JP5987675B2 - Steel cooling method and cooling equipment - Google Patents

Steel cooling method and cooling equipment Download PDF

Info

Publication number
JP5987675B2
JP5987675B2 JP2012277676A JP2012277676A JP5987675B2 JP 5987675 B2 JP5987675 B2 JP 5987675B2 JP 2012277676 A JP2012277676 A JP 2012277676A JP 2012277676 A JP2012277676 A JP 2012277676A JP 5987675 B2 JP5987675 B2 JP 5987675B2
Authority
JP
Japan
Prior art keywords
cooling
steel material
steel
oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012277676A
Other languages
Japanese (ja)
Other versions
JP2013151744A (en
Inventor
雄太 田村
雄太 田村
直樹 中田
直樹 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012277676A priority Critical patent/JP5987675B2/en
Publication of JP2013151744A publication Critical patent/JP2013151744A/en
Application granted granted Critical
Publication of JP5987675B2 publication Critical patent/JP5987675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

本発明は、鋼材の冷却方法および冷却設備に関するものであり、特に、肉厚の鋼材を冷却用水槽に浸漬して冷却する、いわゆる浸漬冷却に用いられる冷却設備および冷却方法に関する。   The present invention relates to a steel material cooling method and cooling equipment, and more particularly, to a cooling equipment and cooling method used for so-called immersion cooling in which a thick steel material is immersed in a cooling water tank for cooling.

厚鋼板など肉厚の厚い鋼材の製造において、多量の合金成分の添加を行わずに高強度、高靭性を得るためには、オフラインでローラークエンチによる熱処理を行うのが一般的である。しかし、例えば板厚が100mmを超える極厚鋼板のような鋼材は、テーブルローラーがたわむなどの搬送上の問題が生じるため、冷却用水槽に浸漬して焼入処理が行なわれる。たとえば、図5に示すような設備において、鋼材7を加熱炉1で加熱した後、台車2で鋼材7を炉外に抽出し、クレーン4および吊具5で吊上げて冷却用水槽3内の水8に浸漬させる方法がとられており、焼入中の冷却速度を速くするほど高強度で高靭性な材質が得られることとなる。   In producing a thick steel material such as a thick steel plate, in order to obtain high strength and high toughness without adding a large amount of alloy components, it is common to perform heat treatment by roller quenching off-line. However, for example, a steel material such as a very thick steel plate having a plate thickness exceeding 100 mm has a problem in conveyance such as bending of a table roller, so that it is immersed in a cooling water tank and subjected to a quenching process. For example, in a facility as shown in FIG. 5, after the steel material 7 is heated in the heating furnace 1, the steel material 7 is extracted out of the furnace with the carriage 2, and is lifted by the crane 4 and the hanging tool 5 to be water in the cooling water tank 3. The method of immersing in 8 is taken, and the higher the cooling rate during quenching, the higher the strength and toughness of the material will be obtained.

高い冷却速度を得るためには、鋼材表面に高流速の噴流を衝突させるなどして、冷却を促進する技術が知られている。これは、通常、冷却用水槽内に多数のノズルを配置し、多量の冷却水を鋼材全面に噴射させることにより実現される。   In order to obtain a high cooling rate, a technique for promoting cooling by causing a jet of high flow velocity to collide with the steel surface is known. This is usually realized by arranging a large number of nozzles in the cooling water tank and injecting a large amount of cooling water over the entire surface of the steel material.

一方、噴流衝突以外の冷却方法として、酸化物などの膜を鋼材表面に形成させた状態で水冷する技術が知られている。   On the other hand, as a cooling method other than jet collision, a technique of water cooling in a state where a film of oxide or the like is formed on a steel material surface is known.

特許文献1には、表面膜塗布装置から粉状の表面膜材(例えば酸化物セラミック系耐熱塗料やセラミック系耐熱塗料)をスケールの剥離部やスケール厚みの薄い部分に噴射して表面膜を形成することにより、鋼板表面のスケールを含めての膜厚が均一となり、均一な冷却によって鋼板形状の平坦度の向上を図る技術が開示されている。   In Patent Document 1, a surface film is formed by spraying a powdery surface film material (for example, an oxide ceramic heat-resistant paint or a ceramic heat-resistant paint) from a surface film coating apparatus onto a peeling part of a scale or a thin part of the scale. Thus, a technique is disclosed in which the film thickness including the scale on the steel sheet surface becomes uniform, and the flatness of the steel sheet shape is improved by uniform cooling.

特許文献2には、鋳造、熱処理等の高温における製造工程で不可避的に起こる酸化皮膜の生成に加えて、更に酸化皮膜の生成を促進するための処理を行って金属部材表面に酸化皮膜を形成した状態で浸漬焼入れを行う技術が開示されている。   In Patent Document 2, an oxide film is formed on the surface of a metal member by performing a process for further promoting the generation of an oxide film in addition to the generation of an oxide film inevitably generated in a manufacturing process at a high temperature such as casting and heat treatment. A technique for performing immersion quenching in the above state is disclosed.

特開2001−300627号公報Japanese Patent Laid-Open No. 2001-300627 特開2003−213324号公報JP 2003-213324 A

鋼材焼入時の鋼材板厚中心部の冷却速度は図2に示すように鋼材板厚が厚いほど低下する。図2は、900℃に加熱した厚鋼板を水中に浸漬させた際の、板厚中心部の冷却速度に及ぼす板厚の影響を示す。図2において、横軸は厚鋼板の板厚で、縦軸は板厚中心部における800℃から400℃までの平均冷却速度である。図2からわかるように、板厚中心部では800℃から400℃までの平均冷却速度は、例えば板厚が100mmの場合は2℃/sであるが、板厚が200mmの場合は0.5℃/sと非常に低くなる。したがって、本発明が対象とするように、浸漬冷却による熱処理が必要とされる肉厚の鋼材の熱処理に対しては、冷却速度増加のための対策が特に重要となっている。   As shown in FIG. 2, the cooling rate of the steel plate thickness center portion at the time of quenching the steel decreases as the steel plate thickness increases. FIG. 2 shows the influence of the plate thickness on the cooling rate at the center of the plate thickness when the thick steel plate heated to 900 ° C. is immersed in water. In FIG. 2, the horizontal axis is the thickness of the thick steel plate, and the vertical axis is the average cooling rate from 800 ° C. to 400 ° C. at the center of the plate thickness. As can be seen from FIG. 2, the average cooling rate from 800 ° C. to 400 ° C. at the center of the plate thickness is, for example, 2 ° C./s when the plate thickness is 100 mm, but is 0.5 when the plate thickness is 200 mm. It becomes very low as ° C / s. Therefore, as the object of the present invention, a measure for increasing the cooling rate is particularly important for heat treatment of a thick steel material that requires heat treatment by immersion cooling.

