JP5988121B1 - Method for producing porous body and porous body - Google Patents

Method for producing porous body and porous body Download PDF

Info

Publication number
JP5988121B1
JP5988121B1 JP2016021206A JP2016021206A JP5988121B1 JP 5988121 B1 JP5988121 B1 JP 5988121B1 JP 2016021206 A JP2016021206 A JP 2016021206A JP 2016021206 A JP2016021206 A JP 2016021206A JP 5988121 B1 JP5988121 B1 JP 5988121B1
Authority
JP
Japan
Prior art keywords
porous body
fine cellulose
aqueous solution
cellulose fibers
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021206A
Other languages
Japanese (ja)
Other versions
JP2017137459A (en
Inventor
内田 哲也
内田  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2016021206A priority Critical patent/JP5988121B1/en
Application granted granted Critical
Publication of JP5988121B1 publication Critical patent/JP5988121B1/en
Publication of JP2017137459A publication Critical patent/JP2017137459A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

【課題】微小セルロース繊維製の高空隙率の多孔質体の製造方法及び多孔質体を提供する。【解決手段】微小セルロース繊維の分散水溶液を凍結乾燥させて成る多孔質体の製造方法において、分散水溶液を凍結乾燥させる際に、分散水溶液を-20〜0℃とした氷点下空間内に静置することで分散水溶液を一様に氷結させ、その後、減圧することで水を昇華させて多孔質体とする。特に、分散水溶液を氷結させる際に、分散水溶液を有底筒状の金属製の容器に貯留して、氷点下空間内に静置する。【選択図】なしThe present invention provides a method for producing a porous body made of fine cellulose fibers having a high porosity and a porous body. In a method for producing a porous body obtained by freeze-drying a dispersed aqueous solution of fine cellulose fibers, when the dispersed aqueous solution is freeze-dried, the dispersed aqueous solution is allowed to stand in a sub-freezing space at -20 to 0 ° C. Thus, the aqueous dispersion is uniformly frozen, and then the pressure is reduced to sublimate water to obtain a porous body. In particular, when the aqueous dispersion is frozen, the aqueous dispersion is stored in a bottomed cylindrical metal container and allowed to stand in a space below freezing. [Selection figure] None

Description

本発明は、多孔質体の製造方法及び多孔質体に関し、特に、微小セルロース繊維で構成される多孔質体の製造方法及び多孔質体に関する。   The present invention relates to a method for producing a porous body and a porous body, and more particularly to a method for producing a porous body composed of fine cellulose fibers and a porous body.

従来、微小セルロース繊維で構成される多孔質体が知られている。この多孔質体は高比表面積で、柔軟性、通気性、寸法安定性、取り扱い性に優れていることから、吸着剤、断熱材、吸音材等としての利用が検討されている。   Conventionally, porous bodies composed of fine cellulose fibers are known. Since this porous body has a high specific surface area and is excellent in flexibility, air permeability, dimensional stability, and handleability, its use as an adsorbent, a heat insulating material, a sound absorbing material and the like has been studied.

微小セルロース繊維で構成される多孔質体は、一般的な製造方法として、微小セルロース繊維を水等の溶液に分散させた分散溶液を作成し、この分散溶液を凍結乾燥させることで形成している。特に、凍結乾燥の凍結工程では、液体窒素等を用いることで急速凍結させており、凍結時の温度として-160℃〜-20℃が望ましいとされている(例えば、特許文献1参照。)。   A porous body composed of fine cellulose fibers is formed by preparing a dispersion solution in which fine cellulose fibers are dispersed in a solution such as water as a general production method, and freeze-drying the dispersion solution. . In particular, in the freeze-drying freezing step, liquid nitrogen or the like is used for rapid freezing, and the temperature during freezing is preferably −160 ° C. to −20 ° C. (see, for example, Patent Document 1).

特開2010−215872号公報JP 2010-215872 A

しかしながら、微小セルロース繊維の分散溶液を急速に凍結させた後に乾燥させて成る多孔質体では、空隙率の向上が困難であって、所望の空隙率の多孔質体を得ることができなかった。本発明者は、このような現状に鑑み、高空隙率の多孔質体を作製すべく研究開発を行って、本発明を成すに至ったものである。   However, in a porous body obtained by rapidly freezing and then drying a dispersion solution of fine cellulose fibers, it is difficult to improve the porosity, and a porous body having a desired porosity cannot be obtained. In view of the present situation, the present inventor has conducted research and development to produce a porous body having a high porosity, and has achieved the present invention.

本発明の多孔質体の製造方法では、微小セルロース繊維の分散水溶液を凍結乾燥させて成る多孔質体の製造方法において、分散水溶液を凍結乾燥させる際に、分散水溶液を有底筒状の金属製の容器に貯留して、分散水溶液を-20〜0℃とした氷点下空間内に静置することで分散水溶液を下方から上方に向けて凍結させ、その後、減圧することで水を昇華させているものである。 In the method for producing a porous body according to the present invention, when the dispersion aqueous solution is freeze-dried in the method for producing a porous body obtained by freeze-drying a dispersion aqueous solution of fine cellulose fibers, the dispersion aqueous solution is made of a bottomed cylindrical metal. In this container, the aqueous dispersion is allowed to stand in the freezing space at -20 to 0 ° C. to freeze the aqueous dispersion from below , and then sublimates the water by reducing the pressure. Is.

さらに、本発明の多孔質体の製造方法では、分散水溶液の微小セルロース繊維の濃度を1.0wt%以下としていることにも特徴を有するものである。 Furthermore, the method for producing a porous body of the present invention is also characterized in that the concentration of fine cellulose fibers in the aqueous dispersion is 1.0 wt% or less .

本発明によれば、空隙率が99%以上である高空隙率の多孔質体を提供でき、吸着剤、断熱材あるいは吸音材等の材料として利用することができる。   According to the present invention, a porous body having a high porosity with a porosity of 99% or more can be provided, and can be used as a material such as an adsorbent, a heat insulating material, or a sound absorbing material.

本発明の多孔質体の製造方法及び多孔質体は、高空隙率の多孔質体であり、微小セルロース繊維の分散水溶液を凍結乾燥させて成る多孔質体である。以下において、実施例を示しながら詳説する。   The method for producing a porous body and the porous body of the present invention are a porous body having a high porosity, and are a porous body obtained by freeze-drying a dispersed aqueous solution of fine cellulose fibers. Hereinafter, detailed description will be given with reference to examples.

微小セルロース繊維の分散水溶液は、微小セルロース繊維を水に分散させて作成している。微小セルロース繊維は、できるだけ微小となっていることが望ましく、特に、繊維幅、すなわち繊維状となっている微小セルロース繊維の太さが10nm以下であることが望ましい。また、長さは10μm以下であることが望ましい。本発明では、繊維幅が10nm以下の繊維状のセルロースを微小セルロース繊維と呼ぶ。本実施例では、微小セルロース繊維として、第一工業製薬株式会社のレオクリスタ(登録商標)を用いた。   The aqueous dispersion of fine cellulose fibers is prepared by dispersing fine cellulose fibers in water. The fine cellulose fiber is desirably as fine as possible. In particular, it is desirable that the fiber width, that is, the thickness of the fine cellulose fiber in a fibrous form is 10 nm or less. The length is preferably 10 μm or less. In the present invention, fibrous cellulose having a fiber width of 10 nm or less is referred to as a fine cellulose fiber. In the present example, Rheocrista (registered trademark) of Daiichi Kogyo Seiyaku Co., Ltd. was used as the fine cellulose fiber.

微小セルロース繊維の分散水溶液は、本実施例では、微小セルロース繊維の濃度を1.0wt%とした。すなわち、固形分が2.0wt%の微小セルロース繊維分散水25gに蒸留水25gを加え、1時間超音波を照射して、微小セルロース繊維の濃度が1.0wt%の微小セルロース繊維の分散水溶液を作成した。作成した微小セルロース繊維の分散水溶液に対して自転公転脱泡装置で30分間の脱泡処理を行った。   In this example, the concentration of the fine cellulose fibers in the dispersed aqueous solution of fine cellulose fibers was 1.0 wt%. That is, 25 g of distilled water was added to 25 g of fine cellulose fiber dispersion water having a solid content of 2.0 wt%, and ultrasonic waves were applied for 1 hour to prepare a dispersed aqueous solution of fine cellulose fibers having a concentration of fine cellulose fibers of 1.0 wt%. . The prepared dispersed aqueous solution of fine cellulose fibers was subjected to defoaming treatment for 30 minutes using a rotation and revolution defoaming apparatus.

脱泡処理した1.0wt%の微小セルロース繊維の分散水溶液を底面が直径75mmの円形となっているシャーレに貯留して、庫内温度を-18〜-22℃とした冷凍庫内に容器を静置した。   Defoamed 1.0 wt% dispersion solution of fine cellulose fibers is stored in a petri dish with a circular bottom of 75 mm in diameter, and the container is left in a freezer with the inside temperature set to -18 to -22 ° C. did.

微小セルロース繊維の分散水溶液を貯留させる容器は、金属製であることが望ましい。金属製の容器は、容器の熱伝導率が高いため、容器の温度が全体的に均一となり、容器に接触した分散水溶液の接触面を均一な温度として冷却することができる。本実施例では、ステンレス製の容器を用いた。容器は、底面が必ずしも円形状である必要はなく、任意の形状としてもよい。   The container for storing the dispersed aqueous solution of fine cellulose fibers is preferably made of metal. Since the metal container has a high thermal conductivity, the temperature of the container becomes uniform as a whole, and the contact surface of the dispersed aqueous solution in contact with the container can be cooled to a uniform temperature. In this example, a stainless steel container was used. The container does not necessarily have a circular bottom surface, and may have an arbitrary shape.

容器に貯留させた分散水溶液は、液面が冷凍庫の雰囲気と接触する開放状態としており、容器内の分散水溶液の氷結による膨張によって分散水溶液の液面が上昇することを妨げない状態としている。   The dispersed aqueous solution stored in the container is in an open state where the liquid level comes into contact with the atmosphere of the freezer, and does not prevent the liquid level of the dispersed aqueous solution from rising due to expansion of the dispersed aqueous solution in the container due to freezing.

金属製の容器に貯留されて、冷凍庫内に置かれた微小セルロース繊維の分散水溶液は、金属製の容器が冷凍庫内の温度となることで、容器との接触面から凍結が開始される一方で、冷凍庫の雰囲気と接触している液面では熱エネルギーの移動が小さいことから凍結が起こりにくくなっている。したがって、金属製の容器に貯留された微小セルロース繊維の分散水溶液は、容器の底側から氷結が進み、氷結にともなって分散水溶液の液面が上昇しながら全体として氷結することとなっている。   While the dispersed aqueous solution of fine cellulose fibers stored in a metal container and placed in the freezer is frozen from the contact surface with the container when the metal container reaches the temperature in the freezer The liquid surface that is in contact with the freezer atmosphere is less likely to freeze due to the small movement of thermal energy. Therefore, the dispersed aqueous solution of fine cellulose fibers stored in the metal container is frozen from the bottom side of the container, and is frozen as a whole as the liquid level of the dispersed aqueous solution rises with freezing.

すなわち、微小セルロース繊維の分散水溶液を全体的に急速凍結させるのではなく、下方から上方に向けて凍結させていくことで、凍結した分散水溶液は単結晶的な氷、すなわち一様な氷とすることができる。特に、下方から上方に向けて凍結させていくことで生成された一様な氷では、内部に歪み応力等の応力が生じにくくなっているものと考えている。   In other words, the dispersed aqueous solution of fine cellulose fibers is not rapidly frozen as a whole, but is frozen from the bottom to the top, so that the frozen dispersed aqueous solution becomes single crystal ice, that is, uniform ice. be able to. In particular, it is believed that uniform ice generated by freezing from below to above is less likely to generate stress such as strain stress inside.

一方、液体窒素等を用いて微小セルロース繊維の分散水溶液を急速凍結させた場合には、いろいろな方向から凍結が生じるため、多結晶的な氷となるだけでなく、氷結による膨張によって生じる応力が内部に閉じ込められた状態となっているものと考えられる。この内部に残留した応力は、凍結後に減圧処理することで水を昇華させた際に、微小セルロース繊維に作用することで微小セルロース繊維に破断を生じさせているものと考えられる。特に、高空隙率の多孔質体とするために、より微細な微小セルロース繊維を用いた場合に、微小セルロース繊維自体の応力に対する耐性が小さいことから、破断がより生じやすくなっているものと考えられる。この微小セルロース繊維の破断が生じることで、高空隙率化が阻害されているものと考えている。   On the other hand, when the aqueous dispersion of fine cellulose fibers is rapidly frozen using liquid nitrogen or the like, freezing occurs from various directions, so that not only is the crystal ice formed, but also stress caused by expansion due to freezing is generated. It is thought that it is confined inside. The stress remaining in the inside is considered to cause breakage of the fine cellulose fiber by acting on the fine cellulose fiber when water is sublimated by decompression treatment after freezing. In particular, when finer microcellulose fibers are used to make a porous body with a high porosity, it is considered that breakage is more likely to occur because the resistance to stress of the microcellulose fibers themselves is small. It is done. It is thought that the high porosity is inhibited by the breakage of the fine cellulose fibers.

本発明では、微小セルロース繊維の分散水溶液を下方から上方に向けて凍結させていくことで、内部に応力が残留していない一様な氷とすることができ、この氷を減圧することで水を昇華させた際に、微小セルロース繊維に破断を生じさせることなく乾燥させて、マット状の多孔質体とすることができる。   In the present invention, the dispersed aqueous solution of fine cellulose fibers is frozen from below to above, so that uniform ice with no residual stress can be obtained. When sublimated, the fine cellulose fibers can be dried without causing breakage to form a mat-like porous body.

冷凍庫内で微小セルロース繊維の分散水溶液を凍結させる際に、当然ながら冷凍庫の雰囲気と接触している液面側からも凍結が生じる可能性がある。液面全体が分散水溶液の内部よりも先に凍結してしまうと、応力の閉じ込めを生じるおそれがあるため、冷凍庫内は、-20〜0℃とした氷点下空間として、液面をできるだけ最後に凍結させることが望ましい。   When freezing the dispersed aqueous solution of fine cellulose fibers in the freezer, naturally, freezing may also occur from the liquid surface side in contact with the freezer atmosphere. If the entire liquid surface freezes before the inside of the aqueous dispersion, stress confinement may occur, so the freezer is frozen at the end of the freezing space at -20 to 0 ° C as much as possible. It is desirable to make it.

一様に凍結した氷は減圧乾燥機に入れて水を昇華させ、乾燥させている。具体的には、減圧状態として10Paとし、24時間維持することで、乾燥させた。   The uniformly frozen ice is dried in a vacuum dryer by sublimating water. Specifically, the pressure was reduced to 10 Pa and maintained for 24 hours for drying.

凍結乾燥させて形成された多孔質体は、直径7.083cmの円形状のマットとなっており、厚さ0.993cmで、重さ0.618gであった。凍結乾燥させて形成された多孔質体の見かけ密度は0.016g/cm3であり、微小セルロース繊維の繊維密度が1.5g/cm3であることから、空隙率は98.93%であった。理論値では、重さ0.500gで、見かけ密度0.013g/cm3で、空隙率99.13%であり、実測値とほぼ一致しているといえる。 The porous body formed by freeze-drying was a circular mat having a diameter of 7.083 cm, a thickness of 0.993 cm, and a weight of 0.618 g. The apparent density of the porous body formed by freeze-drying was 0.016 g / cm 3 , and the fiber density of the microcellulose fibers was 1.5 g / cm 3 , and thus the porosity was 98.93%. The theoretical value is 0.500 g, the apparent density is 0.013 g / cm 3 , and the porosity is 99.13%.

他の実施例として、微小セルロース繊維の分散水溶液における微小セルロース繊維の濃度を0.8wt%とした場合の多孔質体を作成した。すなわち、固形分が2.0wt%の微小セルロース繊維分散水20gに蒸留水30gを加えて微小セルロース繊維の濃度が0.8wt%の微小セルロース繊維の分散水溶液を作成し、上述した微小セルロース繊維の濃度が1.0wt%の場合と同じ手順で多孔質体を作成した。   As another example, a porous body was prepared when the concentration of the fine cellulose fibers in the aqueous dispersion of fine cellulose fibers was 0.8 wt%. That is, by adding 30 g of distilled water to 20 g of fine cellulose fiber dispersion water having a solid content of 2.0 wt%, a dispersion solution of fine cellulose fibers having a concentration of micro cellulose fibers of 0.8 wt% was prepared. A porous material was prepared by the same procedure as in the case of 1.0 wt%.

凍結乾燥させて形成された多孔質体は、直径7.235cmの円形状のマットとなっており、厚さ0.934cmで、重さ0.491gであった。凍結乾燥させて形成された多孔質体の見かけ密度は0.013g/cm3であり、微小セルロース繊維の繊維密度が1.5g/cm3であることから、空隙率は99.13%であった。理論値では、重さ0.400gで、見かけ密度0.010g/cm3で、空隙率99.33%であり、実測値とほぼ一致しているといえる。 The porous body formed by freeze-drying was a circular mat having a diameter of 7.235 cm, a thickness of 0.934 cm, and a weight of 0.491 g. The apparent density of the porous body formed by freeze-drying was 0.013 g / cm 3 , and the fiber density of the fine cellulose fibers was 1.5 g / cm 3 , and thus the porosity was 99.13%. The theoretical value is 0.400 g, the apparent density is 0.010 g / cm 3 , the porosity is 99.33%, and can be said to be almost in agreement with the measured value.

さらに他の実施例として、微小セルロース繊維の分散水溶液における微小セルロース繊維の濃度を1.5wt%とした場合の多孔質体を作成した。すなわち、固形分が2.0wt%の微小セルロース繊維分散水37.5gに蒸留水12.5gを加えて微小セルロース繊維の濃度が1.5wt%の微小セルロース繊維の分散水溶液を作成し、上述した微小セルロース繊維の濃度が1.0wt%の場合と同じ手順で多孔質体を作成した。   As yet another example, a porous material was prepared in the case where the concentration of the fine cellulose fiber in the dispersed aqueous solution of the fine cellulose fiber was 1.5 wt%. That is, 12.5 g of distilled water was added to 37.5 g of fine cellulose fiber dispersion water having a solid content of 2.0 wt% to prepare a dispersed aqueous solution of fine cellulose fibers having a concentration of 1.5 wt% of the fine cellulose fibers. A porous material was prepared by the same procedure as when the concentration was 1.0 wt%.

凍結乾燥させて形成された多孔質体は、直径7.160cmの円形状のマットとなっており、厚さ1.085cmで、重さ0.907gであった。凍結乾燥させて形成された多孔質体の見かけ密度は0.021g/cm3であり、微小セルロース繊維の繊維密度が1.5g/cm3であることから、空隙率は98.60%であった。理論値では、重さ0.750gで、見かけ密度0.017g/cm3で、空隙率98.86%であり、実測値とほぼ一致しているといえる。 The porous body formed by freeze-drying was a circular mat having a diameter of 7.160 cm, a thickness of 1.085 cm, and a weight of 0.907 g. The apparent density of the porous body formed by freeze-drying was 0.021 g / cm 3 , and the fiber density of the microcellulose fibers was 1.5 g / cm 3 , and thus the porosity was 98.60%. The theoretical value is 0.750 g, apparent density is 0.017 g / cm 3 , and porosity is 98.86%, which is almost consistent with the measured value.

このように、微小セルロース繊維の分散水溶液における微小セルロース繊維の濃度を1.0wt%以下とすることで、空隙率を99%以上とすることができ、高空隙率の多孔質体を製造することができる。   Thus, by setting the concentration of the fine cellulose fibers in the dispersed aqueous solution of fine cellulose fibers to 1.0 wt% or less, the porosity can be set to 99% or more, and a porous body having a high porosity can be produced. it can.

Claims (2)

微小セルロース繊維の分散水溶液を凍結乾燥させて成る多孔質体の製造方法において、
前記分散水溶液を凍結乾燥させる際に、前記分散水溶液を有底筒状の金属製の容器に貯留して、前記分散水溶液を-20〜0℃とした氷点下空間内に静置することで前記分散水溶液を下方から上方に向けて凍結させ、その後、減圧することで水を昇華させる多孔質体の製造方法。
In a method for producing a porous body obtained by freeze-drying an aqueous dispersion of fine cellulose fibers,
When the dispersion aqueous solution is freeze-dried, the dispersion aqueous solution is stored in a cylindrical metal container with a bottom, and the dispersion aqueous solution is allowed to stand in a freezing point space of −20 to 0 ° C. A method for producing a porous body, in which an aqueous solution is frozen from below to above and then sublimated by reducing pressure.
前記分散水溶液の前記微小セルロース繊維の濃度を1.0wt%以下としている請求項1に記載の多孔質体の製造方法。 The method for producing a porous body according to claim 1, wherein the concentration of the fine cellulose fibers in the dispersed aqueous solution is 1.0 wt% or less .
JP2016021206A 2016-02-05 2016-02-05 Method for producing porous body and porous body Active JP5988121B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021206A JP5988121B1 (en) 2016-02-05 2016-02-05 Method for producing porous body and porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021206A JP5988121B1 (en) 2016-02-05 2016-02-05 Method for producing porous body and porous body

Publications (2)

Publication Number Publication Date
JP5988121B1 true JP5988121B1 (en) 2016-09-07
JP2017137459A JP2017137459A (en) 2017-08-10

Family

ID=56871739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021206A Active JP5988121B1 (en) 2016-02-05 2016-02-05 Method for producing porous body and porous body

Country Status (1)

Country Link
JP (1) JP5988121B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208846A (en) * 1995-02-03 1996-08-13 Rengo Co Ltd Production of dried porous cellulose particle
JPH11255806A (en) * 1998-03-13 1999-09-21 Bio Polymer Reserch:Kk Freeze-drying method of concentrated fine fibrous cellulose
JP2010013568A (en) * 2008-07-04 2010-01-21 New Industry Research Organization Porous nanomaterial-dispersed material and method for producing the same
JP2010215872A (en) * 2009-03-19 2010-09-30 Toray Ind Inc Cellulose porous body and method for producing the same
JP2012082242A (en) * 2010-10-06 2012-04-26 Hitachi Chemical Co Ltd Method for manufacturing silk fibroin porous body
JP2013253137A (en) * 2012-06-05 2013-12-19 Hokuetsu Kishu Paper Co Ltd Porous cellulose body and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208846A (en) * 1995-02-03 1996-08-13 Rengo Co Ltd Production of dried porous cellulose particle
JPH11255806A (en) * 1998-03-13 1999-09-21 Bio Polymer Reserch:Kk Freeze-drying method of concentrated fine fibrous cellulose
JP2010013568A (en) * 2008-07-04 2010-01-21 New Industry Research Organization Porous nanomaterial-dispersed material and method for producing the same
JP2010215872A (en) * 2009-03-19 2010-09-30 Toray Ind Inc Cellulose porous body and method for producing the same
JP2012082242A (en) * 2010-10-06 2012-04-26 Hitachi Chemical Co Ltd Method for manufacturing silk fibroin porous body
JP2013253137A (en) * 2012-06-05 2013-12-19 Hokuetsu Kishu Paper Co Ltd Porous cellulose body and method for producing the same

Also Published As

Publication number Publication date
JP2017137459A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
Jiménez-Saelices et al. Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels
Gurikov et al. A novel approach to alginate aerogels: Carbon dioxide induced gelation
Ding et al. Facile preparation of robust and biocompatible chitin aerogels
Jiménez-Saelices et al. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties
Zhu et al. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties
Romero-Anaya et al. Spherical carbons: Synthesis, characterization and activation processes
CN110172185A (en) A kind of anisotropy nano-cellulose aerogel and preparation method thereof and device
Taer et al. Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition
CN114957788A (en) Hydrophobic polyethyleneimine/cellulose composite aerogel and preparation method and application thereof
JP2018140905A (en) Method for producing ceramic porous body, and ceramic porous body
Pourhaghgouy et al. Physical and mechanical properties of the fully interconnected chitosan ice‐templated scaffolds
JP6999131B2 (en) How to make activated carbon
JP5988121B1 (en) Method for producing porous body and porous body
CN115403822A (en) Preparation method of polyimide aerogel with negative Poisson's ratio cylindrical spiral line type pore structure
Li et al. Foam materials with controllable pore structure prepared from nanofibrillated cellulose with addition of alcohols
Zhang et al. Preparation of cellulose/chitosan superoleophobic aerogel with cellular pores for oil/water separation
Huber et al. Monolithic nitrogen-doped carbon as a water sorbent for high-performance adsorption cooling
JP5481648B2 (en) Hydrogen storage method, hydrogen storage device, and carbon material for hydrogen storage
JP5494024B2 (en) Porous material and method for producing the same
Voges et al. Ice‐Templated Poly (vinyl alcohol): Enhanced Strength and Low Thermal Conductivity
JP2013112572A (en) Hydrogen occlusion method, and hydrogen occluding material
Hudelja et al. Freeze-casting of highly porous cellulose-nanofiber-reinforced γ˗ Al2O3 monoliths
CN110452480B (en) Preparation method of ultra-light heat-insulating flexible aerogel
WO2023067749A1 (en) Honeycomb structure and method for manufacturing same
CN114797747B (en) Super-elastic and high-adsorptivity MXene aerogel and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5988121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250