JP5985420B2 - Ground resistance meter and method for measuring ground resistance - Google Patents

Ground resistance meter and method for measuring ground resistance Download PDF

Info

Publication number
JP5985420B2
JP5985420B2 JP2013046191A JP2013046191A JP5985420B2 JP 5985420 B2 JP5985420 B2 JP 5985420B2 JP 2013046191 A JP2013046191 A JP 2013046191A JP 2013046191 A JP2013046191 A JP 2013046191A JP 5985420 B2 JP5985420 B2 JP 5985420B2
Authority
JP
Japan
Prior art keywords
value
ground
voltage
current
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013046191A
Other languages
Japanese (ja)
Other versions
JP2014173965A (en
Inventor
竜太 斎藤
竜太 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2013046191A priority Critical patent/JP5985420B2/en
Publication of JP2014173965A publication Critical patent/JP2014173965A/en
Application granted granted Critical
Publication of JP5985420B2 publication Critical patent/JP5985420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、接地抵抗計であって、交流電位差計方式の接地抵抗計に関するものである。また、この接地抵抗計において実行される接地抵抗測定方法に関するものである。   The present invention relates to a ground resistance meter, and relates to an AC potentiometer type ground resistance meter. The present invention also relates to a ground resistance measurement method executed in this ground resistance meter.

この種の接地抵抗計として、下記の非特許文献1に開示された接地抵抗計が知られている。この接地抵抗計は、それぞれ補助接地極(測定電流を供給するための電流極および電圧を測定するための電位極)となる2本の補助接地棒を地面に打ち込んで被測定接地極の接地抵抗を測定する精密測定(3電極法による測定)、および金属製水道管などの金属製埋設物や商用電源の共同アースやビルなどのA種接地極(避雷針)などの接地抵抗が小さい既存の接地極を利用した2電極法で被測定接地極の接地抵抗を測定する簡易測定のいずれの測定も実行可能に構成されている。   As this type of ground resistance meter, a ground resistance meter disclosed in Non-Patent Document 1 below is known. This ground resistance meter is driven by grounding two auxiliary grounding rods, each serving as an auxiliary grounding electrode (current electrode for supplying measurement current and potential electrode for measuring voltage), into the ground. Precise measurement (measurement by the three-electrode method), and existing grounding with low grounding resistance, such as metal buried objects such as metal water pipes, joint grounds of commercial power supplies and Class A grounding poles (lightning rods) of buildings Any of the simple measurements in which the ground resistance of the ground electrode to be measured is measured by the two-electrode method using the poles can be executed.

また、この接地抵抗計は、地電圧測定機能を備えており、接地抵抗の測定に際して、まず、地電圧を測定して、この地電圧が予め規定された電圧(例えば3V。以下、「閾値電圧」ともいう)以下のときには、接地抵抗の測定を実行し、地電圧が閾値電圧を超えるときには、測定した接地抵抗の誤差が大きくなる可能性があることから、接地抵抗の測定を実行せずに、その旨(地電圧が高い旨)を表示するように構成されている。   The ground resistance meter has a ground voltage measurement function. When measuring the ground resistance, first, the ground voltage is measured, and the ground voltage is measured in advance by a predetermined voltage (for example, 3 V. Hereinafter, “threshold voltage”). In the following cases, ground resistance measurement is performed, and when the ground voltage exceeds the threshold voltage, the error of the measured ground resistance may increase. , It is configured to display the fact (the fact that the earth voltage is high).

また、この接地抵抗計は、3つの測定レンジ(2000Ω、200Ωおよび20Ω)を有しており、測定レンジ毎に予め電流値が固定的に規定された(例えば、2000Ωレンジでは0.2mA、200Ωレンジでは2mA、20Ωレンジでは20mA(いずれも実効値)に規定された)交流定電流を内蔵の定電流源から被測定接地極と補助接地極(電流極)との間に測定電流Icとして供給し、このときに被測定接地極および補助接地極(電位極)間に発生する電圧値を内蔵の電圧計で測定し、内蔵の処理部がこの測定された電圧値を測定電流Icの電流値で除算することにより、被測定接地極の接地抵抗を測定する。   This ground resistance meter has three measurement ranges (2000Ω, 200Ω, and 20Ω), and the current value is fixedly defined in advance for each measurement range (for example, 0.2 mA, 200Ω in the 2000Ω range). AC constant current (specified at 2 mA for the range and 20 mA for the 20Ω range (both effective values)) is supplied as a measurement current Ic from the built-in constant current source between the measured ground electrode and the auxiliary ground electrode (current electrode). At this time, the voltage value generated between the ground electrode to be measured and the auxiliary ground electrode (potential electrode) is measured with a built-in voltmeter, and the built-in processing unit converts the measured voltage value into the current value of the measured current Ic. Divide by to measure the ground resistance of the ground electrode under test.

この場合、被測定接地極の接地抵抗Reおよび補助接地極(電流極)の接地抵抗Rcは、上記の地電圧Veを発生する電圧源と直列に接続される関係になることから、接地抵抗Reの測定時における被測定接地極と補助接地極(電流極)との間の電圧のピーク値は、Veのピーク値(Ve1)に(Re+Rc)×Ic×√2を加算した電圧値で表され、このピーク値の最大値は、測定電流Icが最大(上記の例では20mA)のときの電圧のピーク値である。   In this case, since the ground resistance Re of the measured ground electrode and the ground resistance Rc of the auxiliary ground electrode (current electrode) are connected in series with the voltage source that generates the ground voltage Ve, the ground resistance Re The peak value of the voltage between the measured grounding electrode and the auxiliary grounding electrode (current electrode) at the time of measurement is expressed as a voltage value obtained by adding (Re + Rc) × Ic × √2 to the peak value of Ve (Ve1). The maximum value of the peak value is the peak value of the voltage when the measured current Ic is the maximum (in the above example, 20 mA).

また、定電流源は、地電圧Veの存在下で、この最大の測定電流Icを供給(出力)できなければならないことから、その最大出力電圧値をVmaxとしたときに、下記式(1)が満たされる必要がある。定電流源の最大出力電圧値Vmaxがこの式(1)を満たさないときには、規定の定電流を測定電流Icとして供給できない状況に至ることから、正確な接地抵抗Reの測定が困難になる。
Vmax>Ve1+(Re+Rc)×Ic×√2 ・・・ (1)
Further, since the constant current source must be able to supply (output) the maximum measurement current Ic in the presence of the ground voltage Ve, when the maximum output voltage value is Vmax, the following formula (1) Need to be met. When the maximum output voltage value Vmax of the constant current source does not satisfy this formula (1), it becomes impossible to supply a specified constant current as the measurement current Ic, and it is difficult to accurately measure the ground resistance Re.
Vmax> Ve1 + (Re + Rc) × Ic × √2 (1)

しかしながら、各接地抵抗Re,Rcの抵抗値は実際に測定して初めて分かるため、このような状況下において、測定可能と判断するための地電圧Veに対する閾値電圧を高くすると、定電流源の最大出力電圧値Vmaxまでの余裕が少なくなるため、各接地抵抗Re,Rcの抵抗値により上記の式(1)を満たさない状況が頻繁に発生することになる。このため、上記の式(1)を満たさない状況の発生が頻発するのを回避するため、地電圧Veに対する閾値電圧は余裕を持って低い電圧値に規定することが一般的に行われている。   However, since the resistance values of the ground resistors Re and Rc are known only after actual measurement, if the threshold voltage with respect to the ground voltage Ve for determining that measurement is possible is increased under such circumstances, the maximum value of the constant current source is increased. Since the margin to the output voltage value Vmax is reduced, a situation in which the above equation (1) is not satisfied frequently occurs due to the resistance values of the ground resistors Re and Rc. For this reason, in order to avoid frequent occurrence of a situation that does not satisfy the above formula (1), the threshold voltage with respect to the ground voltage Ve is generally regulated to a low voltage value with a margin. .

電池式デジタル接地抵抗計 MODEL 4105A 取扱説明書、共立電気計器株式会社ホームページ、[平成25年2月25日検索]、インターネット<http://www.kew-ltd.co.jp/jp/download/pdf/manual/4105A_IM_92-1499D_J.pdf>Battery type digital ground resistance meter MODEL 4105A Instruction Manual, Kyoritsu Electric Instruments Co., Ltd. homepage, [Search February 25, 2013], Internet <http://www.kew-ltd.co.jp/en/download/ pdf / manual / 4105A_IM_92-1499D_E.pdf>

ところが、上記の接地抵抗計には、以下のような改善すべき課題が存在している。すなわち、この接地抵抗計には、上記したように地電圧に対する閾値電圧を余裕を持って低い電圧値に規定しているため、不正確な接地抵抗の測定については十分に回避し得るものの、接地抵抗の測定前の地電圧測定の段階で、地電圧が閾値電圧を超える場合が多く発生して、接地抵抗の測定を実行できない状況が頻繁に発生する虞があるという改善すべき課題が存在している。   However, the above ground resistance meter has the following problems to be improved. That is, in this ground resistance meter, as described above, the threshold voltage with respect to the ground voltage is regulated to a low voltage value with a margin, so inaccurate ground resistance measurement can be sufficiently avoided, There is a problem to be improved that ground voltage often exceeds the threshold voltage at the ground voltage measurement stage before measuring resistance, and there is a possibility that ground resistance measurement may not be performed frequently. ing.

本発明は、かかる課題を改善すべくなされたものであり、不正確な接地抵抗の測定を回避しつつ、より高い地電圧の発生場所での接地抵抗の測定を可能にし得る接地抵抗計および接地抵抗測定方法を提供することを主目的とする。   The present invention has been made to improve such a problem, and a ground resistance meter and a ground that can enable measurement of ground resistance at a place where a higher ground voltage is generated while avoiding inaccurate measurement of ground resistance. The main purpose is to provide a resistance measurement method.

上記目的を達成すべく請求項1記載の接地抵抗計は、被測定接地極と補助接地極との間に交流定電流を供給する定電流源と、前記被測定接地極および前記補助接地極間に発生する交流電圧を測定する電圧計と、前記定電流源による前記交流定電流の供給状態において当該交流定電流の電流値と前記電圧計によって測定される前記交流電圧の電圧値とに基づいて前記被測定接地極の接地抵抗を算出する抵抗算出処理を実行する処理部とを備えている接地抵抗計であって、前記定電流源は、異なる複数の電流値で前記交流定電流を供給可能に構成され、前記処理部は、前記定電流源に対して前記交流定電流の供給を停止させている状態において前記電圧計によって測定される前記交流電圧の電圧値を第1電圧の電圧値として測定する第1電圧測定処理と、前記複数の電流値のうちの低位側の1つの電流値に前記交流定電流の電流値を規定して前記抵抗算出処理を実行することにより、前記被測定接地極および前記補助接地極の各接地抵抗の抵抗値を仮接地抵抗値として算出する第1接地抵抗算出処理と、前記各仮接地抵抗値、前記第1電圧の電圧値および前記定電流源の最大出力電圧値に基づいて、前記複数の電流値のうちの1つの電流値であって、前記各接地抵抗で発生する電圧に当該第1電圧の電圧値を加算した加算電圧値が当該最大出力電圧値未満であって当該最大出力電圧値に最も近くなる電流値を測定電流値として決定する電流値決定処理と、前記交流定電流の電流値を前記決定した測定電流値に規定して前記抵抗算出処理を実行することにより、前記被測定接地極の接地抵抗の抵抗値を算出する第2接地抵抗算出処理とを実行する。   In order to achieve the above object, a ground resistance meter according to claim 1, wherein a constant current source supplying an AC constant current between a measured ground electrode and an auxiliary ground electrode, and between the measured ground electrode and the auxiliary ground electrode Based on a current value of the AC constant current and a voltage value of the AC voltage measured by the voltmeter in the supply state of the AC constant current by the constant current source. A ground resistance meter including a processing unit for performing a resistance calculation process for calculating a ground resistance of the ground electrode to be measured, wherein the constant current source can supply the AC constant current with a plurality of different current values. And the processing unit uses the voltage value of the AC voltage measured by the voltmeter in a state where the supply of the AC constant current to the constant current source is stopped as the voltage value of the first voltage. First voltage measurement to measure And by defining the current value of the AC constant current as a current value on the lower side of the plurality of current values and executing the resistance calculation process, the measured ground electrode and the auxiliary ground electrode Based on the first ground resistance calculation process for calculating the resistance value of each ground resistance as a temporary ground resistance value, the temporary ground resistance value, the voltage value of the first voltage, and the maximum output voltage value of the constant current source. , A current value of one of the plurality of current values, and an added voltage value obtained by adding the voltage value of the first voltage to the voltage generated at each ground resistor is less than the maximum output voltage value, and A current value determining process for determining a current value closest to the maximum output voltage value as a measured current value, and executing the resistance calculating process by defining the current value of the AC constant current as the determined measured current value , The grounding resistance of the measured grounding electrode Performing a second ground resistor calculation processing of calculating a resistance value.

また、請求項2記載の接地抵抗測定方法は、被測定接地極と補助接地極との間に定電流源から交流定電流を供給している状態において当該被測定接地極および当該補助接地極間に発生する交流電圧を電圧計で測定し、当該交流定電流の電流値と前記電圧計で測定した前記交流電圧の電圧値とに基づいて前記被測定接地極の接地抵抗を算出する抵抗算出処理を実行する接地抵抗測定方法であって、前記定電流源として異なる複数の電流値で前記交流定電流を供給可能に構成された定電流源を使用して、前記定電流源からの前記交流定電流の供給を停止させている状態において前記電圧計によって測定される前記交流電圧の電圧値を第1電圧の電圧値として測定する第1電圧測定処理と、前記複数の電流値のうちの低位側の1つの電流値に前記交流定電流の電流値を規定して前記抵抗算出処理を実行することにより、前記被測定接地極および前記補助接地極の各接地抵抗の抵抗値を仮接地抵抗値として算出する第1接地抵抗算出処理と、前記各仮接地抵抗値、前記第1電圧の電圧値および前記定電流源の最大出力電圧値に基づいて、前記複数の電流値のうちの1つの電流値であって、前記各接地抵抗で発生する電圧に当該第1電圧の電圧値を加算した加算電圧値が当該最大出力電圧値未満であって当該最大出力電圧値に最も近くなる電流値を測定電流値として決定する電流値決定処理と、前記交流定電流の電流値を前記決定した測定電流値に規定して前記抵抗算出処理を実行することにより、前記被測定接地極の接地抵抗の抵抗値を算出する第2接地抵抗算出処理とを実行する。   According to a second aspect of the present invention, there is provided a ground resistance measuring method between the measured ground electrode and the auxiliary ground electrode in a state where an AC constant current is supplied from a constant current source between the measured ground electrode and the auxiliary ground electrode. A resistance calculation process for measuring the AC voltage generated in the voltmeter and calculating the ground resistance of the ground electrode to be measured based on the current value of the AC constant current and the voltage value of the AC voltage measured by the voltmeter Using the constant current source configured to be able to supply the AC constant current with a plurality of different current values as the constant current source, and to measure the AC constant current from the constant current source. A first voltage measurement process for measuring a voltage value of the alternating voltage measured by the voltmeter as a voltage value of the first voltage in a state where supply of current is stopped; and a lower side of the plurality of current values The current value of A first ground resistance calculation process for calculating a resistance value of each ground resistance of the ground electrode to be measured and the auxiliary ground electrode as a temporary ground resistance value by defining the current value of a constant current and executing the resistance calculation process A current value of one of the plurality of current values based on the temporary ground resistance value, the voltage value of the first voltage, and the maximum output voltage value of the constant current source, and each ground resistance Current value determination processing for determining a current value closest to the maximum output voltage value, which is less than the maximum output voltage value, as an added voltage value obtained by adding the voltage value of the first voltage to the voltage generated at And a second ground resistance calculation process for calculating a resistance value of the ground resistance of the ground electrode to be measured by defining the current value of the AC constant current as the determined measurement current value and executing the resistance calculation process. And execute.

請求項1記載の接地抵抗計および請求項2記載の接地抵抗測定方法では、異なる複数の電流値で交流定電流を供給可能に構成された定電流源を使用し、この複数の電流値のうちの1つの電流値であって、各接地抵抗で発生する電圧に第1電圧の電圧値を加算した加算電圧値が定電流源の最大出力電圧値未満であって最大出力電圧値に最も近くなる最適な電流値を測定電流値として規定して抵抗算出処理を実行する。したがって、この接地抵抗計および接地抵抗測定方法によれば、測定した第1電圧と予め規定された一定の閾値電圧とを比較して接地抵抗の測定の可否を判別する従来の接地抵抗計や接地抵抗測定方法とは異なり、第1電圧がある程度大きくても(より高い第1電圧の発生場所においても)、補助接地極の接地抵抗値が小さいときには、定電流源の最大出力電圧値以下の範囲内で定電流源が規定の測定電流値で交流定電流を供給して被測定接地極の接地抵抗値を正確に測定することができる。   In the ground resistance meter according to claim 1 and the ground resistance measurement method according to claim 2, a constant current source configured to be able to supply an alternating constant current with a plurality of different current values is used. The sum voltage value obtained by adding the voltage value of the first voltage to the voltage generated at each ground resistance is less than the maximum output voltage value of the constant current source and is closest to the maximum output voltage value. The resistance calculation process is executed by defining the optimum current value as the measured current value. Therefore, according to the ground resistance meter and the ground resistance measuring method, a conventional ground resistance meter or ground that compares the measured first voltage with a predetermined threshold voltage to determine whether or not the ground resistance can be measured is determined. Unlike the resistance measurement method, if the ground resistance value of the auxiliary grounding electrode is small even if the first voltage is somewhat large (even at the place where the higher first voltage is generated), the range is less than the maximum output voltage value of the constant current source The constant current source can supply an AC constant current at a specified measurement current value, and the ground resistance value of the ground electrode to be measured can be accurately measured.

接地抵抗計1の構成を示す構成図である。1 is a configuration diagram showing a configuration of a ground resistance meter 1. FIG. 接地抵抗計1の動作と併せて接地抵抗測定方法を説明するためのフローチャートである。5 is a flowchart for explaining a ground resistance measuring method together with the operation of the ground resistance meter 1.

以下、接地抵抗計および接地抵抗測定方法の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a ground resistance meter and a ground resistance measurement method will be described with reference to the accompanying drawings.

最初に、接地抵抗計1の構成について、図面を参照して説明する。   First, the configuration of the ground resistance meter 1 will be described with reference to the drawings.

接地抵抗計1は、図1に示すように、定電流源2、電圧計3、スイッチ部4、接続端子5,6,7、処理部8および出力部9を備え、第1補助接地極Pおよび第2補助接地極C(両補助接地極P,Cはそれぞれ補助接地極の一例)を用いて、被測定接地極(本例では、接地極E)の接地抵抗Reを3電極法によって測定する。   As shown in FIG. 1, the ground resistance meter 1 includes a constant current source 2, a voltmeter 3, a switch unit 4, connection terminals 5, 6, 7, a processing unit 8, and an output unit 9, and includes a first auxiliary grounding electrode P And the second auxiliary grounding pole C (both auxiliary grounding poles P and C are each an example of an auxiliary grounding pole), and the ground resistance Re of the measured grounding pole (in this example, the grounding pole E) is measured by the three-electrode method. To do.

定電流源2は、処理部8によって制御されて、一定の周波数の交流電流(一例として正弦波電流)を生成して一対の出力端子2a,2bから測定電流Iとして出力する。また、定電流源2は、異なる複数の電流値(実効値)I1で測定電流Iを生成可能に構成されて、処理部8によって制御されることにより、複数の電流値I1のうちの処理部8から指示された電流値I1で測定電流Iを生成して交流定電流として出力する。   The constant current source 2 is controlled by the processing unit 8, generates an alternating current having a constant frequency (for example, a sine wave current), and outputs the alternating current as a measured current I from the pair of output terminals 2 a and 2 b. The constant current source 2 is configured to be able to generate the measurement current I with a plurality of different current values (effective values) I1, and is controlled by the processing unit 8, whereby the processing unit among the plurality of current values I1. The measurement current I is generated with the current value I1 instructed from 8, and is output as an AC constant current.

なお、測定電流Iは、後述する第1電圧としての地電圧Veの周波数が通常50Hzまたは60Hzであるため、この周波数を避けた周波数(一例として、80Hz〜1kHz程度)に規定されている。また、定電流源2の各出力端子2a,2bは、スイッチ部4に接続されている。   In addition, since the frequency of the ground voltage Ve as a first voltage to be described later is usually 50 Hz or 60 Hz, the measurement current I is regulated to a frequency that avoids this frequency (as an example, about 80 Hz to 1 kHz). The output terminals 2 a and 2 b of the constant current source 2 are connected to the switch unit 4.

電圧計3は、一対の入力端子3a,3bのうちの一方の入力端子3aがスイッチ部4に接続されると共に、他方の入力端子3bが定電流源2の他方の出力端子2bに接続されている。また、電圧計3は、一対の入力端子3a,3b間に入力される交流電圧をサンプリングすることにより、交流電圧の波形データDvを生成して処理部8に出力する。   The voltmeter 3 has one input terminal 3 a of the pair of input terminals 3 a and 3 b connected to the switch unit 4 and the other input terminal 3 b connected to the other output terminal 2 b of the constant current source 2. Yes. The voltmeter 3 generates AC voltage waveform data Dv by sampling the AC voltage input between the pair of input terminals 3 a and 3 b, and outputs the waveform data Dv to the processing unit 8.

スイッチ部4は、定電流源2および電圧計3と、3つの接続端子5,6,7との間に配設されている。また、スイッチ部4は、処理部8によって制御される複数の切替スイッチ(本例では一例として3つの切替スイッチ11,12,13)で構成されて、定電流源2の出力端子2a,2bおよび電圧計3の入力端子3a,3bを各接続端子5,6,7のうちから選択される接続端子に接続する。この場合、接続端子5は接地極Eに接続され、接続端子6は第1補助接地極Pに接続され、接続端子7は第2補助接地極Cに接続される。   The switch unit 4 is disposed between the constant current source 2 and the voltmeter 3 and the three connection terminals 5, 6, and 7. The switch unit 4 includes a plurality of changeover switches (three changeover switches 11, 12, 13 as an example in this example) controlled by the processing unit 8, and includes output terminals 2a, 2b of the constant current source 2 and The input terminals 3 a and 3 b of the voltmeter 3 are connected to a connection terminal selected from the connection terminals 5, 6 and 7. In this case, the connection terminal 5 is connected to the ground electrode E, the connection terminal 6 is connected to the first auxiliary ground electrode P, and the connection terminal 7 is connected to the second auxiliary ground electrode C.

具体的には、本例では、スイッチ部4は、各切替スイッチ11,12,13が単極双投型(1回路2接点型)の切替スイッチで構成されている。また、切替スイッチ11は、そのコモン接点comが切替スイッチ13の一方の接点に接続されると共に定電流源2の出力端子2aに接続され、一方の接点が接続端子7に接続され、他方の接点が切替スイッチ12の一方の接点および切替スイッチ13の他方の接点に接続されると共に接続端子6に接続されている。   Specifically, in this example, the switch unit 4 is configured such that each change-over switch 11, 12, 13 is a single-pole double-throw (one-circuit, two-contact type) change-over switch. Further, the changeover switch 11 has a common contact com connected to one contact of the changeover switch 13 and connected to the output terminal 2a of the constant current source 2, one contact connected to the connection terminal 7, and the other contact. Are connected to one contact of the changeover switch 12 and the other contact of the changeover switch 13 and to the connection terminal 6.

切替スイッチ12は、そのコモン接点comが定電流源2の出力端子2bおよび電圧計3の入力端子3bに接続され、一方の接点が上記したように切替スイッチ11の他方の接点および接続端子6に接続され、他方の接点が接続端子5に接続されている。切替スイッチ13は、そのコモン接点comが電圧計3の入力端子3aに接続され、一方の接点が上記したように切替スイッチ11のコモン接点comに接続され、他方の接点が上記したように切替スイッチ11の他方の接点および切替スイッチ12の一方の接点に接続されると共に接続端子6に接続されている。   The changeover switch 12 has a common contact com connected to the output terminal 2b of the constant current source 2 and the input terminal 3b of the voltmeter 3, and one contact is connected to the other contact and the connection terminal 6 of the changeover switch 11 as described above. The other contact is connected to the connection terminal 5. The changeover switch 13 has its common contact com connected to the input terminal 3a of the voltmeter 3, one contact connected to the common contact com of the changeover switch 11 as described above, and the other contact as described above. 11 and the other contact of the changeover switch 12 and the connection terminal 6.

処理部8は、CPUおよび内部メモリ(いずれも図示せず)を備えて構成されて、図2に示す抵抗測定処理20(地電圧測定処理(第1電圧測定処理)、第1接地抵抗算出処理、電流値決定処理、第2接地抵抗算出処理および出力処理を含む処理)を実行する。この場合、内部メモリには、電流値決定処理において使用される定電流源2についての複数の電流値I1(本例では一例として、4mA,2mA,1mA,0.5mA,0.25mA(いずれも実効値)の4つの電流値I1)と、定電流源2が一対の出力端子2a,2b間から出力し得る最大出力電圧値Vmaxとが予め記憶されている。   The processing unit 8 includes a CPU and an internal memory (both not shown), and includes a resistance measurement process 20 (ground voltage measurement process (first voltage measurement process), first ground resistance calculation process shown in FIG. , Current value determination processing, second ground resistance calculation processing, and output processing). In this case, the internal memory stores a plurality of current values I1 (4 mA, 2 mA, 1 mA, 0.5 mA, 0.25 mA (all of which are examples) in the current source determination process. (Effective value) four current values I1) and a maximum output voltage value Vmax that the constant current source 2 can output from between the pair of output terminals 2a and 2b are stored in advance.

出力部9は、一例として、LCD(Liquid Crystal Display)などの表示装置で構成されて、処理部8が実行した抵抗測定処理の結果を画面上に表示させる。なお、表示装置に代えて、外部機器との間でデータ通信を行う通信装置で出力部9を構成して、抵抗測定処理での結果を外部機器に出力するようにしてもよい。   For example, the output unit 9 includes a display device such as an LCD (Liquid Crystal Display), and displays the result of the resistance measurement process executed by the processing unit 8 on the screen. Instead of the display device, the output unit 9 may be configured by a communication device that performs data communication with an external device, and the result of the resistance measurement process may be output to the external device.

次に、接地抵抗計1の動作と併せて、接地抵抗測定方法について、図1,2を参照して説明する。なお、図1に示すように、第1補助接地極Pおよび第2補助接地極Cは、大地Gに接地された接地極Eを基準として予め規定された位置(例えば、非特許文献1に開示されている精密測定時の位置)に接地されているものとする。また、抵抗Reは接地極Eの接地抵抗を示し、抵抗Rpは第1補助接地極Pの接地抵抗を示し、抵抗Rcは第2補助接地極Cの接地抵抗を示すものとする。   Next, together with the operation of the ground resistance meter 1, a ground resistance measurement method will be described with reference to FIGS. As shown in FIG. 1, the first auxiliary grounding pole P and the second auxiliary grounding pole C are preliminarily defined with reference to the grounding pole E grounded to the ground G (for example, disclosed in Non-Patent Document 1). It shall be grounded at the precise measurement position). The resistor Re indicates the ground resistance of the ground electrode E, the resistor Rp indicates the ground resistance of the first auxiliary ground electrode P, and the resistor Rc indicates the ground resistance of the second auxiliary ground electrode C.

また、発明の理解を容易にするため、接地抵抗Reの抵抗値を抵抗値(接地抵抗値ともいう)Reで表し、接地抵抗Rpの抵抗値を抵抗値(接地抵抗値ともいう)Rpで表し、接地抵抗Rcの抵抗値を抵抗値(接地抵抗値ともいう)Rcで表すものとする。また、接続端子5が接地極Eに、接続端子6が第1補助接地極Pに、接続端子7が第2補助接地極Cに予めそれぞれ接続されているものとする。   In order to facilitate understanding of the invention, the resistance value of the ground resistance Re is represented by a resistance value (also referred to as a ground resistance value) Re, and the resistance value of the ground resistance Rp is represented by a resistance value (also referred to as a ground resistance value) Rp. The resistance value of the ground resistance Rc is represented by a resistance value (also referred to as a ground resistance value) Rc. Further, it is assumed that the connection terminal 5 is connected to the ground electrode E, the connection terminal 6 is connected to the first auxiliary ground electrode P, and the connection terminal 7 is connected to the second auxiliary ground electrode C in advance.

接地抵抗計1では、処理部8が、図2に示す抵抗測定処理20を実行する。この抵抗測定処理20では、処理部8は、まず、地電圧測定処理を実行する(ステップ21)。この地電圧測定処理では、処理部8は、定電流源2に対する制御を実行して、測定電流Iの出力(供給)を停止させる。また、処理部8は、スイッチ部4に対する制御を実行して、切替スイッチ12を実線で示される接続状態(コモン接点comが他方の接点に接続される状態)に移行させ、かつ切替スイッチ13を実線で示される接続状態(コモン接点comが他方の接点に接続される状態)に移行させる。これにより、接地抵抗計1は、電圧計3が、スイッチ部4を介して接続端子5および接続端子6間、つまり接地極Eおよび第1補助接地極P間に接続される接続状態に移行する。   In the ground resistance meter 1, the processing unit 8 executes a resistance measurement process 20 shown in FIG. In the resistance measurement process 20, the processing unit 8 first executes a ground voltage measurement process (step 21). In this earth voltage measurement process, the processing unit 8 executes control on the constant current source 2 to stop the output (supply) of the measurement current I. Further, the processing unit 8 controls the switch unit 4 to shift the changeover switch 12 to a connection state indicated by a solid line (a state in which the common contact com is connected to the other contact), and to change the changeover switch 13. A transition is made to a connection state indicated by a solid line (a state where the common contact com is connected to the other contact). Thereby, the ground resistance meter 1 shifts to a connection state in which the voltmeter 3 is connected between the connection terminal 5 and the connection terminal 6, that is, between the ground electrode E and the first auxiliary ground electrode P via the switch unit 4. .

