JP5980029B2 - Catalyst member - Google Patents

Catalyst member Download PDF

Info

Publication number
JP5980029B2
JP5980029B2 JP2012161866A JP2012161866A JP5980029B2 JP 5980029 B2 JP5980029 B2 JP 5980029B2 JP 2012161866 A JP2012161866 A JP 2012161866A JP 2012161866 A JP2012161866 A JP 2012161866A JP 5980029 B2 JP5980029 B2 JP 5980029B2
Authority
JP
Japan
Prior art keywords
niobium
catalyst
niobium powder
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012161866A
Other languages
Japanese (ja)
Other versions
JP2014018770A (en
Inventor
和幸 飯田
和幸 飯田
山口 清治
清治 山口
克洋 小暮
克洋 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAFC Energy Technology Inc.
Hitachi AIC Inc
Original Assignee
AAFC Energy Technology Inc.
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAFC Energy Technology Inc., Hitachi AIC Inc filed Critical AAFC Energy Technology Inc.
Priority to JP2012161866A priority Critical patent/JP5980029B2/en
Publication of JP2014018770A publication Critical patent/JP2014018770A/en
Application granted granted Critical
Publication of JP5980029B2 publication Critical patent/JP5980029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒部材に関し、特に、金属表面に触媒機能を備えた触媒部材に関する。   The present invention relates to a catalyst member, and more particularly to a catalyst member having a catalytic function on a metal surface.

従来、触媒活性は、触媒の表面積の大きさに依存することから、触媒担体の表面積を大きくすることが行われている。たとえば、特許文献1には、アルミニウム基板をエッチング処理により表面に凹部を設け、さらに陽極酸化処理によりさらに細かな凹部である多孔質酸化被膜を設けて表面積を増加させ、その表面に触媒を担持させる提案がなされている。   Conventionally, since the catalyst activity depends on the surface area of the catalyst, the surface area of the catalyst carrier has been increased. For example, in Patent Document 1, a concave portion is provided on the surface of an aluminum substrate by etching treatment, and a porous oxide film that is a finer concave portion is provided by anodic oxidation treatment to increase the surface area, and a catalyst is supported on the surface. Proposals have been made.

特開2007−237090公報JP 2007-237090 A

ところで、自動車などで有機ハイドライドシステムにより水素を供給するために触媒部材を使用する場合、触媒反応塔での加熱用に自動車の排ガスを使用する場合がある。しかし、この排ガスが700℃以上であるため、融点が660℃のアルミニウムでは、触媒反応塔での使用が困難になりやすい。
そのため、アルミニウムと同族で表面に酸化膜を形成するアルミニウムより高融点のニオブの使用が考えられるが、反応変換効率を増加させるために表面積を増加させるためには、ニオブはアルミニウムと異なり、従来ウエットエッチングが困難で、ドライエッチングが主流となっている。また、ウエットエッチングで作成しようとしても、アルミニウムのようにエッチンッグレジスト無しにはエッチンッグが困難であるため、いずれにおいても製造コストの増加がネックとなっている。
By the way, when using a catalyst member for supplying hydrogen by an organic hydride system in an automobile or the like, the exhaust gas of the automobile may be used for heating in a catalytic reaction tower. However, since this exhaust gas is 700 ° C. or higher, aluminum having a melting point of 660 ° C. tends to be difficult to use in a catalytic reaction tower.
For this reason, it is conceivable to use niobium, which has the same melting point as aluminum and has a higher melting point than aluminum, which forms an oxide film on the surface. Etching is difficult, and dry etching is the mainstream. Moreover, even if it is made by wet etching, since it is difficult to etch without an etching resist like aluminum, an increase in manufacturing cost becomes a bottleneck in any case.

本発明は、上記の課題を解決する為に、ウエットエッチングによらず表面積を増加させ、触媒反応変換効率を増加させながら製造コストの低減化を実現する高温対応の触媒部材構成を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a high-temperature catalytic member configuration that realizes a reduction in manufacturing cost while increasing the surface area regardless of wet etching and increasing the catalytic reaction conversion efficiency. is there.

本発明は、上記の課題を解決するために、下記の触媒部材を提供するものである。
(1)触媒機能を備えた触媒部材において、酸化膜が、空隙を有するニオブ粉末焼結体の表面に設けられ、前記ニオブ粉末焼結体がニオブ粉末にニオブ繊維を混入してなる混合物の焼結体であることを特徴とした触媒部材を提供するものである。
(2)上記(1)において、ニオブ粉末をシート状に形成し、積層または巻回した触媒部材を提供するものである。
)上記(1)において、ニオブ粉末をニオブ箔の表面に積層し焼結した積層焼結体シートを積層または巻回した触媒部材を提供するものである。
The present invention provides the following catalyst member in order to solve the above-described problems.
(1) In a catalyst member having a catalytic function, an oxide film is provided on the surface of a niobium powder sintered body having voids, and the niobium powder sintered body is a mixture of niobium fibers mixed with niobium fibers. there is provided a catalyst member which was characterized by sintered der Rukoto.
(2) Oite above (1), the niobium powder is formed into a sheet, there is provided a catalyst member wound laminated or wound.
(3) there is provided the above (1) fraud and mitigating risk catalyst member wound laminated or wound sintered laminate sheet niobium powder was sintered laminated on the surface of the niobium foil.

本発明によれば、酸化膜をニオブ粉末焼結体の表面に設けた触媒部材を使用することにより、表面積を増加させ、変換効率を増加させながら製造コストの低減化を実現する高温対応の触媒部材構成を提供することができる。
According to the present invention, by using a catalyst member in which an oxide film is provided on the surface of a niobium powder sintered body, a catalyst for high temperatures that realizes reduction in manufacturing cost while increasing surface area and increasing conversion efficiency. A member configuration can be provided.

本発明の形態の触媒部材とそれを使用した触媒反応ユニットの概略図を示している。The schematic diagram of the catalyst member of the form of the present invention and the catalytic reaction unit using the same is shown. 本発明の形態の触媒部材となる化成処理前の焼結体の概略断面図を示している。The schematic sectional drawing of the sintered compact before the chemical conversion treatment used as the catalyst member of the form of this invention is shown. 本発明の形態の別例の触媒部材の概略斜視図を示している。The schematic perspective view of the catalyst member of another example of the form of this invention is shown.

本発明に述べるニオブ粉末焼結体は、ニオブ粉末が空隙を有しながら、ニオブ粉末を焼結結合したものである。焼結の場合の温度は、1100℃から1300℃ほどの温度をかける。また、ニオブ粉末焼結体は、触媒反応容器の形状に合わせて、整形したもの、シート状にして積層または巻回したものなどが使用できる。
使用されるニオブ粉末の平均粒径は、1μm〜1mm程度で、好ましくは、平均粒径は5〜数100μm程度である。平均粒径が1μmより小さいと焼結体の空隙径が小さくなりやすく、媒体や発生したガスが移動し難い。平均粒径が1mmより大きいと、焼結体の空隙径が大きくなりやすいが、反応有効面積が減少しやすい。また、ニオブ粉末の純度は特に限定されるものでなく、多孔質陽極酸化が可能であれば不純物を含む合金でも構わない。但し触媒被毒となる元素は微小とする。
また、ニオブ粉末の形状は特に限定されないが、球体が望ましい。球体での(表面積/体積)比は、小さい程大きいが、小さいと焼結での空隙が小さくなり易く、媒体や発生したガスが移動し難くなる。
ニオブ粉末焼結体に用いるニオブ粉末は、公知の方法により製造されたものを使用することができる。
たとえば、ニオブをハロゲンガスによりニオブハロゲン化物にし、このニオブハロゲン化物を水素ガスで還元してニオブ粉末を得る方法、または、マグネシウム、カルシウム、ランタン及びセリウムなどの還元性金属で、ニオブ酸化物を還元することによりニオブ粉末を製造する方法、または、プラズマアークを熱源としてCVD反応によりニオブの微粒を製造するプラズマCVD法、または、フッカニオブ酸カリウムを金属ナトリウムで還元し粉砕して一次粒子からなる金属ニオブ微粉末を作製する。次に、この微粉末を真空中で仮焼結して仮焼体とした後、粉砕する。さらに、適当な粒度分布になるように篩い分けして、二次粒子からなる金属ニオブ粉末とする方法など特に限定なく使用できる。
The niobium powder sintered body described in the present invention is obtained by sintering and bonding niobium powder while the niobium powder has voids. In the case of sintering, a temperature of about 1100 ° C. to 1300 ° C. is applied. In addition, the niobium powder sintered body can be shaped according to the shape of the catalyst reaction vessel, or can be laminated or wound in the form of a sheet.
The average particle size of the niobium powder used is about 1 μm to 1 mm, and preferably the average particle size is about 5 to several 100 μm. If the average particle size is smaller than 1 μm, the void diameter of the sintered body tends to be small, and the medium and generated gas are difficult to move. If the average particle size is larger than 1 mm, the void diameter of the sintered body tends to increase, but the effective reaction area tends to decrease. The purity of the niobium powder is not particularly limited, and an alloy containing impurities may be used as long as porous anodization is possible. However, the element that becomes catalyst poisoning is very small.
The shape of the niobium powder is not particularly limited, but a sphere is desirable. The smaller the (surface area / volume) ratio in the sphere is, the smaller, the smaller the void in sintering becomes, and the medium and the generated gas are difficult to move.
As the niobium powder used in the sintered niobium powder, those manufactured by a known method can be used.
For example, niobium is converted to niobium halide with a halogen gas, and the niobium halide is reduced with hydrogen gas to obtain niobium powder, or the niobium oxide is reduced with a reducing metal such as magnesium, calcium, lanthanum and cerium. A niobium powder produced by the method, a plasma CVD method in which niobium fine particles are produced by a CVD reaction using a plasma arc as a heat source, or a metal niobium composed of primary particles by reducing potassium potassium fuccaniobate with metal sodium and crushing A fine powder is prepared. Next, the fine powder is pre-sintered in a vacuum to obtain a calcined body, and then pulverized. Furthermore, it is possible to use without particular limitation, such as a method of sieving to obtain an appropriate particle size distribution to obtain a metal niobium powder composed of secondary particles.

ニオブ粉末を、空隙を有しながら焼結する方法は、ニオブ粉末にバインダ、必要に応じて溶剤、焼結助剤、界面活性剤等の添加剤を混合して、成形加工後、焼結する前にこれらの添加剤が飛散する程度に加熱し、その後、焼結する方法が使用できる。
上記の空隙は、焼結体内部のそれぞれの空孔が互いに連結しあっていて、少なくとも焼結体の片表面に開放していることが好ましい。
バインダとしては、たとえば、ポリオレフィン樹脂、酢酸ビニル樹脂、ブチラール樹脂、アクリル樹脂、アクリロニトリル樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂、ニトロセルロース樹脂などの樹脂や、パラフィンワックス、ポリエチレンワックス等のワックスが使用できる。
溶剤としては、水のほか、アルコール、トルエン、ケトン類、エステル類等の有機溶剤を使用することができる。
また、メタクリル酸エステル重合体からなる繊維、ポリエチレンカーボネイト繊維、ポリプロピレンカーボネイト繊維、ポリブチレンカーボネイト繊維などの高分子繊維を使用すると、焼結体を貫通するような空隙ができやすく好ましい。
The method for sintering niobium powder while having voids is to mix the niobium powder with a binder, and if necessary, additives such as a solvent, a sintering aid, and a surfactant, and sinter after molding. A method of heating to the extent that these additives scatter before and then sintering can be used.
It is preferable that the voids are connected to each other inside the sintered body and open to at least one surface of the sintered body.
Examples of the binder include polyolefin resin, vinyl acetate resin, butyral resin, acrylic resin, acrylonitrile resin, polyester resin, polystyrene resin, polyurethane resin, epoxy resin, urea resin, phenol resin, nitrocellulose resin, and paraffin wax. Wax such as polyethylene wax can be used.
As the solvent, water, and organic solvents such as alcohol, toluene, ketones and esters can be used.
In addition, it is preferable to use a polymer fiber such as a fiber made of a methacrylic acid ester polymer, a polyethylene carbonate fiber, a polypropylene carbonate fiber, or a polybutylene carbonate fiber because a void that penetrates the sintered body is easily formed.

このように、本願発明のニオブ粉末焼結体を使用した触媒部材は、板の場合と異なり粉末壁面のほとんど全てを多孔質酸化皮膜の形成表面積として活用出来、(表面積/体積)比は小さくなる程大きくなるので、平板の場合より触媒担体の収納効率が高い。
また、燃料ガス及び発生水素が通る空隙は、粉末焼結体の空隙密度により調整することができる。たとえば、脱水素反応容器内では後ろ(原料の流れ方向における後方)に行くほど水素ガスが累積されるので、均一な空隙密度にするよりも、後ろに行くほど空隙密度を上げるようにしたほうが、圧力損失が少なくなり好ましい。
また、触媒部材にはシクロヘキサンなどの媒体を流通させるが、平坦な流路では層流を生じ、反応に寄与しない領域が出来るが、本発明では、媒体がニオブ粉末焼結体の空隙を流通し媒体の流れを乱すため、未反応領域を生じ難い。
Thus, the catalyst member using the niobium powder sintered body of the present invention can utilize almost all of the powder wall surface as the surface area for forming the porous oxide film unlike the case of the plate, and the (surface area / volume) ratio becomes small. Therefore, the efficiency of housing the catalyst carrier is higher than in the case of a flat plate.
Further, the gap through which the fuel gas and generated hydrogen pass can be adjusted by the gap density of the powder sintered body. For example, in the dehydrogenation reaction vessel, hydrogen gas accumulates as it goes backward (backward in the flow direction of the raw material), so it is better to increase the void density as it goes backward than to make it uniform. It is preferable because pressure loss is reduced.
In addition, although a medium such as cyclohexane is circulated in the catalyst member, a laminar flow is generated in the flat flow path, and there is a region that does not contribute to the reaction. However, in the present invention, the medium circulates through the voids of the niobium powder sintered body. Since the flow of the medium is disturbed, it is difficult to generate an unreacted region.

本発明に述べるニオブ繊維は、ニオブを繊維状にしたもので、その径は、10μmから1500μm程度のものを使用する。また、その製造方法は、従来からの、線引き加工法、切削法、溶融紡糸法または粉末延伸法など限定なく使用できる。
線引き加工法は、線材をダイスに通して引延するものである。切削法は、ニオブブロックを刃物で削り、短繊維を作るものである。溶融紡糸法は、ニオブ冶金を溶解し溶融状態から一挙に細線化するものである。粉末延伸法は、ニオブ粉末と塩類との混合物を押し出しや圧延などで延伸するものである。切削法のうち、ニオブ箔を切削し繊維状にする方法は、たとえば、コイル状に巻いて回転させ、端面に切削工具をあてて切削していくコイル切削法などが使用できる。
本願発明のニオブ粉末にニオブ繊維を混入し、焼結することにより、焼結体の強度や熱伝導が増加しやすい。特にニオブ粉末よりニオブ繊維の径を大きくすることにより熱伝導がより増加しやすい。また、シート状にも成形しやすくなりその点で好ましい。
The niobium fiber described in the present invention is a fiber in which niobium is made into a fiber and has a diameter of about 10 μm to 1500 μm. Moreover, the manufacturing method can be used without limitation, such as a conventional drawing method, cutting method, melt spinning method or powder drawing method.
In the wire drawing method, a wire is drawn through a die. In the cutting method, a niobium block is cut with a blade to make a short fiber. The melt spinning method melts niobium metallurgy and thins it from a molten state at once. In the powder drawing method, a mixture of niobium powder and salts is drawn by extrusion or rolling. Among the cutting methods, a method of cutting a niobium foil into a fiber shape can be used, for example, a coil cutting method in which a niobium foil is wound in a coil shape and rotated, and a cutting tool is applied to the end face for cutting.
By mixing niobium fibers into the niobium powder of the present invention and sintering, the strength and heat conduction of the sintered body are likely to increase. In particular, heat conduction is likely to increase by increasing the diameter of the niobium fiber compared to the niobium powder. Moreover, it becomes easy to form a sheet shape, which is preferable in that respect.

本発明に述べる積層するニオブ箔は、ニオブ粉末またはそれに混入するニオブ繊維をバインダ等と共に成形加工するベース材とするもので、プレーンなもの、エッチングしたものまたは機械的に穿孔やエキスパンドしたものなど特に限定なく使用できる。ニオブ箔の厚さをニオブ繊維の径より厚く(太く)することにより、成形性や熱伝導性を改善することができる。   The niobium foil to be laminated described in the present invention is a base material which is formed by processing niobium powder or niobium fiber mixed with it together with a binder, etc. Can be used without limitation. Formability and thermal conductivity can be improved by making the thickness of the niobium foil thicker (thicker) than the diameter of the niobium fiber.

本発明に述べる多孔質酸化膜は、ニオブを陽極酸化してできる酸化膜のうち、酸化膜が多孔質の膜からなる。多孔質酸化皮膜の細孔径は、1nm以上とし、担持する金属触媒の大きさに合わせて調整する。
陽極酸化法としては、化学処理(体積比 フッ酸:硝酸=1:4)後、0.1w%から1w%のフッ酸含有の硫酸電解液中で10Vから100Vで定電圧陽極酸化する方法、または、充分脱水したグリセリンに溶液に、KHPOを0.8moldm-3で溶解した電解液を160℃で5Vから100Vで定電圧陽極酸化する方法など、特に限定なく利用できる。
The porous oxide film described in the present invention is made of a porous oxide film among oxide films formed by anodizing niobium. The pore diameter of the porous oxide film is 1 nm or more, and is adjusted according to the size of the supported metal catalyst.
As the anodizing method, a chemical treatment (volume ratio hydrofluoric acid: nitric acid = 1: 4) followed by constant voltage anodizing at 10 V to 100 V in a sulfuric acid electrolyte solution containing 0.1 w% to 1 w% hydrofluoric acid, Alternatively, a method in which an electrolytic solution obtained by dissolving K 2 HPO 4 in 0.8 moldm- 3 in a sufficiently dehydrated glycerin solution is subjected to constant voltage anodic oxidation at 160 ° C. from 5 V to 100 V can be used without any particular limitation.

本発明に述べる金属触媒は、水素触媒用の金属で、Ni,Pd,Pt,Rh,Ir,Re,Ru,Mo,W,V,Os,Cr,Co,Feなどの金属及びこれらの合金を用いることができる。
金属触媒を多孔質酸化膜に担持する方法は、触媒金属をコロイド状に分散した液に浸漬したり、触媒金属を無電解めっきして行う。
The metal catalyst described in the present invention is a metal for a hydrogen catalyst, and includes metals such as Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co, and Fe, and alloys thereof. Can be used.
The method of supporting the metal catalyst on the porous oxide film is performed by immersing the catalyst metal in a liquid in which the catalyst metal is dispersed colloidally or by electroless plating of the catalyst metal.

このように本願発明の空隙を有するニオブ粉末焼結体を使用した触媒部材は、高温対応の触媒部材である以外、以下の長所を有する。
1.粉末焼結体なので、媒体の流路が乱れ、平坦な流路では生じやすい層流による未反応を生じ難い。
2.燃料ガス及び発生水素が通る空隙量は、粉末とバインダとの充填密度により調整することができる。また空隙径は粉末の径やバインダの径により調整することができる。容器形状、大きさ、熱交換器の配置、性能などに応じ、焼結体密度を変えたほうが高効率を得られる場合がある。
このように、異なる空隙率の触媒部材を組み合わせることで、反応容器内での反応密度分布、温度分布を最適化することができ、容器体積/形状/熱交換器ごとに最適設計が容易となる。
3.ニオブ粉末にニオブ繊維を混入し、焼結することにより、焼結体の強度や熱伝導が増加しやすくなる。特にニオブ粉末よりニオブ繊維の径を大きくすることにより熱伝導がより増加しやすい。また、シート状にも成形しやすくなりその点で好ましい。
4.ニオブ粉末をニオブ箔に積層・焼結することにより、フレキシブルになるので、まとめて又は連続的に陽極酸化することも可能で経済的であり、集合体であるので加工がしやすく、巻回や積層もしやすく、異なる容器形状にも対応し易い。
Thus, the catalyst member using the sintered niobium powder having voids of the present invention has the following advantages except that it is a catalyst member for high temperatures.
1. Since it is a powder sintered body, the flow path of the medium is disturbed, and unreacted due to laminar flow that is likely to occur in a flat flow path is difficult.
2. The amount of voids through which the fuel gas and generated hydrogen pass can be adjusted by the packing density of the powder and the binder. The void diameter can be adjusted by the powder diameter and the binder diameter. Depending on the container shape, size, heat exchanger arrangement, performance, etc., higher efficiency may be obtained by changing the sintered body density.
In this way, by combining catalyst members with different porosity, the reaction density distribution and temperature distribution in the reaction vessel can be optimized, and the optimum design for each vessel volume / shape / heat exchanger becomes easy. .
3. By mixing niobium fibers into the niobium powder and sintering, the strength and heat conduction of the sintered body are likely to increase. In particular, heat conduction is likely to increase by increasing the diameter of the niobium fiber compared to the niobium powder. Moreover, it becomes easy to form a sheet shape, which is preferable in that respect.
4). By laminating and sintering niobium powder on niobium foil, it becomes flexible, so it can be anodized collectively or continuously, and it is economical. Easy to stack and easy to handle different container shapes.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の形態の触媒部材とそれを使用した触媒反応ユニットの概略図を示している。
図1(a)では、触媒部材とそれを使用した触媒反応ユニットの概略図を示している。
図1(b)では、触媒部材の一部拡大断面図を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic view of a catalyst member according to an embodiment of the present invention and a catalytic reaction unit using the catalyst member.
FIG. 1 (a) shows a schematic diagram of a catalyst member and a catalytic reaction unit using the catalyst member.
In FIG.1 (b), the partial expanded sectional view of the catalyst member is shown.

図1(a)では、触媒反応ユニットとして触媒反応容器1とそれに連なる気液分離容器2を示していて、原料(媒体)が触媒反応容器1内で反応し、それに連なる気液分離容器2で、気体と液体に分離することを示している。また、触媒反応容器1内に脱水素触媒部材である多孔質酸化膜を設けたニオブ粉末焼結体3を示している。また、触媒反応容器1は必要に応じて加熱、加圧される。   In FIG. 1A, a catalytic reaction vessel 1 and a gas-liquid separation vessel 2 connected thereto are shown as a catalytic reaction unit, and a raw material (medium) reacts in the catalytic reaction vessel 1 and the gas-liquid separation vessel 2 connected thereto reacts. Shows separation into gas and liquid. Further, a niobium powder sintered body 3 in which a porous oxide film as a dehydrogenation catalyst member is provided in the catalyst reaction vessel 1 is shown. Further, the catalytic reaction vessel 1 is heated and pressurized as necessary.

図1(b)では、ニオブ粉末焼結体3の空隙7部分を拡大していて、ニオブ粉末焼結体3の表面の空隙7部分にトンネル状の細孔4を有した陽極酸化皮膜5を形成し、その陽極酸化皮膜5の表面に触媒金属6を担持していることを示している。   In FIG. 1 (b), the void 7 portion of the niobium powder sintered body 3 is enlarged, and an anodized film 5 having tunnel-shaped pores 4 in the void 7 portion on the surface of the niobium powder sintered body 3. It shows that the catalyst metal 6 is supported on the surface of the anodized film 5 formed.

図2は、本発明の形態の触媒部材となる化成処理前の焼結体の概略断面図を示している。
7は、空隙、8は、ニオブ粉末、9は、ニオブ繊維、10は、ニオブ箔を示している。
図2(a)は、ニオブ粉末8の焼結体、図2(b)は、ニオブ粉末8とニオブ繊維9による焼結体、図2(c)は、ニオブ箔10の両側にニオブ粉末8を設けた焼結体の概略断面図を示している。
FIG. 2 shows a schematic cross-sectional view of a sintered body before chemical conversion treatment that becomes a catalyst member of the embodiment of the present invention.
7 is a void, 8 is a niobium powder, 9 is a niobium fiber, and 10 is a niobium foil.
2A is a sintered body of niobium powder 8, FIG. 2B is a sintered body of niobium powder 8 and niobium fiber 9, and FIG. 2C is a niobium powder 8 on both sides of niobium foil 10. The schematic sectional drawing of the sintered compact which provided this is shown.

図3は、本発明の形態の別例の触媒部材の概略斜視図を示している。図2(c)形状の焼結体シート11を、陽極酸化処理、金属触媒担持を実施した後、コイル状に巻回した触媒部材を示している。
FIG. 3 shows a schematic perspective view of another example of the catalyst member according to the embodiment of the present invention. FIG. 2 shows a catalyst member obtained by winding the sintered body sheet 11 in the shape of FIG. 2C into a coil shape after carrying out anodizing treatment and carrying a metal catalyst.

以下、本発明の触媒部材を実施例に基づいて説明する。   Hereinafter, the catalyst member of the present invention will be described based on examples.

(実施例1)
まず、平均粒径が10μmのニオブ粉末に、バインダとしてのアクリル樹脂、溶剤としてトルエンを混合し、触媒反応容器の形状に合わせ、型を使用し加圧成型して焼結素体を作製する。次に、200〜500℃の温度でバインダを除去し、1200℃の温度で焼結することにより空孔径が0.1〜3μmに分布する焼結多孔質体を作成した。続いて化成処理、水洗、ニッケル触媒担持、乾燥の順で処理した。ニッケル担持はニッケルコロイドを分散した液に浸漬し、ニッケル触媒を担持した。以上の処理により触媒部材を作製した。
Example 1
First, an niobium powder having an average particle size of 10 μm is mixed with an acrylic resin as a binder and toluene as a solvent, and is shaped according to the shape of the catalyst reaction vessel and pressure-molded using a mold to produce a sintered body. Next, the binder was removed at a temperature of 200 to 500 ° C., and sintered at a temperature of 1200 ° C. to prepare a sintered porous body having pore diameters distributed in the range of 0.1 to 3 μm. Then, it processed in order of chemical conversion treatment, water washing, nickel catalyst carrying | support, and drying. The nickel support was immersed in a liquid in which nickel colloid was dispersed to support the nickel catalyst. A catalyst member was produced by the above treatment.

(実施例2)
まず、切削法により形成した厚さが50μm、幅が約50μm、平均長さが約2cmのニオブ繊維をニオブ粉末に対して10質量%添加する以外、実施例1と同様に作製した。
(Example 2)
First, a niobium fiber formed by a cutting method having a thickness of 50 μm, a width of about 50 μm, and an average length of about 2 cm was prepared in the same manner as in Example 1 except that 10% by mass of niobium fiber was added to the niobium powder.

(実施例3)
まず、平均粒径が10μmのニオブ粉末に、バインダとして直径が20μmのアクリル樹脂、溶剤としてトルエンを混合し、シート状に成形し焼結素体とする以外、実施例1と同様の工程で作製した。
(Example 3)
First, a niobium powder having an average particle size of 10 μm, an acrylic resin having a diameter of 20 μm as a binder, and toluene as a solvent are mixed, and formed into a sheet to obtain a sintered body. did.

(実施例4)
まず、切削法により形成した厚さが50μm、幅が約50μm、平均長さが約3cmのニオブ繊維をニオブ粉末に対して30質量%添加する以外、実施例3と同様に作製した。
Example 4
First, a niobium fiber having a thickness of 50 μm, a width of about 50 μm, and an average length of about 3 cm formed by a cutting method was prepared in the same manner as in Example 3 except that 30% by mass of niobium powder was added to the niobium powder.

(実施例5)
まず、平均粒径が10μmのニオブ粉末に、バインダとして直径が20μmのアクリル樹脂、溶剤としてトルエンを混合し、厚さ80μmのニオブ箔の両面上に積層し焼結素体とする以外、実施例3と同様に作製した。次に、図3のように巻回した。
(Example 5)
First, a niobium powder having an average particle diameter of 10 μm, an acrylic resin having a diameter of 20 μm as a binder, and toluene as a solvent are mixed and laminated on both surfaces of a niobium foil having a thickness of 80 μm to obtain a sintered body. 3 was prepared. Next, it wound as shown in FIG.

1…触媒反応容器、2…気液分離容器、3…ニオブ粉末焼結体、4…細孔、5…陽極酸化皮膜、6…触媒金属、7…空隙、8…ニオブ粉末、9…ニオブ繊維、10…ニオブ箔、11…焼結体シート   DESCRIPTION OF SYMBOLS 1 ... Catalytic reaction vessel, 2 ... Gas-liquid separation vessel, 3 ... Sintered niobium powder, 4 ... Fine pore, 5 ... Anodized film, 6 ... Catalytic metal, 7 ... Void, 8 ... Niobium powder, 9 ... Niobium fiber 10 ... Niobium foil, 11 ... Sintered sheet

Claims (3)

触媒機能を備えた触媒部材において、酸化膜が、空隙を有するニオブ粉末焼結体の表面に設けられ、前記ニオブ粉末焼結体がニオブ粉末にニオブ繊維を混入してなる混合物の焼結体であることを特徴とした触媒部材。 In a catalyst member having a catalytic function, an oxide film is provided on the surface of a niobium powder sintered body having voids, and the niobium powder sintered body is a sintered body of a mixture obtained by mixing niobium fibers into niobium powder. catalyst member which was characterized by Rukoto Oh. ニオブ粉末をシート状に形成し、積層または巻回した請求項1の触媒部材。The catalyst member according to claim 1, wherein the niobium powder is formed into a sheet shape and laminated or wound. ニオブ粉末をニオブ箔の表面に積層し焼結した積層焼結体シートを積層または巻回した請求項1の触媒部材。The catalyst member according to claim 1, wherein a laminated sintered body sheet obtained by laminating and sintering niobium powder on the surface of niobium foil is laminated or wound.
JP2012161866A 2012-07-20 2012-07-20 Catalyst member Expired - Fee Related JP5980029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161866A JP5980029B2 (en) 2012-07-20 2012-07-20 Catalyst member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161866A JP5980029B2 (en) 2012-07-20 2012-07-20 Catalyst member

Publications (2)

Publication Number Publication Date
JP2014018770A JP2014018770A (en) 2014-02-03
JP5980029B2 true JP5980029B2 (en) 2016-08-31

Family

ID=50194268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161866A Expired - Fee Related JP5980029B2 (en) 2012-07-20 2012-07-20 Catalyst member

Country Status (1)

Country Link
JP (1) JP5980029B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049760A (en) * 2004-08-09 2006-02-16 Nec Tokin Corp Wet electrolytic capacitor
JP2008072003A (en) * 2006-09-15 2008-03-27 Osaka Titanium Technologies Co Ltd Electrode substrate and method for manufacturing electrode base material
JP5324501B2 (en) * 2010-03-09 2013-10-23 国立大学法人信州大学 Electrochemical electrode and method for producing the same

Also Published As

Publication number Publication date
JP2014018770A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
CN107112545B (en) Anode for solid oxide fuel cell, method for producing same, and method for producing electrolyte layer-electrode assembly for fuel cell
Chun et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells
CN106000123B (en) The preparation method of porous membrane
EP2876082A1 (en) High-density high-rigidity graphene porous carbon material and preparation method and application thereof
WO2014129597A1 (en) Carbon material for use as catalyst carrier
JP6047380B2 (en) Noble metal catalyst layer for fuel cell or electrolysis, membrane electrode assembly and fuel cell or electrolysis cell
JP5573110B2 (en) Sintered metal sheet material for electrochemical member and method for producing sintered metal sheet material for electrochemical member
JP6628057B2 (en) Porous metal body, fuel cell, and method for manufacturing porous metal body
Ying et al. Hierarchical design in nanoporous metals
Chen et al. PtCu3 nanoalloy@ porous PWO x composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells
Zhou et al. Pt-CeO2/TiN NTs derived from metal organic frameworks as high-performance electrocatalyst for methanol electrooxidation
JP2019220463A (en) Electrolyte for electrochemical cell and electrochemical cell
JP2007091513A (en) Hydrogen generator and fuel cell system
CN113290242A (en) Micro-nano porous functional device, additive manufacturing method and application thereof
JP6768386B2 (en) Method for manufacturing porous carbon material, catalyst for polymer electrolyte fuel cell and polymer electrolyte fuel cell, and porous carbon material
Ren et al. Strained lattice platinum–palladium alloy nanowires for efficient electrocatalysis
JP5620077B2 (en) Hydrogen catalyst material
Gan et al. A highly active Ni/Ce 0.8 Sm 0.2 O 1.9 anode catalyst with a three-dimensionally ordered macroporous structure for solid oxide fuel cells
JP5353054B2 (en) Porous metal for water retention member and water retention member for fuel cell
JP2009252399A (en) Metallic porous separator for fuel, cell and manufacturing method therefor
JP5980029B2 (en) Catalyst member
JP5542672B2 (en) Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof
JP5489508B2 (en) Hydrogen catalyst material
US20120021333A1 (en) Porous metal substrate structure for a solid oxide fuel cell
JP7230640B2 (en) POROUS ELECTRODE AND WATER ELECTROLYSIS CELL INCLUDING THE SAME

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5980029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees