JP5982676B2 - Biotinylated peptide compound having anti-PAF activity - Google Patents

Biotinylated peptide compound having anti-PAF activity Download PDF

Info

Publication number
JP5982676B2
JP5982676B2 JP2012035540A JP2012035540A JP5982676B2 JP 5982676 B2 JP5982676 B2 JP 5982676B2 JP 2012035540 A JP2012035540 A JP 2012035540A JP 2012035540 A JP2012035540 A JP 2012035540A JP 5982676 B2 JP5982676 B2 JP 5982676B2
Authority
JP
Japan
Prior art keywords
paf
peptide
terminal biotinylated
biotinylated
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012035540A
Other languages
Japanese (ja)
Other versions
JP2012193166A (en
Inventor
佐藤 陽
陽 佐藤
敬一 蝦名
敬一 蝦名
Original Assignee
学校法人 いわき明星大学
学校法人 いわき明星大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 いわき明星大学, 学校法人 いわき明星大学 filed Critical 学校法人 いわき明星大学
Priority to JP2012035540A priority Critical patent/JP5982676B2/en
Publication of JP2012193166A publication Critical patent/JP2012193166A/en
Application granted granted Critical
Publication of JP5982676B2 publication Critical patent/JP5982676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、生体内において血小板活性化因子(PAF)およびリゾPAFと結合して、PAFのPAF作動性受容体結合を阻害し、PAFの受容体結合に起因する各種炎症性疾患の予防、治療などに有用なビオチニル化ペプチド化合物と、この化合物を含有する抗炎症剤に関するものである。   The present invention binds to platelet activating factor (PAF) and lyso-PAF in vivo, inhibits PAF-operating receptor binding of PAF, and prevents and treats various inflammatory diseases caused by PAF receptor binding. The present invention relates to a biotinylated peptide compound useful for the above, and an anti-inflammatory agent containing this compound.

血小板活性化因子(1-O-アルキル-2-アセチル-sn-グリセロ-3-ホスホコリン、platelet- activating factor : PAF)は、血小板や好中球、好酸球など種々の細胞種より産生され、特異的なGタンパク質受容体に結合することで強力な炎症反応を惹起する脂質メディエーターである。PAFの過剰産生により引き起こされる病態としては、リウマチ性関節炎(非特許文献1)や気管支喘息(非特許文献2)、皮膚炎(非特許文献3)、腎炎(非特許文献4)、歯周炎(非特許文献5)など多くの炎症性疾患がある。従って、PAF濃度を測定することによってこれらの疾患の診断や治療効果の評価を行なうことが試みられている(例えば特許文献1)。一方、PAFの過剰産生を抑制すること、あるいは受容体との結合を阻害することによるPAFの不活性化はこれら病態の予防、治療、改善または悪化防止・再発予防に極めて有益なものとなる。しかしながら、PAF分子またはPAF受容体を標的とした、PAF活性に起因する抗炎症剤については未だ実用化されていない。   Platelet activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, platelet-activating factor: PAF) is produced from various cell types such as platelets, neutrophils, and eosinophils. It is a lipid mediator that elicits a strong inflammatory response by binding to a specific G protein receptor. The pathological conditions caused by the overproduction of PAF include rheumatoid arthritis (Non-patent document 1), bronchial asthma (Non-patent document 2), dermatitis (Non-patent document 3), nephritis (Non-patent document 4), and periodontitis. There are many inflammatory diseases such as (Non-Patent Document 5). Accordingly, attempts have been made to diagnose these diseases and evaluate their therapeutic effects by measuring the PAF concentration (for example, Patent Document 1). On the other hand, inactivation of PAF by suppressing overproduction of PAF or inhibiting binding to a receptor is extremely useful for the prevention, treatment, improvement, prevention of deterioration, and prevention of recurrence of these pathological conditions. However, anti-inflammatory agents resulting from PAF activity targeting PAF molecules or PAF receptors have not yet been put into practical use.

PAFとその受容体との結合を拮抗的に阻害する物質(PAF受容体拮抗剤)としては、例えばWEB-2086(thieno-triazolodiazepine)(非特許文献6、特許文献2)やCV-3988(特許文献2)が知られており、これらのPAF受容体拮抗物質が抗アレルギー剤や抗喘息剤として臨床試験段階にある。しかし、これらPAF受容体拮抗剤はPAF受容体に対するリガンドであり、PAF分子と直接結合しないため、局所投与では効果を示すものの全身投与では効果不十分である。さらにはPAF受容体以外のリゾリン脂質/酸化リン脂質受容体にもリガンドとして作用するために予期しない副作用が発現するおそれがあるといった問題点も有している。   As a substance (PAF receptor antagonist) that antagonistically inhibits the binding between PAF and its receptor, for example, WEB-2086 (thieno-triazolodiazepine) (Non-patent document 6, Patent document 2) and CV-3988 (patent) Document 2) is known, and these PAF receptor antagonists are in the clinical trial stage as antiallergic agents and antiasthma agents. However, since these PAF receptor antagonists are ligands for the PAF receptor and do not bind directly to the PAF molecule, they are effective when administered locally but insufficiently when administered systemically. Furthermore, lysophospholipid / oxidized phospholipid receptors other than the PAF receptor also act as ligands, and thus there is a problem that unexpected side effects may occur.

一方、動脈硬化の初期病変形成に関与する酸化低密度リポタンパク質(Low Density Lipoprotein: LDL)にはPAF様脂質が多く含まれているが、本願発明者らはこの酸化LDLと特異的に結合する複数種のペプチドと、これらのペプチドを用いた酸化LDLの検出法および動脈硬化の診断剤を開発している(特許文献3)。   On the other hand, the oxidized low density lipoprotein (LDL) involved in the formation of early lesions of arteriosclerosis contains a lot of PAF-like lipids, but the present inventors specifically bind to the oxidized LDL. We have developed multiple types of peptides, a method for detecting oxidized LDL using these peptides, and a diagnostic agent for arteriosclerosis (Patent Document 3).

特表2004-527770号公報Special Table 2004-527770 特開平06-305981公報Japanese Patent Laid-Open No. 06-305981 特許第4017326号公報Japanese Patent No. 4017326

Vergne, P. et al., Mediators Inflamm., 6: 241-242, 1997Vergne, P. et al., Mediators Inflamm., 6: 241-242, 1997 月岡ら, アレルギー, 42: 167-171頁, 1993Tsukioka et al., Allergy, 42: 167-171, 1993 Czarnetzki, B., Clin. Exp. Immunol., 54: 486-492, 1983Czarnetzki, B., Clin. Exp. Immunol., 54: 486-492, 1983 Denizot, Y. et al., Nephrol. Dial. Transplant., 15: 1344-1347, 2000Denizot, Y. et al., Nephrol. Dial. Transplant., 15: 1344-1347, 2000 Garito, M.L., J. Dent. Res., 74: 1048-1056頁, 1995Garito, M.L., J. Dent. Res., 74: 1048-1056, 1995 Casals-Stenzel, J., The Journal of Pharmacology, 241: 974-981, 1987Casals-Stenzel, J., The Journal of Pharmacology, 241: 974-981, 1987

本発明は、PAFおよびリゾPAFと結合してPAFの受容体結合を特異的に阻害することによって、PAFのPAF作動性受容体結合に起因する各種炎症性疾患に対する予防、回復、改善または悪化・再発予防のための有効かつ安全な手段を提供することを課題としている。   The present invention prevents, recovers, ameliorates or worsens various inflammatory diseases caused by PAF agonist receptor binding by binding PAF and lyso-PAF and specifically inhibiting PAF receptor binding. The objective is to provide an effective and safe means for preventing recurrence.

前記の課題を解決するため、本発明者らは、特許文献3に記載の酸化LDL認識ペプチドについて鋭意研究を行なった結果、以下の知見を得た。
(A)酸化LDL認識ペプチドがPAFの用量に依存した結合性を示すこと。
(B)上記ペプチドが培養血管内皮細胞においてPAFによる細胞障害誘導活性を強く抑制すること。
(C)上記ペプチドがPAFの前駆物質であり代謝物でもあるリゾPAF(1-O-アルキル-sn-グリセロ-3-ホスホコリン)の用量に依存して結合すること。
(D)ラットを用いて上記ペプチドのPAF誘発炎症抑制試験(in vivo試験)を行ったが、生体内での抗炎症効果は不十分であり、満足すべき結果は得られなかったこと。
In order to solve the above-mentioned problems, the present inventors have earnestly studied the oxidized LDL-recognizing peptide described in Patent Document 3, and as a result, have obtained the following knowledge.
(A) The oxidized LDL-recognizing peptide exhibits binding properties depending on the dose of PAF.
(B) The peptide strongly suppresses the cytotoxicity-inducing activity by PAF in cultured vascular endothelial cells.
(C) The peptide is bound depending on the dose of lysoPAF (1-O-alkyl-sn-glycero-3-phosphocholine), which is a precursor and metabolite of PAF.
(D) A PAF-induced inflammation suppression test (in vivo test) of the above peptide was performed using rats, but the anti-inflammatory effect in vivo was insufficient, and satisfactory results were not obtained.

これらの知見を踏まえ、本発明者らは、生体内においても上記ペプチドが抗炎症作用を発揮できるようなペプチド修飾について検討した結果、ビオチンの付加(ビオチニル化修飾)によって上記ペプチドが生体内において優れた効果を有することを確認して、本発明を完成させた。   Based on these findings, the present inventors have examined peptide modifications that allow the peptide to exert an anti-inflammatory action even in vivo. As a result, the peptide is excellent in vivo by the addition of biotin (biotinylation modification). The present invention was completed by confirming that it had the same effect.

すなわち本発明は、前記の課題を解決するものとして、以下を提供する。
(1)Tyr-Lys-Asp-Gly(配列番号1)、Tyr-Lys-Asp-Lys-Glu(配列番号11)またはTyr-Lys-Gly-Lys(配列番号12)のアミノ酸配列を有するペプチドにビオチンが付加されており、生体内において血小板活性化因子(PAF)およびリゾPAFと結合してPAFのPAF作動性受容体結合を阻害するビオチニル化ペプチド化合物。
(2)Tyr-Lys-Asp-Gly(配列番号1)のアミノ酸配列を有するペプチドが、配列番号2における第12-15位配列(Tyr-Lys-Asp-Gly)の少なくとも前後1アミノ酸残基を含む請求項1のペプチド化合物。
(3) 請求項1または2記載のビオチニル化ペプチド化合物を有効成分とする抗炎症剤。
That is, this invention provides the following as what solves the said subject.
(1) A peptide having an amino acid sequence of Tyr-Lys-Asp-Gly (SEQ ID NO: 1), Tyr-Lys-Asp-Lys-Glu (SEQ ID NO: 11) or Tyr-Lys-Gly-Lys (SEQ ID NO: 12) Biotinylated peptide compound that has biotin added and binds to platelet activating factor (PAF) and lyso-PAF in vivo to inhibit PAF-activated receptor binding of PAF.
(2) The peptide having the amino acid sequence of Tyr-Lys-Asp-Gly (SEQ ID NO: 1) has at least one amino acid residue before and after the sequence of positions 12-15 in SEQ ID NO: 2 (Tyr-Lys-Asp-Gly). The peptide compound of claim 1 comprising:
(3) An anti-inflammatory agent comprising the biotinylated peptide compound according to claim 1 or 2 as an active ingredient.

なお、「ペプチド」とは、アミド結合(ペプチド結合)または非天然の残基連結によって互いに結合した複数個のアミノ酸残基から構成された分子を意味する。本発明のペプチドは、前記のとおり最短で4アミノ酸残基(配列番号1)、最長で29アミノ酸残基(配列番号2)からなる分子である。   “Peptide” means a molecule composed of a plurality of amino acid residues linked to each other by amide bonds (peptide bonds) or unnatural residue linkages. As described above, the peptide of the present invention is a molecule consisting of at least 4 amino acid residues (SEQ ID NO: 1) and at most 29 amino acid residues (SEQ ID NO: 2).

また「ビオチニル化」とは、ペプチドのN末端またはC末端のいずれかにビオチンが結合した状態を言う。   “Biotinylated” refers to a state in which biotin is bound to either the N-terminus or C-terminus of the peptide.

本願発明におけるその他の用語や概念は、発明の実施形態の説明や実施例において詳しく規定する。また本願発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献などに基づいて当業者であれば容易かつ確実に実施可能である。例えば、本願発明の薬剤(医薬組成物)の調製はRemington's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, PA, 1990などに、遺伝子工学および分子生物学的技術はSambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995などに記載されている。さらに、この発明における用語は基本的にはIUPAC-IUB Commission on Biochemical Nomenclatureによるものであり、あるいは当該分野において慣用的に使用される用語の意味に基づくものである。   Other terms and concepts in the present invention are defined in detail in the description of the embodiments of the invention and the examples. Various techniques used for carrying out the invention of the present application can be easily and reliably implemented by those skilled in the art based on well-known literatures and the like, except for the technique that clearly indicates the source. For example, the preparation of the drug (pharmaceutical composition) of the present invention is described in Remington's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, PA, 1990, etc. and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1995, etc. ing. Furthermore, the terms in the present invention are basically based on the IUPAC-IUB Commission on Biochemical Nomenclature, or based on the meanings of terms conventionally used in the field.

前記発明(1)(2)によれば、生体内においてPAFおよびリゾPAFと結合してPAFのPAF作動性受容体結合を特異的に阻害するビオチニル化ペプチド化合物が提供される。   According to the inventions (1) and (2), a biotinylated peptide compound that binds to PAF and lyso-PAF in vivo and specifically inhibits PAF-activated receptor binding of PAF is provided.

また前記発明(3)によれば、PAFのPAF作動性受容体結合に起因する各種炎症性疾患を予防、回復、改善または悪化・再発予防するための有効かつ安全な薬剤が提供される。   In addition, according to the invention (3), an effective and safe drug for preventing, recovering, ameliorating, or preventing aggravation / recurrence of various inflammatory diseases caused by binding of PAF to a PAF agonist receptor is provided.

実施例で使用したN末端ビオチニル化P21、N末端ビオチニル化P4の配列およびビオチンの構造を示す。The sequences of N-terminal biotinylated P21 and N-terminal biotinylated P4 and the structure of biotin used in the examples are shown. 時間分解蛍光法を用いたN末端ビオチニル化P21のPAF(A)またはリゾPAF(B)に対する結合性を示した。横軸は各脂質の濃度(μM)、縦軸は各脂質とペプチドの結合による蛍光強度変化を平均値 ± S.D.(n = 3)として示した。The binding of N-terminal biotinylated P21 using time-resolved fluorescence to PAF (A) or lyso-PAF (B) was demonstrated. The horizontal axis represents the concentration (μM) of each lipid, and the vertical axis represents the change in fluorescence intensity due to the binding of each lipid and peptide as an average value ± SD (n = 3). 実施例2においてN末端ビオチニル化P21の皮下投与による抗PAF作用を試験した結果であり、各処置後の足浮腫容積を平均値 ± S.D. (ml)として示した。FIG. 5 shows the results of testing the anti-PAF effect by subcutaneous administration of N-terminal biotinylated P21 in Example 2, and the paw edema volume after each treatment is shown as an average value ± SD (ml). 実施例2においてN末端ビオチニル化P21およびP4の静脈内投与または皮下投与による抗PAF作用を試験した結果であり、各処置後の足浮腫容積を平均値 ± S.D. (ml)として示した。FIG. 5 shows the results of testing the anti-PAF effect by intravenous administration or subcutaneous administration of N-terminal biotinylated P21 and P4 in Example 2, and the foot edema volume after each treatment is shown as mean value ± SD (ml). 実施例2においてペプチドまたはN末端ビオチニル化P21およびP4の投与量と抗PAF活性の相関を試験した結果であり、横軸には各ペプチドの1個体あたりの投与量(nmol)を、縦軸は各処置後の足浮腫容積の変化を平均値 ± S.D.(ml)として示した。It is the result of examining the correlation between the dose of peptide or N-terminal biotinylated P21 and P4 and anti-PAF activity in Example 2, the horizontal axis represents the dose (nmol) of each peptide per individual, and the vertical axis Changes in paw edema volume after each treatment are shown as mean ± SD (ml). N末端ビオチニル化ペプチド化合物のPAF活性50 %阻害量(ID50)の算出根拠であり、横軸にはそれぞれN末端ビオチニル化P21、N末端ビオチニル化P4の投与量(nmol)をlog対数で示し、縦軸には各対照群の足浮腫容積変化を100 %としたときの、各投与量における足浮腫容積変化(%)を平均値 ± S.D. (ml)として示した。This is the basis for calculating the 50% inhibition amount (ID 50 ) of PAF activity of N-terminal biotinylated peptide compounds. The horizontal axis shows the dose (nmol) of N-terminal biotinylated P21 and N-terminal biotinylated P4 in log logarithm respectively. On the vertical axis, the change in foot edema volume (%) at each dose when the change in foot edema volume in each control group was taken as 100% was shown as the mean ± SD (ml). 実施例3においてN末端ビオチニル化P21とPAF受容体拮抗剤の抗PAF作用を比較した結果であり、各処置後の足浮腫容積を平均値 ± S.D. (ml)として示した。FIG. 3 shows the results of comparing the anti-PAF action of N-terminal biotinylated P21 and a PAF receptor antagonist in Example 3, and the foot edema volume after each treatment is shown as an average value ± SD (ml). 実施例4において、YKDKE配列ペプチドからなるN末端ビオチニル化PET3およびYKGK配列ペプチドからなるN末端ビオチニル化PCD36の静脈内投与による抗PAF作用を試験した結果であり、各処置後の足浮腫容積を平均値± S.D. (ml)として示した。In Example 4, it is the result of having tested the anti-PAF effect by intravenous administration of N terminal biotinylated PET3 which consists of a YKDKE sequence peptide, and N terminal biotinylated PCD36 which consists of a YKGK sequence peptide. Values are shown as ± SD (ml).

本発明のビオチニル化ペプチド化合物を構成するペプチドの一つは、基本的には特許文献3に開示された酸化LDL認識ペプチドであり、少なくとも配列番号1のアミノ酸配列(Tyr-Lys-Asp-Gly:以下、「YKDG配列」と記載することがある)を有するペプチドである。特許文献3には、PAF様脂質を含む酸化LDLを特異的に認識し、結合するペプチドとして以下が記載されている(下線部がYKDG配列)。
P29:IKNASLSWGKWYKDGDKDAEITSEDVQQK(配列番号2)
P24: LSWGKWYKDGDKDAEITSEDVQQK(配列番号3)
P21:IKNASLSWGKWYKDGDKDAEI(配列番号4)
P16: LSWGKWYKDGDKDAEI(配列番号5)
P11: WGKWYKDGDKD(配列番号6)
P9: WGKWYKDGD(配列番号7)
P6: WYKDGD(配列番号8)
P4: YKDG(配列番号1)
一方、特許文献3によれば、以下のペプチド(P15、P7)は酸化LDLに対する認識・結合能を持たない。
P15:IKNASLSWGKWYKDG(配列番号9)
P7: YKDGDKD(配列番号10)
すなわちこれらのペプチドP15、P7はYKDG配列のN末端側またはC末端側のいずれか一方にのみ他のアミノ酸残基を有するペプチドであるのに対して、酸化LDL認識・結合能を有するペプチドP29、P24、P16、P11、P9、P6、P4は、YKDG配列単独または配列番号2におけるYKDG配列の少なくとも前後1アミノ酸残基を含むペプチドである。従って、本発明に使用するペプチドは、最短でYKDG配列からなるペプチド(P4)、または配列番号2におけるYKDG配列の少なくとも前後1アミノ酸残基を含む、最長で29アミノ酸残基からなるペプチド(P29)である。
One of the peptides constituting the biotinylated peptide compound of the present invention is basically an oxidized LDL recognition peptide disclosed in Patent Document 3, and at least the amino acid sequence of SEQ ID NO: 1 (Tyr-Lys-Asp-Gly: Hereinafter, it may be described as “YKDG sequence”). Patent Document 3 describes the following as peptides that specifically recognize and bind to oxidized LDL containing PAF-like lipids (underlined portion is YKDG sequence).
P29: IKNASLSWGKW YKDG DKDAEITSEDVQQK (SEQ ID NO: 2)
P24: LSWGKW YKDG DKDAEITSEDVQQK (SEQ ID NO: 3)
P21: IKNASLSWGKW YKDG DKDAEI (SEQ ID NO: 4)
P16: LSWGKW YKDG DKDAEI (SEQ ID NO: 5)
P11: WGKW YKDG DKD (SEQ ID NO: 6)
P9: WGKW YKDG D (SEQ ID NO: 7)
P6: W YKDG D (SEQ ID NO: 8)
P4: YKDG (SEQ ID NO: 1)
On the other hand, according to Patent Document 3, the following peptides (P15, P7) do not have recognition / binding ability for oxidized LDL.
P15: IKNASLSWGKW YKDG (SEQ ID NO: 9)
P7: YKDG DKD (SEQ ID NO: 10)
That is, these peptides P15 and P7 are peptides having other amino acid residues only on either the N-terminal side or the C-terminal side of the YKDG sequence, whereas peptides P29 having the ability to recognize and bind to oxidized LDL, P24, P16, P11, P9, P6, and P4 are peptides containing at least one amino acid residue before and after the YKDG sequence alone or the YKDG sequence in SEQ ID NO: 2. Therefore, the peptide used in the present invention is the peptide consisting of the YKDG sequence at the shortest (P4) or the peptide consisting of the longest 29 amino acid residues including at least one amino acid residue before and after the YKDG sequence in SEQ ID NO: 2 (P29). It is.

本発明のビオチニル化ペプチド化合物を構成する別のペプチドは、配列番号11のアミノ酸配列(Tyr-Lys-Asp-Lys-Glu:以下「YKDKE配列」と記載することがある)および配列番号12のアミノ酸配列(Tyr-Lys-Gly-Lys:以下「YKGK配列」と記載することがある)を有するペプチドである。すなわち、前記YKDG配列を有するペプチドがAspergillus fumigatusのタンパク質毒素であるAsp-hemolysinの部分ペプチドであるのに対して、YKDKE配列およびYKGK配列はヒトタンパク質の部分ペプチドである。本発明者らは、多くのヒト生理活性タンパク質のアミノ酸配列を解析した結果、Asp-hemolysinの部分ペプチドYKDGと類似する配列(エンドセリン-3のYKDKE配列およびスカベンジャー受容体CD36のYKGK配列)を見出し、これらをビオチニル化したペプチド化合物が生体内においてPAFおよびリゾPAFと結合してPAFのPAF作動性受容体結合を阻害することを確認した。以下、エンドセリン-3(ET3)のYKDKE配列ペプチドを「PET3」、CD36のYKGK配列ペプチドを「PCD36」と記載することがある。   Another peptide constituting the biotinylated peptide compound of the present invention includes the amino acid sequence of SEQ ID NO: 11 (Tyr-Lys-Asp-Lys-Glu: hereinafter sometimes referred to as “YKDKE sequence”) and the amino acid of SEQ ID NO: 12. A peptide having a sequence (Tyr-Lys-Gly-Lys: hereinafter sometimes referred to as “YKGK sequence”). That is, the peptide having the YKDG sequence is a partial peptide of Asp-hemolysin, which is a protein toxin of Aspergillus fumigatus, whereas the YKDKE sequence and the YKGK sequence are partial peptides of a human protein. As a result of analyzing the amino acid sequences of many human physiologically active proteins, the present inventors found sequences similar to the partial peptide YKDG of Asp-hemolysin (the YKDKE sequence of endothelin-3 and the YKGK sequence of scavenger receptor CD36), It was confirmed that these biotinylated peptide compounds bind to PAF and lyso-PAF in vivo and inhibit PAF-binding of PAF. Hereinafter, the YKDKE sequence peptide of endothelin-3 (ET3) may be referred to as “PET3”, and the YKGK sequence peptide of CD36 may be referred to as “PCD36”.

またPET3およびPCD36は、それぞれYKDKE配列およびYKGK配列の前後に少なくとも1アミノ酸残基を付加した全長29アミノ酸配列程度のペプチドであってもよい。すなわち、ヒト・エンドセリン-3の全アミノ酸配列は公知であり(例えばGenBank:AAP35748)、YKDKE配列は全アミノ酸配列の第102-106位に存在する。またヒトCD36の場合、YKGK配列は公知の全アミノ酸配列(例えばGenBank:EAW7700)の第230-233位に存在する。PET3ペプチドおよびCD36ペプチドはこれらの公知のアミノ酸配列に従って前後にアミノ酸残基を付加することができる。   PET3 and PCD36 may be peptides having a total length of about 29 amino acid sequences with at least one amino acid residue added before and after the YKDKE sequence and YKGK sequence, respectively. That is, the entire amino acid sequence of human endothelin-3 is known (for example, GenBank: AAP35748), and the YKDKE sequence is located at positions 102 to 106 of the entire amino acid sequence. In the case of human CD36, the YKGK sequence is present at positions 230 to 233 of the entire known amino acid sequence (for example, GenBank: EAW7700). According to these known amino acid sequences, amino acid residues can be added before and after PET3 peptide and CD36 peptide.

これらのペプチドは、遺伝子組換え技術を用いて組換えペプチドとして調製することもできるが、好ましくは市販のペプチド合成機(例えば、Applied Biosystems A431またはA433など)を使用して化学的に合成することができる。合成は公知の方法にしたがって、例えばアミノ酸誘導体を用いてペプチドのC末端から実施する。アミノ酸誘導体としては、結合に必要とされるアミノ末端基がフルオレニルメチルオキシカルボニル(Fmoc)基で誘導体化されているものを用いることが好ましい。用いるアミノ酸の反応性側基は、ペプチド合成の完了後に容易に切断可能な保護基、例えば、トリフェニルメチル(Trt)、t-ブチルエーテル(tBu)、t-ブチルエステル(0 tBu)、t-ブトキシカルボニル(Boc)または2,2,5,7,8-ペンタ- メチルクロマン-6- スルホニル(Pmc)などを含むようにする。またこれらのペプチドは、20種類の天然アミノ酸に加えて、非天然のアミノ酸やアミノ酸アナログなど(例えば、Hunt, The Non-Protein Amino Acids: Chemistry and Biochemistry of the Amino Acids, Barrett, Chapman and Hall,1985を参照)を含んでいてもよい。   These peptides can be prepared as recombinant peptides using gene recombination techniques, but preferably chemically synthesized using a commercially available peptide synthesizer (for example, Applied Biosystems A431 or A433). Can do. The synthesis is carried out according to a known method, for example, from the C-terminus of the peptide using an amino acid derivative. As the amino acid derivative, it is preferable to use an amino acid derivative in which an amino terminal group required for bonding is derivatized with a fluorenylmethyloxycarbonyl (Fmoc) group. The reactive side group of the amino acid used is a protecting group that can be easily cleaved after completion of peptide synthesis, such as triphenylmethyl (Trt), t-butyl ether (tBu), t-butyl ester (0 tBu), t-butoxy. It contains carbonyl (Boc) or 2,2,5,7,8-penta-methylchroman-6-sulfonyl (Pmc). In addition to 20 natural amino acids, these peptides include non-natural amino acids and amino acid analogs (for example, Hunt, The Non-Protein Amino Acids: Chemistry and Biochemistry of the Amino Acids, Barrett, Chapman and Hall, 1985). May be included.

合成したペプチドは、例えばNHS-ビオチン、NHS-SS-ビオチン(スルフォサクシンイミジル2−(ビオチンアミド)エチル−1,3−ジチオプロピネート)などのビオチン導入試薬を用いた公知の方法によりビオチニル化する。ビオチンの付加は、ペプチドのN末端でもC末端でもよい。   The synthesized peptide is biotinyl by a known method using a biotin-introducing reagent such as NHS-biotin and NHS-SS-biotin (sulfosuccinimidyl 2- (biotinamido) ethyl-1,3-dithiopropinate). Turn into. The biotin addition may be at the N-terminus or C-terminus of the peptide.

本発明の抗炎症剤は、前記のビオチニル化ペプチド化合物を有効成分として含有する。この薬剤が対象とする疾患は、PAFの受容体結合により発症するリウマチ性関節炎、気管支喘息、皮膚炎、腎炎、歯周炎などのPAFが起因物質として関与する各種炎症性疾患である。本発明の薬剤は、これらの疾患の予防、緩和、回復、または別途病状からの保護に有効に作用する。   The anti-inflammatory agent of the present invention contains the biotinylated peptide compound as an active ingredient. Diseases targeted by this drug are various inflammatory diseases in which PAF is involved as a causative agent such as rheumatoid arthritis, bronchial asthma, dermatitis, nephritis, periodontitis, etc. that develops due to receptor binding of PAF. The agent of the present invention effectively acts to prevent, alleviate, recover, or separately protect against these diseases.

この抗炎症剤は、前記のビオチニル化ペプチド化合物それ単独で製剤化することもできるが、通常は薬理学的に許容される1つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として投与するのが望ましい。   This anti-inflammatory agent can be formulated with the aforementioned biotinylated peptide compound itself, but is usually mixed with one or more pharmacologically acceptable carriers, and is used in the technical field of pharmaceutics. It is desirable to administer it as a pharmaceutical formulation produced by any method well known in the art.

投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内などの非経口投与をあげることができ、望ましくは静脈内投与をあげることができる。   It is desirable to use the most effective route for treatment, and oral administration or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous is desirable. Can be given intravenously.

経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などがあげられる。乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖などの糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、オリーブ油、大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、ストロベリーフレーバー、ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。カプセル剤、錠剤、散剤、顆粒剤などは、乳糖、ブドウ糖、ショ糖、マンニトールなどの賦形剤、デンプン、アルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤、グリセリンなどの可塑剤などを添加剤として用いて製造できる。   Suitable formulations for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like. Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives. For capsules, tablets, powders, granules, etc., excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.

非経口投与に適当な製剤としては、注射剤、坐剤、噴霧剤などがあげられる。注射剤は、塩溶液、ブドウ糖溶液あるいは両者の混合物からなる担体などを用いて調製される。坐剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて調製される。また、噴霧剤は受容者の口腔および気道粘膜などの正常組織や器官を刺激せず、かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。   Formulations suitable for parenteral administration include injections, suppositories, sprays and the like. The injection is prepared using a carrier made of a salt solution, a glucose solution, or a mixture of both. Suppositories are prepared using a carrier such as cacao butter, hydrogenated fat or carboxylic acid. The spray is prepared using a carrier that does not irritate normal tissues and organs such as the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the active ingredient as fine particles.

担体として具体的には乳糖、グリセリンなどが例示される。さらには、用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。   Specific examples of the carrier include lactose and glycerin. Furthermore, preparations such as aerosols and dry powders are possible depending on the nature of the carrier used. In these parenteral preparations, the components exemplified as additives for oral preparations can also be added.

投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、有効な投薬量は、例えば1日当たり約1μg〜約10mg/キログラム体重、好ましくは、約10μg〜5mg/キログラム体重である。またこの総1日量は、単一投与または分割投与(例えば2〜6回程度)される。   The dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, body weight, etc., but the effective dosage is, for example, about 1 μg to about 10 mg / kg body weight, preferably about 10 μg per day. ~ 5mg / kg body weight. The total daily dose is administered in a single dose or divided doses (for example, about 2 to 6 times).

以下、実施例を示して本発明をさらに詳細かつ具体的に説明するが、本発明は以下の例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail and concretely, this invention is not limited to the following examples.

なお、以下の例で使用した材料は次のとおりである。
N末端ビオチニル化ペプチド化合物:
P21ペプチド(配列番号4)およびP4ペプチド(配列番号1)のそれぞれのN末端をビオチニル化したペプチド化合物(以下、N末端ビオチニル化P21、N末端ビオチニル化P4)を合成し、純度95 %以上として精製した(高速液体クロマトグラフィーおよび質量分析により確認)。図1にN末端ビオチニル化P21、N末端ビオチニル化P4の配列およびビオチンの構造を示した。
The materials used in the following examples are as follows.
N-terminal biotinylated peptide compounds:
A peptide compound (hereinafter referred to as N-terminal biotinylated P21, N-terminal biotinylated P4) in which the N-terminus of each of P21 peptide (SEQ ID NO: 4) and P4 peptide (SEQ ID NO: 1) is biotinylated is synthesized with a purity of 95% or more. Purified (confirmed by high performance liquid chromatography and mass spectrometry). FIG. 1 shows the sequences of N-terminal biotinylated P21 and N-terminal biotinylated P4 and the structure of biotin.

また、PET3(配列番号11)およびPCD36(配列番号12)のそれぞれのN末端をビオチニル化したペプチド化合物(以下、N末端ビオチニル化PET3、N末端ビオチニル化CD36)を同様に合成、精製した。
PAFおよびリゾPAF:
PAFは1-O-ヘキサデシル-2-アセチル-sn-グリセロ-3-ホスホコリン(PAF C-16、Enzo Life Sciences(BIOMOL)、L-100)を用い、またリゾPAFは1-O-ヘキサデシル-sn-グリセロ-3-ホスホコリン(C-16、Cayman Chemical Company、60906)を用いた。
Further, peptide compounds obtained by biotinylating the N-terminus of PET3 (SEQ ID NO: 11) and PCD36 (SEQ ID NO: 12) (hereinafter, N-terminal biotinylated PET3 and N-terminal biotinylated CD36) were synthesized and purified in the same manner.
PAF and lyso PAF:
PAF uses 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF C-16, Enzo Life Sciences (BIOMOL), L-100), and lyso PAF uses 1-O-hexadecyl-sn. -Glycero-3-phosphocholine (C-16, Cayman Chemical Company, 60906) was used.

N末端ビオチニル化P21のPAFおよびリゾPAFに対する結合性の評価
N末端ビオチニル化P21のPAFおよびリゾPAFに対する結合解析を、時間分解蛍光法を用いて行った。具体的には、96ウェルマイクロプレートに各濃度のPAFまたはリゾPAF(各0〜30 μM)を100 μlずつ添加して4℃で1晩静置した後、各ウェルをpH 7.4のPBSで3回洗浄した後、PAF、リゾPAF固定化プレートの各ウェルをSuperBlockR Blocking Buffer (サーモサイエンティフィック社)によりブロッキングした。さらに各ウェルをPBSで3回洗浄し、N末端ビオチニル化P21(1 μM)各100 μlを添加して37℃で30分間反応した後、PBSで1,000倍に希釈したユーロピウム標識化ストレプトアビジン(パーキンエルマー社)各100 μlを添加し、室温で30分間反応させた。PBSで8回洗浄した後、DELFIA enhancement solution(パーキンエルマー社)を各ウェル100 μlを添加し、ユーロピウムの時間分解蛍光をWallac ARVOsx 1420 Multilabel counter(パーキンエルマー社)を用いて測定した(励起波長340 nm、測定波長615 nm)。
Evaluation of N-terminal biotinylated P21 binding to PAF and lyso-PAF
Binding analysis of N-terminal biotinylated P21 to PAF and lyso-PAF was performed using time-resolved fluorescence. Specifically, 100 μl of each concentration of PAF or lysoPAF (0-30 μM each) was added to a 96-well microplate and allowed to stand overnight at 4 ° C., and then each well was washed with PBS at pH 7.4. after washing times, and blocked by PAF, SuperBlock each well of lyso PAF-immobilized plate R blocking Buffer (thermo Scientific). Further, each well was washed 3 times with PBS, 100 μl each of N-terminal biotinylated P21 (1 μM) was added, reacted at 37 ° C. for 30 minutes, and then europium-labeled streptavidin (Parkin) diluted 1,000 times with PBS. Elmer) 100 μl each was added and allowed to react for 30 minutes at room temperature. After washing 8 times with PBS, 100 μl of DELFIA enhancement solution (PerkinElmer) was added to each well, and time-resolved fluorescence of europium was measured using a Wallac ARVOsx 1420 Multilabel counter (PerkinElmer) (excitation wavelength 340). nm, measurement wavelength 615 nm).

結果は図2に示したとおりであり、N末端ビオチニル化ペプチドP21はPAFおよびリゾPAFの用量に依存した結合性を示した。   The results are as shown in FIG. 2, and the N-terminal biotinylated peptide P21 showed binding depending on the dose of PAF and lyso-PAF.

in vivoにおけるN末端ビオチニル化ペプチド化合物のPAF活性に対する効果
in vivoにおけるN末端ビオチニル化ペプチド化合物のPAF生理活性に対する効果を検討するため、ラットの足浮腫モデル(Henriquesら, Br. J. Pharmacol., 106:579-582, 1992)を用いてペプチド化合物のPAF誘発炎症抑制試験を行った。
1)足浮腫の誘発と定量化
150-200グラム重量の、5〜8週令雄性Wistarラット(日本クレア)を、ジエチルエーテル吸入により麻酔した。エタノールに溶解した10 mM PAF溶液を150 mM塩化ナトリウム、10 mM トリス(ヒドロキシメチル)アミノメタン(以下、トリス、pH 7.5)および0.25% ウシ血清アルブミンの溶液で500倍に希釈し、5分間超音波処理してPAF溶液を調製した。50 μlのPAF溶液(最終濃度20 μM、1 nmol)をラット後足肉趾間へ皮下投与し、PAFによる浮腫が最大となる1時間後の足浮腫を測定し評価した。
Effects of N-terminal biotinylated peptide compounds on PAF activity in vivo
In order to examine the effect of N-terminal biotinylated peptide compounds on PAF bioactivity in vivo, we used the rat paw edema model (Henriques et al., Br. J. Pharmacol., 106: 579-582, 1992) A PAF-induced inflammation suppression test was conducted.
1) Induction and quantification of foot edema
5-8 week old male Wistar rats (Claire Japan) weighing 150-200 grams were anesthetized by inhalation with diethyl ether. A 10 mM PAF solution dissolved in ethanol is diluted 500-fold with a solution of 150 mM sodium chloride, 10 mM tris (hydroxymethyl) aminomethane (hereinafter, Tris, pH 7.5) and 0.25% bovine serum albumin, and ultrasonicated for 5 minutes. A PAF solution was prepared by treatment. 50 μl of PAF solution (final concentration 20 μM, 1 nmol) was subcutaneously administered between the rat hind footpads, and the foot edema was measured and evaluated 1 hour after the maximum edema due to PAF.

PAFの投与直前および投与から1時間後におけるラットの足容量を測定することによって浮腫を定量化した。なお、浮腫は足を水に浸けたときに増大する水容量をミリリットル(ml)単位で測定した。また、各時点で足を浸けることでその差を正確に比較できるように、後足の毛の生え際と踵の境界に油性ペンで印を付けた。
2)各種ペプチドおよびN末端ビオチニル化ペプチド化合物の投与経路
各種ペプチドまたはN末端ビオチニル化ペプチド化合物を、<1>ラットの後足肉趾間へ局所的に、または<2>尾静脈内へ、それぞれ注射により投与した。具体的には、<1>ではラットの後足肉趾間へPBS(pH 7.4)で各濃度に調製した100 μlのペプチド溶液を皮下投与し、<2>では尾静脈より上記と同様にPBSで各濃度に調製した100 μlのペプチド溶液を静脈内投与した。<1>、<2>ともに、対照群では同量のPBSを各経路より投与した。
3)N末端ビオチニル化P21の皮下投与による抗PAF作用
ラット(1群当たりn = 3)に、PBSに溶解した100 μlのN末端ビオチニル化P21(10 nmol)または担体を後足肉趾間へ皮下投与し、その15分後に50 μlのPAF(1 nmol)または担体溶媒(150 mM塩化ナトリウム、10 mM トリス(pH 7.5)および0.25% ウシ血清アルブミン)を同部位へ投与して、1時間後の足浮腫を測定し評価した。
Edema was quantified by measuring rat paw volume immediately before administration of PAF and 1 hour after administration. For edema, the water volume that increases when the foot is immersed in water was measured in milliliters (ml). In addition, an oil pen was used to mark the boundary between the hairline of the hind legs and the heel so that the difference could be accurately compared by immersing the legs at each time point.
2) Administration routes of various peptides and N-terminal biotinylated peptide compounds Various peptides or N-terminal biotinylated peptide compounds are injected locally into the <1> rat hind footpad or <2> into the tail vein, respectively. Administered. Specifically, in <1>, 100 μl of a peptide solution prepared at various concentrations with PBS (pH 7.4) was subcutaneously administered between the rat's hind foot pads, and in <2>, PBS was used in the same manner as above from the tail vein. 100 μl of peptide solution prepared at each concentration was intravenously administered. In both <1> and <2>, the same amount of PBS was administered from each route in the control group.
3) Anti-PAF effect by subcutaneous administration of N-terminal biotinylated P21 Rats (n = 3 per group) were subcutaneously injected with 100 μl N-terminal biotinylated P21 (10 nmol) or carrier dissolved in PBS between the hind footpads 15 minutes later, 50 μl of PAF (1 nmol) or carrier solvent (150 mM sodium chloride, 10 mM Tris (pH 7.5) and 0.25% bovine serum albumin) was administered to the same site, and 1 hour later. Foot edema was measured and evaluated.

結果は図3に示したとおりであり、各足浮腫容積は溶媒(vehicle)のみで0.11 ± 0.035 ml、PAFのみで0.52 ± 0.14 ml、N末端ビオチニル化P21のみで0.12 ± 0.033 ml、N末端ビオチニル化P21とPAFの併用で0.15 ± 0.12 mlとなり、N末端ビオチニル化P21は浮腫を発現せず、PAFによる足浮腫を顕著に抑制した。
4)N末端ビオチニル化ペプチド化合物の静脈内投与と皮下投与による抗PAF作用の比較
ラット(1群当たりn = 3)に、PBSに溶解した100 μlのN末端ビオチニル化P21(10 nmol)、N末端ビオチニル化P4(10 nmol)またはPBSを静脈内投与または皮下投与し、その15分後に50 μlのPAF溶液(1 nmol)を同部位に皮下投与して、1時間後の足浮腫を測定し評価した。
The results are as shown in FIG. 3. Each foot edema volume is 0.11 ± 0.035 ml with vehicle alone, 0.52 ± 0.14 ml with PAF alone, 0.12 ± 0.033 ml with N-terminal biotinylated P21 alone, and N-terminal biotinyl. The combined use of P21 and PAF resulted in 0.15 ± 0.12 ml, and N-terminal biotinylated P21 did not develop edema and markedly suppressed foot edema due to PAF.
4) Comparison of anti-PAF effect by intravenous and subcutaneous administration of N-terminal biotinylated peptide compound Rats (n = 3 per group) were treated with 100 μl N-terminal biotinylated P21 (10 nmol), N Terminal biotinylated P4 (10 nmol) or PBS was administered intravenously or subcutaneously, 15 minutes later, 50 μl of PAF solution (1 nmol) was subcutaneously administered to the same site, and foot edema was measured 1 hour later. evaluated.

結果は図4に示したとおりである。各足浮腫容積は、溶媒(vehicle)のみで0.083 ± 0.047 ml、PAFのみで0.52 ± 0.14 mlに対し、N末端ビオチニル化P21の静脈内または皮下投与によりそれぞれ0.16 ± 0.073 ml、0.15 ± 0.12 ml、N末端ビオチニル化P4の静脈内、皮下投与によりそれぞれ0.15 ± 0.038 ml、0.13 ± 0.025 mlとなり、いずれのビオチニル化ペプチド化合物も静脈内投与、皮下投与によってPAFによる足浮腫を顕著に抑制した。
5)ペプチドまたはN末端ビオチニル化ペプチド化合物の投与量と抗PAF活性の相関
ペプチド(P21、P4)と、各種N末端ビオチニル化ペプチド化合物(N末端ビオチニル化P21、N末端ビオチニル化P4)の投与量と抗PAF活性の相関について検討を行った。具体的には、ラット(1群当たりn = 3)に、PBSに溶解した100 μlの各モル量のペプチド(0.625、1.25、5、10または20 nmol)またはPBSを静脈内投与し、その15分後に50 μlのPAF(1 nmol)または担体溶媒を後足肉趾間へ皮下投与して、1時間後の足浮腫変化を測定し評価した。
The results are as shown in FIG. Each foot edema volume is 0.083 ± 0.047 ml with vehicle alone, 0.52 ± 0.14 ml with PAF alone, 0.16 ± 0.073 ml, 0.15 ± 0.12 ml by intravenous or subcutaneous administration of N-terminal biotinylated P21, respectively. Intravenous and subcutaneous administration of N-terminal biotinylated P4 resulted in 0.15 ± 0.038 ml and 0.13 ± 0.025 ml, respectively, and both biotinylated peptide compounds significantly inhibited paedema caused by PAF by intravenous administration and subcutaneous administration.
5) Correlation between dose of peptide or N-terminal biotinylated peptide compound and anti-PAF activity Dose of peptide (P21, P4) and various N-terminal biotinylated peptide compounds (N-terminal biotinylated P21, N-terminal biotinylated P4) And the correlation between anti-PAF activity was investigated. Specifically, rats (n = 3 per group) were intravenously administered with 100 μl of each molar amount of peptide (0.625, 1.25, 5, 10 or 20 nmol) or PBS dissolved in PBS, and 15 After 50 minutes, 50 μl of PAF (1 nmol) or carrier solvent was subcutaneously administered between the hind footpads, and changes in foot edema after 1 hour were measured and evaluated.

結果は図6に示したとおりであり、P21、P4ともにPAF誘発浮腫の抑制は認められるものの、効果は不十分であった(最大50 %程度の抑制)。これに対して、各種ビオチニル化ペプチド化合物はその用量に依存して抗PAF活性を示しており、安定した抑制効果が認められた。
6)N末端ビオチニル化ペプチド化合物のPAF活性50 %阻害量(50% inhibitory dose : ID50)の算出
5)の結果から、N末端ビオチニル化ペプチド化合物のID50値を算出した。結果は図6に示したとおりであり、N末端ビオチニル化P21、N末端ビオチニル化P4のID50値はそれぞれ1.62 nmol、2.00 nmolと算出された。
The results are as shown in FIG. 6. Although suppression of PAF-induced edema was observed for both P21 and P4, the effect was insufficient (up to about 50% suppression). In contrast, various biotinylated peptide compounds showed anti-PAF activity depending on the dose, and a stable inhibitory effect was observed.
6) Calculation of 50% inhibitory dose (ID 50 ) of N-terminal biotinylated peptide compound
From the result of 5), the ID 50 value of the N-terminal biotinylated peptide compound was calculated. The results are as shown in FIG. 6, and the ID 50 values of N-terminal biotinylated P21 and N-terminal biotinylated P4 were calculated as 1.62 nmol and 2.00 nmol, respectively.

N末端ビオチニル化ペプチド化合物とPAF受容体拮抗剤の抗PAF作用の比較
in vivoにおける、N末端ビオチニル化ペプチド化合物と既知のPAF受容体拮抗剤の抗PAF作用の効果を比較検討した。ラット各群(n = 3)に対し、公知のPAF受容体拮抗剤(CV-3988 :和光純薬037-14381、アルプラゾラム:和光純薬016-17171)、またはN末端ビオチニル化P21をそれぞれ前処置した。具体的には、各PAF受容体拮抗剤については1個体あたり各2 mg(CV-3988:3.4 μmol、アルプラゾラム:6.5 μmol)をエタノール200 μlに溶解して腹腔内投与し、その30分後にPAFを後足肉趾間へ皮下投与した。一方、N末端ビオチニル化P21については1個体あたり20 nmol(100 μl PBSに溶解)を静脈内投与し、15分後にPAFを皮下投与した。一方、対照群のラットにはPAFのみを投与した。いずれの処置においても、PAF投与から1時間後の足浮腫を測定し評価した。
Comparison of anti-PAF activity of N-terminal biotinylated peptide compounds and PAF receptor antagonists
We compared the effects of N-terminal biotinylated peptide compounds and known PAF receptor antagonists on the anti-PAF activity in vivo. Each group of rats (n = 3) was pretreated with a known PAF receptor antagonist (CV-3988: Wako Pure Chemical 037-14381, Alprazolam: Wako Pure Chemical 016-17171) or N-terminal biotinylated P21 did. Specifically, for each PAF receptor antagonist, 2 mg each (CV-3988: 3.4 μmol, alprazolam: 6.5 μmol) was dissolved in 200 μl of ethanol and administered intraperitoneally. Was subcutaneously administered between the hind foot pads. On the other hand, for N-terminal biotinylated P21, 20 nmol (dissolved in 100 μl PBS) was intravenously administered per animal, and PAF was subcutaneously administered 15 minutes later. On the other hand, only PAF was administered to the control group of rats. In each treatment, foot edema was measured and evaluated 1 hour after PAF administration.

結果は図7に示したとおりであり、各足浮腫容積は、溶媒(vehicle)のみで0.083 ± 0.047 ml、PAFのみで0.52 ± 0.14 mlに対し、N末端ビオチニル化P21処置で0.17 ± 0.029 ml、CV-3988処置で0.22 ± 0.076 ml、アルプラゾラム処置で0.18 ± 0.077 mlとなり、N末端ビオチニル化P21は各PAF受容体拮抗剤の150-300分の1と極めて低用量の投与モル量でも顕著な抗PAF活性を示した。   The results are as shown in FIG. 7, and each foot edema volume is 0.083 ± 0.047 ml for vehicle alone, 0.52 ± 0.14 ml for PAF alone, 0.17 ± 0.029 ml for N-terminal biotinylated P21 treatment, CV-3988 treatment was 0.22 ± 0.076 ml, alprazolam treatment was 0.18 ± 0.077 ml, and N-terminal biotinylated P21 was a significant anti-antibody even at very low doses of 150-300 times each PAF receptor antagonist. PAF activity was shown.

N末端ビオチニル化PET3およびPCD36のPAF活性に対する効果
実施例2と同様のラット足浮腫モデルを用いて、N末端ビオチニル化PET3およびPCD36のPAF誘発炎症抑制試験を行った。
Effect of N-terminal biotinylated PET3 and PCD36 on PAF activity Using the same rat paw edema model as in Example 2, N-terminal biotinylated PET3 and PCD36 were tested for inhibition of PAF-induced inflammation.

ラット(1群当たりn = 3〜4)に、PBSに溶解した100 μlのN末端ビオチニル化PET3(20 nmol)、N末端ビオチニル化PCD36(20 nmol)またはPBSのみを尾静脈より静脈内投与し、その15分後に50 μlのPAF(1 nmol)または担体溶媒(150 mM塩化ナトリウム、10 mM トリス(pH 7.5)および0.25% ウシ血清アルブミン)を後足肉趾間へ皮下投与して、1時間後の足浮腫を測定し評価した。   Rats (n = 3-4 per group) were intravenously administered with 100 μl N-terminal biotinylated PET3 (20 nmol), N-terminal biotinylated PCD36 (20 nmol) or PBS alone in PBS via the tail vein. 15 minutes later, 50 μl of PAF (1 nmol) or carrier solvent (150 mM sodium chloride, 10 mM Tris (pH 7.5) and 0.25% bovine serum albumin) was subcutaneously administered between the hind footpads, and 1 hour later. Foot edema was measured and evaluated.

結果は図8に示したとおりであり、各足浮腫容積は溶媒(vehicle)のみで0.083 ± 0.047 ml、PAFのみで0.35 ± 0.11 ml、N末端ビオチニル化PET3とPAFの併用で0.063 ± 0.025 ml、N末端ビオチニル化PCD36とPAFの併用で0.16 ± 0.024 mlとなり、いずれのN末端ビオチニル化ペプチド化合物もPAFによる足浮腫を顕著に抑制した。   The results are as shown in FIG. 8, and each foot edema volume is 0.083 ± 0.047 ml with vehicle alone, 0.35 ± 0.11 ml with PAF alone, 0.063 ± 0.025 ml with N-terminal biotinylated PET3 and PAF, The combined use of N-terminal biotinylated PCD36 and PAF resulted in 0.16 ± 0.024 ml, and all N-terminal biotinylated peptide compounds significantly suppressed paf edema due to PAF.

PAFのPAF作動性受容体結合を原因とする各種の炎症性疾患に対する有効かつ安全な予防、回復、改善または悪化防止・再発予防のための手段が提供される。   Provided is a means for effective and safe prevention, recovery, improvement, prevention of deterioration, and prevention of recurrence against various inflammatory diseases caused by PAF agonist receptor binding of PAF.

Claims (1)

配列番号1、、11または12のアミノ酸配列からなるペプチドにビオチンが付加されたビオチニル化ペプチド化合物を有効成分とする抗炎症剤。
An anti-inflammatory agent comprising, as an active ingredient, a biotinylated peptide compound in which biotin is added to a peptide consisting of the amino acid sequence of SEQ ID NO: 1, 4 , 11 or 12.
JP2012035540A 2011-02-28 2012-02-21 Biotinylated peptide compound having anti-PAF activity Active JP5982676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035540A JP5982676B2 (en) 2011-02-28 2012-02-21 Biotinylated peptide compound having anti-PAF activity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011041833 2011-02-28
JP2011041833 2011-02-28
JP2012035540A JP5982676B2 (en) 2011-02-28 2012-02-21 Biotinylated peptide compound having anti-PAF activity

Publications (2)

Publication Number Publication Date
JP2012193166A JP2012193166A (en) 2012-10-11
JP5982676B2 true JP5982676B2 (en) 2016-08-31

Family

ID=47085431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035540A Active JP5982676B2 (en) 2011-02-28 2012-02-21 Biotinylated peptide compound having anti-PAF activity

Country Status (1)

Country Link
JP (1) JP5982676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278634B2 (en) * 2013-07-30 2018-02-14 学校法人 いわき明星大学 Fluorescently labeled peptide compound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE221779T1 (en) * 1991-11-04 2002-08-15 Ruth-Maria Korth TREATMENT AND PREVENTION OF ELEVATED LYSO-PAF LEVELS-MEDIATED MENTAL DISEASES USING PAF ANTAGONISTS
JP2960257B2 (en) * 1992-06-04 1999-10-06 ピーイーバイオシステムズジャパン株式会社 Biotin introduction reagent and method for purifying synthetic peptide using the same
JP4017326B2 (en) * 2000-08-11 2007-12-05 独立行政法人科学技術振興機構 Oxidized low density lipoprotein recognition peptide
ATE291740T1 (en) * 2001-05-31 2005-04-15 Daiichi Suntory Pharma Co Ltd METHOD FOR DETERMINATION OF PLALE ACTIVATION FACTOR
AU2003246957A1 (en) * 2002-07-30 2004-02-16 Amersham Biosciences Uk Limited Site-specific labelling of proteins using cyanine dye reporters
US20040076621A1 (en) * 2002-10-16 2004-04-22 Isis Pharmaceuticals Inc. Antisense modulation of CD36 expression
US20050008710A1 (en) * 2003-07-09 2005-01-13 Phytomyco Research Corporation Method for screening for endothelin-receptor antagonist activity and for treating conditions caused by endothelin
ITMI20071119A1 (en) * 2007-06-01 2008-12-02 Tecnogen Spa NEW SYNTHETIC LIGANDS FOR IMMUNOGLOBULINES AND PHARMACEUTICAL COMPOSITIONS THAT INCLUDE THEM

Also Published As

Publication number Publication date
JP2012193166A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP6207509B2 (en) FAP-activated proteasome inhibitor for treating solid tumors
CN105899224B (en) Composition for treating and preventing benign prostatic hyperplasia
JP7126270B2 (en) NPRA agonists, compositions and uses thereof
RU2699726C2 (en) SELECTIVE INHIBITORY PEPTIDES Nox-1 AND USE THEREOF
EP2270035A2 (en) Peptides enhancing CEH activity, pharmaceutical compositions comprising these peptides and their use in the treatment of atherosclerosis
JP2023527483A (en) Inhibitor peptide compounds targeting fibronectin-derived peptides and uses thereof
EP2858661A2 (en) Stabilized antiviral fusion helices
KR20160009008A (en) Methods for reducing risks associated with heart failure and factors associated therewith
KR101958964B1 (en) Cyclic peptides with an anti-neoplasic and anti-angiogenic activity
AU2016354478A1 (en) Protease-activated receptor-2 modulators
JP6958913B2 (en) Peptides and methods for the treatment of cardiac arrest
CA2410224A1 (en) Peptide conjugates modified n- and/or c-terminally by short charged peptide chains
US20200085784A1 (en) Methods to treat fibrosis, nash, and nafld
JP5982676B2 (en) Biotinylated peptide compound having anti-PAF activity
WO2020230780A1 (en) Ras INHIBITORY PEPTIDE
JP2022509184A (en) Cyclic peptide as a proprotein convertase subbutyricin / kexin type 9 (PCSK9) inhibitor for the treatment of metabolic disorders
KR102017973B1 (en) Anti-Hepatitis B Virus X Protein Polypeptide Pharmaceuticals
US20220227815A1 (en) Compositions and methods useful in treating brain diseases
KR101046325B1 (en) Angiogenic Peptides
WO2017149098A1 (en) Fusion respiratory syncytial virus inhibitors and use thereof
US20140296143A1 (en) Angiotensin-(1-7) As A Chemoprevention Agent
US20200215075A1 (en) Methods and Medicaments for The Treatment of Renal Cell Carcinoma
KR20200035269A (en) Novel compounds that activate the Nrf2 pathway
US10005789B2 (en) Organic compounds
JP5946447B2 (en) Cyclic peptide compound or pharmacologically acceptable salt thereof, method for producing the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5982676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531