ところで、一般に、高温鋼材の冷却では、鋼材表面が高温の領域では膜沸騰状態となり、鋼材表面は蒸気膜で覆われるため、膜沸騰状態での冷却能力は小さい。鋼材の冷却が更に進行すると、鋼材表面温度が下がり膜沸騰と核沸騰が混在する遷移沸騰が起こり、冷却能力は急激に増大する。   By the way, in general, when cooling a high temperature steel material, the surface of the steel material is in a film boiling state in a high temperature region, and the steel material surface is covered with a vapor film, so that the cooling capacity in the film boiling state is small. When the cooling of the steel material further proceeds, the steel material surface temperature decreases and transition boiling in which film boiling and nucleate boiling are mixed occurs, and the cooling capacity increases rapidly.

このため、高い冷却速度を得るためには、蒸気膜を破壊して冷却の初期段階から遷移沸騰(または核沸騰)を起こすことが有効である。鋼材表面に十分に高流速の噴流を衝突させると、図3の冷却曲線Bのように冷却の初期段階から遷移沸騰を起こし、冷却速度が速くなることが知られている。しかし、そのためには、鋼材全体の表面においてその状態を実現するためには、冷却用水槽内に高流速の噴流を形成可能な多数のノズルを配置し、多量の冷却水を鋼板全面に噴射させなければならないので、設備コストが膨大となるという問題がある。さらに、ノズルの配置によっては冷却むらができてしまうという問題もある。   Therefore, in order to obtain a high cooling rate, it is effective to cause transition boiling (or nucleate boiling) from the initial stage of cooling by destroying the vapor film. It is known that when a sufficiently high flow velocity jet is made to collide with the steel surface, transition boiling occurs from the initial stage of cooling as shown by a cooling curve B in FIG. 3, and the cooling rate increases. However, for that purpose, in order to realize the state on the entire surface of the steel material, a large number of nozzles capable of forming a high flow velocity jet are arranged in the cooling water tank, and a large amount of cooling water is injected over the entire surface of the steel plate. Therefore, there is a problem that the equipment cost becomes enormous. Furthermore, there is a problem that uneven cooling may occur depending on the arrangement of the nozzles.

これに対して、特許文献1や2に記載される技術は、酸化物などの膜を鋼材表面に形成させた状態で水冷時の冷却挙動を制御するもので、上述のような大掛かりな設備を必ずしも必要としない点で注目される。   On the other hand, the techniques described in Patent Documents 1 and 2 control the cooling behavior during water cooling in a state where a film such as an oxide is formed on the surface of the steel material. It is noted that it is not always necessary.

しかしながら、特許文献1の技術は、厚鋼板の仕上圧延後に厚鋼板を制御冷却する方法であり、本発明が対象とする冷却用水槽を使った極厚鋼板の焼入処理とは冷却方式が全く異なること、また、酸化皮膜形成の目的が、スケール厚み分布に応じてスケールの薄い部分に酸化皮膜を形成し、この部分の冷却速度を酸化皮膜形成前に比べて遅くすることにより鋼板全体における冷却速度の均一化を図り、鋼板形状の平坦度向上と材質の均一化を図るものであって、積極的に鋼材全体についての冷却能力を上げようとする技術ではない。   However, the technique of Patent Document 1 is a method of controlling and cooling a thick steel plate after finish rolling of the thick steel plate, and the cooling method is completely different from the quenching treatment of the extra thick steel plate using the cooling water tank targeted by the present invention. The purpose of forming an oxide film is to form an oxide film on a thin part of the scale according to the scale thickness distribution, and the cooling rate of this part is reduced compared to before the oxide film is formed. It is intended to make the speed uniform, improve the flatness of the steel plate shape, and make the material uniform, and is not a technique for actively increasing the cooling capacity of the entire steel material.

また、特許文献2の技術は、鋼材の表面に酸化皮膜を形成してから冷却用水槽に浸漬する技術であり、金属部材表面に酸化皮膜を形成した状態で浸漬焼入れすると、膜沸騰が短時間で終了し冷却速度が高まるとの知見を活用している。そして、焼入れ時の冷却速度が他の部位よりも遅くなる特定部位にのみ酸化皮膜を形成することにより、特定部位の冷却速度を高めて部材全体の冷却速度を均一化できることが記載されている。   The technique of Patent Document 2 is a technique in which an oxide film is formed on the surface of a steel material and then immersed in a cooling water tank. When immersion and quenching is performed in a state where an oxide film is formed on the surface of a metal member, film boiling is short. The knowledge that the cooling rate will end and the cooling rate will increase will be utilized. And it is described that the cooling rate of a specific part can be raised and the cooling rate of the whole member can be equalize | homogenized by forming an oxide film only in the specific part where the cooling rate at the time of hardening becomes slower than another part.

しかしながら、特許文献2の技術は、鋼材の表面に酸化剤を塗布してから酸化皮膜を形成する技術である。このため、酸化剤を鋼材表面に均一に塗布した上で、さらに加熱条件を厳密に制御しなければ、均一な酸化皮膜を形成することができず、酸化皮膜の均一性が不十分だと、水中への浸漬時の冷却挙動も不均一となり、材質の均一性に悪影響を及ぼすおそれがあった。   However, the technique of Patent Document 2 is a technique for forming an oxide film after applying an oxidizing agent to the surface of a steel material. For this reason, after uniformly applying the oxidizing agent to the steel material surface, if the heating conditions are not strictly controlled, a uniform oxide film cannot be formed, and the uniformity of the oxide film is insufficient. The cooling behavior when immersed in water is also non-uniform, which may adversely affect the uniformity of the material.

本発明は、冷却用水槽を使って鋼材を浸漬冷却する焼入処理において、高速噴流の冷却装置を用いずに高い冷却速度での冷却を実現し、高強度、高靭性の鋼材を得られる冷却方法、冷却設備を提供することを目的とする。   The present invention realizes cooling at a high cooling rate without using a high-speed jet cooling device in the quenching process in which the steel material is immersed and cooled using a cooling water tank, and can obtain a steel material having high strength and high toughness. The object is to provide a method and cooling equipment.

本発明者は、鋼材表面に所定膜厚の酸化膜を形成するに際して、酸化剤を塗布した後に酸化反応を起こして酸化皮膜を形成するのではなく、初めから酸化物を鋼材表面に膜状に塗布して形成すれば、酸化処理の不安定性に起因する酸化膜厚の不均一を回避できることを想到した。そして、さらに検討を加えて本発明に至った。   The present inventor, when forming an oxide film having a predetermined thickness on the steel material surface, does not cause an oxidation reaction after applying an oxidizing agent to form an oxide film, but forms an oxide film on the steel material surface from the beginning. It was conceived that if formed by coating, non-uniformity of the oxide film thickness due to instability of the oxidation treatment can be avoided. Further studies were made to arrive at the present invention.

本発明の要旨は以下の通りである。   The gist of the present invention is as follows.

[1]表面に金属酸化物または無機酸化物を含有する膜を有する高温鋼材を、冷却用水槽に浸漬して浸漬焼入処理することを特徴とする鋼材の冷却方法。   [1] A method for cooling a steel material, characterized in that a high-temperature steel material having a film containing a metal oxide or an inorganic oxide on the surface is immersed in a cooling water bath and subjected to an immersion quenching treatment.

[2]前記酸化物を含有する膜は、膜厚が5mm以下であることを特徴とする前記[1]に記載の鋼材の冷却方法。   [2] The method for cooling a steel material according to [1], wherein the film containing the oxide has a thickness of 5 mm or less.

[3]前記酸化物を含有する膜は、鋼材表面の複数箇所に形成されており、前記酸化物を含有する膜形成部分の合計の面積が鋼材全表面の10%以上であり、隣り合う膜形成部分の間隔が鋼材の肉厚の2倍未満であることを特徴とする前記[1]または[2]に記載の鋼材の冷却方法。   [3] The film containing the oxide is formed at a plurality of locations on the surface of the steel material, and the total area of the film-forming portions containing the oxide is 10% or more of the entire surface of the steel material. The method for cooling a steel material according to [1] or [2], wherein the interval between the formed portions is less than twice the thickness of the steel material.

[4]前記冷却用水槽の容積が鋼材の体積の20倍以上であることを特徴とする前記[1]乃至[3]のいずれか1項に記載の鋼材の冷却方法。   [4] The method for cooling a steel material according to any one of [1] to [3], wherein a volume of the cooling water tank is 20 times or more a volume of the steel material.

[5]加熱した鋼材の表面に、金属酸化物または無機酸化物を含有する液体をスプレー状に塗布することにより、前記酸化物を含有する膜を形成し、その後に、前記鋼材を冷却用水槽に浸漬して浸漬焼入処理することを特徴とする前記[1]乃至[4]の何れか1項に記載の鋼材の冷却方法。   [5] A liquid containing a metal oxide or an inorganic oxide is sprayed on the surface of the heated steel material to form a film containing the oxide, and then the steel material is cooled in a water tank for cooling. The method for cooling a steel material according to any one of the above [1] to [4], wherein the steel material is immersed and quenched.

[6]表面に金属酸化物または無機酸化物を膜状に塗布した鋼材を、加熱後、冷却用水槽に浸漬して浸漬焼入処理することを特徴とする前記[1]乃至[4]の何れか1項に記載の鋼材の冷却方法。   [6] The above-mentioned [1] to [4], wherein a steel material having a metal oxide or inorganic oxide coated on its surface in a film form is immersed in a cooling water bath after being heated and subjected to immersion quenching treatment The cooling method of the steel materials of any one of Claims 1.

[7]鋼材を加熱する加熱炉と、加熱炉に装入する前、または加熱炉から抽出した後の鋼材表面に金属酸化物または無機酸化物をスプレー状に塗布する塗布装置と、鋼材全体を冷却水に浸漬できる冷却用水槽とを近接させて設置することを特徴とする鋼材の冷却設備。   [7] A heating furnace for heating a steel material, a coating apparatus for spraying a metal oxide or an inorganic oxide on the surface of the steel material before being charged into the heating furnace or after being extracted from the heating furnace, and the entire steel material A cooling equipment for steel material, which is installed close to a cooling water tank that can be immersed in cooling water.

本発明の鋼材の冷却方法及び冷却設備を用いると、冷却用水槽に浸漬させた鋼材を高い冷却速度で冷却することができるため、高強度・高靭性の鋼材の製造が可能となる。また、高速噴流の冷却装置を用いずに高い冷却速度での冷却を実現するので、膨大な設備コストがかかるという問題がない。   Since the steel material immersed in the cooling water tank can be cooled at a high cooling rate by using the steel material cooling method and cooling equipment of the present invention, it becomes possible to produce a steel material having high strength and high toughness. Further, since cooling at a high cooling rate is realized without using a high-speed jet cooling device, there is no problem of enormous equipment costs.

酸化物の鋼板への塗布方法の一例を説明する図である。It is a figure explaining an example of the coating method to the steel plate of an oxide. 板厚と板厚中心部の冷却速度との関係を説明する図である。It is a figure explaining the relationship between plate | board thickness and the cooling rate of a plate | board thickness center part. 焼入処理における温度と時間との関係を説明する図である。It is a figure explaining the relationship between the temperature and time in a quenching process. 酸化物の鋼板への塗布方法の他の例を説明する図である。It is a figure explaining the other example of the application | coating method to the steel plate of an oxide. 冷却用水槽を使った従来の焼入処理を説明する図である。It is a figure explaining the conventional hardening process using the water tank for cooling. 酸化物を含有する膜が鋼材表面の複数個所に形成された例を説明する図である。It is a figure explaining the example in which the film | membrane containing an oxide was formed in several places of the steel material surface. 酸化物を含有する膜が鋼材表面の複数個所に形成された例を説明する図である。It is a figure explaining the example in which the film | membrane containing an oxide was formed in several places of the steel material surface.

極厚鋼板を高い冷却速度で冷却するには、極厚鋼板の加熱前に鋼板の表面に金属酸化物(例えばAl、Cr、TiO、BeO、MgO、ZnO)または無機酸化物(例えばSiO、CaO、SnO、B)を含有する膜を有する高温鋼材を、冷却用水槽に浸漬して浸漬焼入処理すればよい。ここで、高温とは、一般的な焼入れ処理であれば、Ar変態点以上の温度を指す。なお、オーステナイト−フェライト二相域に加熱してから冷却するいわゆる二相域焼入れの場合には、高温とは、Ar変態点を超えてAr変態点未満の温度域を指す。 In order to cool an extremely thick steel plate at a high cooling rate, a metal oxide (for example, Al 2 O 3 , Cr 2 O 3 , TiO 2 , BeO, MgO, ZnO) or inorganic is applied to the surface of the steel plate before heating the extremely thick steel plate. oxide (e.g. SiO 2, CaO, SnO 2, B 2 O 3) high temperature steel having a film containing, may be immersed in immersion quenching treatment to the cooling water tank. Here, the high temperature indicates a temperature equal to or higher than the Ar 3 transformation point in a general quenching process. In addition, in the case of so-called two-phase quenching in which the austenite-ferrite two-phase region is heated and then cooled, the high temperature indicates a temperature range exceeding the Ar 1 transformation point and less than the Ar 3 transformation point.

高温鋼材の表面に金属酸化物または無機酸化物を含有する膜を形成するには、たとえば、極厚鋼板の加熱前に鋼板の表面に金属酸化物または無機酸化物を膜状に塗布することができる。   In order to form a film containing a metal oxide or an inorganic oxide on the surface of a high-temperature steel material, for example, a metal oxide or an inorganic oxide may be applied to the surface of the steel sheet in the form of a film before heating the very thick steel sheet. it can.

塗布方法としては、台車上に置かれた極厚鋼板に前記酸化物を含有する液体をはけなどで全面に塗布する方法がある。または、例えば図4に示すように、台車上の鋼板(鋼材)7片面に前記酸化物を含有する液体をスプレー状に塗布し、台車2で搬送後、クレーン4などで吊り上げて鋼板7を裏返し、もう一方の面にもスプレー6で塗布する方法がある。塗布した液体中の前記酸化物は加熱中に鋼板表面に焼付き、塗膜が形成される。この状態で浸漬冷却を行うと、冷却能力(水冷熱伝達係数)が5倍以上に上昇する。   As a coating method, there is a method in which a liquid containing the oxide is applied to the entire surface of a very thick steel plate placed on a carriage by brushing or the like. Or, for example, as shown in FIG. 4, a liquid containing the oxide is sprayed on one surface of a steel plate (steel material) 7 on a carriage, transported by the carriage 2, lifted by a crane 4, etc., and turned upside down. There is also a method of applying with the spray 6 on the other surface. The oxide in the applied liquid is baked on the surface of the steel plate during heating, and a coating film is formed. When immersion cooling is performed in this state, the cooling capacity (water-cooling heat transfer coefficient) increases five times or more.

例えば板厚が200mmの場合では、板厚中心部での800℃から400℃までの平均冷却速度は、従来の0.5℃/sから1.0℃/sまで大きくなり、高強度・高靭性の材質を得ることが可能となる。この方法だと、高速噴流の冷却装置などを用いずに高い冷却速度で冷却を行うことができるので、膨大な設備コストがかかるという問題は生じない。   For example, when the plate thickness is 200 mm, the average cooling rate from 800 ° C. to 400 ° C. at the center of the plate thickness increases from the conventional 0.5 ° C./s to 1.0 ° C./s. A tough material can be obtained. With this method, the cooling can be performed at a high cooling rate without using a high-speed jet cooling device or the like, so that there is no problem of enormous equipment costs.

また、鋼材を加熱する前ではなく、加熱した後であっても、図1に示すように冷却用水槽3に浸漬する直前に前記酸化物を含有する液体をスプレー状に塗布することによって、鋼材7を高い冷却速度で冷却することができる。この方法により、鋼材の表裏全面に前記酸化物を均一に塗布することができ、鋼材全面を高い冷却速度で冷却することが可能となり、高強度・高靭性で材質ばらつきの小さい高品質の鋼材を製造できる。   Also, even before the steel material is heated, even after it is heated, the steel material is applied by spraying the liquid containing the oxide just before being immersed in the cooling water tank 3 as shown in FIG. 7 can be cooled at a high cooling rate. By this method, the oxide can be uniformly applied to the entire front and back surfaces of the steel material, and the entire surface of the steel material can be cooled at a high cooling rate, and a high-quality steel material with high strength, high toughness and small material variation can be obtained. Can be manufactured.

次に鋼材の加熱条件、酸化物の塗布条件等について説明する。   Next, heating conditions for steel materials, conditions for applying oxides, and the like will be described.

酸化物の膜厚:5mm以下
前記酸化物の膜厚は5mm以下として塗布すれば、冷却速度が速くなり、高強度・高靭性の材質を得ることができる。これは、酸化物は水に対する濡れ性がよいので、酸化物の膜を鋼材表面に形成することにより、鋼材表面において容易に、遷移沸騰、あるいは、膜沸騰の状態が実現されるためである。この効果は、酸化物の膜厚が1μm以上のときに発揮される。なお、酸化物の膜厚は乾燥状態での膜厚とする。
Film thickness of oxide: 5 mm or less If the film thickness of the oxide is 5 mm or less, the cooling rate is increased and a material having high strength and high toughness can be obtained. This is because oxides have good wettability with water, and therefore, by forming an oxide film on the steel material surface, transition boiling or film boiling can be easily realized on the steel material surface. This effect is exhibited when the oxide film thickness is 1 μm or more. Note that the thickness of the oxide is a thickness in a dry state.

膜厚が5mmを超えると、加熱または冷却中に酸化物が剥離しやすくなるほか、酸化物の熱伝導率が鋼材に比べて低いので、鋼材内部からの熱伝導が妨げられ、かえって冷却速度が低下するという問題が生じる。よって、酸化物の膜厚は5mm以下とするのがよい。より好適には3μm以上、0.5mm以下である。なお、酸化物の膜厚は、事前に、塗布条件と掲載される酸化膜の膜厚との関係を求めておくことにより、当条件を制御すれば所望の膜厚の酸化物膜を形成することができる。   When the film thickness exceeds 5 mm, the oxide is easily peeled off during heating or cooling, and the thermal conductivity of the oxide is lower than that of the steel material, so that the heat conduction from the inside of the steel material is hindered, and the cooling rate is rather high. The problem of deteriorating arises. Therefore, the oxide film thickness is preferably 5 mm or less. More preferably, it is 3 μm or more and 0.5 mm or less. Note that the oxide film thickness is determined in advance by controlling the conditions by obtaining the relationship between the coating conditions and the oxide film thickness described in advance. be able to.

膜形成部分の面積割合:10%以上
膜形成部分間の距離:鋼材の肉厚の2倍未満
前記酸化物を含有する膜形成部分は水冷直後に急冷されて、その周囲も熱伝導により急冷される。そのため、鋼材表面の全面に前記酸化物を塗布するなどして酸化物を含有する膜を形成することが理想的であるが、必ずしも鋼材表面の全面に酸化物を含有する膜を形成しなくとも、前記酸化物を含有する膜を鋼板表面の複数個所に形成されており、前記酸化物を含有する膜形成部分が鋼材の全表面の10%以上で、隣り合う膜形成部分の間隔が鋼材の肉厚の2倍より短くすることにより、鋼材全面を高い冷却速度で冷却することができ、高強度・高靭性の材質を得ることができるので好ましい。
Area ratio of film forming portion: 10% or more Distance between film forming portions: less than twice the thickness of steel material The film forming portion containing the oxide is quenched immediately after water cooling, and its surroundings are also rapidly cooled by heat conduction The Therefore, it is ideal to form an oxide-containing film by coating the oxide on the entire surface of the steel material, but it is not always necessary to form an oxide-containing film on the entire surface of the steel material. The film containing the oxide is formed at a plurality of locations on the surface of the steel sheet, the film forming portion containing the oxide is 10% or more of the entire surface of the steel material, and the distance between adjacent film forming portions is that of the steel material. By making it shorter than twice the wall thickness, the entire steel material can be cooled at a high cooling rate, and a high-strength and high-toughness material can be obtained.

膜形成部分の面積が鋼材表面の10%未満となると、鋼材の平均冷却速度が遅くなり、強度・靭性を確保するのに必要とされる冷却速度を満足できないおそれがある。従って、膜形成部分の面積割合は鋼材の全表面の10%以上とすることが好ましい。より好ましくは25%以上の範囲である。   If the area of the film forming portion is less than 10% of the surface of the steel material, the average cooling rate of the steel material becomes slow, and the cooling rate required to ensure strength and toughness may not be satisfied. Accordingly, the area ratio of the film forming portion is preferably 10% or more of the entire surface of the steel material. More preferably, it is 25% or more of range.

また、隣り合う膜形成部分間の距離が鋼材の肉厚の2倍以上となると、鋼材面内の冷却速度の差が大きくなり、材質にばらつきが生じてしまうおそれがある。よって、隣り合う膜形成部分の間隔は鋼材の肉厚の2倍未満とすることが好ましい。より好ましくは0.5倍以内である。   In addition, when the distance between adjacent film forming portions is twice or more the thickness of the steel material, the difference in the cooling rate within the steel material surface increases, which may cause variations in the material. Therefore, it is preferable that the interval between adjacent film forming portions is less than twice the thickness of the steel material. More preferably, it is within 0.5 times.

酸化物を含有する膜を鋼板表面の複数個所に形成する場合、その形状や大きさは特に限定されるものではない。たとえば、図6(a)〜図6(d)の酸化物を含有する膜が形成された部分20に示すように、矩形あるいは円形膜形成部分を格子状にあるいは千鳥に配置することができる。   When forming the film | membrane containing an oxide in the several places of the steel plate surface, the shape and magnitude | size are not specifically limited. For example, as shown in the portion 20 where the oxide-containing film in FIGS. 6A to 6D is formed, the rectangular or circular film forming portions can be arranged in a lattice pattern or in a staggered manner.

冷却用水槽の容積:鋼材体積の20倍以上
冷却用水槽焼入設備として鋼材体積の20倍以上の水を蓄えた冷却用水槽内で冷却すれば、冷却中に冷却用水槽内の水温が上昇して冷却能力が低下することはないため、高強度・高靭性の材質を確保することができるので好ましい。冷却用水槽内の水が鋼材体積の20倍未満である場合は、冷却中に冷却用水槽内の水温が上昇して冷却能力が低下し、強度・靭性が低下してしまうので、冷却用水槽の容積は鋼材体積の20倍以上とすることが好ましい。
Cooling tank volume: More than 20 times the volume of steel material Cooling in a cooling water tank that stores water more than 20 times the volume of steel material as a cooling water tank quenching facility will increase the water temperature in the cooling water tank during cooling Since the cooling capacity does not decrease, a material having high strength and high toughness can be secured, which is preferable. When the water in the cooling water tank is less than 20 times the volume of the steel material, the water temperature in the cooling water tank rises during cooling, the cooling capacity decreases, and the strength and toughness deteriorates. The volume is preferably 20 times or more the steel material volume.

鋼材の焼入れ処理に際して、本発明の冷却方法を用いる場合には、冷却開始前の鋼材の温度を、鋼材全体の組織が十分にオーステナイト化される温度に加熱することが好ましい。これにより、その後の浸漬冷却によって十分に焼きが入り、均一な材質の鋼材が得られる。なお、鋼材温度が1150℃を超えると、加熱中にオーステナイト粒が粗大化し、最終的に得られる組織も粗大化するため、靭性が低くなってしまい、所望の材質が確保できない可能性があるので、加熱温度は1150℃以下とすることが好ましい。   When using the cooling method of the present invention at the time of quenching the steel material, it is preferable to heat the temperature of the steel material before the start of cooling to a temperature at which the entire structure of the steel material is sufficiently austenitized. As a result, the steel is sufficiently fired by subsequent immersion cooling, and a steel material of a uniform material is obtained. If the steel material temperature exceeds 1150 ° C., the austenite grains coarsen during heating, and the finally obtained structure also coarsens, so that the toughness is lowered and a desired material may not be secured. The heating temperature is preferably 1150 ° C. or lower.

なお、本発明の冷却方法及び冷却設備は厚板の熱処理工程で用いれば大きな効果を発揮するが、本発明はこれに限るものではなく、鍛造品などの鋼材全般の熱処理工程に適用できる。   Although the cooling method and the cooling equipment of the present invention exert a great effect when used in the heat treatment process of a thick plate, the present invention is not limited to this, and can be applied to a heat treatment process of general steel materials such as forged products.

本発明において、加熱炉から塗布装置を経て冷却用水槽へ、あるいは、塗布装置から加熱炉を経て冷却用水槽へ、と鋼材を搬送するにあたり、鋼材の温度が各鋼種・焼入れ目的などで決定される焼入れ温度(冷却処理を施す直前の鋼材温度)が確保できる程度に、加熱炉と塗布装置と冷却装置とが近接していることが好ましい。   In the present invention, the temperature of the steel material is determined for each steel type, purpose of quenching, etc., when the steel material is transported from the heating furnace to the cooling water tank through the coating apparatus, or from the coating apparatus to the cooling water tank. It is preferable that the heating furnace, the coating device, and the cooling device are close to each other to such an extent that the quenching temperature (the steel material temperature immediately before the cooling treatment) can be secured.

以下、本発明の一実施例を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示す熱処理設備を用いた。台車2付き加熱炉1で重量25ton、板厚150mm、板幅2500mm、長さ8500mmの鋼板7を900℃まで再加熱した後、台車2によって鋼板7を加熱炉1から抽出し、クレーン4で鋼板7をその長手方向が略鉛直方向となるように吊具5を用いて吊り上げた。   The heat treatment equipment shown in FIG. 1 was used. The steel plate 7 having a weight of 25 ton, a plate thickness of 150 mm, a plate width of 2500 mm, and a length of 8500 mm was reheated to 900 ° C. in the heating furnace 1 with the carriage 2, and then the steel plate 7 was extracted from the heating furnace 1 with the carriage 2 and the steel plate with the crane 4. 7 was lifted using the lifting tool 5 so that the longitudinal direction thereof was substantially vertical.

冷却用水槽3の上方に鋼板7を移動させ、冷却用水槽3に浸漬前にSiOを含有した液体をスプレーノズル6によってスプレー噴射することでSiOを鋼板7の表面に表1に示す割合で塗布し、200mの水を蓄えた冷却用水槽3内に鋼板7を降下させて浸漬して、鋼板7全体が100℃以下になるまで冷却した。なお、比較のために酸化物を塗布しない場合についても浸漬試験を行った。 Moving the steel plate 7 above the cooling water tank 3, a ratio shown in Table 1 of SiO 2 on the surface of the steel sheet 7 by spraying by a spray nozzle 6 a liquid containing a SiO 2 before immersion in the cooling water tank 3 The steel plate 7 was lowered and immersed in the cooling water tank 3 in which 200 m 3 of water was stored, and the whole steel plate 7 was cooled to 100 ° C. or lower. For comparison, an immersion test was also performed when no oxide was applied.

本実施例で用いた鋼において目標とする材質(強度・靭性)を確保するためには、板厚中心での800℃から400℃の間の平均冷却速度は1.2℃/s以上にする必要があり、板厚中心部での800℃から400℃の間の平均冷却速度は1.2℃/s以上にすることを目標とした。ここで、板厚中心部の温度は、鋼板中心部まで穴を開けて取り付けた熱電対により測定した。
試験条件と試験結果を表1に示す。
In order to ensure the target material (strength / toughness) in the steel used in this example, the average cooling rate between 800 ° C. and 400 ° C. at the center of the plate thickness is 1.2 ° C./s or more. The average cooling rate between 800 ° C. and 400 ° C. at the center of the plate thickness was set to 1.2 ° C./s or more. Here, the temperature at the center of the plate thickness was measured by a thermocouple attached with a hole drilled to the center of the steel plate.
Test conditions and test results are shown in Table 1.

Figure 0005987675
Figure 0005987675

比較例1では、鋼板表面塗布物無しとして、冷却用水槽中に浸漬冷却した。板厚中心部における冷却速度は0.9℃/sと遅く、目標値よりも低かった。このように、目標とする冷却速度が得られなかったので、同じ冷却条件で目標とする強度・靭性達成するためには、多量の合金製分を追加添加した成分系の鋼を採用しなければならないことが分かった。   In Comparative Example 1, immersion cooling was performed in a cooling water bath with no coated steel sheet surface. The cooling rate at the center of the plate thickness was as low as 0.9 ° C./s, which was lower than the target value. In this way, the target cooling rate was not obtained, so in order to achieve the target strength and toughness under the same cooling conditions, it is necessary to employ steel with a component system added with a large amount of alloy components. I knew it wouldn't be.

発明例1では、加熱前、SiOを含有した液体をスプレーすることで、膜厚:0.05mmで、鋼板表面の10%の面積で塗布した。ここでは、SiOを含有した液体として、平均粒子径が0.1μmのSiO粒子を1mass%含有する水を用いた。塗布作業には、円形のフルコーンスプレーを用い、図7に示すように円形の膜を千鳥状配置に形成した。塗布部分は、鋼板の表面および裏面の合計で550箇所であり、隣接する塗布部分の間隔の最大値は250mmであった。 In Invention Example 1, before heating, a liquid containing SiO 2 was sprayed to form a film having a thickness of 0.05 mm and an area of 10% of the steel sheet surface. Here, as a liquid containing a SiO 2, with water containing 1 mass% of SiO 2 particles having an average particle size of 0.1 [mu] m. A circular full cone spray was used for the coating operation, and circular films were formed in a staggered arrangement as shown in FIG. The total number of coated portions on the front and back surfaces of the steel sheet was 550, and the maximum distance between adjacent coated portions was 250 mm.

こうして得られた鋼板を冷却用水槽中に浸漬冷却した。SiO塗布部では冷却開始とともに遷移沸騰が起こり、板厚中央部での冷却速度は1.5℃/sと高かった。それ以外の部分でも近傍のSiO塗布部に多量に熱が流れ、まもなく遷移沸騰が起こった結果、板厚中央部での冷却速度は1.2℃/sとなり、目標を達成した。この場合には、多量の合金成分を追加添加した成分系の鋼を用いることなく、鋼板全面全体で高強度・高靭性の材質を得ることができる。 The steel plate thus obtained was immersed and cooled in a cooling water tank. Transition boiling occurred at the start of cooling in the SiO 2 coated part, and the cooling rate at the central part of the plate thickness was as high as 1.5 ° C./s. In other parts as well, a large amount of heat flowed to the nearby SiO 2 coating part, and as a result of transition boiling soon, the cooling rate at the center part of the plate thickness was 1.2 ° C./s, and the target was achieved. In this case, a material having high strength and high toughness can be obtained over the entire surface of the steel sheet without using a component steel to which a large amount of alloy components are additionally added.

発明例2では、加熱後、SiOを含有した液体をスプレーすることで、SiOを鋼板表面全面に塗布し、冷却用水槽中に浸漬冷却した。ここでも、SiOを含有した液体として、平均粒子径が0.1μmのSiO粒子を1mass%含有する水を用いた。冷却開始と共に遷移沸騰が起こり、冷却速度は1.5℃/sとなり、目標を達成した。この場合にも、多量の合金成分を追加添加した成分系の鋼を用いることなく、鋼板全面全体で高強度・高靭性の材質を得ることができる。 In Invention Example 2, after heating, a liquid containing SiO 2 was sprayed to apply SiO 2 to the entire surface of the steel sheet and to cool by immersion in a cooling water tank. Again, as a liquid containing a SiO 2, with water containing 1 mass% of SiO 2 particles having an average particle size of 0.1 [mu] m. With the start of cooling, transition boiling occurred and the cooling rate was 1.5 ° C./s, achieving the target. Also in this case, a material having high strength and high toughness can be obtained over the entire surface of the steel sheet without using a component steel to which a large amount of alloy components are additionally added.

発明例3では、鋼板を加熱した後、浸漬冷却する前に、SiOを含有した液体をスプレーすることで、膜厚:0.05mmで、鋼板表面の10%の面積で塗布した。ここでは、SiOを含有した液体として、平均粒子径が0.1μmのSiO粒子を1mass%含有する水を用いた。塗布作業には、円形のフルコーンスプレーを用い、図7に示すように円形の膜を千鳥状配置に形成した。塗布部分は、鋼板の表面および裏面の合計で550箇所であり、隣接する塗布部分の間隔の最大値は250mmであった。 In Invention Example 3, after heating the steel sheet and before immersion cooling, the liquid containing SiO 2 was sprayed to form a film having a thickness of 0.05 mm and an area of 10% of the steel sheet surface. Here, as a liquid containing a SiO 2, with water containing 1 mass% of SiO 2 particles having an average particle size of 0.1 [mu] m. A circular full cone spray was used for the coating operation, and circular films were formed in a staggered arrangement as shown in FIG. The total number of coated portions on the front and back surfaces of the steel sheet was 550, and the maximum distance between adjacent coated portions was 250 mm.

こうして得られた鋼板を冷却用水槽中に浸漬冷却した。SiO塗布部では冷却開始とともに遷移沸騰が起こり、板厚中央部での冷却速度は1.5℃/sと高かった。それ以外の部分でも近傍のSiO塗布部に多量に熱が流れ、まもなく遷移沸騰が起こった結果、板厚中央部での冷却速度は1.2℃/sとなり、目標を達成した。この場合には、多量の合金成分を追加添加した成分系の鋼を用いることなく、鋼板全面全体で高強度・高靭性の材質を得ることができる。 The steel plate thus obtained was immersed and cooled in a cooling water tank. Transition boiling occurred at the start of cooling in the SiO 2 coated part, and the cooling rate at the central part of the plate thickness was as high as 1.5 ° C./s. In other parts as well, a large amount of heat flowed to the nearby SiO 2 coating part, and as a result of transition boiling soon, the cooling rate at the center part of the plate thickness was 1.2 ° C./s, and the target was achieved. In this case, a material having high strength and high toughness can be obtained over the entire surface of the steel sheet without using a component steel to which a large amount of alloy components are additionally added.

1 加熱炉
2 台車
3 冷却用水槽
4 クレーン
5 吊具
6 スプレーノズル
7 鋼材(鋼板)
8 水
20 酸化物を含有する膜が形成された部分
A 通常の冷却
B 冷却の初期段階から遷移沸騰を起こした場合の冷却
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Carriage 3 Cooling water tank 4 Crane 5 Lifting tool 6 Spray nozzle 7 Steel (steel plate)
8 Water 20 Part where oxide-containing film is formed A Normal cooling B Cooling when transition boiling occurs from the initial stage of cooling

Claims (5)

加熱した鋼材の表面に金属酸化物または無機酸化物を含有する液体をスプレー状に塗布することにより、前記酸化物を含有する膜を形成し、その後に、前記鋼材を、冷却用水槽に浸漬して浸漬焼入処理することを特徴とする鋼材の冷却方法。 A film containing a metal oxide or an inorganic oxide is applied to the surface of the heated steel material in a spray form to form a film containing the oxide, and then the steel material is immersed in a cooling water bath. A method for cooling a steel material, characterized by performing immersion quenching treatment. 前記酸化物を含有する膜は、膜厚が5mm以下であることを特徴とする請求項1に記載の鋼材の冷却方法。   The method for cooling a steel material according to claim 1, wherein the film containing the oxide has a thickness of 5 mm or less. 前記酸化物を含有する膜は、鋼材表面の複数箇所に形成されており、前記酸化物を含有する膜形成部分の合計の面積が鋼材全表面の10%以上であり、隣り合う膜形成部分の間隔が鋼材の肉厚の2倍未満であることを特徴とする請求項1または2に記載の鋼材の冷却方法。   The oxide-containing film is formed at a plurality of locations on the surface of the steel material, and the total area of the film-forming portions containing the oxide is 10% or more of the entire surface of the steel material. The method for cooling a steel material according to claim 1 or 2, wherein the interval is less than twice the wall thickness of the steel material. 前記冷却用水槽の容積が鋼材の体積の20倍以上であることを特徴とする請求項1乃至3のいずれか1項に記載の鋼材の冷却方法。   The method for cooling a steel material according to any one of claims 1 to 3, wherein a volume of the cooling water tank is 20 times or more a volume of the steel material. 鋼材を加熱する加熱炉と、加熱炉から抽出した後の鋼材表面に金属酸化物または無機酸化物をスプレー状に塗布する塗布装置と、鋼材全体を冷却水に浸漬できる冷却用水槽とを近接させて設置することを特徴とする鋼材の冷却設備。 Close the heating furnace for heating the steel material, a coating apparatus for applying a sprayed form a metal oxide or an inorganic oxide on the steel surface after extracting from a pressurized hot furnace, and a cooling water tank capable of immersing the entire steel to the cooling water Steel cooling equipment, characterized by being installed.
JP2012277676A 2011-12-26 2012-12-20 Steel cooling method and cooling equipment Expired - Fee Related JP5987675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277676A JP5987675B2 (en) 2011-12-26 2012-12-20 Steel cooling method and cooling equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011282791 2011-12-26
JP2011282791 2011-12-26
JP2012277676A JP5987675B2 (en) 2011-12-26 2012-12-20 Steel cooling method and cooling equipment

Publications (2)

Publication Number Publication Date
JP2013151744A JP2013151744A (en) 2013-08-08
JP5987675B2 true JP5987675B2 (en) 2016-09-07

Family

ID=49048301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277676A Expired - Fee Related JP5987675B2 (en) 2011-12-26 2012-12-20 Steel cooling method and cooling equipment

Country Status (1)

Country Link
JP (1) JP5987675B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403680A (en) * 2016-11-29 2017-02-15 广东技术师范学院 Industrial molten iron efficient cooling device
CN111485071A (en) * 2020-04-01 2020-08-04 南京工艺装备制造有限公司 Quenching, tempering and straightening method for asymmetric structure clamp body in machining center
CN113118946B (en) * 2021-04-20 2022-12-06 山东富蓝动力科技有限公司 Manufacturing process of powder metallurgy tool steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252522A (en) * 1994-03-11 1995-10-03 Idemitsu Kosan Co Ltd Material to be heat-treated and heat treatment method
JP2011179067A (en) * 2010-03-01 2011-09-15 Idemitsu Kosan Co Ltd Heat-treatment method for metallic member

Also Published As

Publication number Publication date
JP2013151744A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
US10472696B2 (en) Method for intercooling sheet steel
CN109844143B (en) Hot rolled plate annealing equipment, hot rolled plate annealing method and descaling method for Si-containing hot rolled steel plate
EP3705587A1 (en) Facility and method for producing thick steel sheet
KR101128316B1 (en) Continuous annealing equipment
JP7028514B2 (en) Non-contact cooling method for steel sheet and its equipment
CN103492605A (en) Hot stamp-molded high-strength component having excellent corrosion resistance after coating, and method for manufacturing same
JP5987675B2 (en) Steel cooling method and cooling equipment
CN105586477A (en) Method for improving hardness of 3D printing martensitic stainless steel structural part
EP3164523B1 (en) Multipurpose processing line for heat treating and hot dip coating a steel strip
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP5891857B2 (en) Steel strip manufacturing apparatus and steel strip manufacturing method
JP2006233311A (en) Method for producing spray-coated steel sheet having excellent corrosion resistance and equipment line for steel sheet
JP5870678B2 (en) Steel cooling equipment and cooling method
JP5991282B2 (en) Steel strip manufacturing method and manufacturing equipment
JP6702386B2 (en) Steel material manufacturing method and manufacturing equipment
CN103233112A (en) Quenching and tempering heat treatment equipment and method for 4-6mm high-strength sheet
JP7314989B2 (en) Quenching device and method for manufacturing metal plate
JP2015174134A (en) Production method of steel plate
CN107746912A (en) Metalwork anti-deformation Technology for Heating Processing
US11608541B2 (en) Manufacturing method for high silicon grain oriented electrical steel sheet
JP6008066B2 (en) Heat-treated steel product having high strength and excellent chemical conversion treatment and method for producing the same
JP2006233310A (en) Method for producing spray-coated steel sheet having excellent corrosion resistance and equipment line
JP2019141890A (en) Method for acceleration cooling of hot rolled steel bar
CN105087878A (en) Vacuum heat treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees