JP5980263B2 - Device including capacitance type electromechanical transducer - Google Patents

Device including capacitance type electromechanical transducer Download PDF

Info

Publication number
JP5980263B2
JP5980263B2 JP2014094905A JP2014094905A JP5980263B2 JP 5980263 B2 JP5980263 B2 JP 5980263B2 JP 2014094905 A JP2014094905 A JP 2014094905A JP 2014094905 A JP2014094905 A JP 2014094905A JP 5980263 B2 JP5980263 B2 JP 5980263B2
Authority
JP
Japan
Prior art keywords
frequency
region
electromechanical transducer
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014094905A
Other languages
Japanese (ja)
Other versions
JP2014144376A (en
Inventor
貴弘 秋山
貴弘 秋山
高木 誠
誠 高木
一成 藤井
一成 藤井
水谷 英正
英正 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014094905A priority Critical patent/JP5980263B2/en
Publication of JP2014144376A publication Critical patent/JP2014144376A/en
Application granted granted Critical
Publication of JP5980263B2 publication Critical patent/JP5980263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

本発明は超音波検出装置、超音波診断装置など、静電容量型の電気機械変換装置を含む装置に関する。 The present invention relates to an apparatus including a capacitive electromechanical transducer, such as an ultrasonic detection apparatus and an ultrasonic diagnostic apparatus.

従来、間隔を隔てて配置された電極を有するセルを含む静電容量型超音波検出装置は、知られている(特許文献1参照)。特に近年、マイクロマシンニング技術を用いた静電容量型超音波変換装置(CMUT)が盛んに研究されている。このCMUTは、軽量の振動膜を用いて超音波を送信または受信し、液体中及び気体中でも優れた広帯域特性が容易に得られる。このCMUTを利用し、従来の医用診断モダリティより高精度な超音波診断が有望な技術として注目されつつある。CMUTの超音波受信機能は、静電容量型電気機械変換装置と後段の電気回路で遂行される。前段の静電容量型電気機械変換装置の出力は、静電容量の時間変動によるものであるため、電流出力である。従って、後段に電流‐電圧変換増幅回路を用いるのが一般的である。 Conventionally, a capacitive ultrasonic detector including a cell having electrodes arranged at intervals is known (see Patent Document 1). In particular, in recent years, a capacitive ultrasonic transducer (CMUT) using micromachining technology has been actively studied. This CMUT transmits or receives ultrasonic waves using a lightweight vibrating membrane, and can easily obtain excellent broadband characteristics even in liquid and gas. Using this CMUT, ultrasonic diagnosis with higher accuracy than conventional medical diagnostic modalities is attracting attention as a promising technology. The ultrasonic reception function of the CMUT is performed by a capacitance type electromechanical transducer and a subsequent electric circuit. The output of the capacitive electromechanical transducer in the previous stage is a current output because it is due to the time variation of the capacitance. Therefore, it is common to use a current-voltage conversion amplifier circuit in the subsequent stage.

他方、これまで、実用的な超音波変換装置には主に圧電材(ピエゾ)が使用されてきた。この圧電材(ピエゾ)型の装置の解像度は周波数に比例する為、3MHz乃至10MHzの範囲に中心感度のある超音波変換装置が普通であった。これと比較して、CMUTは広い周波数帯域を有することが特徴であるが、圧電材型に代わるものとして、従来の一般的な超音波診断用のセンサーとして用いようとしている為、これの中心周波数も3MHz乃至10MHz程度が普通である。但し、広い周波数帯域を有効に利用するため、後段の電気回路にも広い帯域が要求される。CMUTの超音波受信機能の周波数特性は、静電容量型電気機械変換装置のカットオフ周波数と増幅回路のカットオフ周波数との間のバンドパス型として構成されるのが通常である。よって、増幅回路は、カットオフ周波数が受信帯域よりも十分大きいものを用いることが多い。この点に関して、非特許文献1は、明示した帰還抵抗と、MOSトランジスタ回路に寄生的に存在する容量である帰還容量とを持つ増幅回路を示している。その結果、非特許文献1に記載されているCMUTの周波数帯域は2MHz乃至7MHzとなっている。 On the other hand, piezoelectric materials (piezo) have been mainly used for practical ultrasonic transducers. Since the resolution of this piezoelectric material type device is proportional to the frequency, an ultrasonic transducer having a central sensitivity in the range of 3 MHz to 10 MHz is common. Compared to this, CMUT is characterized by having a wide frequency band. However, as an alternative to the piezoelectric material type, CMUT is intended to be used as a conventional sensor for general ultrasonic diagnosis. Also, 3 MHz to 10 MHz is normal. However, in order to effectively use a wide frequency band, a wide band is also required for the subsequent electrical circuit. The frequency characteristic of the ultrasonic reception function of the CMUT is usually configured as a bandpass type between the cutoff frequency of the capacitive electromechanical transducer and the cutoff frequency of the amplifier circuit. Therefore, an amplifier circuit whose cutoff frequency is sufficiently larger than the reception band is often used. In this regard, Non-Patent Document 1 shows an amplifier circuit having an explicit feedback resistor and a feedback capacitor that is a parasitic capacitance in the MOS transistor circuit. As a result, the frequency band of the CMUT described in Non-Patent Document 1 is 2 MHz to 7 MHz.

米国特許第6,430,109号公報US Pat. No. 6,430,109

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.55, No.2, Feb. 2008IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.55, No.2, Feb. 2008

上述した技術状況で、検体の検査においては形態画像だけでなく機能画像を表示する超音波変換装置の開発も近年進められている。この様な装置の1つに光音響分光分析法を利用した装置がある。こうした光音響分光分析法で用いられる光音響波の周波数帯域は、超音波エコーで用いられる超音波の周波数帯域と比較すると一般的に低い。例えば、光音響波の周波数帯域は200KHz乃至2MHzの範囲に分布しており、これは、超音波エコーで用いられる超音波の中心周波数3.5MHzよりも低い。そのため、比較的低い周波数帯を高感度で検出できる超音波変換装置が開発される必要がある。 In the above-described technical situation, development of an ultrasonic transducer that displays not only a morphological image but also a functional image in the examination of a specimen has been promoted in recent years. One such device is a device that uses photoacoustic spectroscopy. The frequency band of photoacoustic waves used in such photoacoustic spectroscopy is generally lower than the frequency band of ultrasonic waves used in ultrasonic echoes. For example, the frequency band of the photoacoustic wave is distributed in the range of 200 KHz to 2 MHz, which is lower than the ultrasonic center frequency of 3.5 MHz used in the ultrasonic echo. Therefore, it is necessary to develop an ultrasonic transducer that can detect a relatively low frequency band with high sensitivity.

上記課題に鑑み、本発明の装置は、静電容量型電気機械変換装置と、電気回路とを含み、以下の特徴を有する。前記静電容量型電気機械変換装置は、第1電極とこの第1電極と対向しキャビティを隔てて配設された第2電極とを備えるセルを有し、超音波を受信する。前記電気回路は、前記電気機械変換装置から出力される電流を電圧に変換する。受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、周波数が低くなると値が小さくなる第1の領域を有し、入力される電流に対する前記電気回路の出力電圧の周波数特性は、周波数が高くなると値が小さくなる第2の領域を有し、前記第1の領域と前記第2の領域とが重なる部分を有する。また、本発明の他の装置は、静電容量型電気機械変換装置と、電気回路とを含み、以下の特徴を有する。前記静電容量型電気機械変換装置は、第1電極とこの第1電極と対向しキャビティを隔てて配設された第2電極とを備えるセルを有し、超音波を受信する。前記電気回路は、前記電気機械変換装置から出力される電流を電圧に変換する。そして、受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、第1の周波数よりも低い周波数側の第1の領域で周波数が低くなると値が小さくなる特性を有し、入力される電流に対する前記電気回路の出力電圧の周波数特性は、第2の周波数よりも高い周波数側の第2の領域で周波数が高くなると値が小さくなる特性を有し、前記第1の領域と前記第2の領域とが重なる部分を有する。 In view of the above problems, equipment of the present invention includes a capacitive electromechanical transducer and an electrical circuit, having the following characteristics. The capacitance-type electromechanical transducer has a cell including a first electrode and a second electrode disposed opposite to the first electrode and spaced from a cavity, and receives ultrasonic waves. The electric circuit converts a current output from the electromechanical converter into a voltage. The frequency characteristic of the output current of the electromechanical transducer with respect to the received ultrasonic wave has a first region where the value decreases as the frequency decreases, and the frequency characteristic of the output voltage of the electric circuit with respect to the input current is It has a 2nd field where a value becomes small when a frequency becomes high, and has a portion with which the 1st field and the 2nd field overlap. Another equipment of the present invention includes a capacitive electromechanical transducer and an electrical circuit, having the following characteristics. The capacitance-type electromechanical transducer has a cell including a first electrode and a second electrode disposed opposite to the first electrode and spaced from a cavity, and receives ultrasonic waves. The electric circuit converts a current output from the electromechanical converter into a voltage. The frequency characteristic of the output current of the electromechanical transducer with respect to the received ultrasonic wave has a characteristic that the value becomes smaller when the frequency becomes lower in the first region on the frequency side lower than the first frequency. The frequency characteristic of the output voltage of the electric circuit with respect to the current having a characteristic is such that the value decreases as the frequency increases in the second region on the frequency side higher than the second frequency, and the first region and the first It has a part which 2 area | regions overlap.

本発明によって、従来の超音波プローブよりも低周波数域を帯域とする超音波検出装置が実現できる It by the present invention, conventional ultrasonic detection device for a band of low-frequency range than the ultrasonic probe can be achieved.

本発明の超音波検出装置の前段の静電容量型電気機械変換装置、後段の電気回路、及び装置全体の周波数特性の例を示して本発明の原理を説明するとともに、本発明の実施形態の超音波検出装置の構成を示す図である。The principle of the present invention will be described by showing examples of the frequency characteristics of the capacitive electromechanical transducer of the previous stage of the ultrasonic detection apparatus of the present invention, the electrical circuit of the subsequent stage, and the entire apparatus, and the embodiment of the present invention. It is a figure which shows the structure of an ultrasonic detection apparatus. 本発明の他の実施形態の超音波検出装置の構成図である。It is a block diagram of the ultrasonic detection apparatus of other embodiment of this invention. 本発明の実施形態の超音波診断装置の構成図である。1 is a configuration diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. 従来例の周波数特性を説明する図である。It is a figure explaining the frequency characteristic of a prior art example.

以下、本発明の超音波検出装置及び超音波診断装置の実施形態を説明する。本発明においては、前記電気機械変換装置の周波数帯域と前記電気回路の周波数帯域とが重なる部分を有する。カットオフ周波数、ハイパス特性、ローパス特性の意味する所を説明する。後述する様に、静電容量型電気機械変換装置の出力の周波数特性は、振動膜の真空中の共振周波数で最大となる。そして、本発明の周波数特性とは、最大値の周波数より低い周波数側で3dB程度低下している周波数(第1カットオフ周波数)から、上記共振周波数を経て、振動膜の反共振周波数の間のバンドパス特性の周波数特性である。実際に作製されるデバイスにおいては、最大出力となっている周波数近傍の範囲で平均した値を用いることで、第1カットオフ周波数を定義できる。このときの静電容量型機械電気変換装置の周波数特性は第1カットオフ周波数を有するハイパス特性となる。つまり、本明細書におけるハイパス特性とは、カットオフ周波数よりも低い周波数領域ではほぼ決まった傾きで周波数に対して利得が増加し、カットオフ周波数よりも高い周波数領域で平坦な分布となることである。他方、後段の電流−電圧変換増幅回路は、帰還抵抗と帰還容量の値によって第2カットオフ周波数が決まるローパス特性の周波数特性を有する。本明細書におけるローパス特性とは、カットオフ周波数よりも高い周波数領域では決まった傾きで周波数に対して利得が減少し、カットオフ周波数よりも低い周波数領域で平坦な分布となることである。ここでは、第2カットオフ周波数は、低域での利得よりも3dB程度低下した利得を示す周波数を指す。本明細書において、上記「平坦な分布」とは一定の利得であることを意味する。具体的には、ローパス特性は、カットオフ周波数より低い領域で「平坦」となり、カットオフ周波数より高い領域で「決まった傾きで利得が減少」する。同様にハイパス特性は、カットオフ周波数より低い領域で「決まった傾きで利得が増加」し、カットオフ周波数より高い領域で「平坦」となる。そして本明細書における「平坦な分布」とは、全く平坦な場合だけでなく、利得の周波数特性に対する傾きの関係が装置設計上無視できる程度に小さい傾きを有するものも含む Hereinafter, embodiments of the ultrasonic detection apparatus and the ultrasonic diagnostic apparatus of the present invention will be described. In the invention, to have a frequency band and overlapping portions of the frequency band as the electric circuit of the electromechanical converter. The meaning of the cut-off frequency, high-pass characteristics, and low-pass characteristics will be described. As will be described later, the frequency characteristic of the output of the capacitive electromechanical transducer is maximized at the resonance frequency of the vibrating membrane in vacuum. The frequency characteristic of the present invention refers to the frequency between the anti-resonance frequency of the diaphragm through the resonance frequency from the frequency (first cut-off frequency) lowering by about 3 dB on the lower frequency side than the maximum frequency. It is a frequency characteristic of a band pass characteristic. In a device that is actually manufactured, the first cut-off frequency can be defined by using an average value in the vicinity of the frequency that is the maximum output. The frequency characteristic of the capacitive electromechanical transducer at this time is a high-pass characteristic having a first cutoff frequency. In other words, the high-pass characteristic in this specification means that the gain increases with respect to the frequency with a substantially fixed slope in the frequency region lower than the cutoff frequency, and a flat distribution in the frequency region higher than the cutoff frequency. is there. On the other hand, the subsequent current-voltage conversion amplifier circuit has a low-pass frequency characteristic in which the second cut-off frequency is determined by the values of the feedback resistance and the feedback capacitance. The low-pass characteristic in this specification means that the gain decreases with respect to the frequency with a fixed slope in the frequency region higher than the cutoff frequency, and a flat distribution is obtained in the frequency region lower than the cutoff frequency. Here, the second cut-off frequency indicates a frequency indicating a gain that is reduced by about 3 dB from the gain in the low band. In the present specification , the “flat distribution” means a constant gain. Specifically, the low-pass characteristic becomes “flat” in a region lower than the cutoff frequency, and “gain decreases with a fixed slope” in a region higher than the cutoff frequency. Similarly, the high-pass characteristics “gain increases with a fixed slope” in a region lower than the cutoff frequency, and “flat” in a region higher than the cutoff frequency. The “flat distribution” in this specification includes not only a completely flat case but also a case where the relationship of the slope with respect to the frequency characteristic of the gain is so small that it can be ignored in the device design .

上記考え方に基づき、本発明の超音波検出装置及び超音波診断装置の基本的な形態は、上述した様な構成を有する。この基本的な形態を基に、次に述べる様な実施形態が可能である。例えば、静電容量型電気機械変換装置は、基板に配設された第1電極と、第1電極と対向して設置された第2電極と、第1電極と第2電極の間に挟まれた絶縁体及び空隙と、第2電極を上下に振動可能に支持する振動膜を含む(後述の第1の実施形態参照)。また、超音波検出装置において、第1電極と第2電極で構成されるコンデンサが、複数の空隙と複数の第2電極または振動膜とを含んで構成される。そして、静電容量型電気機械変換装置の出力電流の特性は、複数の第2電極または振動膜の機械特性の平均とコンデンサの静電容量を含む因子で決定される(後述の第2の実施形態参照)。また、超音波検出装置において、前記コンデンサが2次元的に配列されており、第2電極または振動膜の振動情報を2次元で検出することが可能である(後述の第3の実施形態参照)。 Based on the above concept, the basic form of the ultrasonic detection apparatus and ultrasonic diagnostic apparatus of the present invention has the configuration as described above. On the basis of this basic form, the following embodiments are possible. For example, a capacitance type electromechanical transducer is sandwiched between a first electrode disposed on a substrate, a second electrode disposed opposite to the first electrode, and the first electrode and the second electrode. And a vibrating membrane that supports the second electrode so as to vibrate up and down (see the first embodiment described later). Further, in the ultrasonic detection device, the capacitor configured by the first electrode and the second electrode includes a plurality of gaps and a plurality of second electrodes or vibration films. The characteristics of the output current of the capacitance type electromechanical transducer are determined by factors including the average of the mechanical characteristics of the plurality of second electrodes or diaphragms and the capacitance of the capacitor (second implementation described later). See form). In the ultrasonic detection apparatus, the capacitors are two-dimensionally arranged, and vibration information of the second electrode or the diaphragm can be detected two-dimensionally (see a third embodiment described later). .

本発明の原理を説明する。静電容量型電気機械変換装置は設計上、中心周波数帯域を1MHz前後にすることが容易ではない。これは、中心周波数帯域を1MHz前後にするにはメンブレンである第2電極または振動膜の硬さを柔らかくする(バネ定数を小さくする)必要があり、そうすると感度が低下するという弊害などもあり、設計の自由度が制限されるためである。つまり、メンブレンの撓みが大きくなり、高感度化のための狭ギャップ構造を作ることが困難になるとともに、電極への印加電圧も小さくせざるを得ず、感度が低下することになる。そこで、本発明では、静電容量型電気機械変換装置は1MHz前後よりも高周波側に中心周波数がある様に設計した状態で、後段の電気回路のカットオフ周波数を調整することにより、トータルで中心周波数帯域が1MHz前後になるシステムとする。こうした目標とする比較的低い周波数帯域では、増幅ゲインを或る程度高くしつつ電気回路のカットオフ周波数を調整するのは、他の特性にあまり悪影響を及ぼすことなく比較的容易である。これに対して、電気回路の増幅ゲインを上げたままカットオフ周波数を高くすることは、帰還抵抗を小さくするか帰還容量を小さくすることに等しく、こうすると、S/Nが悪化したり全体の感度が低下したりすることになる。或いは、回路の性能上、限度がある。 The principle of the present invention will be described. It is not easy for the electrostatic capacity type electromechanical transducer to have a center frequency band around 1 MHz by design. In order to make the center frequency band around 1 MHz, it is necessary to soften the hardness of the second electrode as a membrane or the vibrating membrane (decrease the spring constant). This is because the degree of freedom of design is limited. That is, the deflection of the membrane increases, making it difficult to form a narrow gap structure for increasing sensitivity, and the voltage applied to the electrode must be reduced, resulting in a decrease in sensitivity. Therefore, in the present invention, the capacitance type electromechanical transducer is designed so that the center frequency is on the higher frequency side than about 1 MHz, and the cutoff frequency of the subsequent electric circuit is adjusted so that the total center is obtained. The system has a frequency band around 1 MHz. In such a target relatively low frequency band, it is relatively easy to adjust the cutoff frequency of the electric circuit while increasing the amplification gain to some extent without adversely affecting other characteristics. On the other hand, increasing the cut-off frequency while increasing the amplification gain of the electric circuit is equivalent to reducing the feedback resistance or reducing the feedback capacitance. Sensitivity will decrease. Alternatively, there is a limit in circuit performance.

以上のことを、図1(a)、(b)、(c)を用いて更に説明する。静電容量変化を平行平板近似した際、入力音圧(入力する弾性波の圧力)に対する静電容量型電気機械変換装置の出力電流Iの周波数特性1(図1(a)参照)は次の式(1)で定式化される。
I=P/[(Zm+Zr)/(εA*Vb/d2)+jωC] (1)
ここで、eは真空の誘電率、Aは電気機械変換装置の電極(後述する上部電極7参照)の面積、Vbは電極間に印加するバイアス電圧、dは電極間の真空等価距離、Pは入力音圧、Zmは振動膜(後述する振動膜8参照)の機械インピーダンス、Zrは電気機械変換装置の周りの媒体の音響インピーダンス、ωは入力音圧の角周波数、Cは全静電容量である。この式で、全静電容量は相対的に小さいため、周波数の関数となっているのは振動膜の機械インピーダンスZmであると言ってよい。
The above will be further described with reference to FIGS. 1 (a), (b), and (c). When the capacitance change is approximated to a parallel plate, the frequency characteristic 1 (see FIG. 1A) of the output current I of the capacitive electromechanical transducer with respect to the input sound pressure (pressure of the input elastic wave) is as follows. Formulated by equation (1).
I = P / [(Zm + Zr) / (εA * V b / d 2 ) + jωC] (1)
Here, e is the dielectric constant of the vacuum, A is the area of the electrode of the electromechanical transducer (see upper electrode 7 described later), V b is the bias voltage applied between the electrodes, d is the vacuum equivalent distance between the electrodes, P Is the input sound pressure, Zm is the mechanical impedance of the vibrating membrane (see vibrating membrane 8 described later), Zr is the acoustic impedance of the medium around the electromechanical transducer, ω is the angular frequency of the input sound pressure, and C is the total capacitance. It is. In this equation, since the total capacitance is relatively small, it can be said that the function of the frequency is the mechanical impedance Zm of the diaphragm.

Zmは次の式(2)で表される。
Zm=j*km*{(ω/ω0 2)-1/ω} (2)
kmは振動膜のバネ定数であり、共振角周波数ω0(これは、第1のカットオフ周波数2の近くにある。図1(a)参照)よりも周波数が低い領域においては圧力Pに比例して振動膜が変位する。Zmは低周波数領域から共振周波数までは周波数に反比例して0に近づいていく。このことから、振動膜の共振周波数よりも小さい周波数領域において出力電流周波数特性1は周波数について一次特性となる。尚、図1(a)〜(c)の周波数特性の曲線について、これらは原理説明のために簡略化して見易く描いている。実際は、例えば肩部近辺ではもう少し形が崩れてなだらかに変化していて、カットオフ周波数は必ずしも図示した様に肩部の角に位置するものではない。また、図1(a)の横軸は対数表示された周波数を表し、上記一次特性は、対数表示された周波数に関して一次的な特性であることを意味する。同様に、上記反比例も、対数表示された周波数に関して反比例することを意味する。
Zm is represented by the following equation (2).
Zm = j * km * {(ω / ω 0 2 ) -1 / ω} (2)
km is the spring constant of the diaphragm, and is proportional to the pressure P in the region where the frequency is lower than the resonance angular frequency ω 0 (which is near the first cutoff frequency 2 (see FIG. 1A)). As a result, the vibrating membrane is displaced. Zm approaches zero from the low frequency region to the resonance frequency in inverse proportion to the frequency. From this, the output current frequency characteristic 1 becomes a primary characteristic with respect to the frequency in a frequency region smaller than the resonance frequency of the vibrating membrane. In addition, about the curve of the frequency characteristic of Fig.1 (a)-(c), these are simplified and drawn easily for the principle explanation. Actually, for example, in the vicinity of the shoulder portion, the shape is slightly broken and gradually changed, and the cut-off frequency is not necessarily located at the corner of the shoulder portion as shown. In addition, the horizontal axis of FIG. 1A represents the logarithmically displayed frequency, and the primary characteristic means that it is a primary characteristic with respect to the logarithmically displayed frequency. Similarly, the inverse proportion also means inverse proportion with respect to the logarithmically displayed frequency.

また、上記式(1)から分かる様に、出力電流周波数特性1は振動膜の機械インピーダンスZmのみならず、使用環境の一定の音響インピーダンスZrにも依存する。静電容量型電気機械変換装置は、通常、液体に漬けて使用する場合が多い。液体の音響インピーダンスは振動膜の機械インピーダンスよりも大きく、この場合、周波数特性1に対しては液体の音響インピーダンスが支配的となる。上述した様に、振動膜の機械インピーダンスZmが0になる周波数が振動膜の共振周波数であり、ここで出力電流周波数特性1は最大値をとる。振動膜の機械インピーダンスは、本来、振動膜の反共振周波数で無限大となるが、共振周波数よりも低い領域辺りで使用する際は、反共振周波数は無関係であるため、図1(a)の出力電流周波数特性1では反共振周波数近辺の領域は省いている。こうした点を総合的に考慮に入れて、上記式(1)で表される出力電流周波数特性1が図1(a)に示されている。 Further, as can be seen from the above formula (1), the output current frequency characteristic 1 depends not only on the mechanical impedance Zm of the diaphragm but also on the constant acoustic impedance Zr of the usage environment. Capacitance type electromechanical transducers are usually used in a liquid. The acoustic impedance of the liquid is larger than the mechanical impedance of the vibrating membrane. In this case, the acoustic impedance of the liquid is dominant for the frequency characteristic 1. As described above, the frequency at which the mechanical impedance Zm of the diaphragm is 0 is the resonance frequency of the diaphragm, and the output current frequency characteristic 1 takes the maximum value here. The mechanical impedance of the diaphragm is essentially infinite at the anti-resonance frequency of the diaphragm, but the anti-resonance frequency is irrelevant when used in a region lower than the resonance frequency. In the output current frequency characteristic 1, the region near the anti-resonance frequency is omitted. Taking these points into consideration, the output current frequency characteristic 1 represented by the above equation (1) is shown in FIG.

他方、電流‐電圧変換増幅回路の周波数特性3(図1(b)参照)は次の式(3)で定式化され、第2のカットオフ周波数4は次の式(4)で表される。
G=Rf/(1+jωRf*Cf) (3)
f=1/(2πRf*Cf) (4)
Gは電気回路のゲイン、Rfは帰還抵抗、Cfは帰還容量、fとωは入力電流の周波数と角周波数である。本発明の構成で用いる電気回路は、式(3)の様に周波数に対して一次特性(上記周波数特性1と同様に、対数表示された周波数に関しての特性である)のものを用いることが望ましく、高次特性を持つ回路を使用することは好ましくない。
On the other hand, the frequency characteristic 3 (see FIG. 1B) of the current-voltage conversion amplifier circuit is formulated by the following equation (3), and the second cutoff frequency 4 is represented by the following equation (4). .
G = Rf / (1 + jωRf * Cf) (3)
f = 1 / (2πRf * Cf) (4)
G is the gain of the electric circuit, Rf is the feedback resistor, Cf is the feedback capacitance, and f and ω are the frequency and angular frequency of the input current. As the electric circuit used in the configuration of the present invention, it is desirable to use a circuit having a primary characteristic with respect to the frequency as shown in the expression (3) (similar to the frequency characteristic 1 is a characteristic relating to the logarithmically displayed frequency). It is not preferable to use a circuit having higher-order characteristics.

本発明では、静電容量型電気機械変換装置の出力電流の周波数特性1と電気回路の出力の周波数特性3を組み合わせて、従来の超音波プローブよりも低周波数域を帯域とする超音波検出装置を実現しようとする。この組み合わせに際し、目標とする特性5(図1(c)参照)を持つ超音波検出装置を実現するために、静電容量型電気機械変換装置の出力電流の周波数特性1の第1カットオフ周波数2よりも電気回路の出力の周波数特性3の第2カットオフ周波数4を小さくする。その理由は上述した通りである。 In the present invention, by combining the frequency characteristic 1 and the frequency characteristic 3 of the output of the electrical circuits of the output current of the capacitive electromechanical transducer, than conventional ultrasound probe to a band of low-frequency range ultrasonic detection Try to realize the device. In this combination, in order to realize an ultrasonic detection device having the target characteristic 5 (see FIG. 1C), the first cutoff frequency of the frequency characteristic 1 of the output current of the capacitive electromechanical transducer than 2 to reduce the second cut-off frequency 4 of the frequency characteristics third output of the electric circuitry. The reason is as described above.

こうして、静電容量型電気機械変換装置の出力電流周波数特性1と電流‐電圧変換増幅回路の周波数特性3が合わさって、超音波検出装置の出力周波数特性5となる。図1(c)に示す様に、有効周波数帯域は低域側カットオフ周波数101から高域側カットオフ周波数102の間となる。このとき、低域側カットオフ周波数101及び高域側のカットオフ周波数102は、夫々、第2カットオフ周波数4及び第1カットオフ周波数2とは必ずしも一致しない。これは、第1カットオフ周波数3と第2カットオフ周波数4が近接している場合には、超音波検出装置の出力周波数特性5が、低域側カットオフ周波数101と高域側カットオフ周波数102の間においてほぼ平坦な分布となりにくいからである。周波数特性1と周波数特性3は、低域側カットオフ周波数101と高域側カットオフ周波数102の間で一定程度の大きさを保ちつつほぼ平坦な分布となる様に、設計するのが良い。それには、例えば、周波数特性1の傾斜部の傾きと周波数特性3の傾斜部の傾きは、符号が逆で絶対値が出来るだけ等しいのが良い。また、周波数特性3のゲインを大きくするのが良い。 In this way, the output current frequency characteristic 1 of the capacitive electromechanical transducer and the frequency characteristic 3 of the current-voltage conversion amplifier circuit are combined to form the output frequency characteristic 5 of the ultrasonic detector. As shown in FIG. 1C, the effective frequency band is between the low-frequency cutoff frequency 101 and the high-frequency cutoff frequency 102. At this time, the low-frequency cutoff frequency 101 and the high-frequency cutoff frequency 102 do not necessarily match the second cutoff frequency 4 and the first cutoff frequency 2, respectively. This is because when the first cut-off frequency 3 and the second cut-off frequency 4 are close to each other, the output frequency characteristic 5 of the ultrasonic detection device has a low-frequency cut-off frequency 101 and a high-frequency cut-off frequency. This is because it is difficult to obtain a substantially flat distribution between the regions 102. The frequency characteristic 1 and the frequency characteristic 3 are preferably designed to have a substantially flat distribution while maintaining a certain level between the low-frequency cutoff frequency 101 and the high-frequency cutoff frequency 102. For this purpose, for example, the slope of the slope part of the frequency characteristic 1 and the slope of the slope part of the frequency characteristic 3 are preferably the same as possible but having the opposite sign. In addition, it is preferable to increase the gain of the frequency characteristic 3.

以上のことから、広帯域・高感度な超音波検出装置において、例えば、カットオフ周波数2とカットオフ周波数4の相乗平均となる周波数が0.4MHz乃至1.0MHzの範囲にあり図1(c)に示す様な周波数特性5を持つのが好ましい。周波数特性5の平坦な周波数帯域をその中心値で割った値が130%のとき、カットオフ周波数2とカットオフ周波数4の相乗平均を0.4MHzに設定すれば、0.2MHzの超音波を検出できる。また、同様に、カットオフ周波数2とカットオフ周波数4の相乗平均を1.0MHzに設定すれば、2.0MHzの超音波を検出できる。 From the above, in the ultrasonic detection apparatus with a wide band and high sensitivity, for example, the frequency that is the geometric mean of the cutoff frequency 2 and the cutoff frequency 4 is in the range of 0.4 MHz to 1.0 MHz. It is preferable to have a frequency characteristic 5 as shown in FIG. When the value obtained by dividing the flat frequency band of the frequency characteristic 5 by its center value is 130%, if the geometric mean of the cutoff frequency 2 and the cutoff frequency 4 is set to 0.4 MHz, an ultrasonic wave of 0.2 MHz It can be detected. Similarly, if the geometric mean of the cutoff frequency 2 and the cutoff frequency 4 is set to 1.0 MHz, an ultrasonic wave of 2.0 MHz can be detected.

従来、通常の半導体やマイクロマシニング関連材料を使った場合、生体などからの超音波が透過しやすい液体中において、静電容量型電気機械変換装置の周波数特性は約3MHz以上で飽和して安定である。しかしながら、上述した様に1MHz付近に中心があり高感度なCMUTを得るのは困難であった。上記原理による本発明によれば、こうした困難も解消できる。比較のために、従来の静電容量型電気機械変換装置の周波数特性、電気回路の周波数特性、超音波検出装置の周波数特性を図4(a)、(b)、(c)に示す。図4(a)の周波数特性は図1(a)の周波数特性とあまり変わらないが、図4(b)の周波数特性は図1(b)の周波数特性と比べてカットオフ周波数4が高周波側にあり全体的にゲインが低くなっている。その結果、図4(c)の周波数特性は、低域側カットオフ周波数101と高域側カットオフ周波数102の範囲が高周波側にあり、例えば3MHz乃至10MHzにある。 Conventionally, when ordinary semiconductors and micromachining-related materials are used, the frequency characteristics of the capacitive electromechanical transducer are stable and stable at about 3 MHz or more in a liquid that easily transmits ultrasonic waves from a living body. is there. However, as described above, it is difficult to obtain a CMUT having a center near 1 MHz and high sensitivity. According to the present invention based on the above principle, such difficulties can be solved. For comparison, FIGS. 4A, 4B, and 4C show the frequency characteristics of a conventional capacitance type electromechanical transducer, the frequency characteristics of an electric circuit, and the frequency characteristics of an ultrasonic detector. The frequency characteristic of FIG. 4A is not much different from the frequency characteristic of FIG. 1A, but the frequency characteristic of FIG. 4B is higher in cutoff frequency 4 than the frequency characteristic of FIG. The overall gain is low. As a result, in the frequency characteristic of FIG. 4C, the range of the low-frequency cutoff frequency 101 and the high-frequency cutoff frequency 102 is on the high frequency side, for example, 3 MHz to 10 MHz.

以下、上記原理に基づいて具体化した静電容量型電気機械変換装置と電流‐電圧変換増幅回路の構成を持つ実施形態を図に沿って説明する。
(第1の実施形態)
第1の実施形態の超音波検出装置を説明する。本実施形態の静電容量型電気機械変換装置6(以下、セルとも言う)と電気回路14の構成を図1(d)に示す。1つのセルとして示す静電容量型電気機械変換装置6は、上部電極7、振動膜8、キャビティ9、絶縁層10、振動膜8を支持する支持部11、下部電極12、これらを支持する基板13で構成される。電気回路14は、上部電極7及び下部電極12と接続された抵抗R1、帰還抵抗Rfと帰還容量Cfを含む演算増幅器を有する。これらの変換装置6と電気回路14は、上述した周波数特性を有する様に構成されている。
Hereinafter, an embodiment having a configuration of a capacitance type electromechanical conversion device and a current-voltage conversion amplifier circuit embodied based on the above principle will be described with reference to the drawings.
(First embodiment)
The ultrasonic detection apparatus according to the first embodiment will be described. FIG. 1D shows the configuration of the capacitance type electromechanical transducer 6 (hereinafter also referred to as a cell) and the electric circuit 14 of the present embodiment. A capacitance type electromechanical transducer 6 shown as one cell includes an upper electrode 7, a vibration film 8, a cavity 9, an insulating layer 10, a support part 11 that supports the vibration film 8, a lower electrode 12, and a substrate that supports these. 13. The electric circuit 14 includes an operational amplifier including a resistor R1, a feedback resistor Rf, and a feedback capacitor Cf connected to the upper electrode 7 and the lower electrode 12. The conversion device 6 and the electric circuit 14 are configured to have the above-described frequency characteristics.

図1(d)は構成の一例である。振動膜8が絶縁体であれば絶縁層10はあってもなくてもよい。また、その場合、振動膜8と支持部11は同一物質でもよい。絶縁層10と支持部11が同一物質でもよい。構成上、上部電極7と振動膜8は接着しており、一体で振動する。感度向上の観点から、キャビティ9は大気よりも低い圧力に維持されているのが望ましい。基板13がシリコンなどの半導体基板等の導電性基板である場合、基板13と下部電極12は一体でもよい。出力電流周波数特性1は、振動膜8の機械インピーダンスと使用環境の音響インピーダンスに依存する。静電容量型電気機械変換装置は、通常、液体18に漬けて使用する場合が多い。液体18の音響インピーダンスは振動膜8の機械インピーダンスよりも大きく、液体は具体的には、水、超音波診断用グリス、ひまし油などの油等である。 FIG. 1D is an example of the configuration. If the vibration film 8 is an insulator, the insulating layer 10 may or may not be present. In this case, the vibration film 8 and the support portion 11 may be the same material. The insulating layer 10 and the support portion 11 may be the same material. In terms of configuration, the upper electrode 7 and the vibration film 8 are bonded, and vibrate integrally. From the viewpoint of improving sensitivity, the cavity 9 is preferably maintained at a pressure lower than that of the atmosphere. When the substrate 13 is a conductive substrate such as a semiconductor substrate such as silicon, the substrate 13 and the lower electrode 12 may be integrated. The output current frequency characteristic 1 depends on the mechanical impedance of the diaphragm 8 and the acoustic impedance of the usage environment. The electrostatic capacity type electromechanical transducer is usually immersed in the liquid 18 and used in many cases. The acoustic impedance of the liquid 18 is larger than the mechanical impedance of the vibrating membrane 8, and specifically, the liquid is water, oil for ultrasonic diagnosis, oil such as castor oil, or the like.

一般的に、上部電極7、下部電極12は金属であればよいが、低抵抗の半導体などでもよい。例えば、第2の電極である上部電極7は、Al、Cr、Ti、Au、Pt、Cu、Ag、W、Mo、Ta、Ni等から選択される導電体、Si等の半導体、AlSi、AlCu、AlTi、MoW、AlCr、TiN、AlSiCu等から選択される合金のうちの少なくとも1つの材料で形成することができる。また、上部電極7は、振動膜8の上面、裏面、内部のうちの少なくとも一箇所に設けるか、若しくは振動膜8を導電体又は半導体で形成する場合は振動膜が上部電極7を兼ねる構造とすることもできる。第1の電極である下部電極12も、上部電極7と同様の導電体や半導体等により形成することができる。また、下部電極12と上部電極7の電極材料は異なっていてもよい。 In general, the upper electrode 7 and the lower electrode 12 may be metal, but may be a low-resistance semiconductor or the like. For example, the upper electrode 7 as the second electrode is made of a conductor selected from Al, Cr, Ti, Au, Pt, Cu, Ag, W, Mo, Ta, Ni, a semiconductor such as Si, AlSi, AlCu, and the like. , AlTi, MoW, AlCr, TiN, AlSiCu, etc., and can be formed of at least one material. Further, the upper electrode 7 is provided in at least one of the upper surface, the back surface, and the inside of the vibration film 8, or when the vibration film 8 is formed of a conductor or a semiconductor, the vibration film serves as the upper electrode 7. You can also The lower electrode 12 that is the first electrode can also be formed of the same conductor or semiconductor as the upper electrode 7. Moreover, the electrode materials of the lower electrode 12 and the upper electrode 7 may be different.

本実施形態における各部の寸法を例示すると次の様になる。例えば、キャビティ9の高さは100nm程度であるが、10nmから500nmの範囲にあってもよい。キャビティ9の一片の長さは、例えば、10μmから200μmの範囲にある。振動膜8は、例えば、SiNにより形成されるが、その他の絶縁材料でもよい。キャビティ9は大気圧に対して減圧状態に保たれており、振動膜8は多少凹形状となる。振動膜及び電極は、例えば、角形としたが、円形、多角形などであっても構わない。セルのキャビティ9の形状も、例えば、角形であるが、その他の形状でもよい。 The dimensions of each part in this embodiment are exemplified as follows. For example, the height of the cavity 9 is about 100 nm, but may be in the range of 10 nm to 500 nm. The length of one piece of the cavity 9 is, for example, in the range of 10 μm to 200 μm. The vibration film 8 is made of SiN, for example, but may be other insulating materials. The cavity 9 is kept at a reduced pressure with respect to the atmospheric pressure, and the vibrating membrane 8 has a slightly concave shape. The vibrating membrane and the electrode are, for example, rectangular, but may be circular, polygonal, or the like. The shape of the cell cavity 9 is also, for example, a square, but may be other shapes.

受信動作時には、超音波検出装置のセル6の上部電極7と下部電極12の間に電位差を生じさせるために電圧源15により直流電圧Vをかける。超音波を受信する際には、振動膜8が振動し、振動に伴う容量変化分だけ電流が流れる。その電流を電流‐電圧変換増幅回路14で増幅する。 During the reception operation, a direct current voltage V is applied by the voltage source 15 in order to generate a potential difference between the upper electrode 7 and the lower electrode 12 of the cell 6 of the ultrasonic detector. When receiving an ultrasonic wave, the vibrating membrane 8 vibrates, and a current flows by an amount corresponding to a change in capacitance accompanying the vibration. The current is amplified by the current-voltage conversion amplifier circuit 14.

(第2の実施形態)
第2の実施形態の超音波検出装置を説明する。本実施形態の構成を図2(a)、(b)に示す。図の破線部分は、セル6の透視部を除いて、構造の描画を省略したことを示す。本実施形態では、セル6が基板13上に複数並んでいる。各セル6及び電気回路14の構造は第1の実施形態で説明した通りである。複数のセル6の上部電極7と下部電極12は、夫々、電極結合配線部16、17により電気的に接続され、複数のセル6間で夫々導通している。図2(b)に示す様に、セル6は二次元的に等間隔で配列され、1つのエレメント20を形成している。装置は、エレメント20の上部電極7が、例えば、超音波の伝播の良好な液体18に接した状態で使用される。検出感度、信号処理の容易さなどの観点から、複数のセル6間で、振動膜8の機械特性やキャビティ9の深さは均一であるのが望ましい。エレメント20内において、セル6の配列は、図示例では正方格子状になっているが、千鳥状、六方最密状などでも構わない。エレメント20内のセル6の配列形態や数は、場合に応じて適宜決めればよい。また、図示例では振動膜8の形状を円形に描いたが、多角形などでもよい。この様に、本実施形態では、下部電極12(第1電極)と上部電極7(第2電極)で構成されるコンデンサが、複数の空隙9と複数の第2電極ないし振動膜8とを含んで構成される。そして、エレメント20の出力電流の周波数特性は、複数の第2電極ないし振動膜8の機械特性の平均とコンデンサの静電容量を含む因子で決定される。
(Second Embodiment)
An ultrasonic detection apparatus according to the second embodiment will be described. The configuration of this embodiment is shown in FIGS. 2 (a) and 2 (b). The broken line portion in the figure indicates that the drawing of the structure is omitted except for the perspective portion of the cell 6. In the present embodiment, a plurality of cells 6 are arranged on the substrate 13. The structure of each cell 6 and the electric circuit 14 is as described in the first embodiment. The upper electrode 7 and the lower electrode 12 of the plurality of cells 6 are electrically connected by the electrode coupling wiring portions 16 and 17, respectively, and are electrically connected between the plurality of cells 6. As shown in FIG. 2 (b), the cells 6 are two-dimensionally arranged at equal intervals to form one element 20. The apparatus is used in a state in which the upper electrode 7 of the element 20 is in contact with, for example, the liquid 18 having good propagation of ultrasonic waves. From the viewpoint of detection sensitivity, ease of signal processing, etc., it is desirable that the mechanical characteristics of the vibrating membrane 8 and the depth of the cavity 9 are uniform between the plurality of cells 6. In the element 20, the arrangement of the cells 6 is a square lattice shape in the illustrated example, but may be a staggered shape, a hexagonal close-packed shape, or the like. What is necessary is just to determine suitably the arrangement | sequence form and number of the cells 6 in the element 20 according to the case. In the illustrated example, the shape of the vibrating membrane 8 is depicted as a circle, but it may be a polygon. As described above, in this embodiment, the capacitor including the lower electrode 12 (first electrode) and the upper electrode 7 (second electrode) includes a plurality of gaps 9 and a plurality of second electrodes or vibration films 8. Consists of. The frequency characteristics of the output current of the element 20 are determined by factors including the average of the mechanical characteristics of the plurality of second electrodes or diaphragms 8 and the capacitance of the capacitor.

本実施形態においては、複数の上部電極7が導通している領域が超音波検出領域となり、1つのセルを含む第1の実施形態よりも感度が増加する。本実施形態では、複数のセルを含むエレメント20で1つの静電容量型電気機械変換装置を構成するとも言える。このときの静電容量型電気機械変換装置の周波数特性1(図1(a)参照)は、上述した様に、複数の振動膜8の機械特性の平均値等で決定される。また、エレメント20の電流出力の大きさは複数の振動膜8上の上部電極7の総面積にほぼ比例する。その他の点は第1の実施形態と同様である。 In the present embodiment, an area where the plurality of upper electrodes 7 are conductive becomes an ultrasonic detection area, and sensitivity is increased as compared with the first embodiment including one cell. In this embodiment, it can be said that the element 20 including a plurality of cells constitutes one capacitance type electromechanical transducer. The frequency characteristic 1 (see FIG. 1A) of the capacitive electromechanical transducer at this time is determined by the average value of the mechanical characteristics of the plurality of vibrating membranes 8 as described above. The magnitude of the current output of the element 20 is substantially proportional to the total area of the upper electrodes 7 on the plurality of vibrating membranes 8. The other points are the same as in the first embodiment.

(第3の実施形態)
第3の実施形態の超音波検出装置を説明する。本実施形態の構成を図2(c)、(d)に示す。上面図である図2(d)は超音波検出装置32の全体構成を示す。図2(c)、(d)でも、破線部分は構造の描画を省略したことを示す。本実施形態の超音波検出デバイス30は、第2の実施形態のエレメント20が二次元的に配列されている構成である。配線部16で繋がった上部電極7と配線部17で繋がった下部電極12のうち、どちらか一方はエレメント20ごとに電気的に分離されている。本実施形態でも、上部電極16は超音波の伝播の良好な液体18に接している。エレメント20ごとの出力を配線31で電流‐電圧変換増幅回路14に送って電圧変換することで、超音波信号を二次元の分布として検出することが可能である。ここでも、各エレメント20の周波数特性1は、複数の振動膜8の機械特性の平均値等で決定される。また、各エレメント20の電流出力の大きさは複数の上部電極7の総面積にほぼ比例する。本実施形態の超音波検出装置では、コンデンサは2次元的に配列されており、第2電極ないし振動膜8の振動情報を2次元で検出することが可能である。その他の点は第1の実施形態と同様である。
(Third embodiment)
An ultrasonic detection apparatus according to a third embodiment will be described. The configuration of this embodiment is shown in FIGS. FIG. 2D, which is a top view, shows the overall configuration of the ultrasonic detection device 32. 2C and 2D, the broken line portion indicates that the drawing of the structure is omitted. The ultrasonic detection device 30 of the present embodiment has a configuration in which the elements 20 of the second embodiment are two-dimensionally arranged. One of the upper electrode 7 connected by the wiring portion 16 and the lower electrode 12 connected by the wiring portion 17 is electrically separated for each element 20. Also in this embodiment, the upper electrode 16 is in contact with the liquid 18 with good ultrasonic propagation. By sending the output of each element 20 to the current-voltage conversion amplification circuit 14 via the wiring 31 and converting the voltage, it is possible to detect the ultrasonic signal as a two-dimensional distribution. Again, the frequency characteristic 1 of each element 20 is determined by the average value of the mechanical characteristics of the plurality of vibrating membranes 8 or the like. The magnitude of the current output of each element 20 is substantially proportional to the total area of the plurality of upper electrodes 7. In the ultrasonic detection apparatus of the present embodiment, the capacitors are two-dimensionally arranged, and vibration information of the second electrode or the vibrating membrane 8 can be detected two-dimensionally. The other points are the same as in the first embodiment.

ところで、上記実施形態の構成は、音波を発生させる装置として用いることもできる。上部電極7(若しくは上部電極結合配線部16)と下部電極12(若しくは下部電極結合配線部17)の間に電圧源15で、DC電圧に微小な交流電圧を重畳した電圧を印加することで、振動膜8を強制振動させて音波を発生させる。このときの周波数特性は、主に、静電容量型電気機械変換装置の出力電流周波数特性1と同じ様な送信特性を有する。この音波発生装置は、上述した第2の実施形態や第3の実施形態の様に、二次元的に振動膜8を配列することで、より大きな音波を発生させられる。また、発生面積を大きくすることで、音波の指向性を大きくでき、回折を小さくできる。 By the way, the structure of the said embodiment can also be used as an apparatus which generates a sound wave. By applying a voltage obtained by superimposing a minute alternating voltage on a DC voltage with the voltage source 15 between the upper electrode 7 (or the upper electrode coupling wiring portion 16) and the lower electrode 12 (or the lower electrode coupling wiring portion 17), The vibrating membrane 8 is forcibly vibrated to generate sound waves. The frequency characteristics at this time mainly have transmission characteristics similar to the output current frequency characteristics 1 of the capacitive electromechanical transducer. As in the second embodiment and the third embodiment described above, this sound wave generator can generate a larger sound wave by arranging the vibrating membranes 8 two-dimensionally. Further, by increasing the generation area, the directivity of the sound wave can be increased and the diffraction can be reduced.

(第4の実施形態)
第4の実施形態の超音波診断装置を説明する。本実施形態の構成を図3に示す。光源40から発せられた光41が伝播して生体組織42にあたることによって、光音響波と呼ばれる超音波43が発せられる。すなわち、生体組織内部に存在する光吸収係数が大きい箇所にて光が吸収され、当該箇所が加熱される。そして、加熱された部分が膨張し、膨張に伴い弾性波が発生する。この超音波43の周波数は生体組織を構成する物質や個体によって異なるが、上述した様に、例えば、200kHz乃至2MHz程度である。超音波(光音響波)43は、その伝播の良好な液体18を通って、超音波検出装置32で検出される。電流電圧変換・増幅された信号は信号束線44を介して信号処理系45に送られる。検出結果の信号は信号処理系45で信号処理され、生体情報を抽出する。超音波検出装置32が上述した第3の実施形態の如き構成ならば、二次元的な超音波分布を検出することが可能であり、検出装置32を走査することによって広範囲な分布を捉えることができる。超音波は音速であるため、到達波(時間波形)の時間差を解析して時間情報を得て奥行き方向の情報も取得可能であり、その場合、信号処理系45に再構成機能を持たせてもよく、三次元の生体情報を抽出することができる。また、受信した信号をフーリエ変換して周波数特性を得ることで画像などを取得することもできる。
(Fourth embodiment)
An ultrasonic diagnostic apparatus according to a fourth embodiment will be described. The configuration of the present embodiment is shown in FIG. When light 41 emitted from the light source 40 propagates and strikes the living tissue 42, an ultrasonic wave 43 called a photoacoustic wave is emitted. That is, light is absorbed at a location where the light absorption coefficient exists in the living tissue and the location is heated. And the heated part expand | swells and an elastic wave generate | occur | produces with expansion | swelling. The frequency of the ultrasonic wave 43 varies depending on the substances and individuals constituting the living tissue, but as described above, it is, for example, about 200 kHz to 2 MHz. The ultrasonic wave (photoacoustic wave) 43 passes through the liquid 18 having good propagation and is detected by the ultrasonic detector 32. The current-voltage converted / amplified signal is sent to the signal processing system 45 via the signal bundle 44. The detection result signal is signal-processed by a signal processing system 45 to extract biological information. If the ultrasonic detector 32 is configured as in the above-described third embodiment, a two-dimensional ultrasonic distribution can be detected, and a wide range of distribution can be captured by scanning the detector 32. it can. Since ultrasonic waves are at the speed of sound, it is possible to obtain time information by analyzing the time difference of the arrival wave (time waveform) and acquire information in the depth direction. In this case, the signal processing system 45 is provided with a reconstruction function. In other words, three-dimensional biological information can be extracted. In addition, an image or the like can be acquired by obtaining a frequency characteristic by performing a Fourier transform on the received signal.

光音響効果を用いて試料(検査対象)の断層像、三次元像などを取得する技術は、光音響トモグラフィー(PhotoAcoustic Tomography)として一般に知られており、その頭文字をとってPAT技術と称されている。 A technique for obtaining a tomographic image, a three-dimensional image, etc. of a sample (inspection object) using the photoacoustic effect is generally known as photoacoustic tomography, and is referred to as a PAT technique after taking its initials. ing.

6…静電容量型電気機械変換装置(セル)、7…上部電極(第2電極)、8…振動膜、9…キャビティ(空隙)、12…下部電極(第1電極)、14…電流‐電圧変換増幅回路、15…電圧源、32…超音波検出装置、40…光源、42…生体組織(検査対象)、43…光音響波(超音波)、45…信号処理系 6 ... Capacitance type electromechanical transducer (cell), 7 ... Upper electrode (second electrode), 8 ... Vibration membrane, 9 ... Cavity (gap), 12 ... Lower electrode (first electrode), 14 ... Current- Voltage conversion amplifier circuit, 15 ... Voltage source, 32 ... Ultrasonic detection device, 40 ... Light source, 42 ... Living tissue (test object), 43 ... Photoacoustic wave (ultrasound), 45 ... Signal processing system

Claims (26)

第1電極と、前記第1電極と対向しキャビティを隔てて配設された第2電極と、を備えるセルを有し、超音波を受信する静電容量型の電気機械変換装置と、
前記電気機械変換装置から出力される電流を電圧に変換する電気回路と、
を含む装置であって、
受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、周波数が低くなると値が小さくなる第1の領域を有し、
入力される電流に対する前記電気回路の出力電圧の周波数特性は、周波数が高くなると値が小さくなる第2の領域を有し、
前記第1の領域と前記第2の領域とが重なる部分を有することを特徴とする装置。
A capacitance-type electromechanical transducer having a cell comprising a first electrode and a second electrode disposed opposite to the first electrode and spaced from a cavity, and receiving ultrasonic waves;
An electric circuit for converting a current output from the electromechanical converter into a voltage;
The A including equipment,
The frequency characteristic of the output current of the electromechanical transducer with respect to the received ultrasonic wave has a first region in which the value decreases as the frequency decreases,
Frequency characteristics of the output voltage of the electric circuit for the current input, when the frequency becomes higher the value has a second region smaller,
Equipment you characterized by having a portion where the first region and the second region overlap.
前記電気機械変換装置のセルは、前記第2電極を振動可能に支持する振動膜を含むことを特徴とする請求項1に記載の装置。 The cells of the electro-mechanical conversion apparatus, equipment according to claim 1, characterized in that it comprises a vibration film to vibrate supporting the second electrode. 前記第1の領域は、前記振動膜の共振周波数よりも低い領域にあることを特徴とする請求項2に記載の装置。 The first region is equipment according to claim 2, characterized in that in the region lower than the resonance frequency of the vibrating membrane. 前記第1の領域は、受信する超音波に対する前記電気機械変換装置の出力電流が最大値を示す周波数よりも低い領域にあることを特徴とする請求項1乃至3のいずれか1項に記載の装置。 4. The first region according to claim 1, wherein the first region is in a region lower than a frequency at which an output current of the electromechanical transducer with respect to received ultrasonic waves shows a maximum value . 5. equipment. 前記第1の領域は、受信する超音波に対する前記電気機械変換装置の出力電流が最大値を示す周波数から低い周波数側で3dB低下した値を示す周波数よりも低い領域にあることを特徴とする請求項1乃至3のいずれか1項に記載の装置。 The first region is in a region lower than a frequency at which an output current of the electromechanical transducer with respect to the received ultrasonic wave is lower than a frequency at which the output current is 3 dB lower than a frequency at which the output current is lower. equipment according to any one of claim 1 to 3. 前記第2の領域は、入力される電流に対する前記電気回路の出力電圧が最大値を示す周波数よりも高い領域にあることを特徴とする請求項1乃至5のいずれか1項に記載の装置。 Said second region, equipment according to any one of claims 1 to 5 output voltage of the electric circuit for the current input is characterized in that it is in the region higher than the frequency showing the maximum value . 前記第2の領域は、入力される電流に対する前記電気回路の出力電圧が低域での値より3dB低下した値を示す周波数よりも高い領域にあることを特徴とする請求項1乃至5のいずれか1項に記載の装置。 6. The method according to claim 1, wherein the second region is in a region higher than a frequency at which an output voltage of the electric circuit with respect to an input current shows a value that is 3 dB lower than a value in a low region. equipment according to item 1 or. 第1電極と、前記第1電極と対向しキャビティを隔てて配設された第2電極と、を備えるセルを有し、超音波を受信する静電容量型の電気機械変換装置と、
前記電気機械変換装置から出力される電流を電圧に変換する電気回路と、
を含む装置であって、
受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、第1の周波数よりも低い周波数側の第1の領域で周波数が低くなると値が小さくなる特性を有し、
入力される電流に対する前記電気回路の出力電圧の周波数特性は、第2の周波数よりも高い周波数側の第2の領域で周波数が高くなると値が小さくなる特性を有し、
前記第1の領域と前記第2の領域とが重なる部分を有することを特徴とする装置。
A capacitance-type electromechanical transducer having a cell comprising a first electrode and a second electrode disposed opposite to the first electrode and spaced from a cavity, and receiving ultrasonic waves;
An electric circuit for converting a current output from the electromechanical converter into a voltage;
The A including equipment,
The frequency characteristic of the output current of the electromechanical transducer with respect to the received ultrasonic wave has a characteristic that the value decreases as the frequency decreases in the first region on the frequency side lower than the first frequency,
The frequency characteristic of the output voltage of the electric circuit with respect to the input current has a characteristic that the value decreases as the frequency increases in the second region on the frequency side higher than the second frequency,
Equipment you characterized by having a portion where the first region and the second region overlap.
前記電気機械変換装置のセルは、前記第2電極を振動可能に支持する振動膜を含むことを特徴とする請求項8に記載の装置。 The electric cell of the transducer device, equipment according to claim 8, characterized in that it comprises a vibration film to vibrate supporting the second electrode. 前記第1の周波数は、前記振動膜の共振周波数であることを特徴とする請求項9に記載の装置。 Said first frequency, equipment of claim 9, wherein the the resonance frequency of the vibrating film. 前記第1の周波数は、受信する超音波に対する前記電気機械変換装置の出力電流の最大値を示す周波数であることを特徴とする請求項8乃至10のいずれか1項に記載の装置。 Said first frequency, equipment according to any one of claims 8 to 10, characterized in that the frequency at which the maximum value of the output current of the electro-mechanical conversion apparatus for ultrasonic wave reception. 前記第1の周波数は、受信する超音波に対する前記電気機械変換装置の出力電流の最大値を示す周波数から低い周波数側で3dB低下した値を示す周波数であることを特徴とする請求項8乃至10のいずれか1項に記載の装置。 11. The first frequency is a frequency indicating a value that is 3 dB lower on a lower frequency side than a frequency indicating a maximum value of an output current of the electromechanical transducer with respect to received ultrasonic waves. equipment according to any one of. 前記第2の周波数は、入力される電流に対する前記電気回路の出力電圧の最大値を示す周波数であることを特徴とする請求項8乃至12のいずれか1項に記載の装置。 Said second frequency, equipment according to any one of claims 8 to 12, characterized in that the frequency showing the maximum value of the output voltage of the electric circuit for the current input. 前記第2の周波数は、入力される電流に対する前記電気回路の出力電圧の低域での値より3dB低下した値を示す周波数であることを特徴とする請求項8乃至12のいずれか1項に記載の装置。 The frequency according to any one of claims 8 to 12, wherein the second frequency is a frequency indicating a value that is 3 dB lower than a value in a low frequency range of the output voltage of the electric circuit with respect to an input current. equipment described. 前記電気機械変換装置は、前記第1電極と前記第2電極との間に電位差生じている状態で超音波を受信することを特徴とする請求項1乃至14のいずれか1項に記載の装置。 The electromechanical transducer receives ultrasonic waves in a state where a potential difference is generated between the first electrode and the second electrode . equipment. 前記電気機械変換装置は、複数の前記セルを備えたエレメントを有し、
受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、前記複数のセルに配設された複数の第2電極の機械特性の平均と、前記エレメントの静電容量と、を含む因子により決定されることを特徴とする請求項1乃至15のいずれか1項に記載の装置。
The electromechanical transducer has an element including a plurality of the cells,
The frequency characteristic of the output current of the electromechanical transducer with respect to the received ultrasonic wave includes an average of the mechanical characteristics of the plurality of second electrodes arranged in the plurality of cells and the capacitance of the element. equipment according to any one of claims 1 to 15, characterized in that it is determined by.
前記電気機械変換装置は、複数の前記セルを備えたエレメントを有し、
受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、前記複数のセルに配設された複数の第2電極または振動膜の機械特性の平均と、前記エレメントの静電容量と、を含む因子により決定されることを特徴とする請求項2、3、9又は10に記載の装置。
The electromechanical transducer has an element including a plurality of the cells,
The frequency characteristics of the output current of the electromechanical transducer with respect to the received ultrasonic waves are the average of the mechanical characteristics of the plurality of second electrodes or diaphragms disposed in the plurality of cells, the capacitance of the element, equipment according to claim 2, 3, 9 or 10, characterized in that it is determined by factors including.
受信する超音波に対する前記電気機械変換装置の出力電流の周波数特性は、受信する超音波の単位音圧に対する前記電気機械変換装置の出力電流の周波数特性であることを特徴とする請求項1乃至17のいずれか1項に記載の装置。 The frequency characteristic of the output current of the electromechanical transducer with respect to the received ultrasonic wave is the frequency characteristic of the output current of the electromechanical transducer with respect to the unit sound pressure of the received ultrasonic wave. equipment according to any one of. 入力される電流に対する前記電気回路の出力電圧の周波数特性は、入力される電流に対する前記電気回路の出力電圧の変換ゲインの周波数特性であることを特徴とする請求項1乃至18のいずれか1項に記載の装置。 The frequency characteristic of the output voltage of the electric circuit with respect to the input current is a frequency characteristic of a conversion gain of the output voltage of the electric circuit with respect to the input current. equipment described. 前記電気機械変換装置は、超音波を受信することにより、前記第1電極と前記第2電極との間の静電容量の変化に伴う電流を出力することを特徴とする請求項1乃至19のいずれか1項に記載の装置。 20. The electromechanical transducer according to claim 1, wherein the electromechanical transducer outputs an electric current associated with a change in capacitance between the first electrode and the second electrode by receiving an ultrasonic wave. equipment according to any one. 前記電気機械変換装置は、複数の前記セルを備えた複数のエレメントを有することを特徴とする請求項1乃至20のいずれか1項に記載の装置。 The electromechanical conversion device, equipment according to any one of claims 1 to 20, characterized in that it comprises a plurality of elements having a plurality of said cells. 前記複数のエレメントは、基体の上に配置されていることを特徴とする請求項21に記載の装置。 Wherein the plurality of elements, equipment according to claim 21, characterized in that it is disposed upon a substrate. 前記電気機械変換装置は、光が吸収されることにより検査対象内で発生する超音波を受信することを特徴とする請求項1乃至22のいずれか1項に記載の装置。 The electromechanical conversion device, equipment according to any one of claims 1 to 22, characterized in that the light receiving ultrasonic waves generated in the test object by being absorbed. 前記電気機械変換装置は、超音波を送信することを特徴とする請求項1乃至23のいずれか1項に記載の装置。 The electromechanical conversion device, equipment according to any one of claims 1 to 23, characterized in that for transmitting ultrasonic waves. 光源をさらに有し
前記電気機械変換装置は、前記光源から発せられた光が検査対象にあてられることにより生じる超音波を受信ることを特徴とする請求項1乃至24のいずれか1項に記載の装置。
Further comprising a light source,
The electromechanical conversion device, according to any one of claims 1 to 24 light emitted from said light source, wherein the benzalkonium to receive the ultrasonic wave caused by being devoted to the inspection target.
前記電気回路から出力される信号を処理する信号処理系を有することを特徴とする請求項1乃至25のいずれか1項に記載の装置。26. The apparatus according to claim 1, further comprising a signal processing system that processes a signal output from the electric circuit.
JP2014094905A 2014-05-02 2014-05-02 Device including capacitance type electromechanical transducer Active JP5980263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094905A JP5980263B2 (en) 2014-05-02 2014-05-02 Device including capacitance type electromechanical transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094905A JP5980263B2 (en) 2014-05-02 2014-05-02 Device including capacitance type electromechanical transducer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009254752A Division JP5538822B2 (en) 2009-11-06 2009-11-06 Ultrasonic detection device and ultrasonic diagnostic device

Publications (2)

Publication Number Publication Date
JP2014144376A JP2014144376A (en) 2014-08-14
JP5980263B2 true JP5980263B2 (en) 2016-08-31

Family

ID=51425105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094905A Active JP5980263B2 (en) 2014-05-02 2014-05-02 Device including capacitance type electromechanical transducer

Country Status (1)

Country Link
JP (1) JP5980263B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532938B (en) * 2015-03-16 2021-04-06 加利福尼亚大学董事会 Ultrasonic microphone and ultrasonic acoustic radio apparatus
US11607199B2 (en) * 2018-11-20 2023-03-21 Siemens Medical Solutions Usa, Inc. Switched capacitor for elasticity mode imaging with ultrasound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885752B1 (en) * 1994-07-08 2005-04-26 Brigham Young University Hearing aid device incorporating signal processing techniques
US7769420B2 (en) * 2000-05-15 2010-08-03 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
JP2002136513A (en) * 2000-10-31 2002-05-14 Aloka Co Ltd Ultrasonic diagnosing device
WO2005032351A2 (en) * 2003-10-03 2005-04-14 Sensant Corporation Microfabricated ultrasonic transducer array for 3-d imaging and method of operating the same
EP1762181B1 (en) * 2004-06-11 2016-04-06 Olympus Corporation Ultrasonic probe and ultrasonographic device
WO2006041058A1 (en) * 2004-10-15 2006-04-20 Hitachi Medical Corporation Ultrasonograph
JP5546111B2 (en) * 2007-06-29 2014-07-09 キヤノン株式会社 Ultrasonic probe and inspection apparatus provided with the ultrasonic probe
JP5538822B2 (en) * 2009-11-06 2014-07-02 キヤノン株式会社 Ultrasonic detection device and ultrasonic diagnostic device

Also Published As

Publication number Publication date
JP2014144376A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5538822B2 (en) Ultrasonic detection device and ultrasonic diagnostic device
KR101954102B1 (en) Capacitive transducer, capacitive transducer manufacturing method, and object information acquisition apparatus
JP5511260B2 (en) Capacitive electromechanical transducer and sensitivity adjustment method thereof
EP2796210B1 (en) Capacitive transducer and method of manufacturing the same
JP6429759B2 (en) Capacitance type transducer and information acquisition device including the same
JP6632431B2 (en) Ultrasonic transducer unit and information acquisition device including the same
Pekař et al. Frequency tuning of collapse-mode capacitive micromachined ultrasonic transducer
Knight et al. Capacitive micromachined ultrasonic transducers for forward looking intravascular imaging arrays
JP2020057860A (en) Capacitive transducer and method of manufacturing the same
WO2018061395A1 (en) Ultrasonic transducer, method for manufacturing same, and ultrasonic image pickup device
US10189049B2 (en) Capacitive transducer and method of manufacturing same
JP5980263B2 (en) Device including capacitance type electromechanical transducer
Logan The design, fabrication and characterization of capacitive micromachined ultrasonic transducers for imaging applications
Cianci et al. One-dimensional capacitative micromachined ultrasonic transducer arrays for echographic probes
Kim et al. Effect of acoustic properties of lens materials on performance of capacitive micromachined ultrasonic transducers
JP6395390B2 (en) Capacitive transducer and manufacturing method thereof
JP2019080812A (en) Ultrasonic transducer, ultrasonic probe, and photoacoustic apparatus
US20150229236A1 (en) Zero-bias capacitive micromachined ultrasonic transducers and fabrication method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R151 Written notification of patent or utility model registration

Ref document number: 5980263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03