また、処理部8は、この状態において、電圧計3に対する制御を実行して、一対の入力端子3a,3bに入力される交流電圧を測定させる。この状態では電圧計3は、スイッチ部4、接続端子5および接続端子6を介して、接地極Eおよび第1補助接地極P間に接続されているため、接地極Eおよび第1補助接地極P間に発生する交流電圧Vepについての波形データDvを測定して処理部8に出力する。この場合、定電流源2から大地Gへの測定電流Iの供給が停止されていることから、電圧計3は、接地極Eおよび第1補助接地極P間に発生している地電圧Veを交流電圧Vepとして測定して、地電圧Veの波形データDvを処理部8に出力する。   Moreover, the process part 8 performs control with respect to the voltmeter 3 in this state, and measures the alternating voltage input into a pair of input terminals 3a and 3b. In this state, the voltmeter 3 is connected between the ground electrode E and the first auxiliary ground electrode P via the switch unit 4, the connection terminal 5 and the connection terminal 6, so that the ground electrode E and the first auxiliary ground electrode are used. Waveform data Dv for the AC voltage Vep generated between P is measured and output to the processing unit 8. In this case, since the supply of the measurement current I from the constant current source 2 to the ground G is stopped, the voltmeter 3 generates the ground voltage Ve generated between the ground electrode E and the first auxiliary ground electrode P. Measurement is performed as an AC voltage Vep, and the waveform data Dv of the ground voltage Ve is output to the processing unit 8.

処理部8は、少なくとも地電圧Veの1周期分の波形データDvを電圧計3から取得して、内部メモリに記憶する。また、処理部8は、内部メモリに記憶されている波形データDvに基づいて、地電圧Veの絶対値のピーク値Ve1を地電圧Veの電圧値として測定して、内部メモリに記憶する。これにより、地電圧測定処理が完了する。   The processing unit 8 acquires waveform data Dv for at least one period of the ground voltage Ve from the voltmeter 3 and stores it in the internal memory. Further, the processing unit 8 measures the peak value Ve1 of the absolute value of the ground voltage Ve as the voltage value of the ground voltage Ve based on the waveform data Dv stored in the internal memory, and stores it in the internal memory. Thereby, the ground voltage measurement process is completed.

次いで、処理部8は、第1接地抵抗算出処理を実行する(ステップ22)。この第1接地抵抗算出処理では、処理部8は、まず、定電流源2の測定電流Iについての複数の電流値のうちの低位側(一例として、昇順または降順に並べたときの中心の電流値よりも低い電流値。本例での中心の電流値は1mAであるため、0.5mAおよび0.25mAが低位側の電流値になる)の1つの電流値(本例では、より好ましい最小電流値である0.25mA)に測定電流Iの電流値を規定する。   Next, the processing unit 8 executes a first ground resistance calculation process (step 22). In the first ground resistance calculation process, the processing unit 8 firstly selects the lower side of a plurality of current values for the measurement current I of the constant current source 2 (for example, the center current when arranged in ascending or descending order). Current value lower than the value, since the current value at the center in this example is 1 mA, 0.5 mA and 0.25 mA are the current values on the lower side) (in this example, a more preferable minimum value) The current value of the measurement current I is defined as a current value of 0.25 mA).

次いで、処理部8は、この第1接地抵抗算出処理において、接地極Eの接地抵抗Re、第1補助接地極Pの接地抵抗Rpおよび第2補助接地極Cの接地抵抗Rcを算出する抵抗算出処理を実行する。この抵抗算出処理では、処理部8は、まず、接地極Eおよび第1補助接地極P間の合成接地抵抗Rep(=Re+Rp)、接地極Eおよび第2補助接地極C間の合成接地抵抗Rec(=Re+Rc)、並びに第1補助接地極Pおよび第2補助接地極C間の合成接地抵抗Rpc(=Rp+Rc)の各抵抗値を一例としてこの順に算出する。   Next, in this first ground resistance calculation process, the processing unit 8 calculates the resistance for calculating the ground resistance Re of the ground pole E, the ground resistance Rp of the first auxiliary ground pole P, and the ground resistance Rc of the second auxiliary ground pole C. Execute the process. In this resistance calculation process, the processing unit 8 firstly combines the ground resistance E between the ground electrode E and the first auxiliary ground electrode P (= Re + Rp) and the composite ground resistance Rec between the ground electrode E and the second auxiliary ground electrode C. (= Re + Rc) and each resistance value of the combined ground resistance Rpc (= Rp + Rc) between the first auxiliary grounding pole P and the second auxiliary grounding pole C are calculated in this order as an example.

なお、以下では、発明の理解を容易にするため、合成接地抵抗Repの抵抗値を抵抗値(合成接地抵抗値ともいう)Repで、合成接地抵抗Recの抵抗値を抵抗値(合成接地抵抗値ともいう)Recで、合成接地抵抗Rpcの抵抗値を抵抗値(合成接地抵抗値ともいう)Rpcで表すものとする。   In the following, in order to facilitate understanding of the invention, the resistance value of the composite ground resistor Rep is a resistance value (also referred to as a composite ground resistance value) Rep, and the resistance value of the composite ground resistor Rec is a resistance value (combined ground resistance value). (Also referred to as “Rec”), the resistance value of the combined ground resistance Rpc is expressed as a resistance value (also referred to as a combined ground resistance value) Rpc.

具体的には、処理部8は、合成接地抵抗Repの合成接地抵抗値Repの算出に際して、まず、スイッチ部4に対する制御を実行して、切替スイッチ13を破線で示される接続状態(コモン接点comが一方の接点に接続される状態)に移行させ、切替スイッチ11を実線で示される接続状態に移行させ、かつ切替スイッチ12を実線で示される接続状態に移行させる。これにより、接地抵抗計1は、定電流源2および電圧計3が並列に接続されると共に、この並列回路がスイッチ部4を介して接続端子5および接続端子6間、つまり接地極Eおよび第1補助接地極P間に接続される接続状態に移行する。   Specifically, when calculating the combined grounding resistance value Rep of the combined grounding resistor Rep, the processing unit 8 first performs control on the switch unit 4 to connect the changeover switch 13 to a connection state (common contact com) indicated by a broken line. Is switched to a connection state indicated by a solid line, and the changeover switch 12 is shifted to a connection state indicated by a solid line. Thereby, in the ground resistance meter 1, the constant current source 2 and the voltmeter 3 are connected in parallel, and this parallel circuit is connected between the connection terminal 5 and the connection terminal 6 via the switch unit 4, that is, the ground electrode E and the first electrode. A transition is made to a connection state connected between the one auxiliary grounding poles P.

次いで、処理部8は、定電流源2に対する制御を実行して、上記のようにして規定した電流値(本例では0.25mA)で測定電流Iを出力させる。この測定電流Iは、定電流源2の出力端子2aから、スイッチ部4の切替スイッチ11、接続端子6、第1補助接地極P、大地G、接地極E、接続端子5およびスイッチ部4の切替スイッチ12を経由して定電流源2の出力端子2bに戻る電流経路に流れる。   Next, the processing unit 8 controls the constant current source 2 to output the measurement current I at the current value defined as described above (0.25 mA in this example). This measurement current I is supplied from the output terminal 2 a of the constant current source 2 to the changeover switch 11 of the switch unit 4, the connection terminal 6, the first auxiliary grounding electrode P, the ground G, the grounding electrode E, the connection terminal 5, and the switch unit 4. The current flows through the change-over switch 12 and returns to the output terminal 2b of the constant current source 2.

本例では、測定電流Iの電流値I1が複数の電流値のうちの上記した低位側の電流値のうちの1つである最小電流値の0.25mAに規定されている。これにより、接地極Eおよび第1補助接地極P間に地電圧Veが発生していたとしても、接地極Eの接地抵抗Reおよび第1補助接地極Pの接地抵抗Rpに測定電流Iが流れたときにこれらの接地抵抗Re,Rpのそれぞれに発生する電圧の合計電圧値((Re+Rp)×I1)を低い電圧値に抑えることができる。   In this example, the current value I1 of the measurement current I is defined as a minimum current value of 0.25 mA, which is one of the above-described lower-side current values among a plurality of current values. As a result, even if the ground voltage Ve is generated between the ground electrode E and the first auxiliary ground electrode P, the measurement current I flows through the ground resistance Re of the ground electrode E and the ground resistance Rp of the first auxiliary ground electrode P. In this case, the total voltage value ((Re + Rp) × I1) of the voltages generated in the ground resistors Re and Rp can be suppressed to a low voltage value.

このため、この合計電圧値((Re+Rp)×I1)を√2倍した電圧(ピーク電圧値)に地電圧Veの絶対値のピーク値Ve1を加算した交流電圧Vepのピーク電圧値((Re+Rp)×I1×√2+Ve1)が定電流源2の最大出力電圧値Vmaxを上回る事態の発生が大幅に低減されている。つまり、定電流源2から規定の電流値(ここでは、0.25mA)で測定電流Iを出力させた状態で、抵抗算出処理を実行することが可能になっている。   Therefore, the peak voltage value ((Re + Rp)) of the alternating voltage Vep obtained by adding the peak value Ve1 of the absolute value of the ground voltage Ve to the voltage (peak voltage value) obtained by multiplying the total voltage value ((Re + Rp) × I1) by √2 The occurrence of a situation where (× I1 × √2 + Ve1) exceeds the maximum output voltage value Vmax of the constant current source 2 is greatly reduced. That is, it is possible to execute the resistance calculation process in a state where the measurement current I is output from the constant current source 2 at a specified current value (here, 0.25 mA).

電圧計3は、交流電圧Vepの電圧値((Re+Rp)×I1+Ve)を測定して、その波形データDvを処理部8に出力する。また、処理部8は、少なくともこの交流電圧Vepの1周期分の波形データDvを電圧計3から取得すると共に、この取得した波形データDvに含まれる周波数成分のうちの測定電流Iの周波数成分を抽出する信号抽出処理(つまり、地電圧Veの周波数成分を除去する処理)を実行して、電圧値((Re+Rp)×I1)の波形データDvを抽出する。なお、フィルタ回路や同期検波回路などを使用して、交流電圧Vepから測定電流Iの周波数成分を予め抽出するようにしてもよい。   The voltmeter 3 measures the voltage value ((Re + Rp) × I1 + Ve) of the AC voltage Vep and outputs the waveform data Dv to the processing unit 8. In addition, the processing unit 8 acquires the waveform data Dv for at least one cycle of the AC voltage Vep from the voltmeter 3, and the frequency component of the measurement current I among the frequency components included in the acquired waveform data Dv. The signal extraction process to extract (that is, the process of removing the frequency component of the ground voltage Ve) is executed to extract the waveform data Dv having the voltage value ((Re + Rp) × I1). Note that the frequency component of the measurement current I may be extracted in advance from the AC voltage Vep using a filter circuit, a synchronous detection circuit, or the like.

続いて、処理部8は、この電圧値((Re+Rp)×I1)の波形データDvに基づいて、接地極Eおよび第1補助接地極P間に発生する交流電圧Vep(地電圧Veを含まない状態での電圧)の電圧値(実効値)を算出する。次いで、処理部8は、この算出した交流電圧Vepの電圧値を測定電流Iの電流値I1で除算することにより、接地極Eおよび第1補助接地極P間の合成接地抵抗値Rep(=Re+Rp)を算出して、内部メモリに記憶する。最後に、処理部8は、定電流源2に対して測定電流Iの出力を停止させる。これにより、合成接地抵抗Repの合成接地抵抗値Repの算出が完了する。   Subsequently, the processing unit 8 does not include the AC voltage Vep (the ground voltage Ve) generated between the ground electrode E and the first auxiliary ground electrode P based on the waveform data Dv of this voltage value ((Re + Rp) × I1). The voltage value (effective value) of the voltage in the state is calculated. Next, the processing unit 8 divides the calculated voltage value of the AC voltage Vep by the current value I1 of the measurement current I, thereby obtaining a combined ground resistance value Rep (= Re + Rp) between the ground electrode E and the first auxiliary ground electrode P. ) Is calculated and stored in the internal memory. Finally, the processing unit 8 causes the constant current source 2 to stop outputting the measurement current I. This completes the calculation of the combined ground resistance value Rep of the combined ground resistance Rep.

また、処理部8は、合成接地抵抗Recの合成接地抵抗値Recの算出に際して、まず、スイッチ部4に対する制御を実行して、切替スイッチ12,13については上記の接続状態のままとし、切替スイッチ11を破線で示される接続状態(コモン接点comが一方の接点に接続される状態)に移行させる。これにより、接地抵抗計1は、定電流源2および電圧計3の並列回路が、スイッチ部4を介して接続端子5および接続端子7間、つまり接地極Eおよび第2補助接地極C間に接続される接続状態に移行する。   Further, when calculating the combined grounding resistance value Rec of the combined grounding resistance Rec, the processing unit 8 first performs control on the switch unit 4 and leaves the changeover switches 12 and 13 in the above-mentioned connection state, and the changeover switch. 11 is shifted to a connection state indicated by a broken line (a state where the common contact com is connected to one contact). Thereby, the ground resistance meter 1 includes a parallel circuit of the constant current source 2 and the voltmeter 3 between the connection terminal 5 and the connection terminal 7 via the switch unit 4, that is, between the ground electrode E and the second auxiliary ground electrode C. Transition to connected state.

次いで、処理部8は、合成接地抵抗Repの算出のときと同様にして、定電流源2に対する制御を実行して、上記のようにして規定した電流値(本例では0.25mA)で測定電流Iを出力させると共に、このときに電圧計3から出力される交流電圧Vecの電圧値((Re+Rc)×I1+Ve)についての波形データDvを取得する。また、処理部8は、この取得した波形データDvに対して信号抽出処理を実行して、電圧値((Re+Rc)×I1)の波形データDvを抽出し、この波形データDvに基づいて、接地極Eおよび第2補助接地極C間に発生する交流電圧Vecの電圧値(実効値)を算出する。   Next, the processing unit 8 controls the constant current source 2 in the same way as when calculating the composite ground resistance Rep, and measures at the current value defined as described above (0.25 mA in this example). While outputting the current I, the waveform data Dv for the voltage value ((Re + Rc) × I1 + Ve) of the AC voltage Vec output from the voltmeter 3 at this time is acquired. Further, the processing unit 8 performs signal extraction processing on the acquired waveform data Dv, extracts waveform data Dv having a voltage value ((Re + Rc) × I1), and grounding is performed based on the waveform data Dv. A voltage value (effective value) of the AC voltage Vec generated between the pole E and the second auxiliary grounding pole C is calculated.

続いて、処理部8は、この算出した交流電圧Vecの電圧値を測定電流Iの電流値I1で除算することにより、接地極Eおよび第2補助接地極C間の合成接地抵抗値Rec(=Re+Rc)を算出して、内部メモリに記憶する。最後に、処理部8は、定電流源2に対して測定電流Iの出力を停止させる。これにより、合成接地抵抗Recの合成接地抵抗値Recの算出が完了する。   Subsequently, the processing unit 8 divides the calculated voltage value of the AC voltage Vec by the current value I1 of the measurement current I, thereby combining the ground resistance Ec between the ground electrode E and the second auxiliary ground electrode C (= Re + Rc) is calculated and stored in the internal memory. Finally, the processing unit 8 causes the constant current source 2 to stop outputting the measurement current I. This completes the calculation of the combined ground resistance value Rec of the combined ground resistance Rec.

また、処理部8は、合成接地抵抗Rpcの合成接地抵抗値Rpcの算出に際して、まず、スイッチ部4に対する制御を実行して、切替スイッチ11,13については上記の接続状態のままとし、切替スイッチ12を破線で示される接続状態(コモン接点comが一方の接点に接続される状態)に移行させる。これにより、接地抵抗計1は、上記の定電流源2および電圧計3の並列回路が、スイッチ部4を介して接続端子6および接続端子7間、つまり第1補助接地極Pおよび第2補助接地極C間に接続される接続状態に移行する。   Further, when calculating the combined grounding resistance value Rpc of the combined grounding resistance Rpc, the processing unit 8 first controls the switch unit 4 so that the changeover switches 11 and 13 remain in the above connected state, and the changeover switch is set. 12 is shifted to a connection state indicated by a broken line (a state where the common contact com is connected to one contact). As a result, the ground resistance meter 1 is configured such that the parallel circuit of the constant current source 2 and the voltmeter 3 is connected between the connection terminal 6 and the connection terminal 7 via the switch unit 4, that is, the first auxiliary ground pole P and the second auxiliary A transition is made to a connection state connected between the ground poles C.

次いで、処理部8は、合成接地抵抗Repの算出のときと同様にして、定電流源2に対する制御を実行して、上記のようにして規定した電流値(本例では0.25mA)で測定電流Iを出力させると共に、このときに電圧計3から出力される交流電圧Vpcの電圧値((Rp+Rc)×I1)についての波形データDvを取得する。また、処理部8は、この取得した波形データDvに基づいて、第1補助接地極Pおよび第2補助接地極C間に発生する交流電圧Vpcの電圧値(実効値)を算出する。   Next, the processing unit 8 controls the constant current source 2 in the same way as when calculating the composite ground resistance Rep, and measures at the current value defined as described above (0.25 mA in this example). While outputting the current I, the waveform data Dv for the voltage value ((Rp + Rc) × I1) of the AC voltage Vpc output from the voltmeter 3 at this time is acquired. Further, the processing unit 8 calculates a voltage value (effective value) of the AC voltage Vpc generated between the first auxiliary grounding pole P and the second auxiliary grounding pole C based on the acquired waveform data Dv.

続いて、処理部8は、この算出した交流電圧Vpcの電圧値を測定電流Iの電流値I1で除算することにより、第1補助接地極Pおよび第2補助接地極C間の合成接地抵抗値Rpc(=Rp+Rc)を算出して、内部メモリに記憶する。最後に、処理部8は、定電流源2に対して測定電流Iの出力を停止させる。これにより、合成接地抵抗Rpcの合成接地抵抗値Rpcの算出が完了する。   Subsequently, the processing unit 8 divides the calculated voltage value of the AC voltage Vpc by the current value I1 of the measurement current I, thereby combining the ground resistance value between the first auxiliary grounding pole P and the second auxiliary grounding pole C. Rpc (= Rp + Rc) is calculated and stored in the internal memory. Finally, the processing unit 8 causes the constant current source 2 to stop outputting the measurement current I. Thereby, the calculation of the combined ground resistance value Rpc of the combined ground resistance Rpc is completed.

次いで、処理部8は、算出した各合成接地抵抗値Rep,Rec,Rpcに基づいて、下記の3元連立1次方程式(式(2)〜(4))を解くことで、接地極Eの接地抵抗値Re、第1補助接地極Pの接地抵抗値Rpおよび第2補助接地極Cの接地抵抗値Rcを算出する。
Rep=Re+Rp ・・・ (2)
Rec=Re+Rc ・・・ (3)
Rpc=Rp+Rc ・・・ (4)
Next, the processing unit 8 solves the following ternary simultaneous linear equations (Equations (2) to (4)) based on the calculated combined ground resistance values Rep, Rec, and Rpc, whereby the ground electrode E The grounding resistance value Re, the grounding resistance value Rp of the first auxiliary grounding pole P, and the grounding resistance value Rc of the second auxiliary grounding pole C are calculated.
Rep = Re + Rp (2)
Rec = Re + Rc (3)
Rpc = Rp + Rc (4)

なお、このようにして算出した各接地抵抗値Re,Rp,Rcは、測定電流Iの電流値I1を定電流源2で供給し得る電流値のうちの低位側の電流値に規定して測定したものであり、測定電流Iの電流値I1を後述する電流値決定処理で決定される電流値(地電圧Ve、最大出力電圧値をVmaxおよび各接地抵抗値Re,Rp,Rcを考慮して決定される電流値であって、接地抵抗値Reをより高精度で測定し得る可能性のある好ましい電流値)に規定して測定したものよりも精度が低い可能性がある。このため、処理部8は、この算出した各接地抵抗値Re,Rp,Rcを、仮接地抵抗値Re、仮接地抵抗値Rpおよび仮接地抵抗値Rcとして内部メモリに記憶する。これにより、第1接地抵抗算出処理が完了する。   The ground resistance values Re, Rp, and Rc calculated in this way are measured by defining the current value I1 of the measurement current I as the current value on the lower side of the current values that can be supplied by the constant current source 2. The current value I1 of the measured current I is determined in consideration of the current value (ground voltage Ve, the maximum output voltage value Vmax, and each ground resistance value Re, Rp, Rc) determined in a current value determination process described later. There is a possibility that the accuracy is lower than the current value to be determined and measured by defining the ground resistance value Re as a preferable current value that may be measured with higher accuracy. Therefore, the processing unit 8 stores the calculated ground resistance values Re, Rp, Rc in the internal memory as the temporary ground resistance value Re, the temporary ground resistance value Rp, and the temporary ground resistance value Rc. Thereby, the first ground resistance calculation process is completed.

次いで、処理部8は、電流値決定処理を実行する(ステップ23)。この電流値決定処理では、処理部8は、各仮接地抵抗値Re,Rp、地電圧Veの電圧値(ピーク値Ve1)および定電流源2の最大出力電圧値Vmaxに基づいて、下記式(5)を満たす電流値I1のうちの最も大きな電流値I1を測定電流Iの新たな電流値I1として決定する。
Vmax>(Re+Rp)×I1×√2+Ve1 ・・・ (5)
Next, the processing unit 8 executes current value determination processing (step 23). In this current value determination process, the processing unit 8 uses the following formula (based on the temporary ground resistance values Re and Rp, the voltage value of the ground voltage Ve (peak value Ve1), and the maximum output voltage value Vmax of the constant current source 2): The largest current value I1 among the current values I1 satisfying 5) is determined as a new current value I1 of the measurement current I.
Vmax> (Re + Rp) × I1 × √2 + Ve1 (5)

つまり、定電流源2についての複数の電流値I1のうちの1つの電流値I1であって、抵抗値を上記の仮接地抵抗値Re,Rpとして規定した各接地抵抗Re,Rpで発生する電圧のピーク値に地電圧Veの電圧値(ピーク値Ve1)を加算した加算電圧値が、最大出力電圧値Vmax未満であって最大出力電圧値Vmaxに最も近くなる電流値I1を測定電流Iの電流値(測定電流値)I1として決定する。   That is, the voltage generated at each of the ground resistors Re and Rp, which is one of the plurality of current values I1 of the constant current source 2 and whose resistance value is defined as the temporary ground resistance values Re and Rp. The current value I1 that is the sum of the peak value of the ground voltage Ve and the voltage value of the ground voltage Ve (peak value Ve1) is less than the maximum output voltage value Vmax and is closest to the maximum output voltage value Vmax is the current of the measured current I The value (measured current value) is determined as I1.

例えば、測定された地電圧Veのピーク値Ve1が20Vであり、仮接地抵抗値Reが100Ωであり、仮接地抵抗値Rpが1.5kΩであり、定電流源2の最大出力電圧値Vmaxが25Vであるときには、電流値I1は、約2.2mA未満にするようにと算出される。このため、処理部8は、上記した定電流源2についての4つの電流値4mA,2mA,1mA,0.5mA,0.25mAのうちの2mAを測定電流Iの新たな電流値I1(測定電流値)として決定する。これにより、電流値決定処理が完了する。なお、この電流値決定処理において、処理部8は、仮接地抵抗値Rpに代えて、仮接地抵抗値Rcを使用して、上記の測定電流Iについての新たな電流値I1(測定電流値)を決定することもできる。   For example, the peak value Ve1 of the measured ground voltage Ve is 20V, the temporary grounding resistance value Re is 100Ω, the temporary grounding resistance value Rp is 1.5kΩ, and the maximum output voltage value Vmax of the constant current source 2 is When the voltage is 25 V, the current value I1 is calculated to be less than about 2.2 mA. For this reason, the processing unit 8 sets 2 mA of the four current values 4 mA, 2 mA, 1 mA, 0.5 mA, and 0.25 mA for the constant current source 2 as a new current value I1 (measured current) of the measured current I. Value). Thereby, the current value determination process is completed. In this current value determination process, the processing unit 8 uses the temporary grounding resistance value Rc instead of the temporary grounding resistance value Rp, and a new current value I1 (measured current value) for the measurement current I described above. Can also be determined.

次いで、処理部8は、第2接地抵抗算出処理を実行する(ステップ24)。この第2接地抵抗算出処理では、処理部8は、まず、定電流源2の測定電流Iの電流値I1を、上記の電流値決定処理において決定した電流値I1に規定する。この場合、電流値決定処理で決定した電流値I1が、第1接地抵抗算出処理において規定した電流値I1よりも大きいときには、この電流値決定処理で決定した電流値I1で測定電流Iを出力した状態において電圧計3で測定される交流電圧Vep,Vpc,Vecがより高い電圧値Vep,Vpc,Vecとして測定される。このため、交流電圧Vep,Vpc,Vecに基づいて算出される接地抵抗値Re,Rp,Rcの測定精度が高められる。   Next, the processing unit 8 executes a second ground resistance calculation process (step 24). In the second ground resistance calculation process, the processing unit 8 first defines the current value I1 of the measurement current I of the constant current source 2 to the current value I1 determined in the current value determination process. In this case, when the current value I1 determined in the current value determination process is larger than the current value I1 defined in the first ground resistance calculation process, the measurement current I is output with the current value I1 determined in the current value determination process. In the state, the AC voltages Vep, Vpc, Vec measured by the voltmeter 3 are measured as higher voltage values Vep, Vpc, Vec. For this reason, the measurement accuracy of the ground resistance values Re, Rp, Rc calculated based on the AC voltages Vep, Vpc, Vec is improved.

次いで、処理部8は、この第2接地抵抗算出処理において、接地極Eの接地抵抗値Reを算出する抵抗算出処理を実行する。この抵抗算出処理では、処理部8は、まず、スイッチ部4に対する制御を実行して、切替スイッチ11を破線で示される接続状態に移行させ、かつ切替スイッチ12,13を実線で示される接続状態に移行させる。これにより、接地抵抗計1は、定電流源2がスイッチ部4を介して接続端子5および接続端子7間、つまり接地極Eおよび第2補助接地極C間に接続され、かつ電圧計3がスイッチ部4を介して接続端子5および接続端子6間、つまり接地極Eおよび第1補助接地極P間に接続される接続状態に移行する。   Next, the processing unit 8 executes a resistance calculation process for calculating the ground resistance value Re of the ground electrode E in the second ground resistance calculation process. In this resistance calculation process, the processing unit 8 first executes control on the switch unit 4 to shift the changeover switch 11 to a connection state indicated by a broken line and connect the changeover switches 12 and 13 to a connection state indicated by a solid line. To migrate. As a result, the ground resistance meter 1 includes a constant current source 2 connected between the connection terminal 5 and the connection terminal 7 via the switch unit 4, that is, between the ground electrode E and the second auxiliary ground electrode C, and the voltmeter 3 The connection state is established between the connection terminal 5 and the connection terminal 6 via the switch unit 4, that is, between the ground electrode E and the first auxiliary ground electrode P.

次いで、処理部8は、定電流源2に対する制御を実行して、上記のようにして決定した新たな電流値I1(本例では2mA)で測定電流Iを出力させる。この測定電流Iは、定電流源2の出力端子2aから、スイッチ部4の切替スイッチ11、接続端子7、第2補助接地極C、大地G、接地極E、接続端子5およびスイッチ部4の切替スイッチ12を経由して定電流源2の出力端子2bに戻る電流経路に流れる。   Next, the processing unit 8 controls the constant current source 2 to output the measurement current I at the new current value I1 (2 mA in this example) determined as described above. This measurement current I is supplied from the output terminal 2 a of the constant current source 2 to the changeover switch 11 of the switch unit 4, the connection terminal 7, the second auxiliary grounding electrode C, the ground G, the grounding electrode E, the connection terminal 5, and the switch unit 4. The current flows through the change-over switch 12 and returns to the output terminal 2b of the constant current source 2.

電圧計3は、接続端子5および接続端子6を介して交流電圧Vepの電圧値(Re×I1+Ve)を測定して、その波形データDvを処理部8に出力する。また、処理部8は、少なくともこの交流電圧Vepの1周期分の波形データDvを電圧計3から取得すると共に、この取得した波形データDvに対して信号抽出処理を実行して、電圧値(Re×I1)の波形データDvを抽出する。   The voltmeter 3 measures the voltage value (Re × I1 + Ve) of the AC voltage Vep through the connection terminal 5 and the connection terminal 6 and outputs the waveform data Dv to the processing unit 8. Further, the processing unit 8 acquires waveform data Dv for at least one cycle of the AC voltage Vep from the voltmeter 3 and performs signal extraction processing on the acquired waveform data Dv to obtain a voltage value (Re Extract the waveform data Dv of × I1).

続いて、処理部8は、この電圧値(Re×I1)の波形データDvに基づいて、接地極Eおよび第1補助接地極P間に発生する交流電圧Vep(地電圧Veを含まない状態での電圧)の電圧値(実効値)を算出する。次いで、処理部8は、この算出した交流電圧Vepの電圧値を測定電流Iの電流値I1で除算することにより、接地極Eの接地抵抗値Reを算出して、内部メモリに記憶する。最後に、処理部8は、定電流源2に対して測定電流Iの出力を停止させる。これにより、最終的な接地抵抗値Reの算出が完了し、第2接地抵抗算出処理が完了する。   Subsequently, the processing unit 8 is based on the waveform data Dv of the voltage value (Re × I1) and generates an AC voltage Vep (not including the ground voltage Ve) generated between the ground electrode E and the first auxiliary ground electrode P. Voltage value (effective value). Next, the processing unit 8 calculates the ground resistance value Re of the ground electrode E by dividing the calculated voltage value of the AC voltage Vep by the current value I1 of the measurement current I, and stores it in the internal memory. Finally, the processing unit 8 causes the constant current source 2 to stop outputting the measurement current I. Thereby, the calculation of the final ground resistance value Re is completed, and the second ground resistance calculation process is completed.

なお、ステップ23の電流値決定処理で決定した測定電流Iの電流値I1が、ステップ22の第1接地抵抗算出処理での電流値I1と同じときには、第2接地抵抗算出処理で算出される接地抵抗Reの接地抵抗値Reは、第1接地抵抗算出処理で算出される接地抵抗Reの接地抵抗値Reと同じ精度で算出されたものとなる。このため、第2接地抵抗算出処理は実行せずに、第1接地抵抗算出処理で算出された接地抵抗Reの接地抵抗値Reを最終的な接地抵抗値Reとする。   When the current value I1 of the measured current I determined in the current value determination process in step 23 is the same as the current value I1 in the first ground resistance calculation process in step 22, the ground calculated in the second ground resistance calculation process The ground resistance value Re of the resistor Re is calculated with the same accuracy as the ground resistance value Re of the ground resistor Re calculated in the first ground resistance calculation process. Therefore, the second ground resistance calculation process is not executed, and the ground resistance value Re of the ground resistance Re calculated in the first ground resistance calculation process is set as the final ground resistance value Re.

最後に、処理部8は、出力処理を実行して、第2接地抵抗算出処理で算出した最終的な接地抵抗Reの接地抵抗値Re(上記したように、場合によって第1接地抵抗算出処理で算出した最終的な接地抵抗値Re)を、出力部9の画面上に表示させる(ステップ25)。これにより、抵抗測定処理20が完了する。   Finally, the processing unit 8 executes the output process, and finally calculates the ground resistance value Re of the ground resistance Re calculated in the second ground resistance calculation process (as described above, in the first ground resistance calculation process as the case may be). The calculated final ground resistance value Re) is displayed on the screen of the output unit 9 (step 25). Thereby, the resistance measurement process 20 is completed.

このように、この接地抵抗計1および接地抵抗測定方法では、異なる複数の電流値I1で測定電流Iを供給可能に構成された定電流源2を使用し、地電圧Veのピーク値Ve1(地電圧Veの電圧値)を測定する地電圧測定処理と、測定電流Iの電流値I1を複数の電流値I1のうちの低位側の1つの電流値I1に規定して抵抗算出処理を実行することにより、被測定接地極である接地極Eの接地抵抗値Reおよび各補助接地極P,Cの各接地抵抗値Rp,Rcを仮接地抵抗値として算出する第1接地抵抗算出処理と、各仮接地抵抗値Re,Rp、地電圧Veのピーク値Ve1および定電流源2の最大出力電圧値Vmaxに基づいて、複数の電流値I1のうちの1つの電流値I1であって、各接地抵抗Re,Rpで発生する電圧(ピーク電圧値:(Re+Rp)×I1×√2)に地電圧Veのピーク値Ve1を加算した加算電圧値((Re+Rp)×I1×√2+Ve1)が最大出力電圧値Vmax未満であって最大出力電圧値Vmaxに最も近くなる電流値I1を測定電流値として決定する電流値決定処理と、定電流源2の測定電流Iの電流値I1をこの決定した測定電流値に規定して抵抗算出処理を実行することにより、接地極Eの接地抵抗値Reを算出する第2接地抵抗算出処理とを実行する。   As described above, in the ground resistance meter 1 and the ground resistance measurement method, the constant current source 2 configured to be able to supply the measurement current I with a plurality of different current values I1 is used, and the peak value Ve1 of the ground voltage Ve (ground A ground voltage measurement process for measuring the voltage Ve) and a resistance calculation process by defining the current value I1 of the measurement current I as one current value I1 on the lower side of the plurality of current values I1. The first ground resistance calculation process for calculating the ground resistance value Re of the ground electrode E, which is the ground electrode to be measured, and the ground resistance values Rp and Rc of the auxiliary ground electrodes P and C as temporary ground resistance values, Based on the ground resistance values Re and Rp, the peak value Ve1 of the ground voltage Ve, and the maximum output voltage value Vmax of the constant current source 2, one current value I1 of the plurality of current values I1 and each ground resistance Re , Rp generated voltage (peak voltage : The added voltage value ((Re + Rp) × I1 × √2 + Ve1) obtained by adding the peak value Ve1 of the ground voltage Ve to (Re + Rp) × I1 × √2) is less than the maximum output voltage value Vmax and becomes the maximum output voltage value Vmax By executing the resistance calculation process by defining the current value I1 of the measurement current I of the constant current source 2 as the determined measurement current value and determining the current value I1 that is closest to the measurement current value. Then, a second ground resistance calculation process for calculating the ground resistance value Re of the ground electrode E is executed.

したがって、この接地抵抗計1および接地抵抗測定方法によれば、接地極Eが接地された場所の地電圧Veのピーク値Ve1、各接地抵抗値Re,Rp、および定電流源2の最大出力電圧値Vmaxに応じた最適な電流値I1を複数の電流値I1から選択して測定電流Iの電流値に規定して接地極Eの接地抵抗値Reを測定することができる。このため、この接地抵抗計1および接地抵抗測定方法によれば、測定した地電圧Veと予め規定された一定の閾値電圧とを比較して接地抵抗の測定の可否を判別する従来の接地抵抗計や接地抵抗測定方法とは異なり、地電圧Veがある程度大きくても(より高い地電圧Veの発生場所においても)、接地抵抗値Re,Rpが小さいときには、最大出力電圧値Vmax以下の範囲内で定電流源2が規定の測定電流Iを供給して接地極Eの接地抵抗値Reを正確に測定することができる。   Therefore, according to the ground resistance meter 1 and the ground resistance measuring method, the peak value Ve1 of the ground voltage Ve where the ground electrode E is grounded, the ground resistance values Re and Rp, and the maximum output voltage of the constant current source 2 The optimum current value I1 corresponding to the value Vmax can be selected from a plurality of current values I1 and defined as the current value of the measurement current I, and the ground resistance value Re of the ground electrode E can be measured. Therefore, according to the ground resistance meter 1 and the ground resistance measurement method, the conventional ground resistance meter that compares the measured ground voltage Ve with a predetermined threshold voltage and determines whether or not the ground resistance can be measured. Unlike the ground resistance measuring method, even if the ground voltage Ve is large to some extent (even at a place where a higher ground voltage Ve is generated), when the ground resistance values Re and Rp are small, the ground voltage Ve is within the range below the maximum output voltage value Vmax. The constant current source 2 supplies a specified measurement current I, and the ground resistance value Re of the ground electrode E can be accurately measured.

なお、上記の接地抵抗計1および接地抵抗測定方法では、第1補助接地極Pおよび第2補助接地極Cを使用して接地極Eの接地抵抗値Reを測定しているが、図示はしないが、例えば、スイッチ部4の切替スイッチ11,13をそれぞれ破線で示される接続状態に移行させると共に、切替スイッチ12を実線で示される接続状態に移行させ、接続端子6は使用せずに、接続端子5と接続端子7とを使用して、接続端子5を接地極Eに接続し、接続端子7を背景技術で述べた金属製埋設物などの接地抵抗が小さい既存の接地極に接続することにより、上記の接地抵抗計1および接地抵抗測定方法を2電極法での簡易測定に適用することもできる。   In the ground resistance meter 1 and the ground resistance measuring method described above, the ground resistance value Re of the ground electrode E is measured using the first auxiliary ground electrode P and the second auxiliary ground electrode C. However, for example, the changeover switches 11 and 13 of the switch unit 4 are shifted to the connection state indicated by the broken lines, and the changeover switch 12 is shifted to the connection state indicated by the solid lines, and the connection terminal 6 is not used. Using the terminal 5 and the connection terminal 7, the connection terminal 5 is connected to the ground electrode E, and the connection terminal 7 is connected to an existing ground electrode having a small ground resistance such as a metal buried object described in the background art. Therefore, the ground resistance meter 1 and the ground resistance measuring method can be applied to simple measurement by the two-electrode method.

この場合においても、接地極Eが接地された場所の地電圧Veのピーク値Ve1、接地極Eの接地抵抗値Reおよび上記の小さい接地抵抗の接地極の接地抵抗値、および定電流源2の最大出力電圧値Vmaxに応じた最適な電流値I1を複数の電流値I1から選択して測定電流Iの電流値に規定して接地極Eの接地抵抗値Reを測定することができるため、地電圧Veがある程度大きくても(より高い地電圧Veの発生場所においても)、接地極Eの接地抵抗値Reおよび上記の小さい接地抵抗の接地極の接地抵抗値が小さいときには、最大出力電圧値Vmaxの範囲内で定電流源2が規定の測定電流Iを供給して接地極Eの接地抵抗値Reを正確に測定することができる。   Also in this case, the peak value Ve1 of the ground voltage Ve where the ground electrode E is grounded, the ground resistance value Re of the ground electrode E and the ground resistance value of the ground electrode of the small ground resistance, and the constant current source 2 Since the optimum current value I1 corresponding to the maximum output voltage value Vmax can be selected from a plurality of current values I1 and defined as the current value of the measurement current I, the ground resistance E of the ground electrode E can be measured. Even if the voltage Ve is large to some extent (even at a place where a higher ground voltage Ve is generated), when the ground resistance value Re of the ground electrode E and the ground resistance value of the ground electrode of the small ground resistance are small, the maximum output voltage value Vmax Within the range, the constant current source 2 supplies the prescribed measurement current I, and the ground resistance value Re of the ground electrode E can be accurately measured.

また、上記の例では、定電流源2が測定電流Iとして正弦波電流を生成して出力する構成のため、測定電流Iの電流値(実効値)I1を√2倍した値を使用して、各接地抵抗Re,Rpで発生する電圧(ピーク電圧値:(Re+Rp)×I1×√2)を算出しているが、定電流源2が測定電流Iとして方形波電流や三角波電流を生成して出力する構成を採用することもできる。なお、この構成のうちの測定電流Iとして方形波電流を出力する構成のときには、上記したピーク電圧値の算出に際しては、測定電流Iの電流値(実効値)I1を1倍した値を使用して、ピーク電圧値((Re+Rp)×I1×1)を算出し、一方、測定電流Iとして三角波電流を出力する構成のときには、上記したピーク電圧値の算出に際しては、測定電流Iの電流値(実効値)I1を√3倍した値を使用して、ピーク電圧値((Re+Rp)×I1×√3)を算出する。   In the above example, since the constant current source 2 generates and outputs a sine wave current as the measurement current I, a value obtained by multiplying the current value (effective value) I1 of the measurement current I by √2 is used. The voltage generated at each ground resistance Re, Rp (peak voltage value: (Re + Rp) × I1 × √2) is calculated, but the constant current source 2 generates a square wave current or a triangular wave current as the measurement current I. It is also possible to adopt a configuration that outputs the output. In this configuration, when a square wave current is output as the measurement current I, a value obtained by multiplying the current value (effective value) I1 of the measurement current I by 1 is used in calculating the peak voltage value. When the peak voltage value ((Re + Rp) × I1 × 1) is calculated and a triangular wave current is output as the measurement current I, the current value of the measurement current I ( The peak voltage value ((Re + Rp) × I1 × √3) is calculated using a value obtained by multiplying the effective value I1 by √3.

1 接地抵抗計
2 定電流源
3 電圧計
8 処理部
C 第2補助接地極
E 接地極
I 測定電流
P 第1補助接地極
Rc,Re,Rp 接地抵抗
Vec,Vep,Vpc 交流電圧
DESCRIPTION OF SYMBOLS 1 Grounding resistance meter 2 Constant current source 3 Voltmeter 8 Processing part C 2nd auxiliary earthing electrode E Earthing electrode I Measurement current P 1st auxiliary earthing electrode Rc, Re, Rp Earthing resistance Vec, Vep, Vpc AC voltage

Claims (2)

被測定接地極と補助接地極との間に交流定電流を供給する定電流源と、
前記被測定接地極および前記補助接地極間に発生する交流電圧を測定する電圧計と、
前記定電流源による前記交流定電流の供給状態において当該交流定電流の電流値と前記電圧計によって測定される前記交流電圧の電圧値とに基づいて前記被測定接地極の接地抵抗を算出する抵抗算出処理を実行する処理部とを備えている接地抵抗計であって、
前記定電流源は、異なる複数の電流値で前記交流定電流を供給可能に構成され、
前記処理部は、前記定電流源に対して前記交流定電流の供給を停止させている状態において前記電圧計によって測定される前記交流電圧の電圧値を第1電圧の電圧値として測定する第1電圧測定処理と、前記複数の電流値のうちの低位側の1つの電流値に前記交流定電流の電流値を規定して前記抵抗算出処理を実行することにより、前記被測定接地極および前記補助接地極の各接地抵抗の抵抗値を仮接地抵抗値として算出する第1接地抵抗算出処理と、前記各仮接地抵抗値、前記第1電圧の電圧値および前記定電流源の最大出力電圧値に基づいて、前記複数の電流値のうちの1つの電流値であって、前記各接地抵抗で発生する電圧に当該第1電圧の電圧値を加算した加算電圧値が当該最大出力電圧値未満であって当該最大出力電圧値に最も近くなる電流値を測定電流値として決定する電流値決定処理と、前記交流定電流の電流値を前記決定した測定電流値に規定して前記抵抗算出処理を実行することにより、前記被測定接地極の接地抵抗の抵抗値を算出する第2接地抵抗算出処理とを実行する接地抵抗計。
A constant current source for supplying an alternating constant current between the measured grounding electrode and the auxiliary grounding electrode;
A voltmeter for measuring an alternating voltage generated between the ground electrode to be measured and the auxiliary ground electrode;
A resistor that calculates a ground resistance of the ground electrode to be measured based on a current value of the AC constant current and a voltage value of the AC voltage measured by the voltmeter in a supply state of the AC constant current by the constant current source A ground resistance meter including a processing unit that executes a calculation process,
The constant current source is configured to be able to supply the AC constant current with a plurality of different current values,
The processing unit measures a voltage value of the AC voltage measured by the voltmeter as a voltage value of a first voltage in a state where supply of the AC constant current to the constant current source is stopped. And performing the resistance calculation process by defining the current value of the AC constant current to one current value on the lower side of the plurality of current values, and performing the resistance calculation process, thereby the ground electrode to be measured and the auxiliary A first ground resistance calculation process for calculating a resistance value of each ground resistance of the ground electrode as a temporary ground resistance value, the temporary ground resistance value, the voltage value of the first voltage, and the maximum output voltage value of the constant current source. On the basis of this, a current value of one of the plurality of current values, which is obtained by adding the voltage value of the first voltage to the voltage generated at each ground resistor, is less than the maximum output voltage value. Closest to the maximum output voltage Current value determination processing for determining the current value to be measured current value, and the resistance calculation processing by defining the current value of the AC constant current as the determined measurement current value, A ground resistance meter for executing a second ground resistance calculation process for calculating a resistance value of the ground resistance.
被測定接地極と補助接地極との間に定電流源から交流定電流を供給している状態において当該被測定接地極および当該補助接地極間に発生する交流電圧を電圧計で測定し、当該交流定電流の電流値と前記電圧計で測定した前記交流電圧の電圧値とに基づいて前記被測定接地極の接地抵抗を算出する抵抗算出処理を実行する接地抵抗測定方法であって、
前記定電流源として異なる複数の電流値で前記交流定電流を供給可能に構成された定電流源を使用して、
前記定電流源からの前記交流定電流の供給を停止させている状態において前記電圧計によって測定される前記交流電圧の電圧値を第1電圧の電圧値として測定する第1電圧測定処理と、
前記複数の電流値のうちの低位側の1つの電流値に前記交流定電流の電流値を規定して前記抵抗算出処理を実行することにより、前記被測定接地極および前記補助接地極の各接地抵抗の抵抗値を仮接地抵抗値として算出する第1接地抵抗算出処理と、
前記各仮接地抵抗値、前記第1電圧の電圧値および前記定電流源の最大出力電圧値に基づいて、前記複数の電流値のうちの1つの電流値であって、前記各接地抵抗で発生する電圧に当該第1電圧の電圧値を加算した加算電圧値が当該最大出力電圧値未満であって当該最大出力電圧値に最も近くなる電流値を測定電流値として決定する電流値決定処理と、
前記交流定電流の電流値を前記決定した測定電流値に規定して前記抵抗算出処理を実行することにより、前記被測定接地極の接地抵抗の抵抗値を算出する第2接地抵抗算出処理とを実行する接地抵抗測定方法。
In a state where an AC constant current is supplied from a constant current source between the measured grounding electrode and the auxiliary grounding electrode, the AC voltage generated between the measured grounding electrode and the auxiliary grounding electrode is measured with a voltmeter. A ground resistance measurement method for executing a resistance calculation process for calculating a ground resistance of the ground electrode to be measured based on a current value of an AC constant current and a voltage value of the AC voltage measured by the voltmeter,
Using a constant current source configured to be able to supply the AC constant current with a plurality of different current values as the constant current source,
A first voltage measurement process for measuring a voltage value of the AC voltage measured by the voltmeter as a voltage value of the first voltage in a state where the supply of the AC constant current from the constant current source is stopped;
By defining the current value of the AC constant current to one current value on the lower side of the plurality of current values and executing the resistance calculation process, each ground of the measured ground electrode and the auxiliary ground electrode A first ground resistance calculation process for calculating a resistance value of the resistor as a temporary ground resistance value;
Based on the temporary ground resistance value, the voltage value of the first voltage, and the maximum output voltage value of the constant current source, one current value of the plurality of current values, which is generated at each ground resistance A current value determination process for determining a measured current value as a measured current value that is an added voltage value obtained by adding the voltage value of the first voltage to the voltage to be measured is less than the maximum output voltage value and closest to the maximum output voltage value;
A second ground resistance calculation process for calculating a resistance value of a ground resistance of the ground electrode to be measured by executing the resistance calculation process by defining the current value of the AC constant current as the determined measurement current value. The ground resistance measurement method to be performed.
JP2013046191A 2013-03-08 2013-03-08 Ground resistance meter and method for measuring ground resistance Expired - Fee Related JP5985420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046191A JP5985420B2 (en) 2013-03-08 2013-03-08 Ground resistance meter and method for measuring ground resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046191A JP5985420B2 (en) 2013-03-08 2013-03-08 Ground resistance meter and method for measuring ground resistance

Publications (2)

Publication Number Publication Date
JP2014173965A JP2014173965A (en) 2014-09-22
JP5985420B2 true JP5985420B2 (en) 2016-09-06

Family

ID=51695317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046191A Expired - Fee Related JP5985420B2 (en) 2013-03-08 2013-03-08 Ground resistance meter and method for measuring ground resistance

Country Status (1)

Country Link
JP (1) JP5985420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785134B (en) * 2016-03-17 2018-05-29 中国地质科学院地球物理地球化学勘查研究所 Unpolarizable electrode ground resistance measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810667A (en) * 1981-07-10 1983-01-21 Masami Fujii Measuring method for earthing resistance in place where induced voltage is large
JP2011226983A (en) * 2010-04-22 2011-11-10 Hioki Ee Corp Grounding resistance meter and grounding state discrimination method

Also Published As

Publication number Publication date
JP2014173965A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
US20110173585A1 (en) Battery characteristic evaluator
JP2006343109A (en) Electric power measuring apparatus
KR20130119871A (en) Cell direct-current resistance evaluation system
EA201290174A1 (en) CONSTRUCTION OF THE THREE-DIMENSIONAL IMAGE OF THE MASS FLOW
US10928428B2 (en) Measuring apparatus
JP5985420B2 (en) Ground resistance meter and method for measuring ground resistance
JP2011226983A (en) Grounding resistance meter and grounding state discrimination method
JP2012026896A (en) Ground resistance meter and ground resistance measuring method
JP6486665B2 (en) Insulation resistance measuring device
JP5985422B2 (en) Ground resistance meter and method for measuring ground resistance
JP6304956B2 (en) Resistance measuring device and resistance measuring method
WO2014019779A3 (en) Electronic measuring device for a magnetic-inductive flow meter, and measuring system formed therewith
RU140217U1 (en) DEVICE FOR MEASURING EARTH RESISTANCE
JP2014115142A (en) Ground resistance meter, ground resistance measuring method, and program
KR101362940B1 (en) Method and apparatus diagnosing earth system
KR102014644B1 (en) Differential synchronization Resonance detection device and method
KR101292374B1 (en) Apparatus and Method for Calculating Impedance of Battery
JP5791347B2 (en) Resistance measuring device
CN103116066B (en) A kind of defining method of power tap position of photovoltaic module and device
CN108614147A (en) Voltage fluctuation detection method and its Source of Gateway Meter
JP5734015B2 (en) measuring device
JP2004242404A (en) Leakage detector
JP2006308509A (en) Three-phase three-wire system load simulator
JP6314039B2 (en) Measuring method of ground resistance
JP6727958B2 (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees