JP5988239B2 - Fluorescence measurement substrate - Google Patents
Fluorescence measurement substrate Download PDFInfo
- Publication number
- JP5988239B2 JP5988239B2 JP2012102994A JP2012102994A JP5988239B2 JP 5988239 B2 JP5988239 B2 JP 5988239B2 JP 2012102994 A JP2012102994 A JP 2012102994A JP 2012102994 A JP2012102994 A JP 2012102994A JP 5988239 B2 JP5988239 B2 JP 5988239B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- metal layer
- fine particles
- fluorescence
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
本発明は、蛍光分析等に用いられる蛍光測定用基板に関する。 The present invention relates to a fluorescence measurement substrate used for fluorescence analysis and the like.
蛍光ラベルを用いた分析方法は、臨床検査の分野を始めとして多岐に渡る分野において利用されている。微量サンプル中の低濃度検体を蛍光色素で標識して測定するために、光源の高輝度化、検出装置の高感度化が進められている。また、高い量子収率の蛍光色素の選択、複数の色素分子から構成されるクラスター標識の利用、高性能カットオフフィルターによる励起光の除去等の試みがなされている。 Analysis methods using fluorescent labels are used in a wide variety of fields including the field of clinical testing. In order to measure a low-concentration sample in a very small amount of sample by labeling with a fluorescent dye, the brightness of a light source and the sensitivity of a detection apparatus are being increased. Attempts have also been made to select fluorescent dyes with a high quantum yield, use of cluster labels composed of a plurality of dye molecules, removal of excitation light using a high-performance cutoff filter, and the like.
また、別の方法としては、近接場を用いた表面増強蛍光法がある。近接場中では光強度が増すことから蛍光色素の励起に効果的である。 Another method is a surface-enhanced fluorescence method using a near field. Since the light intensity increases in the near field, it is effective for excitation of the fluorescent dye.
図8は、従来の蛍光色素の励起方法を示す。図8(a)は、全反射型蛍光励起法を示す。プリズム31表面に対して凸面側からガラス内部を通して励起光32を全面反射条件下で照射することにより、プリズム表面に光がしみ出す。このしみ出したエバネッセント光33により近接場が形成される。 FIG. 8 shows a conventional fluorescent dye excitation method. FIG. 8A shows the total reflection fluorescence excitation method. By irradiating the surface of the prism 31 with the excitation light 32 from the convex surface side through the inside of the glass under the entire reflection condition, light oozes out on the surface of the prism. A near field is formed by the evanescent light 33 oozing out.
図8(b)は、表面プラズモン蛍光励起法を示す。厚さ50nm程度の銀もしくは金の薄膜34が形成された高屈折率ガラス40の表面に対して、高屈折率ガラス40の凸面側から励起光32をプラズモン共鳴励起条件で照射する。すると、薄膜34の表面に伝搬型表面プラズモン35が発生し、近接場が形成される。図8(a)の全反射型蛍光励起法と比較して、表面プラズモン蛍光励起法はより強力な近接場が形成されることから、有効であるとされている。 FIG. 8B shows the surface plasmon fluorescence excitation method. Excitation light 32 is irradiated from the convex surface side of the high refractive index glass 40 to the surface of the high refractive index glass 40 on which the silver or gold thin film 34 having a thickness of about 50 nm is formed under the plasmon resonance excitation condition. Then, a propagation type surface plasmon 35 is generated on the surface of the thin film 34 and a near field is formed. Compared with the total reflection fluorescence excitation method of FIG. 8A, the surface plasmon fluorescence excitation method is considered to be effective because a stronger near field is formed.
また、プラズモン共鳴に関連する方法としては、局在表面プラズモン共鳴現象を用いる方法が挙げられる。図8(c)は、局在表面プラズモン共鳴現象を用いた蛍光測定方法を示す。ガラス基板30上に形成されたサイズが100nm程度の金属ナノ構造体36に光を照射すると、入射光強度に対して数十倍以上強い電場を有する近接場が発生する。近接場中で蛍光色素を測定すると、蛍光強度が数十倍から百倍程度増強する。 Further, as a method related to plasmon resonance, a method using a localized surface plasmon resonance phenomenon can be mentioned. FIG. 8C shows a fluorescence measurement method using the localized surface plasmon resonance phenomenon. When the metal nanostructure 36 having a size of about 100 nm formed on the glass substrate 30 is irradiated with light, a near field having an electric field that is several tens of times or more stronger than the incident light intensity is generated. When the fluorescent dye is measured in the near field, the fluorescence intensity is enhanced by several tens to one hundred times.
金属ナノ構造体の作製方法としては、非特許文献1に示されるように、銀表面を酸により腐食させる方法がある。また、非特許文献2に示されるように、金、銀のコロイドを基板の上に固定化する方法、非特許文献3に示されるように、電子線描画装置でナノサイズの金属パターンを形成する方法がある。 As a method for producing the metal nanostructure, as shown in Non-Patent Document 1, there is a method of corroding the silver surface with an acid. Further, as shown in Non-Patent Document 2, a method of immobilizing gold and silver colloids on a substrate, and as shown in Non-Patent Document 3, a nano-sized metal pattern is formed by an electron beam drawing apparatus. There is a way.
また、局在表面プラズモン共鳴現象を用いた別の蛍光測定方法を、図8(d)に示す。ガラス基板30上に固相化されたシリカ、ポリスチレン等の単分散のナノ粒子37の上に金、銀の金属層38を真空蒸着もしくはスパッタにより堆積するといった方法がある(特許文献1、非特許文献4参照)。なお、39は、金属層38の形成時に基板30上に堆積した金属層である。この場合、孤立した半球状のナノ粒子37上に形成された金属層38が、表面増強蛍光に有効であることが示されている。 FIG. 8D shows another fluorescence measurement method using the localized surface plasmon resonance phenomenon. There is a method in which a metal layer 38 of gold or silver is deposited on a monodisperse nanoparticle 37 such as silica or polystyrene solidified on a glass substrate 30 by vacuum evaporation or sputtering (Patent Document 1, non-patent document). Reference 4). Reference numeral 39 denotes a metal layer deposited on the substrate 30 when the metal layer 38 is formed. In this case, the metal layer 38 formed on the isolated hemispherical nanoparticles 37 has been shown to be effective for surface enhanced fluorescence.
しかし、上記従来の技術では、表面増強蛍光が確認されているが、いずれの場合でも増強率は数十倍程度であり、増強率が不十分である。 However, in the above conventional technique, surface-enhanced fluorescence is confirmed, but in any case, the enhancement rate is about several tens of times, and the enhancement rate is insufficient.
さらに、構造的に以下のような、問題点を有する。図8(a)では、プリズムのガラス界面からしみ出すエバネッセント光33を利用しているため、光学系を厳密に構築する必要があり、また、プリズムには、屈折率が高い特殊なガラスを要することから、小型、かつ低コストのシステム構築には適していない。図8(b)の表面プラズモン蛍光励起法では、表面プラズモン共鳴は、共鳴条件の満たされた角度で光が入射したときだけ発生するので、光学系を非常に厳密に構築する必要があり、やはり、小型かつ低コストのシステム構築には適していない。 Further, it has the following problems structurally. In FIG. 8A, since the evanescent light 33 oozing out from the glass interface of the prism is used, it is necessary to strictly construct the optical system, and the prism requires special glass having a high refractive index. Therefore, it is not suitable for building a small and low-cost system. In the surface plasmon fluorescence excitation method of FIG. 8 (b), surface plasmon resonance occurs only when light is incident at an angle satisfying the resonance condition, so it is necessary to construct an optical system very precisely. It is not suitable for building a small and low-cost system.
一方、図8(c)や(d)のように、局在表面プラズモン共鳴現象を用いる方法は、励起光の照射条件が厳密でなく、貴金属ナノ粒子に吸着した被検体を任意の方向から励起し、任意の方向から検出すれば良いため、光学系には厳密さが求められない利点がある。 On the other hand, as shown in FIGS. 8C and 8D, the method using the localized surface plasmon resonance phenomenon is not strict in the irradiation condition of excitation light, and excites the analyte adsorbed on the noble metal nanoparticles from an arbitrary direction. In addition, since it is only necessary to detect from an arbitrary direction, the optical system has an advantage that strictness is not required.
また、非特許文献4に示されるように、図8(d)の方法では、基板の材質及び面の平坦性、および微粒子の材質にはさほど影響を受けないことから、安価な量産に適した材料を選択することができるという利点もある。 Further, as shown in Non-Patent Document 4, the method of FIG. 8D is suitable for low-cost mass production because it is not so affected by the material of the substrate and the flatness of the surface and the material of the fine particles. There is also an advantage that the material can be selected.
しかし、局在表面プラズモン共鳴現象を利用する図8(c)や(d)の場合は、各金属ナノ粒子は、相互に接触することなく、孤立していなくてはならず、構造が脆弱である。他の物体と極僅かに接触するだけで、剥がれや損傷を受けてしまう欠点を有する。 However, in the case of FIGS. 8C and 8D using the localized surface plasmon resonance phenomenon, the metal nanoparticles must be isolated without contacting each other, and the structure is fragile. is there. There is a drawback that it is peeled off or damaged by a slight contact with other objects.
本発明は、上述した課題を解決するために創案されたものであり、蛍光分析に十分な表面増強率を有し、かつ強固な構造を有する蛍光測定用基板を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a fluorescence measurement substrate having a surface enhancement rate sufficient for fluorescence analysis and a strong structure.
上記目的を達成するために、本発明の蛍光測定用基板は、基板上に吸着された誘電体からなる複数の微粒子と、前記複数の微粒子を埋包するように前記基板の表面から前記微粒子表面にかけて連続的に前記基板上に形成された金属層とを備え、前記金属層の一部は複数の突起部を有するとともに、前記複数の微粒子は粒径30nm〜1000nmであり、前記基板表面から前記金属層の平坦部までの前記金属層の膜厚は、前記粒径の100%以上で1000%までの厚さであることを主要な特徴とする。 To achieve the above object, the fluorescence measurement substrate of the present invention includes a plurality of fine particles made of a dielectric adsorbed on the substrate, and the surface of the fine particles from the surface of the substrate so as to embed the plurality of fine particles. and a metal layer formed continuously on the substrate subjected to, with some having a plurality of protrusions of the metal layer, wherein the plurality of particles is the particle size 30Nm~1000nm, the from the substrate surface The main feature of the present invention is that the thickness of the metal layer up to the flat portion of the metal layer is 100% or more and 1000% of the particle size .
本発明によれば、複数の微粒子を内包するように、金属層を連続的に形成しているので、伝播型表面プラズモン共鳴よる表面増強効果を得ることができる。また、連続的に形成された金属層は突起部を複数有しているので、局在型プラズモン共鳴による表面増強効果を得ることができる。このように、伝播型表面プラズモン共鳴とよる表面増強効果と局在型プラズモン共鳴よる表面増強効果の相乗効果により、微量サンプル中の低濃度検体を測定する場合であっても、十分な信号強度を得ることができる。 According to the present invention, since the metal layer is continuously formed so as to enclose a plurality of fine particles, a surface enhancement effect by propagation type surface plasmon resonance can be obtained. In addition, since the continuously formed metal layer has a plurality of protrusions, a surface enhancement effect by localized plasmon resonance can be obtained. In this way, due to the synergistic effect of the surface enhancement effect by propagation type surface plasmon resonance and the surface enhancement effect by localized type plasmon resonance, even when measuring a low-concentration sample in a very small amount of sample, sufficient signal intensity can be obtained. Can be obtained.
また、金属層は複数の微粒子を埋包するように連続的に基板上に形成されているので、この金属層により、各微粒子が基板上に強固に固定され、強靭な構造の蛍光測定用基板を提供することができる。 In addition, since the metal layer is continuously formed on the substrate so as to embed a plurality of fine particles, each metal particle is firmly fixed on the substrate by this metal layer, and the fluorescence measurement substrate having a tough structure Can be provided.
以下、図面を参照して本発明の一実施形態を説明する。構造に関する図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The drawings relating to the structure are schematic and different from the actual ones. In addition, there may be a case where the dimensional relationships and ratios are different between the drawings.
本発明では、伝播型表面プラズモン共鳴と局在型表面プラズモン共鳴のカップリングを可能とする構造を用いることにより、増強率の増大および構造の強靭性の向上を図った。この蛍光測定用基板の構成を図1に示す。 In the present invention, by using a structure that enables coupling of propagation type surface plasmon resonance and localized type surface plasmon resonance, the enhancement rate is increased and the toughness of the structure is improved. The configuration of this fluorescence measurement substrate is shown in FIG.
蛍光測定用基板は、図1(a)に示されるように、基板1の表面上に金属層3が所定の厚みを持って形成されている。金属層3の表面は凹凸が形成されており、突起部4が複数形成されている。 As shown in FIG. 1A, the fluorescence measuring substrate has a metal layer 3 formed on the surface of the substrate 1 with a predetermined thickness. The surface of the metal layer 3 is uneven, and a plurality of protrusions 4 are formed.
図1(a)の金属層3の内部は、図1(b)に示すようになっている。基板1の表面には、複数の微粒子2が吸着されて固相化されており、この微粒子2をすべて覆うように、基板1の表面上に金属層3が堆積される。このため、金属層3は、微粒子2をすべて埋包(内包)するように形成されるが、微粒子2が基板1に吸着したときの配置による凹凸が、そのまま堆積した金属層3の突起部4として現れる。 The inside of the metal layer 3 in FIG. 1A is as shown in FIG. A plurality of fine particles 2 are adsorbed and solidified on the surface of the substrate 1, and a metal layer 3 is deposited on the surface of the substrate 1 so as to cover all the fine particles 2. For this reason, the metal layer 3 is formed so as to embed (enclose) all the fine particles 2, but the unevenness due to the arrangement when the fine particles 2 are adsorbed to the substrate 1 is left as it is. Appears as
また、後述するが、金属層3の膜厚が微粒子2の粒径以上、例えば数倍であっても微粒子2上に堆積された金属層3は、平坦にはならず、図1のように突起部4が形成され、凹凸が形成される。ここで、金属層3の膜厚又は蒸着厚さという場合は、図1(b)のhで示されるように、基板1の表面から堆積された金属層3の基板1端部における平坦面までの高さに相当する。また、金属層3の膜厚又は蒸着厚さhは、図1(b)に示すように、微粒子2の頂点から突起部4の頂点までの高さにも相当する。 As will be described later, the metal layer 3 deposited on the fine particles 2 is not flat even if the thickness of the metal layer 3 is equal to or larger than the particle size of the fine particles 2, for example, several times as shown in FIG. Protrusions 4 are formed, and irregularities are formed. Here, the thickness or vapor deposition thickness of the metal layer 3 extends from the surface of the substrate 1 to the flat surface at the end of the substrate 1 of the metal layer 3 as indicated by h in FIG. It corresponds to the height of. Further, the film thickness or vapor deposition thickness h of the metal layer 3 corresponds to the height from the top of the fine particle 2 to the top of the protrusion 4 as shown in FIG.
図1のように、金属層3を微粒子2を覆うように連続的に形成することにより、この連続薄膜の表面に伝播型プラズモン共鳴を発生させることができる。一方、微粒子2をすべて覆うように金属層3を堆積することにより、金属層3からなる連続薄膜に凹凸が形成される。この凹凸の突起部4が、局在表面プラズモンの励起に寄与し、局在型表面プラズモン共鳴を発生させることができる。これにより、伝播型表面プラズモン共鳴と局在型表面プラズモン共鳴のカップリングを実現できる。 As shown in FIG. 1, by continuously forming the metal layer 3 so as to cover the fine particles 2, propagation plasmon resonance can be generated on the surface of the continuous thin film. On the other hand, by depositing the metal layer 3 so as to cover all the fine particles 2, irregularities are formed in the continuous thin film made of the metal layer 3. This uneven protrusion 4 contributes to the excitation of localized surface plasmons and can generate localized surface plasmon resonance. Thereby, the coupling of the propagation type surface plasmon resonance and the localized type surface plasmon resonance can be realized.
ここで、基板1としては、ガラス、石英、シリコン、ポリスチレン、ポリカーボネート、ポリメタクリル酸メチル等の樹脂平板基板が適しているが、紙、金属でも良い。また、防水処理が施された木材、皮、角、貝殻などの生物由来の材質でも構わない。さらに、巨視的に見て、平坦な基板ではなくとも良く、線維状もしくは球状の形状を有していていても構わない。 Here, as the substrate 1, a resin flat substrate such as glass, quartz, silicon, polystyrene, polycarbonate, and polymethyl methacrylate is suitable, but paper and metal may be used. Further, it may be made of a biological material such as wood, skin, horn, or shell that has been waterproofed. Furthermore, when viewed macroscopically, the substrate may not be a flat substrate and may have a fibrous or spherical shape.
また、基板1上の固相面に吸着させる微粒子2としては、シリカ、ポリスチレン、酸化チタン等の誘電体からなるナノ粒子が用いられる。微粒子2に誘電体を用いることで、より高い表面増強効果が期待できる。 Further, as the fine particles 2 to be adsorbed on the solid surface on the substrate 1, nanoparticles made of a dielectric such as silica, polystyrene, titanium oxide or the like are used. By using a dielectric for the fine particles 2, a higher surface enhancement effect can be expected.
金属層3には、金、銀、白金、アルミ、銅等を用いることができるが、材料としては金、銀、白金等の貴金属が望ましい。 Gold, silver, platinum, aluminum, copper, or the like can be used for the metal layer 3, but a noble metal such as gold, silver, or platinum is preferable as the material.
次に、図2は、図1の蛍光測定用基板の作製方法を示す。図2(a)のように、シリカもしくはポリスチレン等の誘電体による微粒子2を基板1の固相面に単層で吸着させ、図2(b)のように、真空蒸着もしくはスパッタリングにより金属3Aを微粒子1に堆積する。金属は、微粒子1上に帽子のように堆積する貴金属3Aと、基板1上に堆積する貴金属3Bとが発生する。 Next, FIG. 2 shows a method for producing the fluorescence measurement substrate of FIG. As shown in FIG. 2A, the fine particles 2 made of a dielectric material such as silica or polystyrene are adsorbed on the solid surface of the substrate 1 as a single layer, and the metal 3A is deposited by vacuum deposition or sputtering as shown in FIG. Deposit on the fine particles 1. As the metal, a noble metal 3A deposited on the fine particles 1 like a hat and a noble metal 3B deposited on the substrate 1 are generated.
図2(b)から、さらに時間をかけて金属を堆積させると、図2(c)のように、金属3Aは、微粒子2の中心よりも下側まで付着し、金属3Bの厚みも大きくなる。そして、最終的には、図2(d)に示されるように、各微粒子2上に堆積された金属3Aと基板上に堆積された金属3Bは相互に接続して、連続した金属層3となる。このように、金属層3は、各微粒子2を完全に内包した状態で、基板1上に堆積され、金属層3の表面には凹凸が形成される。金属層3の表面の凹凸は、微粒子2による凹凸の形状に対応した形で現れる。 When the metal is further deposited from FIG. 2B, the metal 3A adheres to the lower side of the center of the fine particle 2 as shown in FIG. 2C, and the thickness of the metal 3B increases. . Finally, as shown in FIG. 2D, the metal 3A deposited on each fine particle 2 and the metal 3B deposited on the substrate are connected to each other, and the continuous metal layer 3 and Become. As described above, the metal layer 3 is deposited on the substrate 1 in a state where each fine particle 2 is completely included, and irregularities are formed on the surface of the metal layer 3. The irregularities on the surface of the metal layer 3 appear in a shape corresponding to the irregularities formed by the fine particles 2.
次に、図1の蛍光測定用基板作製の実施例を示す。実施例では、基板1としてガラス基板を、微粒子2としてシリカナノ粒子を用い、ガラス基板上にシリカナノ粒子を吸着させる方法を説明する。 Next, an example of manufacturing the fluorescence measurement substrate of FIG. 1 will be described. In this embodiment, a method of adsorbing silica nanoparticles on a glass substrate using a glass substrate as the substrate 1 and silica nanoparticles as the fine particles 2 will be described.
まずガラス基板表面の水酸基を利用したシランカップリング処理を行う。アミノプロピルトリエトキシシラン(重量比0.1〜1%)の水溶液を用意し、ガラス基板を5秒から5分間浸漬する。 First, silane coupling treatment using hydroxyl groups on the glass substrate surface is performed. An aqueous solution of aminopropyltriethoxysilane (0.1 to 1% by weight) is prepared, and the glass substrate is immersed for 5 seconds to 5 minutes.
ガラス基板表面の処理終了後には、シリカナノ粒子(重量比0.1〜5%)を表面に滴下する。無塵条件下にて、10秒〜5分間静置する。次に、過剰量のシリカナノ粒子を除去するために、精製水にて十分に洗浄し、基板を乾燥する。すると、ガラス基板上にシリカナノ粒子が単層で吸着された構造が得られる。 After the treatment of the glass substrate surface, silica nanoparticles (weight ratio 0.1 to 5%) are dropped on the surface. Let stand for 10 seconds to 5 minutes under dust-free conditions. Next, in order to remove an excessive amount of silica nanoparticles, the substrate is sufficiently washed with purified water and dried. Then, a structure in which silica nanoparticles are adsorbed in a single layer on a glass substrate is obtained.
次に、シリカナノ粒子表面に金属を堆積する方法として、真空蒸着法を用いた方法により説明する。金属としては、貴金属の銀が最も望ましいが、金、銅、白金を用いても良い。ガラス基板を真空蒸着装置内部に設置し、チャンバーの真空引きを行う。10−3パスカルの真空度を達成後、毎秒1Å〜10Åの割合で蒸着を開始する。ガラス基板表面から銀薄膜の端部における平坦部までの蒸着厚は、シリカナノ粒子の粒径に対して、30%〜1000%とする。これにより、蛍光測定用基板が得られる。 Next, as a method for depositing metal on the surface of the silica nanoparticles, a method using a vacuum deposition method will be described. As the metal, the noble metal silver is most desirable, but gold, copper, or platinum may be used. A glass substrate is placed inside the vacuum deposition apparatus, and the chamber is evacuated. After achieving a vacuum degree of 10 −3 Pascal, deposition is started at a rate of 1 to 10 kg / second. The deposition thickness from the glass substrate surface to the flat portion at the edge of the silver thin film is 30% to 1000% with respect to the particle size of the silica nanoparticles. Thereby, a substrate for fluorescence measurement is obtained.
以上のように形成された蛍光測定用基板は図1のような構成となるので、表面増強蛍光法に用いることにより、伝播型表面プラズモン共鳴と局在型表面プラズモン共鳴のカップリングを実現でき、最も重要な効果として、増強率の向上が図れる。他方、貴金属が各微粒子間の隙間にも堆積され、かつ連続した貴金属層となり、各微粒子を埋め込むように基板上に形成されるので、強固な構造の蛍光測定用基板が構成される。 Since the fluorescence measurement substrate formed as described above has a configuration as shown in FIG. 1, by using the surface-enhanced fluorescence method, it is possible to realize the coupling between the propagation surface plasmon resonance and the localized surface plasmon resonance, As the most important effect, the enhancement rate can be improved. On the other hand, the noble metal is deposited also in the gaps between the fine particles and becomes a continuous noble metal layer, and is formed on the substrate so as to embed each fine particle, so that a fluorescence measurement substrate having a strong structure is configured.
図3は、微粒子2として粒径100nmのシリカ微粒子を用い、これに金属層3としてさまざまな厚さの銀を蒸着し、1mMのローダミン6Gを滴下してから、波長520nmの励起光で蛍光を観察した結果を示す。縦軸に蛍光強度を横軸に蒸着厚(nm)を示す。ここでの蒸着厚さとは、図1の高さhに相当する膜厚である。 In FIG. 3, silica fine particles having a particle diameter of 100 nm are used as the fine particles 2, silver having various thicknesses is deposited on the metal layer 3, 1 mM rhodamine 6G is dropped, and fluorescence is emitted with excitation light having a wavelength of 520 nm. The observation result is shown. The vertical axis represents the fluorescence intensity, and the horizontal axis represents the deposition thickness (nm). The vapor deposition thickness here is a film thickness corresponding to the height h in FIG.
ところで、特許文献1では、文献中の図4〜図8に示されているように、15nm以下の厚さの銀薄膜を形成した際に、増強率が最適化されることが示されている。ここでの膜厚は、微粒子上に形成された帽子状の銀薄膜の厚みを示しており、本発明における堆積厚さhではない。 Incidentally, in Patent Document 1, as shown in FIGS. 4 to 8 in the document, it is shown that the enhancement rate is optimized when a silver thin film having a thickness of 15 nm or less is formed. . The film thickness here indicates the thickness of the hat-shaped silver thin film formed on the fine particles, and is not the deposition thickness h in the present invention.
一方、図3に示されるように、蒸着により、膜厚hが30nm〜50nm程度に銀薄膜を形成した蛍光測定用基板は、確かに表面増強蛍光法に有効である。特に、30nm程度の膜厚により、微粒子2の全体が連続的に形成された金属層3により覆われ、埋包されることになるので、表面増強の効果が大きくなる。微粒子の粒径が100nmであるから、微粒子粒径の30%の金属層膜厚により、微粒子が埋包される。 On the other hand, as shown in FIG. 3, the substrate for fluorescence measurement in which the silver thin film is formed by vapor deposition so that the film thickness h is about 30 nm to 50 nm is certainly effective for the surface enhanced fluorescence method. In particular, since the entire fine particles 2 are covered and embedded by the continuously formed metal layer 3 with a film thickness of about 30 nm, the effect of surface enhancement is increased. Since the particle diameter of the fine particles is 100 nm, the fine particles are embedded with a metal layer thickness of 30% of the fine particle diameter.
また、蒸着厚を80nm以上に増大させることにより、増強効果がさらに増幅されることが図3よりわかる。蒸着厚が80nm〜90nmで蛍光強度が若干小さくなった後に、蒸着厚が100nm以上になると、蛍光強度が加速度的に増加している。膜厚1000nm程度まで、蛍光強度が高くなっており、特に膜厚300nm〜900nmの範囲では、蛍光強度は高い。図3より、金属層厚さが1000nmでも蛍光強度が強く効果があることから、微粒子の粒径100nmの10倍(1000%)に相当する膜厚まで形成しても良いことがわかる。 It can also be seen from FIG. 3 that the enhancement effect is further amplified by increasing the deposition thickness to 80 nm or more. After the deposition thickness is 80 nm to 90 nm and the fluorescence intensity is slightly reduced, when the deposition thickness is 100 nm or more, the fluorescence intensity increases at an accelerated rate. The fluorescence intensity is high up to a film thickness of about 1000 nm, and the fluorescence intensity is particularly high in the film thickness range of 300 nm to 900 nm. From FIG. 3, it can be seen that even when the metal layer thickness is 1000 nm, the fluorescence intensity is strong and effective, so that a film thickness corresponding to 10 times (1000%) the particle diameter of the fine particles of 100 nm may be formed.
図4は、微粒子2として粒径50nmと150nmのシリカ微粒子を各々用いた。それぞれぞれの粒径のシリカ微粒子に、金属層3としてさまざまな厚さの銀を蒸着し、1mMのローダミン6Gを滴下してから、波長520nmの励起光で蛍光を観察した結果を示す。縦軸に蛍光強度を横軸に蒸着厚(nm)を示す。ここでの蒸着厚さとは、図3と同様、図1の高さhに相当する膜厚である。また、斜線の棒グラフの方が粒径50nmを、白抜きの棒グラフの方が粒径150nmを示す。 In FIG. 4, silica fine particles having a particle diameter of 50 nm and 150 nm were used as the fine particles 2, respectively. The result of observing fluorescence with excitation light having a wavelength of 520 nm after depositing silver of various thicknesses as the metal layer 3 on each silica fine particle of each particle diameter and dropping 1 mM rhodamine 6G is shown. The vertical axis represents the fluorescence intensity, and the horizontal axis represents the deposition thickness (nm). The vapor deposition thickness here is a film thickness corresponding to the height h in FIG. 1, as in FIG. The shaded bar graph indicates a particle size of 50 nm, and the open bar graph indicates a particle size of 150 nm.
図4に示されるように、膜厚30nm以上の銀薄膜を形成した蛍光測定用基板は、蛍光強度が強くなっており、確かに表面増強蛍光法に有効である。粒子径50nmの場合は金属層厚さ15nm程度から、粒子径150nmの場合は金属層厚さ45nm程度から、微粒子2の全体が連続的に形成された金属層3により覆われ、埋包されることになり、表面増強の効果が大きくなる。図示はしていないが、それぞれの粒子径の微粒子に対して、上記の金属層厚さから蛍光強度が高くなる傾向がある。また、粒径に対する金属層厚さの割合は、それぞれ30%となっており、微粒子粒径の30%の金属層膜厚により、微粒子が埋包されることになる。 As shown in FIG. 4, the fluorescence measurement substrate on which a silver thin film having a thickness of 30 nm or more is formed has a strong fluorescence intensity, and is certainly effective for the surface-enhanced fluorescence method. When the particle size is 50 nm, the metal layer thickness is from about 15 nm, and when the particle size is 150 nm, the entire fine particle 2 is covered and embedded by the metal layer 3 formed continuously from the metal layer thickness of about 45 nm. As a result, the effect of surface enhancement is increased. Although not shown in the figure, the fluorescence intensity tends to increase due to the thickness of the metal layer with respect to the fine particles having the respective particle sizes. Further, the ratio of the metal layer thickness to the particle diameter is 30%, and the fine particles are embedded by the metal layer thickness of 30% of the fine particle diameter.
また、図4より、金属層厚さが500nmでも蛍光強度が強く効果があることから、微粒子の粒径50nmについては、その粒径の10倍(1000%)に相当する膜厚まで形成しても良いことがわかる。これは、粒径150nmの場合についても同様、その粒径の10倍に相当する膜厚まで形成しても良い。 In addition, as shown in FIG. 4, since the fluorescence intensity is strong even when the metal layer thickness is 500 nm, the fine particle diameter of 50 nm is formed to a film thickness corresponding to 10 times (1000%) of the particle diameter. You can also see that it is good. Similarly, in the case of a particle size of 150 nm, a film thickness corresponding to 10 times the particle size may be formed.
次に、本発明の蛍光測定用基板が、表面上に何も形成されていないガラス基板のみと比較して、蛍光信号強度が増加する様子を図5に示す。図5(a)は、色素濃度(ローダミン6G)が1mMの場合を、図5(b)は色素濃度(ローダミン6G)が10μMの場合を示す。銀薄膜の膜厚は、300nmに形成した。ガラス基板のみの場合と比較して、蛍光強度が大きく増加しており、図5(a)の場合では数十倍、図5(b)の場合では数倍に増加している。 Next, FIG. 5 shows a state in which the fluorescence signal intensity of the fluorescence measurement substrate of the present invention increases as compared with only the glass substrate on which nothing is formed on the surface. FIG. 5A shows the case where the dye concentration (rhodamine 6G) is 1 mM, and FIG. 5B shows the case where the dye concentration (rhodamine 6G) is 10 μM. The film thickness of the silver thin film was formed at 300 nm. Compared with the case of using only a glass substrate, the fluorescence intensity is greatly increased. In the case of FIG. 5A, the fluorescence intensity is increased several tens of times, and in the case of FIG. 5B, it is increased several times.
また、蒸着厚hが微粒子2の粒径以上であっても、微粒子2が存在する領域で金属層3が平坦にならないことを図6に示す。図6の(a)、(b)、(c)は、それぞれ、膜厚hが100nm、500nm、1000nmの銀薄膜を粒径100nmのシリカナノ粒子に蒸着することにより得られた画像を示す。これらの画像からわかるように、膜厚hが大きくなっても、金属層3は平坦にならず、シリカナノ粒子による凹凸が失われないことがわかる。 Further, FIG. 6 shows that the metal layer 3 does not become flat in the region where the fine particles 2 exist even if the deposition thickness h is equal to or larger than the particle size of the fine particles 2. (A), (b), and (c) of FIG. 6 show images obtained by depositing silver thin films having film thicknesses h of 100 nm, 500 nm, and 1000 nm on silica nanoparticles having a particle diameter of 100 nm, respectively. As can be seen from these images, even when the film thickness h increases, the metal layer 3 does not become flat and the irregularities due to the silica nanoparticles are not lost.
本発明における構造をより明確に示すために、基板から剥離された微粒子について、ナノ構造の走査型電子顕微鏡写真を図7に示す。図7(a)と(b)は、それぞれ蒸着厚さが500nm、1000nmの場合である。連続した金属薄膜と微粒子が一体化したままの形式で、剥離されていることが分かる。従来の相互に接触せずに孤立した金属ナノ粒子の場合と比較して、本発明の蛍光測定用基板は、強靭であり損傷され難い構造であることがわかる。 In order to show the structure in the present invention more clearly, a scanning electron micrograph of the nanostructure of the fine particles peeled from the substrate is shown in FIG. FIGS. 7A and 7B show cases where the deposition thicknesses are 500 nm and 1000 nm, respectively. It can be seen that the continuous metal thin film and the fine particles are peeled off in an integrated form. It can be seen that the fluorescence measurement substrate of the present invention has a structure that is tough and not easily damaged as compared with conventional metal nanoparticles that are not in contact with each other.
本発明の分光用基板は、環境モニタリング、品質管理、臨床検査等に適用することができる。 The spectroscopic substrate of the present invention can be applied to environmental monitoring, quality control, clinical examination, and the like.
1 基板
2 微粒子
3 金属層
3A 金属
3B 金属
1 Substrate 2 Fine particle 3 Metal layer 3A Metal 3B Metal
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012102994A JP5988239B2 (en) | 2012-04-27 | 2012-04-27 | Fluorescence measurement substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012102994A JP5988239B2 (en) | 2012-04-27 | 2012-04-27 | Fluorescence measurement substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013231639A JP2013231639A (en) | 2013-11-14 |
JP5988239B2 true JP5988239B2 (en) | 2016-09-07 |
Family
ID=49678207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012102994A Expired - Fee Related JP5988239B2 (en) | 2012-04-27 | 2012-04-27 | Fluorescence measurement substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5988239B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100516835C (en) * | 2004-03-31 | 2009-07-22 | 欧姆龙株式会社 | Local plasmon resonance sensor and examination instrument |
JP2006349463A (en) * | 2005-06-15 | 2006-12-28 | Canon Inc | Surface reinforcing raman spectroscopic analyzing jig and its manufacturing method |
JP5110254B2 (en) * | 2006-10-10 | 2012-12-26 | 富士レビオ株式会社 | Fluorescence measurement method, measurement chip for fluorescence measurement, and manufacturing method thereof |
JP5552007B2 (en) * | 2010-09-17 | 2014-07-16 | 富士フイルム株式会社 | Photoelectric field enhancement device |
-
2012
- 2012-04-27 JP JP2012102994A patent/JP5988239B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013231639A (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Doherty et al. | Wavelength dependence of Raman enhancement from gold nanorod arrays: quantitative experiment and modeling of a hot spot dominated system | |
Minopoli et al. | Nanostructured surfaces as plasmonic biosensors: A review | |
US8867032B2 (en) | Surface enhanced optical detection substrate for sensing purposes and methods for manufacturing | |
US8358407B2 (en) | Enhancing signals in Surface Enhanced Raman Spectroscopy (SERS) | |
Alessandri | Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators | |
Myroshnychenko et al. | Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study | |
US8568878B2 (en) | Directly fabricated nanoparticles for raman scattering | |
RU2361193C2 (en) | Optical sensor with multilayered plasmon structure for improved detection of chemical groups through sers | |
Braun et al. | Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors | |
JP5848013B2 (en) | Photoelectric field enhancement device and measuring apparatus equipped with the device | |
Xing et al. | Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy | |
Zhao et al. | Metallo-dielectric photonic crystals for surface-enhanced Raman scattering | |
Su et al. | Raman enhancement factor of a single tunable nanoplasmonic resonator | |
Liu et al. | Simple and low‐cost plasmonic fiber‐optic probe as SERS and biosensing platform | |
Wu et al. | Surface-enhanced Raman scattering induced by the coupling of the guided mode with localized surface plasmon resonances | |
JP5801587B2 (en) | Method for manufacturing photoelectric field enhancing device | |
TWI500921B (en) | Optical sensing chip | |
Zhao et al. | Hyperbolic nanoparticles on substrate with separate optical scattering and absorption resonances: a dual function platform for SERS and thermoplasmonics | |
Lertvachirapaiboon et al. | Transmission surface plasmon resonance signal enhancement via growth of gold nanoparticles on a gold grating surface | |
Wu et al. | Ultrawideband surface enhanced Raman scattering in hybrid graphene fragmented‐gold substrates via cold‐etching | |
Chien et al. | Effects of the rotation angle on surface plasmon coupling of nanoprisms | |
KR101733664B1 (en) | Method for preparation of surface enhanced Raman scattering substrate using oligomer dielectric layer | |
Chikkaraddy et al. | Boosting optical nanocavity coupling by retardation matching to dark modes | |
Nielsen et al. | Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate | |
Liszewska et al. | Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5988239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |