JP5990101B2 - Molded products for automotive panels - Google Patents

Molded products for automotive panels Download PDF

Info

Publication number
JP5990101B2
JP5990101B2 JP2012529226A JP2012529226A JP5990101B2 JP 5990101 B2 JP5990101 B2 JP 5990101B2 JP 2012529226 A JP2012529226 A JP 2012529226A JP 2012529226 A JP2012529226 A JP 2012529226A JP 5990101 B2 JP5990101 B2 JP 5990101B2
Authority
JP
Japan
Prior art keywords
polyamide
fibers
web
reinforcing
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012529226A
Other languages
Japanese (ja)
Other versions
JP2013504461A5 (en
JP2013504461A (en
Inventor
ケーニヒバウアー シュテファン
ケーニヒバウアー シュテファン
ダニエル ピエール
ダニエル ピエール
クラウゼ ヴェンツェル
クラウゼ ヴェンツェル
ゴダノ フィリプ
ゴダノ フィリプ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Autoneum Management AG
Original Assignee
Autoneum Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP09011844A external-priority patent/EP2298541A1/en
Application filed by Autoneum Management AG filed Critical Autoneum Management AG
Publication of JP2013504461A publication Critical patent/JP2013504461A/en
Publication of JP2013504461A5 publication Critical patent/JP2013504461A5/ja
Application granted granted Critical
Publication of JP5990101B2 publication Critical patent/JP5990101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/60Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2267/00Use of polyesters or derivatives thereof as reinforcement
    • B29K2267/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0001Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties
    • B29K2995/0002Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

本発明は成型製品およびその製造方法に関する。   The present invention relates to a molded product and a manufacturing method thereof.

自動車産業において、構造用パネルは、高強度および軽量が必要とされる広範な用途において使用されている。成型強化パネルは、特に自動車両において、例えばパーセルシェルフ、天井張り、エンジンベイパネル、またはロードフロアとして、並びに車外で使用されるパネル、例えばエンジンアンダーシールドまたは外部のホイールアーチライナーのために使用される。ノイズ減衰のための追加的な音響特性、特に材料の吸音係数が要件になることがある。例えば、最終的にはハニカムコアを有する複合パネルは、トリム部品、サンルーフパネル、ハードトップ、パーセルシェルフ、予備ホイール用のカバー、および荷台の床の組み立て品において使用される。選択される材料に依存して、それらはアンダーフロア、エンジンカバーまたはエンジンベイカバーとしても使用されることがある。繊維強化複合材は、主材料として、またはそれらの製品のスキン層として、時として特定の目的のための追加的な層と組み合わせて使用される。   In the automotive industry, structural panels are used in a wide range of applications where high strength and light weight are required. Molded reinforced panels are used especially in motor vehicles, for example as parcel shelves, ceilings, engine bay panels or road floors, as well as panels used outside the vehicle, such as engine undershields or external wheel arch liners . Additional acoustic properties for noise attenuation, particularly the material's sound absorption coefficient, may be a requirement. For example, composite panels that ultimately have a honeycomb core are used in trim parts, sunroof panels, hardtops, parcel shelves, covers for spare wheels, and cargo bed floor assemblies. Depending on the material selected, they may also be used as an underfloor, engine cover or engine bay cover. Fiber reinforced composites are used as a main material or as a skin layer for their products, sometimes in combination with additional layers for specific purposes.

複合材料(または略して複合材)は、著しく異なる物理的または化学的特性を有する2つまたはそれより多くの構成材料から製造されるエンジニアリング材料であり、前記構成材料は、完成された構造内では分離したままであり且つ微視的なレベルで区別される。   A composite material (or composite for short) is an engineering material that is manufactured from two or more components that have significantly different physical or chemical properties, said components being in the finished structure It remains separated and distinguished at a microscopic level.

複合材は、構成材料として称される個々の材料から作り上げられる。マトリックス材および強化材の、2つのカテゴリーの構成材料がある。各々の種類の少なくとも一部が必要とされる。マトリックス材料は、強化材料を、それらの相対的な位置を保持して、取り囲み且つ支える。その強化材は、特別な機械的特性および物理的特性を付与し、マトリックス特性を高める。相乗作用により、個々の構成材料からは入手できない材料特性を創出する。エンジニアリング複合材料は、造形されなければならない。強化材料を鋳型の空洞内に、または鋳型表面に配置した前または後に、該マトリックス材料を、強化材に導入できる。該マトリックス材料は、物理的状態における変化、例えば熱可塑性材料についての溶融事象を経て、その後、該部品の形状が本質的に固定される。マトリックス材料の性質に依存して、物理的状態におけるこの変化は、様々に、例えば化学的な重合(熱硬化性)または溶融状態からの固化(熱可塑性)を生じ得る。   Composites are made up of individual materials referred to as constituent materials. There are two categories of constituent materials: matrix materials and reinforcements. At least a portion of each type is required. The matrix material surrounds and supports the reinforcing materials while maintaining their relative positions. The reinforcement imparts special mechanical and physical properties and enhances matrix properties. Synergistic action creates material properties that are not available from individual components. Engineering composites must be shaped. The matrix material can be introduced into the reinforcement before or after the reinforcement material is placed in the mold cavity or on the mold surface. The matrix material undergoes a change in physical state, such as a melting event for a thermoplastic material, after which the shape of the part is essentially fixed. Depending on the nature of the matrix material, this change in the physical state can variously result in, for example, chemical polymerization (thermosetting) or solidification from the molten state (thermoplasticity).

最も商業的に生産されている複合材は、しばしば樹脂溶液と称されるポリマーマトリックス材料を使用する。出発原料成分に依存して入手可能な多くの異なるポリマーがある。いくつかの広い分類があり、それぞれが多数のバリエーションを有する。最も一般的なものは、ポリエステル、ビニルエステル、エポキシ、フェノール、ポリイミド、ポリアミド、ポリプロピレン、PEEKおよびその他として公知である。強化材料は、しばしば、繊維であるが、しかし、通例、粉砕鉱物でもある。複合材料を、少なくとも部分的に強化繊維、例えばガラス繊維および結合材材料(粉末、液体の溶液または結合材繊維の形態のいずれか)からなる繊維質材料の層またはマットを使用することによって製造できる。該材料を混合し、且つ、通常、材料を成型プレス内で熱成型することによって硬化させて、直接的に所望の製品形状を製造する。   Most commercially produced composites use polymer matrix materials often referred to as resin solutions. There are many different polymers available depending on the starting material components. There are several broad categories, each with numerous variations. The most common are known as polyester, vinyl ester, epoxy, phenol, polyimide, polyamide, polypropylene, PEEK and others. The reinforcing material is often a fiber, but is usually also a ground mineral. A composite material can be produced by using a layer or mat of fibrous material at least partially composed of reinforcing fibers, such as glass fibers and binder material (either in powder, liquid solution or binder fiber form). . The materials are mixed and usually cured by thermoforming in a molding press to produce the desired product shape directly.

US20050214465号は、ポリアミドをマトリックスとして使用する複合材の製造方法であって、強化材料を、アニオン重合のために活性化されたラクタム溶融物で含浸させ、その後、加熱する、製造方法を開示している。他の公知の方法は、引抜成型法である。製造される材料を粉砕し、その後、射出成型または押出法において使用することができる。   US20050214465 discloses a method of manufacturing a composite using polyamide as a matrix, wherein the reinforcing material is impregnated with a lactam melt activated for anionic polymerization and then heated. Yes. Another known method is a pultrusion method. The material to be produced can be ground and then used in injection molding or extrusion processes.

使用される他の技術は、強化繊維と熱可塑性溶融物との混合である。ここでも主として、射出成型が続き、最終的には圧縮成型が続いて製品の所望の形態が得られる。   Another technique used is the mixing of reinforcing fibers and thermoplastic melts. Here again, mainly the injection molding continues and finally the compression molding follows to obtain the desired form of the product.

熱可塑性溶融物または溶融物での含浸の使用は、得られる製品をコンパクト且つ無孔質にする。なぜなら、その溶融物が強化材料の間の空間を充填し、且つ、存在する全ての孔をふさぐからである。   The use of thermoplastic melts or impregnation with melts makes the resulting product compact and nonporous. This is because the melt fills the space between the reinforcing materials and plugs all the existing pores.

US7132025号は、熱可塑性繊維をマトリックス材料として使用する方法を開示している。それらの繊維は、まず強化繊維と配合され、その後、乾燥されて、配合されたウェブがもたらされる。該ウェブはその後、ニードリングによって固められ、加熱され、且つ緻密化されて最終製品がもたらされる。該ウェブは、通常のオーブンを使用して、またはIR照射によって、熱可塑性繊維の軟化点より高い温度に加熱され、そして直接的に圧縮されて、圧縮され且つ部分的に固められた熱成型可能な半完成品が提供される。   US71332025 discloses a method of using thermoplastic fibers as matrix material. The fibers are first compounded with reinforcing fibers and then dried to provide a compounded web. The web is then consolidated by needling, heated and densified to yield the final product. The web is heated to a temperature above the softening point of the thermoplastic fibers using a conventional oven or by IR irradiation and directly compressed, compressed and partially consolidated thermoformable Semi-finished products are provided.

US20050140059号は、繊維製の成型部品の製造方法であって、繊維をプレート間でまず加熱し、その後、圧縮成型に供し、追加的に空気吸込を使用して、より良好な造形製品をもたらす製造方法を開示する。使用される繊維は、結合材繊維としてのバイコンポネント繊維、およびばら繊維としての他の繊維、例えば再加工綿およびポリプロピレンである。導入部で、圧縮成型前に、材料の加熱の代替としての高圧蒸気または流動空気の使用が言及されたにもかかわらず、実際に開示された方法は加熱プレートを使用するのみで、200℃にするために1分間で加熱し、そして繊維材料を一体化させる。蒸気の使用は、使用された材料と、開示された方法との組み合わせにおいて開示されていない。
US20050140059 is a method of manufacturing a molded part made of fiber, in which the fiber is first heated between plates and then subjected to compression molding, additionally using air suction to produce a better shaped product A method is disclosed. The fibers used are bicomponent fibers as binder fibers and other fibers as bulk fibers, such as reprocessed cotton and polypropylene. Even though the introduction mentions the use of high pressure steam or flowing air as an alternative to heating the material prior to compression molding, the actually disclosed method only uses a heating plate and is Heat to 1 minute to make and integrate the fiber material. The use of steam is not disclosed in combination with the materials used and the disclosed method.

WO2004098879号は、ニードリングされた不織布を出発材料として使用する、熱可塑性繊維と強化繊維との混合物の複合材料の製造方法を開示している。このウェブは、高溶融熱可塑性材料とより低い溶融熱可塑性材料とを有する二重箔と組み合わせられる。該層状積層物はその後、赤外線または熱風を使用して、該箔の熱可塑性繊維および低溶融熱可塑性材料がそれらの溶融温度より高く加熱される温度まで、軟化を可能にするために充分な長さの短い時間で加熱される。その直後に、層状化材料を、例えばローラーを使用してプレスする。該特許は、一例として、結合材繊維としてのポリアミド−6と、強化繊維としてのガラス繊維およびPET繊維との組み合わせを開示している。   WO2004098879 discloses a method for producing a composite material of a mixture of thermoplastic fibers and reinforcing fibers using a needled nonwoven as starting material. This web is combined with a double foil having a high melt thermoplastic material and a lower melt thermoplastic material. The layered laminate is then long enough to allow softening to the temperature at which the thermoplastic fibers and low melt thermoplastic material of the foil are heated above their melting temperature using infrared or hot air. It is heated in a short time. Immediately thereafter, the layered material is pressed, for example using a roller. As an example, this patent discloses a combination of polyamide-6 as a binder fiber and glass and PET fibers as reinforcing fibers.

WO2007000225号も、低溶融繊維および高溶融繊維との組み合わせを使用する硬質部品の製造方法であって、その際、繊維ウェブを低溶融繊維の溶融温度より高く加熱する製造方法を開示している。該出願は、さらに、高溶融繊維としてのガラス繊維またはポリエステル繊維、および低溶融繊維としてのポリプロピレンまたはポリエステルのコア材料内での使用を開示する。このコア材料は、2つの外側の熱可塑性箔層の間で層状化されている。加熱段階の間、内部のコア材料は、コアの繊維内の内圧のために広がり、材料全体にロフティング効果(lofting effect)をもたらす。最終製品は、部分的に高く圧縮された領域および部分的にこの持ち上げられた領域を包含する。実際に、これはポリプロピレンとガラス繊維との組み合わせを用いて実施され、且つ、ソフトロフティングと称される。   WO2007000225 also discloses a manufacturing method of a hard part using a combination of a low melting fiber and a high melting fiber, in which the fiber web is heated above the melting temperature of the low melting fiber. The application further discloses the use of glass or polyester fibers as high melt fibers and polypropylene or polyester as low melt fibers in the core material. This core material is layered between two outer thermoplastic foil layers. During the heating phase, the inner core material spreads due to internal pressure within the core fibers, resulting in a lofting effect throughout the material. The final product includes a partially highly compressed area and partially this raised area. In practice, this is done using a combination of polypropylene and glass fiber and is referred to as soft lofting.

従来技術の欠点は、最終の複合材を得るために高温が必要とされることである。達成されるべき加熱温度は、マトリックスポリマーに依存する。複合材を形成するために、マトリックスと強化繊維とを乾燥加熱法、例えば熱風、接触加熱または赤外線加熱を使用して加熱する。該製品を通常、マトリックスポリマーの実際の融点より高く加熱して、例えば素子の加熱から素子の成型への温度損失について補償する。融点より高いポリマーの加熱は分解を促進する。   The disadvantage of the prior art is that high temperatures are required to obtain the final composite. The heating temperature to be achieved depends on the matrix polymer. To form the composite, the matrix and reinforcing fibers are heated using a dry heating method such as hot air, contact heating or infrared heating. The product is usually heated above the actual melting point of the matrix polymer to compensate for temperature loss from, for example, device heating to device molding. Heating the polymer above its melting point promotes decomposition.

接触型ヒーターの使用は、製品の厚さ全体にわたって熱をよく伝えるために、該製品が圧縮されなければならないというさらなる欠点を有する。熱風は通常、結合材ポリマーの溶融温度より高い温度で使用され、従って該ポリマーは熱損傷を受ける一方、赤外線加熱の使用は薄い材料用にのみ可能である。より厚い材料の場合、内部コアを加熱するために必要な量のエネルギーは、外側の表面ポリマーにダメージを与える。この方法は通常、4〜5mmまでの厚さに対してのみ使用される。   The use of a contact heater has the further disadvantage that the product must be compressed in order to transfer heat well throughout the thickness of the product. Hot air is usually used at temperatures above the melting temperature of the binder polymer, so that the polymer is thermally damaged, while the use of infrared heating is only possible for thin materials. For thicker materials, the amount of energy required to heat the inner core damages the outer surface polymer. This method is usually only used for thicknesses up to 4-5 mm.

他の欠点は、マトリックス繊維として、および強化繊維として使用される大半の熱可塑性ポリマーが、互いに近い溶融温度を有するということであり、例えばポリエチレンテレフタレート(PET)の溶融温度は、230〜260℃の範囲であり、ポリプロピレンについては140〜170℃の間、ポリアミド−6については170〜225℃の間、そしてポリアミド−6.6については220〜260℃の間である。両方とも熱可塑性ポリマーであるマトリックス繊維および強化繊維、例えばPA6.6をマトリックスとして且つPETを強化材として使用して、マトリックス繊維の溶融温度より高くそれらを加熱することは、強化繊維の溶融または軟化の開始も引き起こす。これは、構造の崩壊をみちびき、非常に緻密な複合材を形成する。   Another drawback is that most thermoplastic polymers used as matrix fibers and as reinforcing fibers have melting temperatures close to each other, for example polyethylene terephthalate (PET) has a melting temperature of 230-260 ° C. The range is between 140 and 170 ° C for polypropylene, between 170 and 225 ° C for polyamide-6 and between 220 and 260 ° C for polyamide-6.6. Heating them above the melting temperature of the matrix fibers using matrix fibers and reinforcing fibers, both of which are thermoplastic polymers, for example PA 6.6 as a matrix and PET as a reinforcing material, will cause melting or softening of the reinforcing fibers Also causes the start of. This leads to a collapse of the structure and forms a very dense composite.

該フェルトは、特に自動車産業において、それらの断熱特性および遮音特性のために広く使用されている。動向は再生可能な材料に向かっており、従って、熱可塑性結合材は近年、著しいシェアを占めている。高性能ポリマー、例えばポリエステル、ポリアミド製の繊維は、それらの機械的特性および耐熱特性のために非常に興味深い。しかし、必要な結合剤が、成型された3D部材におけるそれらの利用に対する制限になる。   The felts are widely used for their thermal insulation and sound insulation properties, especially in the automotive industry. The trend is towards renewable materials, so thermoplastic binders have occupied a significant share in recent years. Fibers made of high performance polymers such as polyester, polyamide are of great interest due to their mechanical and heat resistant properties. However, the required binder is a limitation on their use in molded 3D members.

今まで使用された結合剤は常に、強化繊維より低い溶融点を有し、成型繊維ウェブを比較的弱い性能挙動にし、且つその用途を車両内の焼き戻し領域(tempered area)に限定する。それらの種類の成型繊維ウェブのいずれも、エンジンベイまたはコンパートメントの、特にエンジン接触領域の高温への曝露には適していない。それらの結合材のいくつかは、加水分解現象に対して特に敏感なそれらの変性構造のせいで、流動(pour)挙動を有する変性ポリマー(一例としてCO−PET)である。   The binders used so far always have a lower melting point than the reinforcing fibers, making the molded fiber web a relatively weak performance behavior and limiting its use to the tempered area in the vehicle. None of these types of molded fiber webs are suitable for exposure of engine bays or compartments to high temperatures, particularly in the engine contact area. Some of these binders are modified polymers (by way of example CO-PET) that have a pour behavior because of their modified structure that is particularly sensitive to hydrolysis phenomena.

従来技術において公知のかかるフェルトを成型する方法は、フェルトを種々の手段によって予熱し、その後、冷たい鋳型に移し、その中で部品形状を得るために圧縮する「冷間」成型法、または、フェルトを閉じた鋳型に導入して、その中に熱伝達媒体、例えば空気を導入して、結合剤をその融点にし、その後、解放する、「熱間」成型法である。その後、冷却の補助を用いて、または用いないで、ツール内側または外側で部品を冷却する。(例えばEP1656243号、EP1414440号、およびEP590112号を参照)。   Methods for molding such felts known in the prior art are “cold” molding methods, in which the felt is preheated by various means and then transferred to a cold mold and compressed therein to obtain the part shape. Is a “hot” molding process in which is introduced into a closed mold and a heat transfer medium, such as air, is introduced therein to bring the binder to its melting point and then released. Thereafter, the part is cooled inside or outside the tool with or without the aid of cooling. (See, for example, EP 1656243, EP 1414440, and EP 590112).

従って、本発明の課題は、現行の技術の欠点なく、マトリックスと強化繊維とを組み合わせるための代替的な方法を見出すこと、および自動車用途において、特にエンジンベイまたは高温を伴う他の領域において使用できる製品を得ることである。   The object of the present invention is therefore to find an alternative method for combining matrix and reinforcing fibers without the drawbacks of the current technology, and can be used in automotive applications, especially in engine bays or other areas with high temperatures. To get a product.

ポリアミドマトリックスと強化繊維とからなる少なくとも1つのポリアミド強化層を含み、該ポリアミド強化層は、繊維または粉末またはフレーク形態のマトリックス材料および強化繊維の、加圧蒸気工程を使用した一体化に起因して多孔質であることを特徴とする、請求項1の複合製品を用いて、および、マトリックスとしての、粉末、フレークまたは繊維形態で適用されるポリアミドのウェブ、および強化繊維を一体化するために蒸気工程を使用する請求項8の方法を用いて、強化繊維のロフティング状態の(lofty)ウェブ構造を含有することが可能であり、多孔質の強化された材料が得られる。この材料は、良好な動的ヤング率を有し、且つ、熱安定性である。
Comprising at least one polyamide reinforcing layer consisting of a polyamide matrix and reinforcing fibers, the polyamide reinforcing layer due to the integration of the matrix material and reinforcing fibers in fiber or powder or flake form using a pressurized steam process Steam for integrating the polyamide product applied in powder, flake or fiber form with the composite product of claim 1 and as a matrix, characterized by being porous, and reinforcing fibers Using the method of claim 8 using a process, it is possible to contain a lofty web structure of reinforcing fibers, resulting in a porous reinforced material. This material has good dynamic Young's modulus and is thermally stable.

結合繊維の熱可塑性樹脂の小球により、繊維の重なる位置で結合された、無作為に配置された結合繊維と強化繊維との高められた硬さを有する、ロフティング状態の空気透過性複合材を製造する方法が開発された。   Lofted air permeable composite with increased hardness of randomly placed binding fibers and reinforcing fibers bonded at overlapping positions by thermoplastic resin spheres of the bonding fibers A method of manufacturing was developed.

この方法において、高い弾性強化繊維を、マトリックス形成ポリアミド繊維と、またはポリアミド粉末またはフレークと混合して、任意の適した方法、例えばエアレイ、ウェットレイ、カーディング等によってウェブを形成する。このウェブをその後、飽和蒸気を使用して加熱して、ISO11357−3による示差走査熱分析(DSC)を使用して測定されるポリマーの溶融温度よりも低い温度で樹脂マトリックス材料を溶融する。例えば、DSCを使用して測定される、ポリアミド−6(PA−6)の溶融温度Tmは220℃である。しかしながら、本発明による蒸気工程における同一のPA−6の溶融温度は、例えば190℃である。 In this method, high elastic reinforcing fibers are mixed with matrix-forming polyamide fibers, or polyamide powder or flakes, to form a web by any suitable method such as air laying, wet laying, carding and the like. The web is then heated using saturated steam to melt the resin matrix material at a temperature below that of the polymer as measured using differential scanning calorimetry (DSC) according to ISO 11357-3. For example, the melting temperature T m of polyamide-6 (PA-6), measured using DSC, is 220 ° C. However, the melting temperature of the same PA-6 in the steam process according to the invention is, for example, 190 ° C.

該ウェブを、少なくとも1つの蒸気透過性表面を有する耐圧鋳型内に設置する。該鋳型を閉じ、そして内圧に耐えるように締め付ける。少なくとも9bar絶対圧の飽和蒸気を適用し、結合材を溶融させる。20bar絶対圧より高い飽和蒸気は、もはや経済的ではない。好ましくは、11〜15bar絶対圧の範囲が、良好な作業範囲である。ポリアミドの溶融温度の実際のシフトは、製品が蒸気成型される中空室内で生成される蒸気圧に依存する。従って、使用される圧力の選択は、強化繊維の溶融温度にも依存する。例えば、PA−6を結合材繊維として使用する場合、好ましい圧力は11bar絶対圧〜15bar絶対圧である。   The web is placed in a pressure resistant mold having at least one vapor permeable surface. The mold is closed and tightened to withstand the internal pressure. Saturated steam with an absolute pressure of at least 9 bar is applied to melt the binder. Saturated steam higher than 20 bar absolute pressure is no longer economical. Preferably, a range of 11-15 bar absolute pressure is a good working range. The actual shift in the melting temperature of the polyamide depends on the vapor pressure generated in the hollow chamber where the product is steam formed. Thus, the choice of pressure used also depends on the melting temperature of the reinforcing fibers. For example, when PA-6 is used as the binder fiber, the preferred pressure is 11 bar absolute pressure to 15 bar absolute pressure.

通常の熱風、ホットプレートまたはIR波の代わりに蒸気を使用することにより、蒸気中の水分子の効果を使用して、ポリアミドの融点をより低い温度へとシフトさせることが可能である。ポリアミドに及ぼす水の効果は公知であり、且つ、普通は欠点だとみなされており、多くの先行技術はその効果を回避するか、またはそれを防ごうとする方法について記載している。意外なことに、粉末、フレークまたは繊維の形態で適用されるPA(ポリアミド)と、DSCを用いて測定される類似の融点を有する他の熱可塑性繊維、例えばPET(ポリエステル)とを、PAを唯一の結合材料として使用して、強化繊維、例えばPETをその繊維状の形態で保持して、組み合わせることを可能にするのは、まさにこの効果である。今や、多孔質構造を有し、それによって音響特性、例えば吸収および空気流抵抗、並びに熱伝導率を強化する、熱安定性の成型製品を得ることが可能である。   By using steam instead of normal hot air, hot plates or IR waves, it is possible to shift the melting point of the polyamide to lower temperatures using the effect of water molecules in the steam. The effect of water on polyamides is known and usually regarded as a drawback, and many prior arts describe ways to avoid or prevent that effect. Surprisingly, PA (polyamide) applied in the form of powder, flakes or fibers and other thermoplastic fibers having a similar melting point measured using DSC, such as PET (polyester), It is exactly this effect that is used as the only bonding material, allowing the reinforcing fibers, eg PET, to be held in their fibrous form and combined. It is now possible to obtain heat-stable molded products that have a porous structure and thereby enhance acoustic properties, such as absorption and airflow resistance, and thermal conductivity.

蒸気の効果は、可逆性の拡散機構に基づいている。小さい繊維直径または粒径の形態でのポリアミドを使用すると、溶融および固化は迅速であり、且つ、短い製造サイクルを提供する。蒸気が鋳型から放出されると、ポリアミドは固体状態へと変化し、且つ、該部品を硬質部品として鋳型から出すこと(demould)ができる。これは、取り扱い可能な(handable)構造化部品を得る前に、明らかに鋳型の内側または外側が冷却される必要がある他の熱可塑性結合材と比較して有利である。   The effect of steam is based on a reversible diffusion mechanism. When polyamides in the form of small fiber diameters or particle sizes are used, melting and solidification is rapid and provides a short production cycle. As the vapor is released from the mold, the polyamide changes to a solid state and the part can be demolded as a rigid part. This is advantageous compared to other thermoplastic binders that clearly need to be cooled on the inside or outside of the mold before obtaining a handleable structured part.

使用される全体的な温度を、ここでは、蒸気を用いない加熱方法と比較して遙かにより低く保つことができるので、PET繊維の弾性は損なわれないままであり、よりロフティング状態の材料をみちびく。さらには、PAの結合が、最終製品の必要とされる硬さを得るために充分であることが判明した。なぜなら、PET繊維がそれらの弾性を保持し、且つPA溶融マトリックス材料は交点を結合するのみであるからである。該材料は、ウェブ中の空隙容積のために、その堂々たる外観を保つ。従って、最終製品はまだ空気透過性である。さらには、強化繊維としてのガラス繊維を、マトリックスとしてのポリアミド繊維と共に使用する際も、蒸気の使用が有利であることが見出された。結合特性の正確な制御のおかげで、加熱の間と冷却の間との両方の工程のために、より少ないエネルギーしか必要とされない。   Since the overall temperature used here can be kept much lower compared to heating methods without steam, the elasticity of the PET fibers remains intact and the more lofted material Squeak. Furthermore, it has been found that the PA binding is sufficient to obtain the required hardness of the final product. This is because PET fibers retain their elasticity and PA melt matrix material only bonds the intersections. The material retains its dignified appearance due to the void volume in the web. Therefore, the final product is still air permeable. Furthermore, it has been found that the use of steam is advantageous when glass fibers as reinforcing fibers are used together with polyamide fibers as matrix. Thanks to precise control of the bonding properties, less energy is required for both the heating and cooling steps.

通常の加熱工程においては、該材料を、熱可塑性マトリックス材料の融点まで加熱する。該材料の冷却は、製品外でのより緩慢な熱の対流のために緩慢であり、なぜなら、該材料が強化繊維の弾性の欠如のために一緒に落下し、そしてより緻密になるからである。従って、溶融状態はより長い時間の間、継続する。従って、結合の量を制御するのはより困難である。さらには、この冷却時間の間、該材料は、結合マトリックスのより長い溶融状態のために、可撓性があるままであり、従って扱うのがより困難である。特により大きな自動車用トリム部品、例えば、トラックまたはより大きな車両用のヘッドライナーまたはロードフロアを扱う場合である。   In a normal heating step, the material is heated to the melting point of the thermoplastic matrix material. The cooling of the material is slow due to slower heat convection outside the product because the material falls together and becomes more dense due to the lack of elasticity of the reinforcing fibers. . Thus, the molten state continues for a longer time. Therefore, it is more difficult to control the amount of coupling. Furthermore, during this cooling time, the material remains flexible and is therefore more difficult to handle due to the longer molten state of the bonding matrix. Especially when dealing with larger automotive trim parts, such as headliners or road floors for trucks or larger vehicles.

意外にも、蒸気が材料から除去されるとすぐに、溶融工程は直ちに停止し、且つ、該材料は再度、その固体状態を得ることも判明した。これは、材料が直ちに取り扱い可能であるので、製造のサイクル時間を短縮できる能力において有利である。溶融工程を直ちに停止できるという事実は、結合特性、ひいては材料の多孔性を制御する非常に正確な手段でもある。そのことは、材料の空気透過性のために重要である。   Surprisingly, it was also found that as soon as the vapor was removed from the material, the melting process stopped immediately and the material again obtained its solid state. This is advantageous in the ability to reduce manufacturing cycle time because the material can be handled immediately. The fact that the melting process can be stopped immediately is also a very accurate means of controlling the bonding properties and thus the porosity of the material. That is important for the air permeability of the material.

ポリアミドマトリックスのために使用される材料は、粉末、フレークまたは繊維の形態であってよい。しかしながら、強化繊維と組み合わせた繊維の使用が最も好ましく、なぜなら、繊維がより良好に混合し、且つ、形成されたウェブを取り扱う間、一体化の前に、該繊維が混合された位置に留まっている傾向があるからである。フレークまたは粉末は、強化繊維の間に、ウェブ外または成型鋳型の底に落下することがある。
The material used for the polyamide matrix may be in the form of powder, flakes or fibers. However, the use of fibers in combination with reinforcing fibers is most preferred because the fibers mix better and remain in the mixed position prior to integration while handling the formed web. Because there is a tendency to. Flakes or powder may fall between the reinforcing fibers and off the web or to the bottom of the mold.

ポリアミドとして、全ての種類のポリアミド、特に、CoPA(コポリアミド)、ポリアミド−6(PA−6)またはポリアミド6.6(PA6.6)が使用可能である。しかしながら、種々の種類のポリアミド、または種々の種類のポリアミドの混合物も、本発明による結合材としてはたらく。基本的なポリアミドの配合において通常使用される添加剤は、特許請求される基本的なポリアミド材料の一部であることが予想され、例えば、紫外線耐性を得るための化学化合物である。   As polyamides, all kinds of polyamides, in particular CoPA (copolyamide), polyamide-6 (PA-6) or polyamide 6.6 (PA6.6) can be used. However, various types of polyamides or mixtures of various types of polyamides also serve as binders according to the invention. Additives commonly used in basic polyamide formulations are expected to be part of the claimed basic polyamide material, for example chemical compounds to obtain UV resistance.

強化繊維は、蒸気環境中でのポリアミド結合材の溶融温度よりも高い、DSC測定による溶融温度を有する任意の熱可塑性ポリマーベースの材料であってよい。230〜260℃の溶融温度を有するPETが、強化繊維として良好に機能するであろう。強化繊維は、任意の鉱物材料、特にガラス繊維(GF)、炭素繊維またはバサルト繊維であってもよい。強化繊維の両方の群の混合物も、例えばPETをGFと一緒に使用できる。材料の選択は、最終製品の全体的な熱安定性の要求、および個々の材料の価格に基づいている。   The reinforcing fiber may be any thermoplastic polymer-based material having a melting temperature as measured by DSC that is higher than the melting temperature of the polyamide binder in the steam environment. PET with a melting temperature of 230-260 ° C. will work well as a reinforcing fiber. The reinforcing fibers may be any mineral material, in particular glass fibers (GF), carbon fibers or basalt fibers. Mixtures of both groups of reinforcing fibers can also be used, for example, PET with GF. Material selection is based on the overall thermal stability requirements of the final product and the price of the individual materials.

強化繊維は、必要とされる材料特性に依存して、カット繊維、エンドレスフィラメントまたはロービングであってよい。   The reinforcing fibers may be cut fibers, endless filaments or rovings depending on the material properties required.

本発明のそれらの特徴または他の特徴は、添付の図面を参照して、限定されない例として示される好ましい形態の以下の記載から明らかである。   These and other features of the invention will be apparent from the following description of preferred forms, given by way of non-limiting example, with reference to the accompanying drawings.

種々の試料の動的ヤング率のグラフGraph of dynamic Young's modulus of various samples 同試料の損失係数のグラフGraph of loss factor of the same sample 本発明による熱成型プレートまたは蒸気工程を使用して一体化されたウェブの吸音の比較Comparison of sound absorption of webs integrated using thermoformed plates or steam processes according to the present invention 本発明による熱成型プレートまたは蒸気工程を使用して一体化されたウェブの熱伝導率の比較。Comparison of thermal conductivity of webs integrated using a thermoformed plate or steam process according to the present invention.

本発明による複合材のために、マトリックス形成結合材繊維を強化繊維と混合し、且つ、カード処理してウェブを形成する。ウェブを、取り扱いのためにニードリングを使用して予備結合した。(しかし、任意の種類の予備結合方法を使用してよい。)特に器具からの蒸気圧の解放の際に、複合試料が鋳型に粘着または固化することを防ぐために、薄い不織布を表面カバーとして使用してよい。使用される不織布は、主な特徴、例えば最終製品の厚さ、音響挙動、または硬さに、無視できるほどの影響しか及ぼさない。本発明によるポリアミド強化層用のウェブは、指定の飽和蒸気を使用して一体化された。
For the composite according to the invention, matrix-forming binder fibers are mixed with reinforcing fibers and carded to form a web. The web was pre-bonded using needling for handling. (However, any type of prebonding method may be used.) Use thin nonwoven fabric as a surface cover to prevent the composite sample from sticking or solidifying to the mold, especially when releasing the vapor pressure from the instrument. You can do it. The nonwovens used have a negligible effect on the main characteristics, such as the thickness, acoustic behavior or hardness of the final product. The polyamide reinforcing layer web according to the present invention was integrated using the specified saturated steam.

従来技術の試料を、本発明によるポリアミド強化層と比較した。従来技術の複合材は、市場で入手できるものを持ってきた。   Prior art samples were compared with polyamide reinforcing layers according to the present invention. Prior art composites have been available on the market.

複合材1A 密度881kg/m3を有し、市場でSymaliteとして公知の、結合材としてのポリプロピレンおよび強化材料としてのガラス繊維に基づく従来技術の複合材。 Composite 1A Prior art composite based on polypropylene as a binder and glass fiber as a reinforcing material, having a density of 881 kg / m 3 and known in the market as Symalite.

複合材2A 密度314kg/m3を有し、結合材材料としてのバイコンポネントPETおよび強化材料としての綿で製造された、従来技術のフェルトベースの材料。 Composite 2A A prior art felt-based material having a density of 314 kg / m 3 and made of bicomponent PET as a binder material and cotton as a reinforcing material.

複合材3A 45%のPA結合材繊維、および強化繊維としての55%のガラス繊維で製造された、本発明による複合材。ウェブの出発質量は、m2あたり1000グラムであった。該複合材を、本発明に従い、11bar絶対圧の飽和蒸気を使用して9秒間成型した。成型されたポリアミド強化層の最終密度は384kg/m3である。 Composite 3A A composite according to the invention made of 45% PA binder fibers and 55% glass fibers as reinforcing fibers. The starting mass of the web, was m 2 per 1000 g. The composite was molded according to the present invention for 9 seconds using 11 bar absolute pressure saturated steam. The final density of the molded polyamide reinforcing layer is 384 kg / m 3 .

複合材4A 55%のPA結合材繊維、および強化繊維としての45%のガラス繊維で製造された、本発明による複合材。ウェブの出発質量は、m2あたり1000グラムであった。該複合材を、本発明に従い、11bar絶対圧の飽和蒸気を使用して9秒間成型した。成型されたポリアミド強化層の最終密度は303kg/m3である。 Composite 4A A composite according to the invention made of 55% PA binder fiber and 45% glass fiber as reinforcing fiber. The starting mass of the web, was m 2 per 1000 g. The composite was molded according to the present invention for 9 seconds using 11 bar absolute pressure saturated steam. The final density of the molded polyamide reinforcing layer is 303 kg / m 3 .

温度範囲に対する動的ヤング率を測定し、且つ、これから、ISO6721−4に従って引っ張り損失係数を算出した。測定および計算を、0.1dBのMetravib Viscoanalyser Type VA 2000を使用して行った。全ての複合材における結果については、図1および2を参照。   The dynamic Young's modulus with respect to the temperature range was measured, and the tensile loss coefficient was calculated from this according to ISO 6721-4. Measurements and calculations were performed using a 0.1 dB Metaviv Viscoanalyzer Type VA 2000. See FIGS. 1 and 2 for results on all composites.

自動車産業において使用される複合部品のためには、熱安定性への要求が高まっている。特にエンジンベイにおいては、直接的に、より多くの熱を生成する新しいモーター世代のために、並びに隔離を使用して熱を内部に保って燃料の全体的な使用を最適化するオプションのために、より高い熱安定性の要求がみちびかれる。通常は、エンジンベイの材料についての試験は、120℃または150℃での長期間の熱安定性試験である。しかしながら、実際の温度は短い時間の間、容易に180〜190℃に上昇することがある。この温度範囲は、熱いエンジン側、例えば排気ライン、マニホールド、またはコンプレッサーの近傍または周囲で生じることがある。   There is an increasing demand for thermal stability for composite parts used in the automotive industry. Especially in the engine bay, directly for new motor generations that generate more heat, as well as for the option of using isolation to keep the heat inside and optimize the overall use of the fuel The demand for higher thermal stability is highlighted. Typically, the test for engine bay materials is a long term thermal stability test at 120 ° C or 150 ° C. However, the actual temperature can easily rise to 180-190 ° C. for a short time. This temperature range may occur on the hot engine side, for example near or around the exhaust line, manifold, or compressor.

熱安定性試験の1つの要求は、その複合材製品が熱に曝露されている間、その形態または形状を保つかどうかを知ることである。例えば、採光窓(sunny window)下に設置されるパーセルシェルフは、しばらくしてからたるんではならない。エンジンベイカバーは、硬さを保たねばならない。この温度範囲にわたる引っ張り損失係数は、使用される際の製品の硬さを保持するために重要である。   One requirement for thermal stability testing is to know if the composite product will retain its form or shape while exposed to heat. For example, parcel shelves installed under a sunny window should not sag after a while. The engine bay cover must be kept firm. The tensile loss factor over this temperature range is important to maintain the hardness of the product when used.

図1は、動的ヤング率を示す。複合材1 PPマトリックスと、強化材としてのガラス繊維とに基づく従来技術の製品は、絶対的な観点において、本発明による複合材2および4よりも高い弾性率を示す。これは主に全体的な密度がより高いことに起因する。しかしながら、その傾向は、より低い密度で同一またはより良好な硬さの性能を得ることになり、車における質量を減じる。しかしながら、より重要なのは、従来技術の複合材1は、測定された温度範囲にわたって、動的ヤング率の著しい損失を示すことである。従って、PPとの組み合わせで製造された製品は、温度が高いほど、より柔らかくなる傾向がある。複合材2は、CoPET/PETのバイコンポネント結合繊維と、強化材料としての綿との組み合わせであり、自立するためには全体的にあまりにも低い動的ヤング率を示す。   FIG. 1 shows the dynamic Young's modulus. Composite 1 Prior art products based on PP matrix and glass fibers as reinforcement show higher modulus than composites 2 and 4 according to the invention in absolute terms. This is mainly due to the higher overall density. However, the tendency is to obtain the same or better hardness performance at lower density and reduce the mass in the car. More importantly, however, the prior art composite 1 exhibits a significant loss of dynamic Young's modulus over the measured temperature range. Therefore, products manufactured in combination with PP tend to be softer at higher temperatures. The composite material 2 is a combination of CoPET / PET bicomponent bonded fibers and cotton as a reinforcing material, and exhibits a dynamic Young's modulus that is too low overall to be self-supporting.

本発明による複合材は、測定された温度範囲にわたってよりいっそう良好な挙動を示す。ポリアミド強化層の動的ヤング率は、150℃〜210℃の温度範囲にわたって、20%より多くは変化しないことが判明した。製品が全体的により熱安定性になる。   The composite according to the invention behaves better over the measured temperature range. It has been found that the dynamic Young's modulus of the polyamide reinforced layer does not change more than 20% over a temperature range of 150 ° C to 210 ° C. The product becomes more thermally stable overall.

図2は、複合材製品において測定された温度範囲にわたる引っ張り損失係数を示す。複合材1は、蒸気を用いない成型法を用いて製造されたマトリックス結合材繊維としてのポリプロピレン(PP)に基づく従来技術のものである。該製品は、160℃まで良好な損失係数を有するにもかかわらず、それは溶融のために熱安定性を急速に失う。   FIG. 2 shows the tensile loss factor over the temperature range measured in the composite product. The composite 1 is of the prior art based on polypropylene (PP) as a matrix binder fiber manufactured using a molding method that does not use steam. Even though the product has a good loss factor up to 160 ° C., it rapidly loses thermal stability due to melting.

複合材2は、CoPET/PETバイコンポネント結合繊維と、強化繊維としての綿との組み合わせである。従って、測定された温度範囲にわたる粗悪な損失係数は基本的にCoPETに起因し、80℃で既に軟化し且つ110℃より上で溶融し始める。しかしながらこれは使用されるCoPETに依存する。より高い溶融CoPETは、コストの上昇を含む他の欠点を有する。絶対的な方法において、PET単独を使用する複合材料が、良好な熱安定性を有する製品をもたらすかも知れないが、必要とされる非常に高い溶融温度によって強化繊維を熱損傷せずに、どのようにこれを実現できるのかは現在知られていない。   The composite material 2 is a combination of CoPET / PET bicomponent bonded fibers and cotton as reinforcing fibers. Thus, the poor loss factor over the measured temperature range is essentially due to CoPET, already softening at 80 ° C. and starting to melt above 110 ° C. However, this depends on the CoPET used. Higher molten CoPET has other disadvantages including increased costs. In an absolute way, a composite material using PET alone may result in a product with good thermal stability, but which does not thermally damage the reinforcing fibers due to the very high melting temperature required. It is not currently known how this can be achieved.

複合材3および4は、本発明に従って蒸気を使用して一体化された、PA結合材とガラス繊維強化繊維との組み合わせである。両者は、60〜210℃の温度範囲にわたる0.15未満の安定した引っ張り損失係数(−)を有する。
Composites 3 and 4 are a combination of PA binder and glass fiber reinforced fibers integrated using steam according to the present invention. Both have a stable tensile loss factor (−) of less than 0.15 over a temperature range of 60-210 ° C.

ポリアミド強化製品は、完全または部分的に圧縮されて成型製品を得ることができる。本発明による飽和蒸気を使用する一体化工程のおかげで、より低い密度を有しつつも、なお所望の硬さを得る製品を得ることが可能である。飽和蒸気を使用する加熱工程がポリアミド結合材繊維を熱可塑性強化繊維よりもはるかに低い温度で溶融し、且つ、ほぼ同時に厚さ全体にわたるので、強化繊維のウェブ構造の弾性を保つことができる。マトリックス形成ポリアミドの量を、製品全体がちょうど完全に結合するレベルに減少することによって、多孔質の強化層を、複合材の材料のかさ密度のほんの5〜80%である密度で得ることができる。しかしながら、好ましくは5〜60%、さらにより好ましくは5〜25%の範囲が得られ、且つ、部品全体のより低いコストによるより多くの利点が得られる。従って、中実ではなく多孔質のままである製品を得ることが可能であり、材料の多孔性のためにより良好な吸音体(図3参照)、並びにより良好な熱伝導率(図4参照)になる。さらなる突き固め、またはPAマトリックスの量を増加させることのいずれかによって密度を制御することにより、音響特性並びに熱伝導率の両方を制御することが可能である。
The polyamide reinforced product can be fully or partially compressed to obtain a molded product. Thanks to the integration process using saturated steam according to the invention, it is possible to obtain a product with a lower density but still obtaining the desired hardness. Since the heating process using saturated steam melts the polyamide binder fibers at a much lower temperature than the thermoplastic reinforcing fibers and spans the entire thickness almost simultaneously, the elasticity of the reinforcing fiber web structure can be maintained. By reducing the amount of matrix-forming polyamide to a level where the entire product is just fully bonded, a porous reinforcing layer can be obtained at a density that is only 5-80% of the bulk density of the composite material. . However, preferably a range of 5-60%, even more preferably 5-25% is obtained, and more advantages are obtained due to the lower cost of the whole part. It is thus possible to obtain a product that remains porous rather than solid, with a better sound absorber (see FIG. 3) as well as better thermal conductivity (see FIG. 4) due to the porosity of the material. become. By controlling the density either by further tamping or by increasing the amount of PA matrix, it is possible to control both acoustic properties as well as thermal conductivity.

試料AおよびBを、65%のガラス繊維および35%のPA結合材繊維の、同一のウェブ材料を使用して製造した。複合材Aは、本発明による飽和蒸気を使用して一体化させ、複合材Bはホットプレートの間での圧縮を使用して一体化させた。両者を、製品の完全な結合が達成されるように処理した。
Samples A and B were made using the same web material of 65% glass fiber and 35% PA binder fiber. Composite A was integrated using saturated steam according to the present invention, and Composite B was integrated using compression between hot plates. Both were processed so that full product coupling was achieved.

成型された複合材の吸音特性を、インピーダンス管を使用し、ASTM (E−1050)およびISO (10534−1/2) インピーダンス管測定についての規格に従って測定した(200〜3400Hzの間の測定)。熱伝導率を、ISO8301に従い、ガード付きホットプレートを使用して測定した。   The sound absorption characteristics of the molded composite were measured using an impedance tube according to the standards for ASTM (E-1050) and ISO (10534-1 / 2) impedance tube measurements (measurements between 200-3400 Hz). Thermal conductivity was measured according to ISO 8301 using a guarded hot plate.

吸音および熱伝導率は、ホットプレート処理された製品よりも蒸気処理された製品において良好であることが判明した。これは、部分的には、ホットプレートを使用する熱工程の間、完全に結合した製品を得るためにさらなる圧縮を使用することが必要であることに起因する。従って、第一に、より密な製品B、従ってより孔の少ない製品が得られ、熱伝導率と音響特性との両方における低下を示す。
《態様1》
ポリアミドマトリックスおよび強化繊維からなる少なくとも1つのポリアミド強化層を含む複合材成型製品であって、該ポリアミド強化層が、繊維または粉末またはフレークの形態でのマトリックス材料と、強化繊維との加圧蒸気工程を使用した一体化に起因して多孔質であることを特徴とする、成型製品。
《態様2》
強化繊維が、ポリアミド強化層の動的ヤング率が150℃〜210℃の温度範囲にわたって、20%より多くは変化しないように選択される、態様1に記載の成型製品。
《態様3》
複合材の密度が、ポリアミド強化層の材料のかさ密度の5〜80%である、態様1または2に記載の成型製品。
《態様4》
最終製品の引っ張り損失係数(−)が、60℃〜210℃の温度範囲にわたって0.15未満である、態様1から3までのいずれか1項に記載の成型製品。
《態様5》
ポリアミドマトリックスが、ポリアミド−6またはポリアミド−6.6または種々の種類のポリアミドの混合物である、態様1から4までのいずれか1項に記載の製品。
《態様6》
強化繊維が、ガラス繊維または炭素繊維またはバサルト繊維などの鉱物繊維である、態様1から5までのいずれか1項に記載の成型製品。
《態様7》
強化繊維が、蒸気圧下でポリアミドの溶融温度よりも高い、DSCによって測定された溶融温度を有する熱可塑性ポリマー繊維である、態様1から5までのいずれか1項に記載の成型製品。
《態様8》
無作為に配置されたポリアミド結合繊維またはフレークまたは粉末、および強化繊維がウェブを形成し、且つ、このウェブを加圧蒸気で処理して該ウェブを固化させることを含む、多孔質成型製品の製造方法。
《態様9》
9〜20bar絶対圧の範囲の飽和蒸気が使用される、態様8に記載の方法。
《態様10》
前記ウェブを、少なくとも1つの蒸気透過性表面を有する耐圧鋳型内で処理して成型製品を形成する、態様8または9に記載の方法。
《態様11》
前記ウェブを、好ましくはニードリングによって、蒸気処理に移送する前に予め結合する、態様8から10までのいずれか1項に記載の方法。
Sound absorption and thermal conductivity have been found to be better in steam treated products than in hot plate treated products. This is due in part to the need to use additional compression to obtain a fully bonded product during the thermal process using a hot plate. Thus, firstly, a denser product B, and thus a product with fewer pores, is obtained, showing a decrease in both thermal conductivity and acoustic properties.
<< Aspect 1 >>
A composite molded product comprising at least one polyamide reinforced layer comprising a polyamide matrix and reinforcing fibers, wherein the polyamide reinforced layer is a pressurized steam process between the matrix material in the form of fibers or powder or flakes and the reinforcing fibers Molded product characterized by being porous due to integration using
<< Aspect 2 >>
A molded product according to aspect 1, wherein the reinforcing fibers are selected such that the dynamic Young's modulus of the polyamide reinforcing layer does not change more than 20% over the temperature range of 150C to 210C.
<< Aspect 3 >>
The molded product according to aspect 1 or 2, wherein the density of the composite material is 5 to 80% of the bulk density of the material of the polyamide reinforcing layer.
<< Aspect 4 >>
The molded product according to any one of aspects 1 to 3, wherein the final product has a tensile loss coefficient (-) of less than 0.15 over a temperature range of 60C to 210C.
<< Aspect 5 >>
A product according to any one of embodiments 1 to 4, wherein the polyamide matrix is polyamide-6 or polyamide-6.6 or a mixture of different types of polyamides.
<< Aspect 6 >>
The molded product according to any one of aspects 1 to 5, wherein the reinforcing fiber is a mineral fiber such as glass fiber, carbon fiber, or basalt fiber.
<< Aspect 7 >>
The molded product according to any one of aspects 1 to 5, wherein the reinforcing fiber is a thermoplastic polymer fiber having a melting temperature measured by DSC that is higher than the melting temperature of the polyamide under vapor pressure.
<< Aspect 8 >>
Production of a porous molded product comprising randomly placed polyamide bonded fibers or flakes or powders and reinforcing fibers forming a web and treating the web with pressurized steam to solidify the web Method.
<< Aspect 9 >>
Process according to embodiment 8, wherein saturated steam in the range of 9 to 20 bar absolute pressure is used.
<< Aspect 10 >>
10. A method according to aspect 8 or 9, wherein the web is treated in a pressure resistant mold having at least one vapor permeable surface to form a molded product.
<< Aspect 11 >>
11. A method according to any one of aspects 8 to 10, wherein the web is pre-bonded, preferably by needling, before being transferred to steam treatment.

Claims (11)

ポリアミドマトリックスおよび強化繊維からなる少なくとも1つのポリアミド強化層を含む自動車パネル用の複合材成型製品であって、該ポリアミド強化層が、繊維または粉末またはフレークの形態での前記マトリックス材料と、前記強化繊維との加圧蒸気工程を使用した一体化に起因して多孔質であることを特徴とする、自動車パネル用の成型製品。 A composite molded product for automobile panel comprising at least one polyamide reinforcing layer made of a polyamide matrix and reinforcing fibers, the polyamide reinforcing layer, and the matrix material in the form of fibers or powder or flakes, wherein the reinforcing fibers Molded product for automobile panel , characterized in that it is porous due to integration using a pressurized steam process. 前記強化繊維が、前記ポリアミド強化層の動的ヤング率が150℃〜210℃の温度範囲にわたって、20%より多くは変化しないように選択される、請求項1に記載の成型製品。 The reinforcing fibers, dynamic Young's modulus of the polyamide reinforcing layer over a temperature range of 0.99 ° C. to 210 ° C., is selected as many than 20% unchanged, molded product according to claim 1. 最終製品の引っ張り損失係数(−)が、60℃〜210℃の温度範囲にわたって0.15未満である、請求項1又は2に記載の成型製品。   The molded product according to claim 1 or 2, wherein the final product has a tensile loss factor (-) of less than 0.15 over a temperature range of 60C to 210C. 前記ポリアミドマトリックスが、ポリアミド−6またはポリアミド−6.6または種々の種類のポリアミドの混合物である、請求項1から3までのいずれか1項に記載の製品。 4. Product according to any one of claims 1 to 3, wherein the polyamide matrix is polyamide-6 or polyamide-6.6 or a mixture of different types of polyamides. 前記強化繊維が、鉱物繊維である、請求項1から4までのいずれか1項に記載の成型製品。 It said reinforcing fibers are mineral fibers, molded product according to any one of claims 1 to 4. 前記強化繊維が、蒸気圧下で前記ポリアミドの溶融温度よりも高い、DSCによって測定された溶融温度を有する熱可塑性ポリマー繊維である、請求項1から4までのいずれか1項に記載の成型製品。 It said reinforcing fibers is higher than the melting temperature of the polyamide in the vapor pressure is a thermoplastic polymer fibers having a melting temperature measured by DSC, molded product according to any one of claims 1 to 4. 無作為に配置されたポリアミド結合繊維またはフレークまたは粉末、および強化繊維がウェブを形成し、且つ、このウェブを加圧蒸気で処理して該ウェブを一体化させることを含む、自動車パネル用の多孔質成型製品の製造方法。 Porous for automotive panels comprising randomly placed polyamide bonded fibers or flakes or powders and reinforcing fibers forming a web and treating the web with pressurized steam to integrate the web Manufacturing method of quality molded products. 9〜20bar絶対圧の範囲の飽和蒸気が使用される、請求項7に記載の方法。   8. Process according to claim 7, wherein saturated steam in the range of 9 to 20 bar absolute pressure is used. 前記ウェブを、少なくとも1つの蒸気透過性表面を有する耐圧鋳型内で処理して成型製品を形成する、請求項7または8に記載の方法。   9. A method according to claim 7 or 8, wherein the web is processed in a pressure resistant mold having at least one vapor permeable surface to form a molded product. 前記ウェブを、蒸気処理に移送する前に予め結合する、請求項7から9までのいずれか1項に記載の方法。   10. A method according to any one of claims 7 to 9, wherein the web is pre-bonded before being transferred to steam treatment. 前記ウェブを、ニードリングによって、蒸気処理に移送する前に予め結合する、請求項10に記載の方法。   The method of claim 10, wherein the web is pre-bonded by needling before being transferred to steam treatment.
JP2012529226A 2009-09-16 2010-09-13 Molded products for automotive panels Active JP5990101B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH01433/09 2009-09-16
CH14332009 2009-09-16
EP09011844A EP2298541A1 (en) 2009-09-17 2009-09-17 Moulded automotive part
EP09011844.9 2009-09-17
PCT/EP2010/063374 WO2011032908A1 (en) 2009-09-16 2010-09-13 Moulded product for automotive panels

Publications (3)

Publication Number Publication Date
JP2013504461A JP2013504461A (en) 2013-02-07
JP2013504461A5 JP2013504461A5 (en) 2016-07-07
JP5990101B2 true JP5990101B2 (en) 2016-09-07

Family

ID=43402078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012529226A Active JP5990101B2 (en) 2009-09-16 2010-09-13 Molded products for automotive panels

Country Status (16)

Country Link
US (2) US20120101176A1 (en)
EP (1) EP2477802B1 (en)
JP (1) JP5990101B2 (en)
KR (1) KR101675834B1 (en)
CN (3) CN107031075A (en)
AR (1) AR078380A1 (en)
BR (1) BR112012001500A2 (en)
CA (1) CA2764555C (en)
ES (1) ES2660602T3 (en)
MX (1) MX346710B (en)
PL (1) PL2477802T3 (en)
PT (1) PT2477802T (en)
RU (1) RU2542266C2 (en)
TR (1) TR201802311T4 (en)
WO (1) WO2011032908A1 (en)
ZA (1) ZA201109285B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2502788T3 (en) * 2011-03-23 2014-08-29 Autoneum Man Ag Production process for a moulded multilayer lining
EP2939881A1 (en) 2014-04-29 2015-11-04 Autoneum Management AG Alternative Exterior Trim Part
EP2939828A1 (en) 2014-04-29 2015-11-04 Autoneum Management AG Exterior trim part
JP2020506820A (en) * 2016-12-08 2020-03-05 オートニアム マネジメント アクチエンゲゼルシャフトAutoneum Management AG Surface coating for exterior trim parts
JP7028654B2 (en) * 2018-01-17 2022-03-02 旭化成株式会社 Press molding method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828348B1 (en) * 1970-02-14 1973-08-31
JPS5638248A (en) * 1979-09-06 1981-04-13 Nippon Petrochem Co Ltd Preparation of air-permeable composite material
JPS59190829A (en) * 1983-04-13 1984-10-29 Fujimori Kogyo Kk Transparent electrically conductive film
US5108691A (en) * 1986-09-03 1992-04-28 Astechnologies, Inc. Compressing and shaping thermoformable mats using superheated steam
DE3942813A1 (en) * 1989-12-23 1991-06-27 Akzo Gmbh LAMINATE
WO1992000182A1 (en) * 1990-06-29 1992-01-09 Flexline Services Ltd. A process for manufacturing reinforced composites and filament material for use in said process
US5232975A (en) * 1992-01-16 1993-08-03 E. I. Du Pont De Nemours And Company Preconsolidation process for making fluoropolymer composites
US5696201A (en) * 1992-04-06 1997-12-09 Matec Holding Ag Sound and heat insulation having little odor
CH683773A5 (en) 1992-04-06 1994-05-13 Matec Holding Low odor sound and heat insulation.
JPH08156162A (en) * 1994-12-09 1996-06-18 Kawasaki Steel Corp Fiber reinforced resin porous molded article and manufacture of the same
JPH08258191A (en) * 1995-03-17 1996-10-08 Bridgestone Corp Sound insulation cover and manufacture thereof
JPH10212649A (en) * 1997-01-27 1998-08-11 Nissan Motor Co Ltd Production of molding product of fiber and production apparatus therefor
DE19827550B4 (en) * 1998-06-20 2005-02-10 Otto Bock Healthcare Gmbh Process for producing thermoplastic, partially reinforced plastic components
US6297176B1 (en) * 1998-07-15 2001-10-02 Harodite Industries, Inc. Non-fiberglass sound absorbing moldable thermoplastic structure
US6846548B2 (en) * 1999-02-19 2005-01-25 Honeywell International Inc. Flexible fabric from fibrous web and discontinuous domain matrix
JP4256570B2 (en) * 2000-06-08 2009-04-22 日本バイリーン株式会社 Contaminated gas removal filter
JP2002127136A (en) * 2000-10-24 2002-05-08 Asahi Fiber Glass Co Ltd Method for manufacturing glass filament-reinforced thermoplastic resin sheet and method for manufacturing porous molded body
DE10114553A1 (en) 2001-03-24 2002-09-26 Quadrant Plastic Composites Ag Continuous production of glass mat reinforced thermoplastic sheet for molding automotive components involves laying down thermoplastic and reinforcing fibers to a fleece, heating and consolidating
GB0119172D0 (en) 2001-08-06 2001-09-26 Melacure Therapeutics Ab Phenyl pyrrole derivatives
EP1456005A1 (en) 2001-12-20 2004-09-15 EMS-Chemie AG Method for producing composite materials using a thermoplastic matrix
DE10208524B4 (en) * 2002-02-27 2004-07-08 Johann Borgers Gmbh & Co. Kg Process for producing nonwoven molded parts
DE10319967A1 (en) 2003-05-05 2004-11-25 Quadrant Plastic Composites Ag Nonwoven composite element
DE10335721A1 (en) * 2003-08-05 2005-03-10 Clion Ireland Ltd Forming thermoplastically bonded air-permeable components
US20060182940A1 (en) * 2005-02-14 2006-08-17 Hni Technologies Inc. Fire-resistant fiber-containing article and method of manufacture
DE102005029729A1 (en) 2005-06-24 2006-12-28 Röchling Automotive AG & Co. KG Hot pressing a bi-component non-woven, e.g. for vehicle underbody guard, involves a tool shaped to produce high and low density regions

Also Published As

Publication number Publication date
CN108274773A (en) 2018-07-13
ZA201109285B (en) 2012-09-26
US20120101176A1 (en) 2012-04-26
MX2011013515A (en) 2012-04-11
PL2477802T3 (en) 2018-05-30
CN102510801A (en) 2012-06-20
CA2764555A1 (en) 2011-03-24
PT2477802T (en) 2018-03-02
KR101675834B1 (en) 2016-11-14
WO2011032908A9 (en) 2012-02-02
EP2477802A1 (en) 2012-07-25
EP2477802B1 (en) 2017-12-20
WO2011032908A1 (en) 2011-03-24
US20170144388A1 (en) 2017-05-25
ES2660602T3 (en) 2018-03-23
MX346710B (en) 2017-03-29
RU2011150221A (en) 2013-10-27
TR201802311T4 (en) 2018-03-21
RU2542266C2 (en) 2015-02-20
JP2013504461A (en) 2013-02-07
BR112012001500A2 (en) 2016-11-08
CA2764555C (en) 2014-08-26
KR20120094890A (en) 2012-08-27
AR078380A1 (en) 2011-11-02
CN107031075A (en) 2017-08-11

Similar Documents

Publication Publication Date Title
KR101727720B1 (en) A moulded multilayer lining for heat and sound insulation
US9505178B2 (en) Production process for a moulded multilyer lining
KR101974469B1 (en) Deep draw composites and methods of using them
US20170144388A1 (en) Moulded Product for Automotive Panels
KR102558703B1 (en) Mouldable Composite Mat
JP2013504461A5 (en)
EP2298541A1 (en) Moulded automotive part
KR102219310B1 (en) Nonwoven with improved strength and sound absorption, manufacturing method thereof and vehicle under cover composed of nonwoven with improved strength and sound absorption
JP4180979B2 (en) Manufacturing method of automotive interior materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140611

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160316

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160516

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160812

R150 Certificate of patent or registration of utility model

Ref document number: 5990101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250