生成された電気信号に基づいて受光部における光強度を測定する光強度測定部43と、光強度測定部で測定された光強度が適切な光強度となるまで受光部より局内装置10側で光ケーブルに曲げを付与する曲げ付与部41と、受光部で生成された電気信号に含まれるONUからの送信光の波形的特徴の強度を検知するONU検知部44と、光強度測定部で測定された光強度が適切な光強度である場合にONU検知部で検知された波形的特徴の強度が一定以上であればONUが接続されていると判定する判定部45とを備える。【選択図】図2An ONU detection device and a detection method that do not cause detection failure or erroneous detection due to S / N ratio deterioration. An ONU (Optical Network Unit) detection device 40 is a device that detects an ONU 30, and deforms an optical cable 70, receives light leaking from the deformed portion, and generates an electrical signal; A light intensity measuring unit 43 for measuring the light intensity in the light receiving unit based on the electrical signal generated by the unit, and the local device 10 side from the light receiving unit until the light intensity measured by the light intensity measuring unit becomes an appropriate light intensity Measurement is performed by a bend imparting unit 41 that imparts a bend to the optical cable, an ONU detection unit 44 that detects the intensity of the waveform characteristic of the transmitted light from the ONU included in the electrical signal generated by the light receiving unit, and a light intensity measurement unit. When the detected light intensity is an appropriate light intensity, the determination unit 45 determines that the ONU is connected if the intensity of the waveform feature detected by the ONU detection unit is equal to or greater than a certain level. Equipped with a. [Selection] Figure 2

Description

本発明は、ONU(Optical Network Unit)を検知するONU検知装置およびONU検知方法に関し、特に、PON(Passive Optical Network)構成のアクセスネットワークにおいて、光ファイバ網の保守運用の際に、保守しようとする光ケーブル下部にONUが接続されているかどうかを判定する光アクセスネットワークの保守技術に関する。   The present invention relates to an ONU detection apparatus and an ONU detection method for detecting an ONU (Optical Network Unit), and in particular, in an access network having a PON (Passive Optical Network) configuration, an attempt is made to perform maintenance during an optical fiber network maintenance operation. The present invention relates to an optical access network maintenance technique for determining whether an ONU is connected to the lower part of an optical cable.

PON構成の光アクセスネットワークでは、1台の局内装置に光分岐器を介して複数台のONUが接続される。このため、局内装置とは接続され、ONUとは接続されていない光ケーブルにおいても、他のユーザ向けの信号光が導通している。   In an optical access network having a PON configuration, a plurality of ONUs are connected to one in-station device via an optical branching unit. For this reason, signal light for other users is conducted even in an optical cable that is connected to the intra-station device and not connected to the ONU.

光アクセスネットワークの保守運用においては、光ケーブルを切断し、繋ぎかえるなどの光ケーブルに対する作業が発生するが、この際に光ケーブルがサービス提供中でないこと、すなわち下部にONUが接続されていないことを検知する必要がある。   In the maintenance and operation of the optical access network, work on the optical cable such as cutting and reconnecting the optical cable occurs. At this time, it is detected that the optical cable is not in service, that is, the ONU is not connected to the lower part. There is a need.

PON構成の光アクセスネットワークでは、下部にONUが接続されていない光ケーブルにも信号光が導通している。このため、光ケーブルに導通している信号光の中からONUからの送信光を検知して、ONUの接続有無を検知する必要がある(特許文献1、2参照)。   In an optical access network having a PON configuration, signal light is also conducted to an optical cable having no ONU connected to the lower part thereof. For this reason, it is necessary to detect whether or not the ONU is connected by detecting the transmission light from the ONU from the signal light that is conducted to the optical cable (see Patent Documents 1 and 2).

図9は、従来技術(特許文献1)の概要を説明するための図である。この図に示すように、1台の局内装置10に光分岐器20を介して複数台のONU30が接続されている。曲げ部400において光ケーブル70に曲げを加え、光ケーブル70から漏洩する光(以下、漏洩光)を曲げ部400の上部側、下部側それぞれに配置された受光器401,402で受光して電気信号を生成している。この電気信号に基づいて、ONU30からの送信光がもつ波形的特徴(間欠波形)を電気的に検知することでONU30の接続有無を検知するようになっている。   FIG. 9 is a diagram for explaining the outline of the prior art (Patent Document 1). As shown in this figure, a plurality of ONUs 30 are connected to one intra-station device 10 via an optical branching unit 20. The bending portion 400 bends the optical cable 70, and light leaked from the optical cable 70 (hereinafter referred to as leakage light) is received by the light receivers 401 and 402 disposed on the upper side and the lower side of the bending portion 400, respectively, and an electric signal is received. Is generated. Based on this electric signal, the presence or absence of connection of the ONU 30 is detected by electrically detecting the waveform characteristic (intermittent waveform) of the transmission light from the ONU 30.

特開2012−205284号公報JP 2012-205284 A 特開2012−060290号公報JP 2012-060290 A

従来技術では、光ケーブル70の上り光60と下り光50をそれぞれ分けて検知するために曲げ部400の上部側と下部側のそれぞれに受光器401,402を配置し、電気信号を生成している。しかしながら、上り光60と下り光50を完全に分離して受光することは難しく、上部側、下部側の受光器401,402にそれぞれある割合の下り光50,上り光60が意図せず受光されてしまう。このため、曲げ部400において、局内装置10からの下り光50がONU30からの上り光60に比して大きい場合は、下り光50の受光により上り光60の電気信号のS/N比が劣化し、正しくONU30の接続を検知できないという課題がある。   In the prior art, in order to separately detect the upstream light 60 and downstream light 50 of the optical cable 70, the light receivers 401 and 402 are disposed on the upper side and the lower side of the bent part 400, respectively, and an electric signal is generated. . However, it is difficult to completely separate the upstream light 60 and downstream light 50, and a certain proportion of downstream light 50 and upstream light 60 are unintentionally received by the upper and lower light receivers 401 and 402, respectively. End up. For this reason, in the bending unit 400, when the downstream light 50 from the intra-station device 10 is larger than the upstream light 60 from the ONU 30, the S / N ratio of the electrical signal of the upstream light 60 is degraded due to the reception of the downstream light 50. However, there is a problem that the connection of the ONU 30 cannot be detected correctly.

本発明は、上述した従来の技術に鑑み、S/N比劣化による検知失敗や誤検知が生じないONU検知装置およびONU検知方法を提供することを目的とする。   An object of the present invention is to provide an ONU detection device and an ONU detection method that do not cause detection failure or erroneous detection due to S / N ratio deterioration.

上記目的を達成するため、第1の態様に係る発明は、ONU(Optical Network Unit)を検知するONU検知装置であって、光ケーブルを変形させ、変形部分から漏れる光を受光し、電気信号を生成する受光部と、前記受光部で生成された電気信号に基づいて前記受光部における光強度を測定する光強度測定部と、前記光強度測定部で測定された光強度が適切な光強度となるまで前記受光部より局内装置側で前記光ケーブルに曲げを付与する曲げ付与部と、前記受光部で生成された電気信号に含まれるONUからの送信光の波形的特徴の強度を検知するONU検知部と、前記光強度測定部で測定された光強度が適切な光強度である場合に前記ONU検知部で検知された波形的特徴の強度が一定以上であればONUが接続されていると判定する判定部とを備えることを要旨とする。   To achieve the above object, the invention according to the first aspect is an ONU detection device for detecting an ONU (Optical Network Unit), which deforms an optical cable, receives light leaking from the deformed portion, and generates an electrical signal A light intensity measuring unit that measures the light intensity in the light receiving unit based on an electrical signal generated by the light receiving unit, and the light intensity measured by the light intensity measuring unit is an appropriate light intensity. A bend applying unit that bends the optical cable on the local device side from the light receiving unit, and an ONU detection unit that detects the intensity of the waveform characteristic of the transmitted light from the ONU included in the electrical signal generated by the light receiving unit When the light intensity measured by the light intensity measurement unit is an appropriate light intensity, if the intensity of the waveform feature detected by the ONU detection unit is greater than or equal to a certain level, it is determined that the ONU is connected. Judgment part And summarized in that it comprises a.

第2の態様に係る発明は、第1の態様に係る発明において、前記適切な光強度の下限として、下部線路損失が最大の場合でも、所定の最小光強度の下り光がONUに到達する値が設定されることを要旨とする。   In the invention according to the second aspect, in the invention according to the first aspect, as the lower limit of the appropriate light intensity, a value at which downstream light having a predetermined minimum light intensity reaches the ONU even when the lower line loss is maximum. Is set as the gist.

第3の態様に係る発明は、第2の態様に係る発明において、前記適切な光強度の下限として、前記光ケーブルの上下方向を誤って当該ONU検知装置を設置した場合でも、所定の最小光強度の下り光がONUに到達する値が設定されることを要旨とする。   The invention according to the third aspect is the invention according to the second aspect, wherein the predetermined minimum light intensity is set as the lower limit of the appropriate light intensity even when the ONU detection device is installed by mistake in the vertical direction of the optical cable. The gist is that the value at which the downstream light reaches the ONU is set.

第4の態様に係る発明は、第1〜第3のいずれかの態様に係る発明において、前記適切な光強度の上限として、前記受光部において所定のS/N比の上り光が受光される値が設定されることを要旨とする。   The invention according to a fourth aspect is the invention according to any one of the first to third aspects, wherein as the upper limit of the appropriate light intensity, upstream light having a predetermined S / N ratio is received by the light receiving unit. The gist is that the value is set.

第5の態様に係る発明は、ONU検知装置がONUを検知するONU検知方法であって、光ケーブルを変形させ、変形部分から漏れる光を受光部で受光し、電気信号を生成する受光ステップと、前記受光ステップで生成された電気信号に基づいて前記受光部における光強度を測定する光強度測定ステップと、前記光強度測定ステップで測定された光強度が適切な光強度となるまで前記受光部より局内装置側で前記光ケーブルに曲げを付与する曲げ付与ステップと、前記受光部で生成された電気信号に含まれるONUからの送信光の波形的特徴の強度を検知するONU検知ステップと、前記光強度測定ステップで測定された光強度が適切な光強度である場合に前記ONU検知ステップで検知された波形的特徴の強度が一定以上であればONUが接続されていると判定する判定ステップとを含むこと要旨とする。   The invention according to the fifth aspect is an ONU detection method in which the ONU detection device detects an ONU, wherein the optical cable is deformed, the light leaking from the deformed portion is received by the light receiving unit, and an electric signal is generated. A light intensity measuring step for measuring the light intensity in the light receiving unit based on the electrical signal generated in the light receiving step; and from the light receiving unit until the light intensity measured in the light intensity measuring step becomes an appropriate light intensity. A bending step for bending the optical cable on the intra-office device side, an ONU detection step for detecting the intensity of the waveform characteristic of the transmitted light from the ONU included in the electrical signal generated by the light receiving unit, and the light intensity When the light intensity measured in the measurement step is an appropriate light intensity, if the intensity of the waveform feature detected in the ONU detection step is a certain level or more, the ONU And summary to include a determination step to have been continued.

本発明によれば、S/N比劣化による検知失敗や誤検知が生じないONU検知装置およびONU検知方法を提供することが可能である。   According to the present invention, it is possible to provide an ONU detection device and an ONU detection method that do not cause detection failure or erroneous detection due to S / N ratio deterioration.

本発明の実施の形態におけるONU検知装置を利用するシステムの全体構成および利用シーンを示す図である。It is a figure which shows the whole structure and usage scene of the system which uses the ONU detection apparatus in embodiment of this invention. 本発明の実施の形態におけるONU検知装置の機能ブロック図である。It is a functional block diagram of the ONU detection apparatus in embodiment of this invention. 本発明の実施の形態におけるONU検知装置を利用し、光ケーブル下部にONUが接続されているかどうかを判定する動作を示すフローチャートである。It is a flowchart which shows the operation | movement which determines whether ONU is connected to the optical cable lower part using the ONU detection apparatus in embodiment of this invention. 従来技術における光強度を説明するための図である。It is a figure for demonstrating the light intensity in a prior art. 本発明の実施の形態におけるONU検知装置を利用した場合の光強度を説明するための図である。It is a figure for demonstrating the light intensity at the time of utilizing the ONU detection apparatus in embodiment of this invention. 本発明の実施の形態におけるONU検知装置を利用した場合の光強度を説明するための図である。It is a figure for demonstrating the light intensity at the time of utilizing the ONU detection apparatus in embodiment of this invention. 本発明の実施の形態における曲げ付与部により調整される適切な光強度の範囲を説明するための図である。It is a figure for demonstrating the range of the suitable light intensity adjusted by the bending provision part in embodiment of this invention. 本発明の実施の形態における曲げ付与部を示す図である。It is a figure which shows the bending provision part in embodiment of this invention. 従来技術の概要を説明するための図である。It is a figure for demonstrating the outline | summary of a prior art.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下の実施の形態は、この発明の技術的思想を具体化するためのONU検知装置を例示するものであり、装置の構成やデータの構成等は以下の実施の形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments exemplify ONU detection devices for embodying the technical idea of the present invention, and the device configuration, data configuration, and the like are limited to the following embodiments. is not.

(システム構成)
図1は、本発明の実施の形態におけるONU検知装置40を利用するシステムの全体構成および利用シーンを示す図である。図1(a)に示すように、PON構成のアクセスネットワークにおいて、光ファイバ網の保守運用の際にONU検知装置40が利用される。
(System configuration)
FIG. 1 is a diagram showing an overall configuration and usage scene of a system that uses an ONU detection device 40 according to an embodiment of the present invention. As shown in FIG. 1A, in an access network having a PON configuration, an ONU detection device 40 is used for maintenance operation of an optical fiber network.

PON(Passive Optical Network)は、1台の局内装置10と複数台のONU30が光分岐器20と光ケーブル70を介して接続された光通信ネットワークである。以下、局内装置10からONU30に向けた方向を「下り方向」と呼び、ONU30から局内装置10に向けた方向を「上り方向」と呼ぶ。また、下り方向に流れる光を「下り光50」と呼び、上り方向に流れる光を「上り光60」と呼ぶ。更に、局内装置10側を「上部側」と呼び、ONU30側を「下部側」と呼ぶ。   The PON (Passive Optical Network) is an optical communication network in which one intra-station device 10 and a plurality of ONUs 30 are connected to the optical branching device 20 via the optical cable 70. Hereinafter, the direction from the in-station device 10 toward the ONU 30 is referred to as “downward direction”, and the direction from the ONU 30 toward the in-station device 10 is referred to as “upward direction”. Further, light flowing in the downstream direction is referred to as “downstream light 50”, and light flowing in the upstream direction is referred to as “upstream light 60”. Further, the in-station device 10 side is called “upper side”, and the ONU 30 side is called “lower side”.

局内装置(OLT、光回線終端局装置)10は、PONで使用される通信局舎側の回線終端装置である。一般に、数台のスイッチやルータを介して通信事業者のコアネットワークと接続される。局内装置10の送信光(下り光50)は、図1(b)に示すように、揺らぎはあるが常に光り続けている定常光である。   An intra-station device (OLT, optical line terminal station device) 10 is a line terminal device on the communication station side used in PON. Generally, it is connected to the core network of a communication carrier through several switches and routers. As shown in FIG. 1B, the transmission light (downstream light 50) of the intra-station device 10 is steady light that is constantly radiated although it fluctuates.

光分岐器(光スプリッタ)20は、1本の光ケーブル70と複数本の光ケーブル70を接続する分岐器である。光信号を合分岐するが、分岐数に応じて信号強度は弱まる。   The optical branching device (optical splitter) 20 is a branching device that connects one optical cable 70 and a plurality of optical cables 70. The optical signal is split and split, but the signal intensity decreases according to the number of branches.

ONU(光回線終端装置)30は、PONで使用されるユーザ側の回線終端装置である。一般に、ユーザ宅内に設置され、ホームゲートウェイやユーザPC端末と接続される。ONU30の送信光(上り光60)は、図1(c)に示すように、明滅を繰り返す間欠光である。   The ONU (optical line termination unit) 30 is a user-side line termination unit used in the PON. Generally, it is installed in a user's home and connected to a home gateway or a user PC terminal. The transmission light (upstream light 60) of the ONU 30 is intermittent light that repeats blinking, as shown in FIG.

ONU検知装置40は、ONU30を検知する装置である。保守しようとする光ケーブル70に取り付けられ、その下部にONU30が接続されているかどうかを判定する。   The ONU detection device 40 is a device that detects the ONU 30. It is attached to the optical cable 70 to be maintained, and it is determined whether the ONU 30 is connected to the lower part thereof.

(ONU検知装置)
図2は、本発明の実施の形態におけるONU検知装置40の機能ブロック図である。この図に示すように、ONU検知装置40は、曲げ付与部41と、受光部42と、光強度測定部43と、ONU検知部44と、判定部45とを備える。
(ONU detection device)
FIG. 2 is a functional block diagram of the ONU detection device 40 according to the embodiment of the present invention. As shown in this figure, the ONU detection device 40 includes a bend imparting unit 41, a light receiving unit 42, a light intensity measurement unit 43, an ONU detection unit 44, and a determination unit 45.

受光部42は、光ケーブル70を変形させ、変形部分から漏れる光を受光器42Aで受光し、電気信号を生成する。例えば、特許文献1に開示されているように、凸状の部分と凹状の部分で光ケーブル70を挟むことで光ケーブル70を変形させることができる。   The light receiving unit 42 deforms the optical cable 70, and the light leaking from the deformed portion is received by the light receiver 42A to generate an electrical signal. For example, as disclosed in Patent Document 1, the optical cable 70 can be deformed by sandwiching the optical cable 70 between a convex portion and a concave portion.

光強度測定部43は、受光部42で生成された電気信号に基づいて受光部42における光強度を測定する。具体的には、受光部42に入射した光(上り光60と下り光50の合計)の強度を一定時間測定し、時間平均値に基づいて表示をする。この表示内容は特に限定されるものではない。例えば、数字など何らかの情報を表示し、光強度が適切であるかどうかを作業者が判定するようにしてもよい。あるいは、光強度の適切または不適切を光強度測定部43が判定し、その判定結果を表示するようにしてもよい。   The light intensity measurement unit 43 measures the light intensity in the light receiving unit 42 based on the electrical signal generated by the light receiving unit 42. Specifically, the intensity of the light incident on the light receiving unit 42 (the sum of the upstream light 60 and the downstream light 50) is measured for a certain period of time and displayed based on the time average value. This display content is not particularly limited. For example, some information such as numbers may be displayed, and the operator may determine whether the light intensity is appropriate. Alternatively, the light intensity measurement unit 43 may determine whether the light intensity is appropriate or inappropriate and display the determination result.

曲げ付与部41は、光強度測定部43で測定された光強度が適切な光強度となるまで受光部42の近傍で光ケーブル70に曲げを付与する。正しくONU検知装置40を設置した場合は受光部42の上部側(局内装置10側)で曲げを付与することになるが、誤ってONU検知装置40を設置した場合は受光部42の下部側(ONU30側)で曲げを付与することになる。ファイバガイドと調整ネジの組み合わせなどにより、意図した量だけ曲げの強さを調整することが可能となっている(後述する)。   The bend imparting unit 41 bends the optical cable 70 in the vicinity of the light receiving unit 42 until the light intensity measured by the light intensity measuring unit 43 becomes an appropriate light intensity. When the ONU detection device 40 is correctly installed, bending is applied on the upper side of the light receiving unit 42 (on the intra-office device 10 side), but when the ONU detection device 40 is installed by mistake, the lower side of the light receiving unit 42 ( The bending is applied on the ONU 30 side). The bending strength can be adjusted by an intended amount by a combination of a fiber guide and an adjusting screw (described later).

ONU検知部44は、受光部42で生成された電気信号に含まれるONU30からの送信光の波形的特徴の強度を検知する。具体的には、受光部42で受光した光強度の時間変動を一定時間観測し、ONU30からの上り光60の特徴点(間欠光)を抽出する。特徴点の抽出に当たっては変動バラつきの偏差を測定してもよいし、電気信号に周波数フィルタを適用してもよい。   The ONU detection unit 44 detects the intensity of the waveform characteristic of the transmission light from the ONU 30 included in the electrical signal generated by the light receiving unit 42. Specifically, the time variation of the light intensity received by the light receiving unit 42 is observed for a certain time, and the feature point (intermittent light) of the upstream light 60 from the ONU 30 is extracted. In extracting the feature points, a deviation with variation variation may be measured, or a frequency filter may be applied to the electrical signal.

判定部45は、光強度測定部43で測定された光強度が適切な光強度である場合にONU検知部44で検知された波形的特徴の強度が一定以上であればONU30が接続されていると判定する。具体的には、ONU検知部44で抽出された特徴点(間欠光)の強度を観測し、一定以上であればONU30を検知したことを表示する。   The determination unit 45 is connected to the ONU 30 if the intensity of the waveform feature detected by the ONU detection unit 44 is not less than a certain level when the light intensity measured by the light intensity measurement unit 43 is an appropriate light intensity. Is determined. Specifically, the intensity of the feature point (intermittent light) extracted by the ONU detection unit 44 is observed, and if it is above a certain level, it is displayed that the ONU 30 has been detected.

以上のように、本発明の実施の形態では、S/N比の高い上り光60を受光するために、受光器を上下2つ配置して上り光60、下り光50を分離するのではなく、受光部42Aの上部で光ケーブル70に曲げを付与し、その曲げにより下り光50を損失させる。このようにすれば、下り光50が小さくなり、上り光60のS/N比に悪影響を及ぼさないため、S/N比の高い上り光60を受光することが可能となる。   As described above, in the embodiment of the present invention, in order to receive the upstream light 60 having a high S / N ratio, two upstream and downward light receivers are not arranged to separate the upstream light 60 and the downstream light 50. The optical cable 70 is bent at the upper part of the light receiving part 42A, and the downstream light 50 is lost by the bending. In this way, the downstream light 50 is reduced and does not adversely affect the S / N ratio of the upstream light 60, so that the upstream light 60 having a high S / N ratio can be received.

(動作)
図3は、本発明の実施の形態におけるONU検知装置40を利用し、光ケーブル70下部にONU30が接続されているかどうかを判定する動作を示すフローチャートである。
(Operation)
FIG. 3 is a flowchart showing an operation of determining whether the ONU 30 is connected to the lower part of the optical cable 70 using the ONU detection device 40 according to the embodiment of the present invention.

まず、光ケーブル70にONU検知装置40を取り付け、曲げ付与部41により光ケーブル70に曲げを付与しない状態で光強度を検知(測定)する(S1)。   First, the ONU detection device 40 is attached to the optical cable 70, and the light intensity is detected (measured) in a state where the optical cable 70 is not bent by the bending applying unit 41 (S1).

この状態で、光強度が適切である場合は、ONU検知結果を確認する(S2→S3)。その結果、ONU30が検知されていれば、「ONU有り」と判定し(S3→S5)、ONU30が検知されていなければ、「ONU無し」と判定する(S3→S4)。   In this state, when the light intensity is appropriate, the ONU detection result is confirmed (S2 → S3). As a result, if the ONU 30 is detected, it is determined that “ONU exists” (S3 → S5), and if the ONU 30 is not detected, it is determined that “ONU does not exist” (S3 → S4).

一方、光強度が適切でない場合は、曲げ付与部41により光ケーブル70に曲げを付与し、適切になるまで曲げの強さを調整する(S2→S6)。光強度が適切となれば、この状態でONU検知結果を確認する(S7)。その結果、ONU30が検知されていれば、「ONU有り」と判定し(S7→S8)、ONU30が検知されていなければ、光ケーブル70の上下(左右)を入れ替えて、ONU検知結果を確認する(S7→S9→S10)。その結果、ONU30が検知されていれば、「ONU有り」と判定し(S10→S11)、それでもONU30が検知されていなければ、「ONU無し」と判定する(S10→S12)。   On the other hand, when the light intensity is not appropriate, the bending is applied to the optical cable 70 by the bend applying unit 41, and the bending strength is adjusted until it becomes appropriate (S2 → S6). If the light intensity is appropriate, the ONU detection result is confirmed in this state (S7). As a result, if the ONU 30 is detected, it is determined that “ONU is present” (S7 → S8). If the ONU 30 is not detected, the optical cable 70 is switched up and down (left and right) to check the ONU detection result ( S7 → S9 → S10). As a result, if the ONU 30 is detected, it is determined that “ONU exists” (S10 → S11). If the ONU 30 is still not detected, it is determined that “ONU does not exist” (S10 → S12).

以上のように、本発明の実施の形態では、光ケーブル70の上下を入れ替えながらONU30の検知作業を行うことができる。そのため、光ケーブル70の上下の見分けがつかない場合でも、最終的にはONU30の有無を検知することが可能である。   As described above, in the embodiment of the present invention, the ONU 30 can be detected while the optical cable 70 is switched upside down. Therefore, even if the upper and lower sides of the optical cable 70 cannot be distinguished, it is finally possible to detect the presence or absence of the ONU 30.

なお、ここでは、光ケーブル70の上下を入れ替えることとしているが、本発明はこれに限定されるものではない。すなわち、光ケーブル70の上下を入れ替える代わりに、受光部42の両側(上下)に曲げ付与部41を備える実施形態もある。   Here, the upper and lower sides of the optical cable 70 are interchanged, but the present invention is not limited to this. That is, there is an embodiment in which the bend imparting portions 41 are provided on both sides (up and down) of the light receiving unit 42 instead of switching the upper and lower sides of the optical cable 70.

また、こういった実施形態において、ワイヤーなどにより上下の曲げ付与部41を連動させ、ワンタッチで上下の曲げを切り替える実施形態もある。   In addition, in such an embodiment, there is an embodiment in which the upper and lower bending imparting portions 41 are interlocked with a wire or the like and the upper and lower bending are switched with one touch.

また、こういった実施形態において、測定方法の適切な曲げ付与部41による曲げ付与後の測定をONU検知装置40が自動で実施する実施形態もある。例えば、上下の曲げ付与部41それぞれの測定値について、予め設定された閾値を超える強度の信号が存在するかどうかを判定してもよい。この場合、予め設定された閾値を超える強度の信号が存在するときは、適切な曲げ付与部41による曲げ付与後の測定と判定することが可能である。   In such an embodiment, there is also an embodiment in which the ONU detection device 40 automatically performs the measurement after the bending is applied by the appropriate bending applying unit 41 of the measuring method. For example, for each measurement value of the upper and lower bending imparting portions 41, it may be determined whether there is a signal having an intensity exceeding a preset threshold value. In this case, when there is a signal having an intensity exceeding a preset threshold value, it can be determined that the measurement is performed after the bending by the appropriate bending applying unit 41.

また、モータなどで曲げ付与を自動で行なう機能をONU検知装置40が備えることで、検知方法の手順全てをONU検知装置40が自動で実施する実施形態もある。   In addition, there is also an embodiment in which the ONU detection device 40 automatically performs all procedures of the detection method by providing the ONU detection device 40 with a function of automatically applying bending with a motor or the like.

(比較例)
図4は、従来技術における光強度を説明するための図であり、(a)は従来技術で検知できる例、(b)は従来技術で検知できない例を示している。局内、検知場所、ONU設置場所の3箇所において、下り光50の光強度(局内装置10の送信光強度)と、上り光60の光強度(ONU30の送信光強度)がどのように変化するかを示している。
(Comparative example)
4A and 4B are diagrams for explaining the light intensity in the prior art. FIG. 4A shows an example that can be detected by the prior art, and FIG. 4B shows an example that cannot be detected by the prior art. How the light intensity of the downstream light 50 (transmitted light intensity of the in-station device 10) and the light intensity of the upstream light 60 (transmitted light intensity of the ONU 30) change in the station, the detection location, and the ONU installation location Is shown.

この図に示すように、局内装置10からの下り光50の光強度は線路損失により徐々に弱くなり、同様に、ONU30からの上り光60の光強度も線路損失により徐々に弱くなる。ここで、図4(a)に示すように、局内〜検知場所間の線路損失が十分大きい場合、検知場所における下り光50の光強度は上り光60の光強度と比して十分に小さいため、ONU30を検知するのに適切な光強度となっている。一方、図4(b)に示すように、局内〜検知場所間の線路損失が小さい場合、下り光50の光強度が大きくなり、これがノイズ増となってS/N比が劣化し、正しくONU30の接続を検知できない。   As shown in this figure, the light intensity of the downstream light 50 from the intra-station device 10 gradually decreases due to the line loss, and similarly, the light intensity of the upstream light 60 from the ONU 30 also gradually decreases due to the line loss. Here, as shown in FIG. 4A, when the line loss between the station and the detection location is sufficiently large, the light intensity of the downstream light 50 at the detection location is sufficiently smaller than the light intensity of the upstream light 60. The light intensity is suitable for detecting the ONU 30. On the other hand, as shown in FIG. 4B, when the line loss between the station and the detection location is small, the light intensity of the downstream light 50 is increased, which increases noise, and the S / N ratio is deteriorated. Cannot detect the connection.

(実施例)
図5は、本発明の実施の形態におけるONU検知装置40を利用した場合の光強度を説明するための図である。ここでは、従来技術で検知できない例において、ONU検知装置40を正しく設置した場合について説明する。
(Example)
FIG. 5 is a diagram for explaining the light intensity when the ONU detection device 40 according to the embodiment of the present invention is used. Here, a case where the ONU detection device 40 is correctly installed in an example that cannot be detected by the conventional technology will be described.

この図に示すように、局内〜検知場所間の線路損失が小さい場合でも、光強度測定部43の測定結果に応じて曲げ付与部41で曲げ損失を生じさせることにより、適切な光強度とすることができるため、ONU30を検知することが可能となる。また、光強度測定部43の測定結果に応じて適切な光強度となるように曲げ付与することにより、上り光60、下り光50がそれぞれ対向装置に届く状態でONU30の検知作業を行うことが可能である。   As shown in this figure, even when the line loss between the station and the detection place is small, the bending imparting unit 41 generates a bending loss according to the measurement result of the light intensity measuring unit 43 to obtain an appropriate light intensity. Therefore, the ONU 30 can be detected. In addition, the ONU 30 can be detected in a state in which the upstream light 60 and the downstream light 50 reach the opposing device by bending to give an appropriate light intensity according to the measurement result of the light intensity measuring unit 43. Is possible.

図6は、本発明の実施の形態におけるONU検知装置40を利用した場合の光強度を説明するための図である。ここでは、従来技術で検知できない例において、ONU検知装置40を誤って設置した場合について説明する。   FIG. 6 is a diagram for explaining the light intensity when the ONU detection device 40 according to the embodiment of the present invention is used. Here, a case will be described in which the ONU detection device 40 is erroneously installed in an example that cannot be detected by the conventional technology.

この図に示すように、光ケーブル70の上下方向を誤ってONU検知装置40を設置した場合でも、光強度測定部43の測定結果に応じて適切な光強度となるように曲げ付与することにより、上り光60、下り光50がそれぞれ対向装置に届く状態でONU30の検知作業を行うことが可能である。この場合は、S/N比の劣化によりONU30の検知はできないが、上下方向を入れ替えて再度検知作業を行うことにより、最終的にはONU30を検知可能である。   As shown in this figure, even when the ONU detection device 40 is installed by mistake in the vertical direction of the optical cable 70, by bending to give an appropriate light intensity according to the measurement result of the light intensity measurement unit 43, The ONU 30 can be detected while the upstream light 60 and the downstream light 50 reach the opposing device. In this case, the ONU 30 cannot be detected due to the deterioration of the S / N ratio, but the ONU 30 can finally be detected by performing the detection operation again by switching the vertical direction.

(適切な光強度の範囲)
図7は、曲げ付与部41により調整される適切な光強度の範囲を説明するための図である。ここでは、局内装置10の設置場所を地点A、ONU検知装置40の設置場所を地点C、ONU30の設置場所を地点Bとする。地点A〜B間の最大線路損失はxdB、地点C〜B間の最大線路損失はydBとする。下り光50の送信強度は最大a1dBm〜最小a2dBmとし、変動率はw%以下とする。下り光50の送信強度が最小a2dBmであっても、ONU30まで信号が届くよう設計されていることを前提とする。上り光60の送信強度は最大b1dBm〜最小b2dBmとする。ONU検知装置40において必要なS/N比はN%以上とする。
(Appropriate light intensity range)
FIG. 7 is a diagram for explaining a range of an appropriate light intensity adjusted by the bending imparting unit 41. Here, it is assumed that the installation location of the intra-station device 10 is a point A, the installation location of the ONU detection device 40 is a location C, and the installation location of the ONU 30 is a location B. The maximum line loss between points A and B is xdB, and the maximum line loss between points C and B is ydB. The transmission intensity of the downstream light 50 is a maximum a1 dBm to a minimum a2 dBm, and the variation rate is w% or less. It is assumed that the signal is designed to reach the ONU 30 even if the transmission intensity of the downstream light 50 is a minimum of a2 dBm. The transmission intensity of the upstream light 60 is assumed to be a maximum b1 dBm to a minimum b2 dBm. The S / N ratio required in the ONU detection device 40 is N% or more.

まず、適切な光強度の下限を説明する。地点Cにおいて必要な光強度は、下り(a2−x+y)dBm、上り(b2−y)dBmである。これを満たすための地点Cでの光強度は、ADD[(a2−x+y),b1−y]、ADD[(a1−x+y),b2−y]である。ゆえに、下限値は、ADD[(a2−x+y),b1−y]とADD[(a1−x+y),b2−y]の大きい方となる。ADD[p,q]は、次式に示す通りである。   First, an appropriate lower limit of light intensity will be described. The light intensity required at the point C is downlink (a2-x + y) dBm and uplink (b2-y) dBm. The light intensity at the point C to satisfy this is ADD [(a2-x + y), b1-y], ADD [(a1-x + y), b2-y]. Therefore, the lower limit value is the larger of ADD [(a2-x + y), b1-y] and ADD [(a1-x + y), b2-y]. ADD [p, q] is as shown in the following equation.

Figure 0005990310
次に、適切な光強度の上限を説明する。地点Cにおいて上り光強度は、次式のようになる。
Figure 0005990310
Next, an appropriate upper limit of light intensity will be described. The upstream light intensity at the point C is as follows.

Figure 0005990310
S/N比がN%のときのノイズ強度は、次式のようになる。
Figure 0005990310
The noise intensity when the S / N ratio is N% is as follows.

Figure 0005990310
変動率がw%のときの下り光強度は、次式のようになる。
Figure 0005990310
The downstream light intensity when the variation rate is w% is as follows.

Figure 0005990310
S/N比がN%以上となるためには、光強度の上限値は、次式のようになる。
Figure 0005990310
In order for the S / N ratio to be N% or more, the upper limit value of the light intensity is expressed by the following equation.

Figure 0005990310
このように算出された適切な光強度の範囲は光強度測定部43に設定される。これにより、光強度測定部43は、測定した光強度の適切または不適切を自動で判定することができる。
Figure 0005990310
An appropriate light intensity range calculated in this way is set in the light intensity measurement unit 43. Thereby, the light intensity measurement unit 43 can automatically determine whether the measured light intensity is appropriate or inappropriate.

(曲げ付与部)
図8は、本発明の実施の形態における曲げ付与部41を示す図であり、(a)は弱い曲げを付与する場合を示し、(b)は強い曲げを付与する場合を示している。
(Bend imparting part)
FIGS. 8A and 8B are diagrams showing the bending imparting portion 41 in the embodiment of the present invention, where FIG. 8A shows a case where a weak bending is given, and FIG. 8B shows a case where a strong bending is given.

この図に示すように、ファイバガイド41A,41Bに光ケーブル70を挿通している。ファイバガイド41A,41Bの間に設けられた調整ネジ41Cにより、ファイバガイド41Dの位置を調整することができる。調整ネジ41Cを締めるほどファイバガイド41Dの位置が下がり、光ケーブル70に強い曲げを付与することができる。最も強い曲げを付与した場合でも光ケーブル70は折れないが、通信は切断されるようになっている。もちろん、ファイバガイド41A,41B,41Dや調整ネジ41Cの位置・大きさ・数などは適宜変更することが可能である。   As shown in this figure, an optical cable 70 is inserted through the fiber guides 41A and 41B. The position of the fiber guide 41D can be adjusted by an adjustment screw 41C provided between the fiber guides 41A and 41B. As the adjustment screw 41C is tightened, the position of the fiber guide 41D is lowered, and the optical cable 70 can be strongly bent. Even when the strongest bend is applied, the optical cable 70 is not broken, but communication is cut off. Of course, the position, size, number, etc. of the fiber guides 41A, 41B, 41D and the adjusting screw 41C can be changed as appropriate.

以上説明したように、本発明の実施の形態におけるONU検知装置40は、ONU30を検知する装置であって、光ケーブル70を変形させ、変形部分から漏れる光を受光し、電気信号を生成する受光部42と、受光部42で生成された電気信号に基づいて受光部42における光強度を測定する光強度測定部43と、光強度測定部43で測定された光強度が適切な光強度となるまで受光部42より局内装置10側で光ケーブル70に曲げを付与する曲げ付与部41と、受光部42で生成された電気信号に含まれるONU30からの送信光の波形的特徴の強度を検知するONU検知部44と、光強度測定部43で測定された光強度が適切な光強度である場合にONU検知部44で検知された波形的特徴の強度が一定以上であればONU30が接続されていると判定する判定部45とを備える。すなわち、受光部42の近傍に設けた曲げ付与部41を用いて光ケーブル70の受光部42より局内装置10側を曲げるようにしているため、下り光50を損失させることができる。これにより、受光部42より局内装置10側で下り光50を損失させることができるため、受光部42に到達する下り光50の光強度が弱まり、S/N比劣化による検知失敗や誤検知が生じない。   As described above, the ONU detection device 40 according to the embodiment of the present invention is a device that detects the ONU 30, and is a light receiving unit that deforms the optical cable 70, receives light leaking from the deformed portion, and generates an electrical signal. 42, a light intensity measuring unit 43 that measures the light intensity in the light receiving unit 42 based on the electrical signal generated by the light receiving unit 42, and until the light intensity measured by the light intensity measuring unit 43 becomes an appropriate light intensity. A bend applying unit 41 that bends the optical cable 70 on the local device 10 side from the light receiving unit 42, and an ONU detection that detects the intensity of the waveform characteristic of the transmitted light from the ONU 30 included in the electrical signal generated by the light receiving unit 42. When the intensity of the waveform feature detected by the ONU detection unit 44 is not less than a certain level when the light intensity measured by the unit 44 and the light intensity measurement unit 43 is an appropriate light intensity, the ONU 30 is in contact. It is provided with a determination unit 45 that. That is, since the bend imparting unit 41 provided in the vicinity of the light receiving unit 42 is bent from the light receiving unit 42 of the optical cable 70 to the local device 10 side, the downstream light 50 can be lost. As a result, the downstream light 50 can be lost on the side of the in-station device 10 from the light receiving unit 42, so that the light intensity of the downstream light 50 reaching the light receiving unit 42 is weakened, and detection failure or false detection due to S / N ratio deterioration occurs. Does not occur.

ここで、適切な光強度の下限として、下部線路損失が最大の場合でも、所定の最小光強度の下り光50がONU30に到達する値が設定される。これにより、上り光60、下り光50がそれぞれ対向装置に届く状態でONU30の検知作業を行うことが可能である。   Here, a value at which the downstream light 50 having a predetermined minimum light intensity reaches the ONU 30 is set as an appropriate lower limit of the light intensity even when the lower line loss is maximum. As a result, the ONU 30 can be detected while the upstream light 60 and the downstream light 50 reach the opposing device.

また、適切な光強度の下限として、光ケーブル70の上下方向を誤ってONU検知装置40を設置した場合でも、所定の最小光強度の下り光50がONU30に到達する値が設定される。これにより、光ケーブル70の上下方向を誤ってONU検知装置40を設置した場合でも、上り光60、下り光50がそれぞれ対向装置に届く状態でONU30の検知作業を行うことが可能である。   Further, as an appropriate lower limit of the light intensity, even when the ONU detection device 40 is installed by mistake in the vertical direction of the optical cable 70, a value at which the downstream light 50 having a predetermined minimum light intensity reaches the ONU 30 is set. Thereby, even when the ONU detection device 40 is installed by mistake in the vertical direction of the optical cable 70, it is possible to perform the ONU 30 detection operation in a state where the upstream light 60 and the downstream light 50 reach the opposing device.

また、適切な光強度の上限として、受光部42において所定のS/N比の上り光60が受光される値が設定される。これにより、S/N比の高い上り光60を受光することができるため、精度よくONU30を検知することが可能である。   In addition, a value at which the upstream light 60 having a predetermined S / N ratio is received by the light receiving unit 42 is set as an appropriate upper limit of the light intensity. As a result, the upstream light 60 having a high S / N ratio can be received, so that the ONU 30 can be detected with high accuracy.

また、本発明の実施の形態におけるONU検知方法は、ONU検知装置40がONU30を検知する方法であって、光ケーブル70を変形させ、変形部分から漏れる光を受光部42で受光し、電気信号を生成する受光ステップと、受光ステップで生成された電気信号に基づいて受光部42における光強度を測定する光強度測定ステップと、光強度測定ステップで測定された光強度が適切な光強度となるまで受光部42より局内装置10側で光ケーブル70に曲げを付与する曲げ付与ステップと、受光部42で生成された電気信号に含まれるONU30からの送信光の波形的特徴の強度を検知するONU検知ステップと、光強度測定ステップで測定された光強度が適切な光強度である場合にONU検知ステップで検知された波形的特徴の強度が一定以上であればONU30が接続されていると判定する判定ステップとを含む。これにより、受光部42より局内装置10側で下り光50を損失させることができるため、受光部42に到達する下り光50の光強度が弱まり、S/N比劣化による検知失敗や誤検知が生じない。   The ONU detection method according to the embodiment of the present invention is a method in which the ONU detection device 40 detects the ONU 30, which deforms the optical cable 70, receives light leaking from the deformed portion by the light receiving unit 42, and receives an electrical signal. A light receiving step to be generated, a light intensity measuring step for measuring the light intensity in the light receiving unit 42 based on the electrical signal generated in the light receiving step, and the light intensity measured in the light intensity measuring step until an appropriate light intensity is obtained. A bending applying step for bending the optical cable 70 on the local device 10 side from the light receiving unit 42, and an ONU detecting step for detecting the intensity of the waveform characteristic of the transmitted light from the ONU 30 included in the electrical signal generated by the light receiving unit 42 When the light intensity measured in the light intensity measurement step is an appropriate light intensity, the intensity of the waveform feature detected in the ONU detection step is And a and determining steps if constant over ONU30 is connected. As a result, the downstream light 50 can be lost on the side of the in-station device 10 from the light receiving unit 42, so that the light intensity of the downstream light 50 reaching the light receiving unit 42 is weakened, and detection failure or false detection due to S / N ratio deterioration occurs. Does not occur.

なお、本発明はここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   Of course, the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

10…局内装置
20…光分岐器
30…ONU
40…ONU検知装置
41…曲げ付与部
42…受光部
42A…受光器
43…光強度測定部
44…ONU検知部
45…判定部
50…下り光
60…上り光
70…光ケーブル
10 ... Intra-station equipment 20 ... Optical splitter 30 ... ONU
DESCRIPTION OF SYMBOLS 40 ... ONU detection apparatus 41 ... Bending provision part 42 ... Light receiving part 42A ... Light receiver 43 ... Light intensity measurement part 44 ... ONU detection part 45 ... Judgment part 50 ... Down light 60 ... Up light 70 ... Optical cable

Claims (5)

ONU(Optical Network Unit)を検知するONU検知装置であって、
光ケーブルを変形させ、変形部分から漏れる光を受光し、電気信号を生成する受光部と、
前記受光部で生成された電気信号に基づいて前記受光部における光強度を測定する光強度測定部と、
前記光強度測定部で測定された光強度が適切な光強度となるまで前記受光部より局内装置側で前記光ケーブルに曲げを付与する曲げ付与部と、
前記受光部で生成された電気信号に含まれるONUからの送信光の波形的特徴の強度を検知するONU検知部と、
前記光強度測定部で測定された光強度が適切な光強度である場合に前記ONU検知部で検知された波形的特徴の強度が一定以上であればONUが接続されていると判定する判定部と
を備えることを特徴とするONU検知装置。
An ONU detection device that detects an ONU (Optical Network Unit),
A light receiving portion that deforms the optical cable, receives light leaking from the deformed portion, and generates an electrical signal;
A light intensity measuring unit that measures the light intensity in the light receiving unit based on the electrical signal generated by the light receiving unit;
A bend applying unit that applies bending to the optical cable on the local device side from the light receiving unit until the light intensity measured by the light intensity measuring unit becomes an appropriate light intensity;
An ONU detector that detects the intensity of the waveform characteristic of the transmitted light from the ONU included in the electrical signal generated by the light receiver;
A determination unit that determines that the ONU is connected if the intensity of the waveform feature detected by the ONU detection unit is greater than or equal to a certain level when the light intensity measured by the light intensity measurement unit is an appropriate light intensity. An ONU detection device comprising:
前記適切な光強度の下限として、下部線路損失が最大の場合でも、所定の最小光強度の下り光がONUに到達する値が設定されることを特徴とする請求項1に記載のONU検知装置。   2. The ONU detection device according to claim 1, wherein a value at which downstream light having a predetermined minimum light intensity reaches the ONU is set as the lower limit of the appropriate light intensity even when the lower line loss is maximum. . 前記適切な光強度の下限として、前記光ケーブルの上下方向を誤って当該ONU検知装置を設置した場合でも、所定の最小光強度の下り光がONUに到達する値が設定されることを特徴とする請求項2に記載のONU検知装置。   As the lower limit of the appropriate light intensity, even when the ONU detection device is installed by mistake in the vertical direction of the optical cable, a value at which downstream light with a predetermined minimum light intensity reaches the ONU is set. The ONU detection apparatus according to claim 2. 前記適切な光強度の上限として、前記受光部において所定のS/N比の上り光が受光される値が設定されることを特徴とする請求項1〜3のいずれか1項に記載のONU検知装置。   4. The ONU according to claim 1, wherein a value at which upstream light having a predetermined S / N ratio is received by the light receiving unit is set as the upper limit of the appropriate light intensity. Detection device. ONU検知装置がONUを検知するONU検知方法であって、
光ケーブルを変形させ、変形部分から漏れる光を受光部で受光し、電気信号を生成する受光ステップと、
前記受光ステップで生成された電気信号に基づいて前記受光部における光強度を測定する光強度測定ステップと、
前記光強度測定ステップで測定された光強度が適切な光強度となるまで前記受光部より局内装置側で前記光ケーブルに曲げを付与する曲げ付与ステップと、
前記受光部で生成された電気信号に含まれるONUからの送信光の波形的特徴の強度を検知するONU検知ステップと、
前記光強度測定ステップで測定された光強度が適切な光強度である場合に前記ONU検知ステップで検知された波形的特徴の強度が一定以上であればONUが接続されていると判定する判定ステップと
を含むことを特徴とするONU検知方法。
An ONU detection method in which an ONU detection device detects an ONU,
A light receiving step for deforming the optical cable, receiving light leaking from the deformed portion at the light receiving unit, and generating an electrical signal;
A light intensity measuring step for measuring light intensity in the light receiving unit based on the electrical signal generated in the light receiving step;
A bending step for bending the optical cable on the local device side from the light receiving unit until the light intensity measured in the light intensity measurement step becomes an appropriate light intensity;
An ONU detection step of detecting the intensity of the waveform characteristic of the transmitted light from the ONU included in the electrical signal generated by the light receiving unit;
A determination step of determining that the ONU is connected if the intensity of the waveform characteristic detected in the ONU detection step is a certain level or more when the light intensity measured in the light intensity measurement step is an appropriate light intensity. The ONU detection method characterized by including these.
JP2015156675A 2015-08-07 2015-08-07 ONU detection apparatus and ONU detection method Active JP5990310B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156675A JP5990310B1 (en) 2015-08-07 2015-08-07 ONU detection apparatus and ONU detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156675A JP5990310B1 (en) 2015-08-07 2015-08-07 ONU detection apparatus and ONU detection method

Publications (2)

Publication Number Publication Date
JP5990310B1 true JP5990310B1 (en) 2016-09-14
JP2017038116A JP2017038116A (en) 2017-02-16

Family

ID=56920974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156675A Active JP5990310B1 (en) 2015-08-07 2015-08-07 ONU detection apparatus and ONU detection method

Country Status (1)

Country Link
JP (1) JP5990310B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139271A (en) * 2006-12-05 2008-06-19 Furukawa Electric Co Ltd:The Optical fiber identification device and method
JP2008145410A (en) * 2006-11-16 2008-06-26 Furukawa Electric Co Ltd:The Optical core wire identification method and identification device
JP2008148272A (en) * 2006-11-16 2008-06-26 Furukawa Electric Co Ltd:The Coated optical fiber identification method, and identification apparatus
JP2016058916A (en) * 2014-09-10 2016-04-21 住友電気工業株式会社 Detection device and detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145410A (en) * 2006-11-16 2008-06-26 Furukawa Electric Co Ltd:The Optical core wire identification method and identification device
JP2008148272A (en) * 2006-11-16 2008-06-26 Furukawa Electric Co Ltd:The Coated optical fiber identification method, and identification apparatus
JP2008139271A (en) * 2006-12-05 2008-06-19 Furukawa Electric Co Ltd:The Optical fiber identification device and method
JP2016058916A (en) * 2014-09-10 2016-04-21 住友電気工業株式会社 Detection device and detection method

Also Published As

Publication number Publication date
JP2017038116A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US20140111795A1 (en) Systems and methods of performing reflection and loss analysis of optical-time-domain-reflectometry (otdr) data acquired for monitoring the status of passive optical networks
KR101965403B1 (en) Apparatus and method for monitoring optical line
EP4075688A1 (en) Optical distribution device, optical communication detection system, and optical communication detection method
EP2712161B1 (en) Method and device for testing subscriber premises equipment
CN106454887A (en) Base station antenna feed equipment's standing-wave ratio based position obtaining method and apparatus
WO2014002741A1 (en) Optical path monitoring method and optical path monitoring system
JP5990310B1 (en) ONU detection apparatus and ONU detection method
KR20130101636A (en) System and method for monitoring optical line
CN110518966B (en) ONU positioning system and positioning method based on orthogonal coding
JP5637914B2 (en) Detection apparatus and detection method
CN104243041A (en) Optical fiber communication equipment and communication device thereof
JP2020123789A (en) Communication monitoring method and communication monitoring method
JP2011142581A (en) Method and system for optical communication, and apparatus for receiving and transimitting optical signal
KR20140052439A (en) Optical line monitoring device, optical line monitoring system having the same and controlling method thereof
JP4956163B2 (en) Optical fiber identification device and optical fiber identification method
EP2819269B1 (en) Method and system for localizing a disturber in a PLC network
KR101889553B1 (en) System and method for monitoring optical line
EP3014861B1 (en) Method for detecting a noise induced by a powerline system on a twisted pair cable
KR101876538B1 (en) Integrated management device for detecting and operating of fiber and method for the same
CN103401586B (en) Communication line fault detecting device and method
KR20130132228A (en) Optical line monitoring device, optical line monitoring system having the same and controlling method thereof
CN104065412A (en) Method for protection switching of optical network and device thereof
JP2003065894A (en) Optical fiber pair identification method and device
EP3681057B1 (en) Monitoring signals in a passive optical network
KR20180007186A (en) Apparatus for monitoring optical fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160812

R150 Certificate of patent or registration of utility model

Ref document number: 5990310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250