JP5979578B2 - Ice heat storage device - Google Patents

Ice heat storage device Download PDF

Info

Publication number
JP5979578B2
JP5979578B2 JP2012017121A JP2012017121A JP5979578B2 JP 5979578 B2 JP5979578 B2 JP 5979578B2 JP 2012017121 A JP2012017121 A JP 2012017121A JP 2012017121 A JP2012017121 A JP 2012017121A JP 5979578 B2 JP5979578 B2 JP 5979578B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
plate
flow path
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012017121A
Other languages
Japanese (ja)
Other versions
JP2013155934A (en
Inventor
伸二 堀川
伸二 堀川
久美 松矢
久美 松矢
浩司 松林
浩司 松林
勝利 松永
勝利 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012017121A priority Critical patent/JP5979578B2/en
Publication of JP2013155934A publication Critical patent/JP2013155934A/en
Application granted granted Critical
Publication of JP5979578B2 publication Critical patent/JP5979578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水没させた熱交換器に冷媒を通して、熱交換器の外面に製氷することで冷熱を蓄熱できる氷蓄熱装置に関するものである。   The present invention relates to an ice heat storage device capable of storing cold energy by passing a refrigerant through a submerged heat exchanger and making ice on the outer surface of the heat exchanger.

下記特許文献1には、冷却板(2)に設けた冷却パイプ(6)に冷媒を通しつつ、散布管(3)から冷却板(2)に散水して、冷却板(2)や冷却パイプ(6)の外面に製氷する一方、その冷熱を取り出す際には、冷却パイプ(6)への冷媒供給を停止した状態で、槽内底部の水を、熱交換器(9)を介して散布管(3)から冷却板(2)に散水し、熱交換器(9)において冷熱を取り出す製氷装置が開示されている。この製氷装置では、隣接する二枚の冷却板(2)において、一方の冷却板(2)の冷却パイプ(6)は、他方の冷却板(2)の冷却パイプ(6)と上下互い違いに、千鳥状に配置されている。   In Patent Document 1 below, the coolant is passed through the cooling pipe (6) provided on the cooling plate (2), and water is sprinkled from the spray pipe (3) to the cooling plate (2), so that the cooling plate (2) and the cooling pipe are used. While making the ice on the outer surface of (6), when taking out the cold heat, water in the bottom of the tank is sprayed through the heat exchanger (9) with the refrigerant supply to the cooling pipe (6) stopped. An ice making device is disclosed in which water is sprayed from the pipe (3) to the cooling plate (2) and the cold heat is taken out in the heat exchanger (9). In this ice making device, in two adjacent cooling plates (2), the cooling pipe (6) of one cooling plate (2) is staggered vertically with the cooling pipe (6) of the other cooling plate (2), Arranged in a staggered pattern.

また、下記特許文献2には、板材(2)を重ね合わせた状態で、入口配管(6)と出口配管(7)とを上端辺部に設けつつ、板材(2)の外周部において板材(2)同士を板面において溶接すると共に、それより内側の板面に、冷媒の流路(8)を形成するように適宜の溶接を施した後、未溶接部をその内部から加える膨張圧により膨張変形させることで、冷媒の流路(8)を形成した熱交換器が開示されている。   Moreover, in the following patent document 2, in the state which piled up the board | plate material (2), an inlet pipe (6) and an outlet pipe (7) were provided in the upper end side part, and a board | plate material (in the outer peripheral part of a board | plate material (2) ( 2) Welding each other on the plate surface, and applying appropriate welding to the plate surface on the inner side so as to form the refrigerant flow path (8), and then expanding the unwelded portion from the inside A heat exchanger in which a refrigerant channel (8) is formed by expanding and deforming is disclosed.

特許第3909911号公報(段落番号0022−0023、図1、図4)Japanese Patent No. 3909911 (paragraph numbers 0022-0023, FIGS. 1 and 4) 特開2001−21274号公報(図2、図3)JP 2001-21274 A (FIGS. 2 and 3) 特許第3790207号公報(図1、図4)Japanese Patent No. 3790207 (FIGS. 1 and 4)

特許文献1に記載の熱交換器は、平板状の冷却板(2)に円管状の冷却パイプ(6)が溶接されて形成されるか、そのような形状に押し出し形材により形成され、いずれにしても冷媒流路の断面は単なる円形であり、製氷効率に改善の余地がある。   The heat exchanger described in Patent Document 1 is formed by welding a tubular cooling pipe (6) to a flat cooling plate (2), or formed by an extruded shape member in such a shape. However, the cross section of the refrigerant flow path is simply circular, and there is room for improvement in ice making efficiency.

すなわち、たとえば特許文献3に開示されるようなコイル式熱交換器を用いた場合には、蓄熱槽(36)内に冷媒流路としてのコイル(35)が配置されるだけであるから、氷が成長していくと氷と水との接触面積が大きくなるが、特許文献1に記載の発明では、氷が成長しても氷と水との接触面積が増えない。また、特許文献1に記載の発明では、散水式であるが故に、冷却板(2)が設けられているといえる。   That is, for example, when a coil-type heat exchanger as disclosed in Patent Document 3 is used, the coil (35) as the refrigerant flow path is merely arranged in the heat storage tank (36), so that the ice As the ice grows, the contact area between ice and water increases. However, in the invention described in Patent Document 1, even if ice grows, the contact area between ice and water does not increase. Moreover, in invention of patent document 1, since it is a watering type, it can be said that the cooling plate (2) is provided.

一方、特許文献2に記載の発明では、板面全体が冷媒流路(8)となり、これでは熱交換器(24)の板面全体に板状に氷が付着し、氷と水との接触面積はやはり増えず、製氷効率が悪い。   On the other hand, in the invention described in Patent Document 2, the entire plate surface becomes the refrigerant flow path (8), and in this case, ice adheres to the entire plate surface of the heat exchanger (24), and the contact between ice and water occurs. The area does not increase and the ice-making efficiency is poor.

本発明が解決しようとする課題は、板状の熱交換器への氷の付き具合を変化させることで、氷と水との接触面積を大きくとり、効率的に製氷できる氷蓄熱装置を提供することにある。   The problem to be solved by the present invention is to provide an ice heat storage device that can efficiently make ice by increasing the contact area between ice and water by changing the degree of ice on the plate-shaped heat exchanger. There is.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、重ね合わせた板材同士少なくとも板面においてなされた溶接により板面を膨出部と非膨出部とに分けられており、膨出部において板材間を離隔する方向に膨出変形されて冷媒流路が形成されているが、この冷媒流路の少なくとも一部において、冷媒流路がその幅方向に複数の領域に仕切られた熱交換器と、この熱交換器を収容すると共に水を貯留し、前記熱交換器の冷媒流路に通される冷媒により前記熱交換器の外面に製氷して冷熱を蓄熱可能な蓄熱槽とを備え、前記膨出部と前記非膨出部とは、それぞれ、溶接部で囲まれた領域として形成され、前記熱交換器は、重ね合わせた前記板材同士を、外周端面において全周を溶接されると共に、前記板材の外周部よりも内側において板面に溶接されることで、それぞれ溶接部で囲まれた領域として前記膨出部と前記非膨出部とに分けられ、前記膨出部の少なくとも一部において、その幅方向複数の領域に溶接で仕切られており、それぞれ仕切られた領域膨出変形されることで、前記冷媒流路がその幅方向に複数の領域に仕切られており、前記冷媒流路に対する冷媒入口と冷媒出口とが、前記板材の板面に設けられ、前記蓄熱槽に立設される前記熱交換器には、左右に蛇行しつつ上方から下方へ前記冷媒流路が形成され、この冷媒流路は、左右方向に沿う直線状部が上下に離隔して等間隔に配置されると共に、上下に隣接する直線状部同士が左右互い違いに半円形状部で接続された形状に形成されており、この冷媒流路は、上方の一端部が冷媒入口とされる一方、下方の他端部が冷媒出口とされ、これら両端部を除いた中途部において、前記冷媒流路を幅方向に複数領域に仕切るように前記板材同士が溶接されていることを特徴とする氷蓄熱装置である。 The present invention, the problem has been made in order to solve a first aspect of the present invention, the bulging portion the plate surface by welding the plate material between superimposed is made at least the plate surface and a non-bulging portion is divided into preparative, although Ru Tei refrigerant flow path is bulging deformation in a direction away between plate material is formed in the bulging portion, at least a portion of the coolant channel, the coolant flow path width direction A heat exchanger partitioned into a plurality of regions, storing the heat exchanger and storing water, and making ice on the outer surface of the heat exchanger by the refrigerant passed through the refrigerant flow path of the heat exchanger. A heat storage tank capable of storing cold heat, wherein the bulging portion and the non-bulging portion are each formed as a region surrounded by a welded portion, and the heat exchanger is configured by stacking the plate members together. The outer periphery of the plate is welded to the entire outer periphery and By being welded to the plate surface in the inside than, it is with the bulging portion as an area enclosed by each weld divided into a said non-bulging portion, at least a portion of the bulging portion, the width direction There are partition is welded into a plurality of regions, in Rukoto each partitioned region is bulged deformation, the refrigerant flow passage is partitioned into a plurality of areas in the width direction, the refrigerant for the refrigerant flow path An inlet and a refrigerant outlet are provided on the plate surface of the plate material, and the refrigerant flow path is formed from above to below while meandering left and right in the heat exchanger standing on the heat storage tank. The flow path is formed in a shape in which linear portions along the left-right direction are spaced apart from each other at equal intervals, and linear portions adjacent in the vertical direction are alternately connected to each other by a semicircular portion. This refrigerant flow path has an upper end at the refrigerant inlet. On the other hand, the other lower end portion is a refrigerant outlet, and the plate members are welded so as to partition the refrigerant flow path into a plurality of regions in the width direction in the middle portion excluding these both end portions. It is an ice heat storage device.

請求項1に記載の発明によれば、熱交換器の板面を膨出部と非膨出部とに分け、膨出部と非膨出部とは、それぞれ、溶接部で囲まれた領域として形成され、膨出部は板面から膨出して形成される。特に、非膨出部は、単なる溶接部(溶接線)ではなく、溶接部で囲まれた領域として形成される。このようにして、熱交換器の板面を、板面から膨出する「冷媒を通す部分」と、板面のままの「冷媒を通さない部分」とに分けることができる。しかも、冷媒流路は、少なくとも一部において、幅方向に複数の領域に仕切られるので、「冷媒を通す部分」をさらに複数の凸部に分けることができる。このような構成により、熱交換器の部位により氷の付き具合を変化させて、氷の表面を凹凸状として、氷と水との接触面積を大きくとり、効率的に製氷することができる。 According to invention of Claim 1, the plate | board surface of a heat exchanger is divided into a bulging part and a non-bulging part, and the bulging part and the non-bulging part are the area | regions each surrounded by the welding part. made form as a bulged portion is formed by bulging from the plate surface. In particular, non-swollen portion, the mere weld (weld line) without being made form as a region surrounded by the welded portion. In this way, the plate surface of the heat exchanger can be divided into a “portion through which the refrigerant passes” bulging from the plate surface and a “portion through which the refrigerant does not pass” that remains on the plate surface. Moreover, since the refrigerant flow path is at least partially partitioned into a plurality of regions in the width direction, the “portion through which the refrigerant passes” can be further divided into a plurality of convex portions. With such a configuration, it is possible to make ice efficiently by changing the degree of ice depending on the portion of the heat exchanger, making the surface of the ice uneven, increasing the contact area between ice and water.

請求項1に記載の発明によれば、板材を重ね合わせて外周端面において全周を溶接されると共に、板面に溶接されることで、膨出部形成される。板材の外周端辺よりも内側の領域で、溶接部に囲まれた領域としての膨出部を形成することで、外周端面における溶接部との関係もあり、結果として、膨出部も非膨出部も、それぞれ溶接部で囲まれた領域として形成されることになる。従って、熱交換器の使用時、膨出部の溶接が破損しても、最外周部の溶接で、外部への冷媒の漏れを防止することができる。また、冷媒流路に対する冷媒入口と冷媒出口とが板材の板面に設けられるので、膨出部となる箇所を溶接後、板材間の隙間をあけるように膨出変形する際、板面から流体を圧入しやすい。 According to the invention described in claim 1, together with the welded all around at the outer peripheral edge surface by overlapping sheet material, by being welded to the plate surface, the bulging portion is Ru is formed. By forming a bulging portion as a region surrounded by the welded portion in the region inside the outer peripheral edge of the plate material, there is also a relationship with the welded portion on the outer peripheral end surface. The protruding portion is also formed as a region surrounded by the welded portion. Therefore, when the heat exchanger is used, leakage of the refrigerant to the outside can be prevented by welding the outermost peripheral portion even if the welding of the bulging portion is broken. In addition, since the refrigerant inlet and the refrigerant outlet for the refrigerant flow path are provided on the plate surface of the plate material, when welding and bulging and deforming so as to open a gap between the plate materials after welding the portion that becomes the bulge portion, the fluid flows from the plate surface. Easy to press fit.

請求項1に記載の発明によれば、左右に蛇行しつつ上方から下方へ冷媒流路を形成し、上方から下方へ冷媒を通すことで、冷媒に溶け込んでいる圧縮機の潤滑油が熱交換器内に溜まるのを防止することができる。また、冷媒流路の両端部を除いた中途部において、冷媒流路を幅方向に複数領域に仕切るように板材同士を溶接しておくことで、複数の膨出部に分けることができ、氷の表面を凹凸状として、氷と水との接触面積を大きくとり、効率的に製氷することができる。 According to the first aspect of the present invention, a refrigerant flow path is formed from the upper side to the lower side while meandering from side to side and the refrigerant is passed from the upper side to the lower side, whereby the lubricating oil of the compressor dissolved in the refrigerant is subjected to heat exchange. Accumulation in the vessel can be prevented. Further, in the middle part excluding both ends of the refrigerant flow path, by welding the plate materials so as to partition the refrigerant flow path into a plurality of regions in the width direction, it can be divided into a plurality of bulging parts, By making the surface of the surface uneven, the contact area between ice and water can be increased to make ice efficiently.

さらに、請求項2に記載の発明は、前記蓄熱槽には、前記熱交換器が複数設けられ、対面して隣り合う前記熱交換器同士は、前記冷媒流路の内、左右方向に延出する箇所を上下にずらして配置されることを特徴とする請求項1に記載の氷蓄熱装置である。 Furthermore, in the invention according to claim 2 , the heat storage tank is provided with a plurality of the heat exchangers, and the adjacent heat exchangers facing each other extend in the left-right direction in the refrigerant flow path. The ice heat storage device according to claim 1 , wherein the location to be moved is shifted up and down.

請求項2に記載の発明によれば、対面して隣り合う熱交換器同士は、可能な限り膨出部がずらされるので、隣接する熱交換器の氷同士が結合するのを防止することができる。また、そのような作用効果を、熱交換器を上下にずらすだけで実現することができる。 According to the second aspect of the present invention, the swelled portions of the heat exchangers facing each other are shifted as much as possible, so that it is possible to prevent the ices of the adjacent heat exchangers from being combined. it can. Moreover, such an effect can be realized only by shifting the heat exchanger up and down.

本発明によれば、板状の熱交換器への氷の付き具合を変化させることで、氷と水との接触面積を大きくとり、効率的に製氷することができる。   According to the present invention, by changing the degree of ice attached to the plate-shaped heat exchanger, the contact area between ice and water can be increased and ice can be made efficiently.

本発明の氷蓄熱装置の一実施例を示す概略縦断面図であり、正面から見た状態を示している。It is a schematic longitudinal cross-sectional view which shows one Example of the ice thermal storage apparatus of this invention, and has shown the state seen from the front. 図1の氷蓄熱装置の概略縦断面図であり、側面から見た状態を示している。It is a schematic longitudinal cross-sectional view of the ice thermal storage apparatus of FIG. 1, and has shown the state seen from the side surface. 図1の氷蓄熱装置の右側の熱交換器群の一部を示す概略斜視図である。It is a schematic perspective view which shows a part of heat exchanger group of the right side of the ice thermal storage apparatus of FIG. 図1の氷蓄熱装置の各熱交換器の概略縦断面図であり、一部を省略して示している。It is a schematic longitudinal cross-sectional view of each heat exchanger of the ice thermal storage apparatus of FIG. 1, and one part is abbreviate | omitted and shown. 図1の氷蓄熱装置の熱交換器への製氷状態を示す概略縦断面図であり、熱交換器の一部を拡大して示している。It is a schematic longitudinal cross-sectional view which shows the ice making state to the heat exchanger of the ice thermal storage apparatus of FIG. 1, and has expanded and shown a part of heat exchanger. 図1の氷蓄熱装置の変形例を示す図であり、蓄熱槽内の熱交換器の一部を示している。It is a figure which shows the modification of the ice thermal storage apparatus of FIG. 1, and has shown a part of heat exchanger in a thermal storage tank.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1および図2は、本発明の氷蓄熱装置1の一実施例を示す概略縦断面図であり、図1は正面から見た状態、図2は側面から見た状態を示している。本実施例の氷蓄熱装置1は、スタティック型で外融式の氷蓄熱装置である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are schematic longitudinal sectional views showing an embodiment of the ice heat storage device 1 of the present invention. FIG. 1 shows a state seen from the front, and FIG. 2 shows a state seen from the side. The ice heat storage device 1 of the present embodiment is a static type and an external melting type ice heat storage device.

本実施例の氷蓄熱装置1は、水が貯留される蓄熱槽2と、この蓄熱槽2内に配置される一または複数の熱交換器3と、この熱交換器3との間で冷媒を循環させる冷凍装置4と、前記蓄熱槽2内の貯留水中に空気を送り込む空気供給手段5とを備える。そして、冷凍装置4を運転して、熱交換器3の外面に製氷した後、冷凍装置4を停止して、蓄熱槽2内の冷水を冷水使用設備6で使用する。   The ice heat storage device 1 of the present embodiment has a refrigerant stored between the heat storage tank 2 in which water is stored, one or a plurality of heat exchangers 3 disposed in the heat storage tank 2, and the heat exchanger 3. A refrigerating device 4 for circulation and an air supply means 5 for sending air into the stored water in the heat storage tank 2 are provided. And after operating the freezing apparatus 4 and making ice on the outer surface of the heat exchanger 3, the freezing apparatus 4 is stopped and the cold water in the thermal storage tank 2 is used with the cold water use equipment 6. FIG.

蓄熱槽2は、その形状を特に問わないが、本実施例では角形、言い換えれば中空の直方体形状とされている。蓄熱槽2内には、熱交換器3が配置されると共に、その熱交換器3を水没させるまで水が貯留される。   The shape of the heat storage tank 2 is not particularly limited, but in this embodiment, it is rectangular, in other words, a hollow rectangular parallelepiped shape. A heat exchanger 3 is disposed in the heat storage tank 2 and water is stored until the heat exchanger 3 is submerged.

熱交換器3は、板状とされ、本実施例では蓄熱槽2内に複数枚設けられる。具体的には、蓄熱槽2内には、複数の熱交換器3,3,…からなる熱交換器群7,7が左右に設けられ、各熱交換器群7の各熱交換器3は、その板面を前後に向けて、所定間隔をあけて対面して配置されている。各熱交換器3は、その形状や大きさを含めた構成が互いに同一とされている。   The heat exchanger 3 has a plate shape, and a plurality of heat exchangers 3 are provided in the heat storage tank 2 in this embodiment. Specifically, in the heat storage tank 2, heat exchanger groups 7, 7 including a plurality of heat exchangers 3, 3,... Are provided on the left and right, and each heat exchanger 3 of each heat exchanger group 7 is The plate surfaces are arranged facing each other at a predetermined interval with the plate surface facing forward and backward. Each heat exchanger 3 has the same configuration including shape and size.

図3は、蓄熱槽2内の右側の熱交換器群7の一部を示す概略斜視図であり、また図4は、各熱交換器3の概略縦断面図であり、一部を省略して示している。   FIG. 3 is a schematic perspective view showing a part of the heat exchanger group 7 on the right side in the heat storage tank 2, and FIG. 4 is a schematic vertical sectional view of each heat exchanger 3, and a part thereof is omitted. It shows.

各熱交換器3の製造方法について説明すると、まず、重ね合わせた板材8,8同士を少なくとも板面において溶接し、その溶接により板面を膨出部9と非膨出部10とに分ける。この際、膨出部9と非膨出部10とは、それぞれ、溶接部(溶接線)11で囲まれた領域として、または溶接部11と板材8の端辺との間で囲まれた領域として形成される。口部12(冷媒の出入口であり、膨出部9を膨出変形させる圧入流体の入口にも利用できる。)が板面に設けられる場合、膨出部9は溶接部11で囲まれた領域として形成され、口部12が板材8の端辺に設けられる場合、膨出部9は溶接部11と板材8の端辺との間で囲まれた領域として形成される。いずれの場合も、非膨出部10は、溶接部11で囲まれた領域として、または溶接部11と板材8の端辺との間で囲まれた領域として形成される。このようにして板面を膨出部9と非膨出部10とに分けた後、予め設けておいた口部12から膨出部9に流体を圧入して、膨出部9において板材8,8間を離隔する方向に膨出変形して冷媒流路13が形成される。但し、冷媒流路13の少なくとも一部において、冷媒流路13は、その幅方向に複数の領域に溶接11により仕切られている。   The manufacturing method of each heat exchanger 3 will be described. First, the overlapped plate members 8 and 8 are welded at least on the plate surface, and the plate surface is divided into the bulging portion 9 and the non-bulging portion 10 by the welding. At this time, the bulging portion 9 and the non-bulging portion 10 are respectively a region surrounded by the welded portion (weld line) 11 or a region surrounded by the welded portion 11 and the edge of the plate member 8. Formed as. When the mouth portion 12 (which is a refrigerant inlet / outlet and can also be used as an inlet for press-fitting fluid that bulges and deforms the bulging portion 9) is provided on the plate surface, the bulging portion 9 is an area surrounded by the welded portion 11. When the mouth portion 12 is provided at the end side of the plate member 8, the bulging portion 9 is formed as a region surrounded by the welded portion 11 and the end side of the plate member 8. In any case, the non-bulged portion 10 is formed as a region surrounded by the welded portion 11 or as a region surrounded between the welded portion 11 and the edge of the plate member 8. After dividing the plate surface into the bulging portion 9 and the non-bulging portion 10 in this way, a fluid is press-fitted into the bulging portion 9 from the mouth portion 12 provided in advance, and the plate material 8 is formed in the bulging portion 9. , 8 bulges and deforms in the direction separating the distances 8 to form the refrigerant flow path 13. However, in at least a part of the refrigerant flow path 13, the refrigerant flow path 13 is partitioned by a plurality of regions 11 in a plurality of regions in the width direction.

本実施例では、熱交換器3は、より具体的には次のようにして形成される。すなわち、まず、二枚の板材8,8を重ね合わせて、外周端面において全周を溶接(たとえばレーザー溶接)11する。そして、予め板面に形成しておいた口部12から真空引きして、板材8,8間の隙間を減圧した後、板材8,8間の隙間を減圧保持した状態で、板材8の外周部よりも内側の板面において、板材8,8同士を溶接(たとえばレーザー溶接)11して、膨出部9と非膨出部10とに分ける。   In the present embodiment, the heat exchanger 3 is more specifically formed as follows. That is, first, two plate members 8 and 8 are overlapped, and the entire circumference is welded (for example, laser welding) 11 on the outer peripheral end face. Then, after evacuating from the mouth portion 12 formed in advance on the plate surface, the gap between the plate members 8 and 8 is reduced, and then the outer periphery of the plate member 8 in a state where the gap between the plate members 8 and 8 is held under reduced pressure. The plate members 8 and 8 are welded (for example, laser welding) 11 to the bulging portion 9 and the non-bulging portion 10 on the plate surface inside the portion.

この際、板材8の外周端辺よりも内側の領域で、溶接部11に囲まれた領域として膨出部9を形成する。また、膨出部9の内側の領域に、口部12が配置されるように溶接11がなされる。その後、口部12から適宜の流体を膨出部9へ圧入して、膨出部9において板材8,8同士の隙間を開けるように、膨出部9を膨出変形する。このような構成の場合、膨出部9と非膨出部10とは、それぞれ溶接部11で囲まれた領域として形成される。従って、熱交換器3の使用時、膨出部9の溶接11が破損しても、最外周部の溶接11で、外部への冷媒の漏れを防止することができる。   At this time, the bulging portion 9 is formed as a region surrounded by the welded portion 11 in a region inside the outer peripheral edge of the plate member 8. Further, welding 11 is performed so that the mouth portion 12 is disposed in the region inside the bulging portion 9. Thereafter, an appropriate fluid is press-fitted into the bulging portion 9 from the mouth portion 12, and the bulging portion 9 is bulged and deformed so as to open a gap between the plate members 8 and 8 in the bulging portion 9. In the case of such a configuration, the bulging portion 9 and the non-bulging portion 10 are each formed as a region surrounded by the welded portion 11. Therefore, when the heat exchanger 3 is used, even if the weld 11 of the bulging portion 9 is damaged, the outermost peripheral weld 11 can prevent the refrigerant from leaking to the outside.

口部12を板面に設けた場合、口部12の箇所において、一方の板材8に設けられた穴(口部12)からの圧入流体は、その穴の面積全体で、他方の板材8を前記一方の板材8から離隔するよう押した後、板材8,8間の隙間を拡げるように、膨出部9全体を膨出変形させる。従って、口部12を板面に設けた場合は、口部12を板材8の端辺に設けた場合と比較して、板材8,8間の隙間をあける膨出変形を行いやすい。   When the mouth portion 12 is provided on the plate surface, the press-fitting fluid from the hole (mouth portion 12) provided in the one plate material 8 at the location of the mouth portion 12 causes the other plate material 8 to pass through the entire area of the hole. After being pushed away from the one plate member 8, the entire bulging portion 9 is bulged and deformed so as to widen the gap between the plate members 8,8. Therefore, when the mouth portion 12 is provided on the plate surface, it is easier to perform bulging deformation that opens a gap between the plate materials 8 and 8 than when the mouth portion 12 is provided on the end side of the plate material 8.

また、本実施例では、上述した板面における溶接時、膨出部9の内側の領域の内、口部12とその周囲の設定領域を除いた中途部が、膨出部9(冷媒流路13)の幅方向に複数の領域に溶接(たとえばレーザー溶接)により仕切られる。そして、それぞれ仕切られた領域を膨出変形することで、冷媒流路13がその幅方向に複数の領域に仕切られて形成される。   Further, in this embodiment, during welding on the plate surface described above, the midway portion of the region inside the bulging portion 9 excluding the mouth portion 12 and the surrounding setting region is the bulging portion 9 (refrigerant flow path). 13) is partitioned into a plurality of regions in the width direction by welding (for example, laser welding). And the refrigerant | coolant flow path 13 is divided and formed in the several area | region in the width direction by bulging and deforming each area | region divided.

膨出部9は、その形状を特に問わないが、本実施例では、図3に示すように、板面の上部から下部にかけて、左右に蛇行して形成されている。より具体的には、左右方向に沿う直線状部が上下に等間隔に配置されると共に、上下に隣接する直線状部同士が左右互い違いに半円形状部で接続された形状に形成されている。そして、このようにして蛇行して形成される膨出部9の長手方向両端部(図3の右上部と右下部)には口部12が設けられており、この口部12は冷媒配管14に接続される。さらに、膨出部9は、蛇行した冷媒流路13の両端部を除いて、幅方向を溶接により適宜、複数(図示例では三つ)に仕切られている。なお、このための溶接の端部は、ループ状に折り返しておくことで、溶接強度が確保されている(図1)。   Although the shape of the bulging portion 9 is not particularly limited, in this embodiment, as shown in FIG. 3, the bulging portion 9 is formed to meander from side to side from the upper part to the lower part of the plate surface. More specifically, the linear portions along the left-right direction are arranged at equal intervals in the vertical direction, and the linear portions adjacent to each other in the vertical direction are alternately connected to each other by a semicircular portion. . And the opening part 12 is provided in the longitudinal direction both ends (upper right part and right lower part of FIG. 3) of the bulging part 9 formed by meandering in this way, and this opening part 12 is the refrigerant | coolant piping 14. Connected to. Further, the bulging portion 9 is divided into a plurality (three in the illustrated example) as appropriate in the width direction by welding, except for both end portions of the meandering refrigerant flow path 13. In addition, the welding strength for this purpose is ensured by folding the end portion of the weld into a loop shape (FIG. 1).

熱交換器3は、蓄熱槽2内に水没された状態で使用され、膨出部9には冷凍装置(コンデンシングユニット)4からの冷媒が膨張弁(図示省略)を介して通される。この際、好ましくは、上方の口部12が冷媒入口とされる一方、下方の口部12が冷媒出口とされる。このようにして、冷媒を熱交換器3の上方から下方へ通すことで、冷媒に溶け込んでいる圧縮機の潤滑油が熱交換器3内に溜まるのを防止することができる。   The heat exchanger 3 is used in a state where it is submerged in the heat storage tank 2, and the refrigerant from the refrigeration apparatus (condensing unit) 4 is passed through the expansion portion 9 via an expansion valve (not shown). At this time, preferably, the upper mouth portion 12 is used as a refrigerant inlet, while the lower mouth portion 12 is used as a refrigerant outlet. In this way, by passing the refrigerant from the upper side to the lower side of the heat exchanger 3, it is possible to prevent the lubricating oil of the compressor dissolved in the refrigerant from accumulating in the heat exchanger 3.

冷凍装置4を運転することで、熱交換器3の外面で製氷することができる。そして、製氷後には、蓄熱槽2内の水は、冷水使用設備6で使用可能とされる。図示例では、蓄熱槽2からの冷水が冷水使用設備6で使用された後、蓄熱槽2に戻される例を示しているが、場合により、蓄熱槽2からの冷水を冷水使用設備6で使用後、使い捨ててもよい。その場合、蓄熱槽2内には、適宜、給水されるのがよい。   By operating the refrigeration apparatus 4, ice can be made on the outer surface of the heat exchanger 3. And after ice making, the water in the thermal storage tank 2 can be used with the cold water use equipment 6. FIG. In the illustrated example, the cold water from the heat storage tank 2 is used in the cold water use facility 6 and then returned to the heat storage tank 2, but depending on the case, the cold water from the heat storage tank 2 is used in the cold water use facility 6 Later, it may be disposable. In that case, the heat storage tank 2 may be appropriately supplied with water.

なお、典型的には、電気料金の安い夜間電力を用いて、冷凍装置4を運転して、蓄熱槽2内の水を熱交換器3の外面で凍結させる。この際、蓄熱槽2内の水のすべてが凍結される訳ではなく、各熱交換器3の外面についた氷同士は、互いにつながらないのが好ましい。そして、昼間には、蓄熱槽2内の冷水を冷水使用設備6において利用する。冷水使用設備6は、特に問わないが、たとえば空調設備または食品機械である。   Note that typically, the refrigeration apparatus 4 is operated using nighttime electric power with a low electricity bill, and water in the heat storage tank 2 is frozen on the outer surface of the heat exchanger 3. At this time, not all the water in the heat storage tank 2 is frozen, and it is preferable that the ice on the outer surface of each heat exchanger 3 is not connected to each other. In the daytime, the cold water in the heat storage tank 2 is used in the cold water use facility 6. The cold water use facility 6 is not particularly limited, but is, for example, an air conditioning facility or a food machine.

冷凍装置4を運転して、蓄熱槽2内で熱交換器3の外面に製氷する際、および/または、製氷後に蓄熱槽2内の冷水を冷水使用設備6にて使用する際、空気供給手段5を運転して、蓄熱槽2内の水の撹拌を図るのが好ましい。   When the refrigeration apparatus 4 is operated to make ice on the outer surface of the heat exchanger 3 in the heat storage tank 2 and / or when the cold water in the heat storage tank 2 is used in the cold water use facility 6 after ice making, air supply means It is preferable to drive 5 and to stir the water in the heat storage tank 2.

本実施例では、氷蓄熱装置1は、製氷時および冷水使用時に、蓄熱槽2内の貯留水中に空気を噴出させる空気供給手段5を備える。空気供給手段5は、本実施例ではブロワ15であるが、場合によりエアポンプでもよい。以下の説明では、空気供給手段5はブロワ15であるとして説明するが、エアポンプである場合も同様である。   In the present embodiment, the ice heat storage device 1 includes air supply means 5 that ejects air into the stored water in the heat storage tank 2 when making ice and using cold water. The air supply means 5 is the blower 15 in this embodiment, but may be an air pump depending on circumstances. In the following description, the air supply means 5 will be described as being a blower 15, but the same applies to an air pump.

ブロワ15は、蓄熱槽2内からの水の逆流を確実に防止するために、好ましくは蓄熱槽2の上部に配置される。そして、ブロワ15からの空気は、蓄熱槽2の底部に設けられた空気溜め部材16を介して、貯留水中に排出される。   The blower 15 is preferably arranged on the upper part of the heat storage tank 2 in order to reliably prevent the backflow of water from the heat storage tank 2. And the air from the blower 15 is discharged | emitted in stored water via the air reservoir member 16 provided in the bottom part of the thermal storage tank 2. FIG.

空気溜め部材16は、各熱交換器3の真下に設置してもよいが、本実施例では、隣接する前後の熱交換器3,3間(および所望により前後両端部の熱交換器3と蓄熱槽2の壁との間)の隙間の前後方向中央部に設置される。いずれの場合も、空気溜め部材16は、熱交換器3の下端辺と平行に、且つ熱交換器3の下端辺と同等の高さに配置される。   Although the air reservoir member 16 may be installed directly under each heat exchanger 3, in this embodiment, between the adjacent front and rear heat exchangers 3, 3 (and with the heat exchangers 3 at both front and rear ends if desired) It is installed in the center in the front-rear direction of the gap between the heat storage tank 2 and the wall. In any case, the air reservoir member 16 is disposed in parallel with the lower end side of the heat exchanger 3 and at the same height as the lower end side of the heat exchanger 3.

空気溜め部材16を熱交換器3の真下ではなく、前後の熱交換器3,3間の隙間に配置しておけば、板状の熱交換器3,3間、あるいは板状の熱交換器3,3の外面に付着した氷I,I間の隙間に、円滑に空気を噴出させて効果的なバブリングを行うことができる。また、空気溜め部材16を熱交換器3の真下ではなく、前後の熱交換器3,3間の隙間に配置しておけば、後述する空気溜め部材16の着脱作業や清掃を行いやすい。   If the air reservoir member 16 is disposed not in the heat exchanger 3 but in the gap between the front and rear heat exchangers 3 and 3, the plate-like heat exchangers 3 and 3 or the plate-like heat exchanger Effective bubbling can be performed by smoothly ejecting air into the gap between the ices I and I adhering to the outer surfaces 3 and 3. Further, if the air reservoir member 16 is not disposed directly under the heat exchanger 3 but in the gap between the front and rear heat exchangers 3 and 3, the air reservoir member 16 described later can be easily attached and detached and cleaned.

本実施例の空気溜め部材16は、下方へ開口したコ字形状材からなり、その長手方向両端部は板材で塞がれている。これにより、ブロワ15からの空気を、空気溜め部材16内に溜めることができる。空気溜め部材16には、その前後の側壁に、左右方向等間隔に空気の噴出孔17が形成されている。よって、ブロワ15からの空気は、空気溜め部材16を介して、前後の熱交換器3,3間の隙間に排出され、気泡の上昇により蓄熱槽2内の水の対流を図ることができる。   The air reservoir member 16 of the present embodiment is made of a U-shaped material that opens downward, and both ends in the longitudinal direction thereof are closed with a plate material. Thereby, the air from the blower 15 can be stored in the air reservoir member 16. In the air reservoir member 16, air ejection holes 17 are formed in the front and rear side walls at equal intervals in the left-right direction. Therefore, the air from the blower 15 is discharged into the gap between the front and rear heat exchangers 3 and 3 through the air reservoir member 16, and the convection of water in the heat storage tank 2 can be achieved by the rising of the bubbles.

空気溜め部材16は下方へ開口した部材から形成されるので、空気溜め部材16内への汚れの滞留を防止することができる。つまり、ブロワ15の停止により空気溜め部材16内に水が逆流して、空気溜め部材16内に汚れが入り込んでも、その汚れは空気溜め部材16内に溜まらず、下方へ脱落することになる。しかも、空気溜め部材16を蓄熱槽2に対し着脱可能に構成すれば、空気溜め部材16を取り外して、空気溜め部材16を清掃できるだけでなく、蓄熱槽2の底部に溜まった汚れを清掃することもできる。   Since the air reservoir member 16 is formed of a member opened downward, it is possible to prevent dirt from staying in the air reservoir member 16. In other words, even if water flows backward into the air reservoir member 16 due to the stop of the blower 15 and dirt enters the air reservoir member 16, the dirt does not accumulate in the air reservoir member 16 and falls down. Moreover, if the air reservoir member 16 is configured to be detachable from the heat storage tank 2, not only can the air reservoir member 16 be removed to clean the air reservoir member 16, but also dirt accumulated at the bottom of the heat storage tank 2 can be cleaned. You can also.

空気溜め部材16とブロワ15との間は、縦管18と横管19とで接続されている。すなわち、蓄熱槽2の左右方向内側(左側の熱交換器群7の右端部、右側の熱交換器群7の左端部)の底部には、それぞれ前後方向へ沿って横管19が設けられ、この横管19の先端部は閉塞されている。また、横管19の基端部には、縦管18の下端部が接続されている。さらに、その縦管18の上端部は、蓄熱槽2の上部において、逆止弁20を介してブロワ15に接続されている。   A vertical tube 18 and a horizontal tube 19 are connected between the air reservoir member 16 and the blower 15. That is, at the bottom of the heat storage tank 2 in the left-right direction (the right end of the left heat exchanger group 7 and the left end of the right heat exchanger group 7), a horizontal pipe 19 is provided along the front-rear direction. The distal end portion of the horizontal tube 19 is closed. Further, the lower end portion of the vertical tube 18 is connected to the proximal end portion of the horizontal tube 19. Further, the upper end portion of the vertical pipe 18 is connected to the blower 15 via a check valve 20 in the upper portion of the heat storage tank 2.

そして、横管19と各空気溜め部材16とは、チューブ21を介して接続されている。つまり横管19の周側壁には前後方向等間隔に、横管19の内外を連通させるパイプ22が設けられている一方、空気溜め部材16の長手方向一端部(蓄熱槽2の左右方向内側の端部)には、空気溜め部材16の内外を連通するパイプ23が設けられており、両パイプ22,23がチューブ21で接続されている。   The horizontal pipe 19 and each air reservoir member 16 are connected via a tube 21. That is, on the peripheral side wall of the horizontal tube 19, pipes 22 that communicate the inside and outside of the horizontal tube 19 are provided at equal intervals in the front-rear direction, while one end in the longitudinal direction of the air reservoir member 16 ( A pipe 23 that communicates the inside and outside of the air reservoir member 16 is provided at the end), and both the pipes 22 and 23 are connected by a tube 21.

空気溜め部材16は、蓄熱槽2に対し着脱可能に設けられるのが好ましい。具体的には、左右の各熱交換器群7の下端部には、蓄熱槽2の左右方向内側の端部に、空気溜め部材16の一端部を保持する第一支持材24が設けられる一方、蓄熱槽2の左右方向外側の端部に、空気溜め部材16の他端部を保持する第二支持材25が設けられている。第一支持材24は、下向きコ字形状材からなり、前後方向へ沿って配置される。第二支持材25も、前後方向へ沿って配置され、垂直片26と水平片27とを有する略L字形状材から構成され、垂直片26の上端部から蓄熱槽2の左右方向外側へ向けて水平片27が配置される。   The air reservoir member 16 is preferably provided so as to be detachable from the heat storage tank 2. Specifically, at the lower end of each of the left and right heat exchanger groups 7, a first support member 24 that holds one end of the air reservoir member 16 is provided at the inner end in the left-right direction of the heat storage tank 2. A second support member 25 that holds the other end portion of the air reservoir member 16 is provided at an end portion on the outer side in the left-right direction of the heat storage tank 2. The 1st support material 24 consists of a downward U-shaped material, and is arrange | positioned along the front-back direction. The second support member 25 is also arranged along the front-rear direction and is made of a substantially L-shaped material having a vertical piece 26 and a horizontal piece 27, and extends from the upper end of the vertical piece 26 to the outside in the left-right direction of the heat storage tank 2. The horizontal piece 27 is arranged.

一方、空気溜め部材16には、一端部(蓄熱槽2の左右方向内側の端部)にパイプ23が設けられる一方、他端部(蓄熱槽2の左右方向外側の端部)に板状の上下一対の保持片28,28が水平に延出して設けられている。従って、空気溜め部材16は、第二支持材25を上下一対の保持片28,28で挟むように、水平片27に上側の保持片28を載せた後、第一支持材24の上壁にパイプ23を載せた状態で、第一支持材24の上壁とパイプ押え29との間でパイプ23を挟むようにして、パイプ押え29を第一支持材24の上壁に着脱可能にネジで取り付ければよい。   On the other hand, the air reservoir member 16 is provided with a pipe 23 at one end (an end on the inner side in the left-right direction of the heat storage tank 2), and has a plate-like shape at the other end (the outer end in the left-right direction of the heat storage tank 2). A pair of upper and lower holding pieces 28, 28 are provided extending horizontally. Accordingly, the air reservoir member 16 is placed on the upper wall of the first support member 24 after the upper support piece 28 is placed on the horizontal piece 27 so that the second support member 25 is sandwiched between the pair of upper and lower holding pieces 28, 28. When the pipe 23 is placed, the pipe 23 is sandwiched between the upper wall of the first support member 24 and the pipe presser 29, and the pipe presser 29 is detachably attached to the upper wall of the first support member 24 with a screw. Good.

ところで、図1に示すように、蓄熱槽2内の左右方向中央部には、空間、好ましくは人が入ることのできる作業空間30が形成されている。従って、この作業空間30から空気溜め部材16の着脱作業を容易に行うことができる。作業空間30は、その大きさを適宜に設定されるが、左右方向の幅寸法(左右の熱交換器群7,7同士の左右方向の離隔距離)Wが300mm以上、好ましくは400〜500mmの幅寸法の空間として、蓄熱槽2の左右方向中央部に前後方向に沿って設けられる。   By the way, as shown in FIG. 1, a space, preferably a work space 30 in which a person can enter, is formed in the center in the left-right direction in the heat storage tank 2. Therefore, the air reservoir member 16 can be easily attached and detached from the work space 30. The size of the work space 30 is appropriately set, but the width dimension in the left-right direction (separation distance in the left-right direction between the left and right heat exchanger groups 7, 7) W is 300 mm or more, preferably 400 to 500 mm. As the space of the width dimension, it is provided along the front-rear direction at the center in the left-right direction of the heat storage tank 2.

図5は、蓄熱槽2内における熱交換器3への製氷状態を示す概略縦断面図であり、熱交換器3の一部を拡大して示している。この図に示すように、本実施例では、熱交換器3の板面を膨出部9と非膨出部10とに分け、非膨出部10は単なる溶接部(溶接線)11ではなく、溶接部11で囲まれた領域として、または溶接部11と板材8の端辺との間で囲まれた領域として形成され、膨出部9は板面から膨出して形成される。これにより、熱交換器3の板面を、板面から膨出する「冷媒を通す部分」と、板面のままの「冷媒を通さない部分」とに分けることができる。しかも、冷媒流路13は、幅方向に複数の領域に仕切られるので、「冷媒を通す部分」をさらに複数の凸部に分けることができる。このようにして、熱交換器3の部位により氷Iの付き具合を変化させて、氷Iの表面を凹凸状として、氷と水との接触面積を大きくとり、効率的に製氷することができる。   FIG. 5 is a schematic longitudinal sectional view showing an ice making state for the heat exchanger 3 in the heat storage tank 2, and shows a part of the heat exchanger 3 in an enlarged manner. As shown in this figure, in this embodiment, the plate surface of the heat exchanger 3 is divided into a bulging portion 9 and a non-bulging portion 10, and the non-bulging portion 10 is not a mere welded portion (welding line) 11. The bulging portion 9 is formed as a region surrounded by the welded portion 11 or as a region surrounded by the welded portion 11 and the edge of the plate member 8, and the bulging portion 9 is formed by bulging from the plate surface. Thereby, the plate surface of the heat exchanger 3 can be divided into a “portion through which the refrigerant passes” that bulges from the plate surface and a “portion through which the refrigerant does not pass” that remains on the plate surface. Moreover, since the coolant channel 13 is partitioned into a plurality of regions in the width direction, the “portion through which the coolant passes” can be further divided into a plurality of convex portions. In this way, by changing the condition of the ice I depending on the part of the heat exchanger 3, the surface of the ice I can be made uneven so that the contact area between the ice and water can be increased, and ice can be made efficiently. .

図6は、前記実施例の氷蓄熱装置1の変形例を示す図であり、蓄熱槽2内の熱交換器3の一部を示している。この図に示すように、左右の各熱交換器群7において、前後に対面して隣り合う熱交換器3,3同士は、冷媒流路13の内、左右方向に延出する箇所(直線状部)を上下にずらして配置してもよい。具体的には、図6において、中央の熱交換器3の直線状部(幅方向を三つに仕切られた冷媒流路13の直線状部)間の上下方向中央部に、左右の熱交換器3の直線状部が配置される。このように構成すれば、隣接する熱交換器3,3の氷I,I同士が結合するのを最大限に防止することができる。また、隣接する熱交換器3,3同士で直線状部を上下にずらして配置した場合、直線状部を上下にずらさないで配置する場合よりも、氷I,I同士の結合距離が伸びるため、冷水取出し時に効率的に運用できる製氷限界を増加させることができる。しかも、このような作用効果を、熱交換器3を上下にずらすだけで実現することができる。   FIG. 6 is a view showing a modification of the ice heat storage device 1 of the above embodiment, and shows a part of the heat exchanger 3 in the heat storage tank 2. As shown in this figure, in each of the left and right heat exchanger groups 7, the heat exchangers 3, 3 facing each other in the front-rear direction are located in a portion (linear shape) extending in the left-right direction in the refrigerant flow path 13. Part) may be shifted up and down. Specifically, in FIG. 6, left and right heat exchange is performed at the center in the vertical direction between the linear portions of the central heat exchanger 3 (the linear portions of the refrigerant flow path 13 divided into three in the width direction). The straight portion of the vessel 3 is arranged. If comprised in this way, it can prevent to the maximum that ice I of I and I of adjacent heat exchangers 3 and 3 couple | bond together. In addition, when the linear portions are arranged so as to be shifted up and down between the adjacent heat exchangers 3 and 3, the coupling distance between the ices I and I is longer than when the linear portions are arranged without being shifted up and down. In addition, it is possible to increase the ice making limit that can be efficiently operated when cold water is taken out. And such an effect can be implement | achieved only by shifting the heat exchanger 3 up and down.

本発明の氷蓄熱装置1は、前記実施例の構成に限らず適宜変更可能である。
たとえば、前記実施例では、熱交換器3の製造時、二枚の板材8,8の外周部を端面において溶接したが、場合により板面において溶接してもよい。つまり、最外周部の溶接は、板材8の板面において、端辺に沿って行ってもよい。
The ice heat storage device 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate.
For example, in the embodiment, when the heat exchanger 3 is manufactured, the outer peripheral portions of the two plate members 8 and 8 are welded to the end surfaces. That is, the outermost peripheral portion may be welded along the end side on the plate surface of the plate 8.

また、前記実施例では、空気溜め部材16には、空気の噴出孔17を前後の側壁に設けたが、これに代えてまたはこれに加えて、上壁に設けてもよい。   In the above embodiment, the air reservoir member 16 is provided with the air ejection holes 17 on the front and rear side walls, but may be provided on the upper wall instead of or in addition to this.

さらに、前記実施例では、製氷後、蓄熱槽2内の冷水を直接に冷水使用設備6へ送って冷熱を利用する例について説明したが、蓄熱槽2内の水を外部熱交換器との間で循環させ、この外部熱交換器において、冷水と他の流体との熱交換を図ってもよい。   Furthermore, although the said Example demonstrated the example which sends cold water in the thermal storage tank 2 directly to the cold water use equipment 6 after ice making, and utilizes cold energy, water in the thermal storage tank 2 is exchanged with an external heat exchanger. In this external heat exchanger, heat exchange between cold water and another fluid may be achieved.

1 氷蓄熱装置
2 蓄熱槽
3 熱交換器
4 冷凍装置
5 空気供給手段
6 冷水使用設備
8 板材
9 膨出部
10 非膨出部
11 溶接部
12 口部(冷媒入口,冷媒出口)
13 冷媒流路
15 ブロワ
DESCRIPTION OF SYMBOLS 1 Ice thermal storage apparatus 2 Thermal storage tank 3 Heat exchanger 4 Refrigeration apparatus 5 Air supply means 6 Cold water use equipment 8 Plate material 9 Expansion part 10 Non-expansion part 11 Welding part 12 Portion (refrigerant inlet, refrigerant outlet)
13 Refrigerant flow path 15 Blower

Claims (2)

重ね合わせた板材同士少なくとも板面においてなされた溶接により板面を膨出部と非膨出部とに分けられており、膨出部において板材間を離隔する方向に膨出変形されて冷媒流路が形成されているが、この冷媒流路の少なくとも一部において、冷媒流路がその幅方向に複数の領域に仕切られた熱交換器と、
この熱交換器を収容すると共に水を貯留し、前記熱交換器の冷媒流路に通される冷媒により前記熱交換器の外面に製氷して冷熱を蓄熱可能な蓄熱槽とを備え、
前記膨出部と前記非膨出部とは、それぞれ、溶接部で囲まれた領域として形成され、
前記熱交換器は、
重ね合わせた前記板材同士を、外周端面において全周を溶接されると共に、前記板材の外周部よりも内側において板面に溶接されることで、それぞれ溶接部で囲まれた領域として前記膨出部と前記非膨出部とに分けられ、
前記膨出部の少なくとも一部において、その幅方向複数の領域に溶接で仕切られており、それぞれ仕切られた領域膨出変形されることで、前記冷媒流路がその幅方向に複数の領域に仕切られており
前記冷媒流路に対する冷媒入口と冷媒出口とが、前記板材の板面に設けられ、
前記蓄熱槽に立設される前記熱交換器には、左右に蛇行しつつ上方から下方へ前記冷媒流路が形成され、
この冷媒流路は、左右方向に沿う直線状部が上下に離隔して等間隔に配置されると共に、上下に隣接する直線状部同士が左右互い違いに半円形状部で接続された形状に形成されており、
この冷媒流路は、上方の一端部が冷媒入口とされる一方、下方の他端部が冷媒出口とされ、これら両端部を除いた中途部において、前記冷媒流路を幅方向に複数領域に仕切るように前記板材同士が溶接されている
ことを特徴とする氷蓄熱装置。
Is divided the plate surface in the bulging part and the non-protruding portion by welding overlapping sheet together was is made in at least the plate surface, refrigerant flow is bulging deformation in a direction away between plate in the bulging portion Although Ru road is formed Tei, at least a portion of the refrigerant passage, a heat exchanger refrigerant flow path is partitioned into a plurality of areas in the width direction thereof,
A heat storage tank that stores the heat exchanger and stores water, and is capable of storing cold heat by making ice on the outer surface of the heat exchanger by the refrigerant passed through the refrigerant flow path of the heat exchanger,
The bulging portion and the non-bulging portion are each formed as a region surrounded by a welded portion,
The heat exchanger is
The overlapped plate members are welded to the plate surface on the inner side of the outer peripheral portion of the plate member while being welded to the plate surface on the inner periphery of the outer peripheral portion of the plate member. And the non-bulged portion,
In at least a portion of the bulging portion, the is width direction is the partition is welded into a plurality of regions, in Rukoto each partitioned region is bulged deformation, the refrigerant flow path of the plurality of the width direction It is partitioned into regions,
A refrigerant inlet and a refrigerant outlet for the refrigerant flow path are provided on the plate surface of the plate material,
In the heat exchanger standing in the heat storage tank, the refrigerant flow path is formed from above to below while meandering from side to side,
The refrigerant flow path is formed in a shape in which linear portions along the left-right direction are spaced apart from each other at equal intervals, and linear portions adjacent in the vertical direction are alternately connected to each other by a semicircular portion. Has been
In this refrigerant flow path, one upper end portion is used as a refrigerant inlet, and the other lower end portion is a refrigerant outlet. The said plate materials are welded so that it may partition. The ice thermal storage apparatus characterized by the above-mentioned.
前記蓄熱槽には、前記熱交換器が複数設けられ、
対面して隣り合う前記熱交換器同士は、前記冷媒流路の内、左右方向に延出する箇所を上下にずらして配置される
ことを特徴とする請求項1に記載の氷蓄熱装置。
The heat storage tank is provided with a plurality of the heat exchangers,
The ice heat storage device according to claim 1, wherein the heat exchangers that face each other and are adjacent to each other are arranged by shifting a portion extending in a left-right direction in the refrigerant flow path up and down.
JP2012017121A 2012-01-30 2012-01-30 Ice heat storage device Active JP5979578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017121A JP5979578B2 (en) 2012-01-30 2012-01-30 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017121A JP5979578B2 (en) 2012-01-30 2012-01-30 Ice heat storage device

Publications (2)

Publication Number Publication Date
JP2013155934A JP2013155934A (en) 2013-08-15
JP5979578B2 true JP5979578B2 (en) 2016-08-24

Family

ID=49051305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017121A Active JP5979578B2 (en) 2012-01-30 2012-01-30 Ice heat storage device

Country Status (1)

Country Link
JP (1) JP5979578B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486792B (en) * 2013-09-23 2016-05-11 杭州华电华源环境工程有限公司 Aluminum Ice storage coiled pipe
EP3447429B1 (en) * 2017-08-22 2023-06-07 InnoHeat Sweden AB Heat exchanger plate and heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932214B2 (en) * 1981-01-14 1984-08-07 日本ステンレス株式会社 Manufacturing method of solar heat absorption panel or plate type heat exchanger
JP3909911B2 (en) * 1997-04-15 2007-04-25 株式会社ササクラ Static ice making equipment in ice heat storage system
JP2001021274A (en) * 1999-07-08 2001-01-26 Hitachi Ltd Plate type ice making heat exchanger
JP3936831B2 (en) * 2000-05-24 2007-06-27 株式会社新潟ティーエルオー Manufacturing method of heat transfer plate
JP5200711B2 (en) * 2008-07-10 2013-06-05 パナソニック株式会社 Heat storage device

Also Published As

Publication number Publication date
JP2013155934A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP4324187B2 (en) Heat storage device
CN101907378B (en) Cold-storage heat exchanger
JP5102204B2 (en) Ice machine, evaporator assembly for ice machine, and method of manufacturing the same
JP6115896B2 (en) Cold storage material container
JP5768480B2 (en) Cold storage heat exchanger
US20140096555A1 (en) Plate evaporative condenser and cooler
US20140174702A1 (en) Heat exchanger
JP3100372B1 (en) Heat exchanger
JP5979578B2 (en) Ice heat storage device
JP5295330B2 (en) Plate heat exchanger and refrigeration air conditioner
JP5857762B2 (en) Ice heat storage device
JP5033673B2 (en) Method for manufacturing pipe connecting component and method for manufacturing casing component
JP5871161B2 (en) Ice heat storage device
CN205505503U (en) Evaporator
WO2008103203A1 (en) Heat exchanger having a plastic collecting tank
JP4879292B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2008039259A (en) Heat accumulator
JP6514094B2 (en) Cell type ice maker
CN106705500A (en) Evaporator
JP2013104591A (en) Heat exchanger
JP2011163700A (en) Heat exchanger
JP6927400B2 (en) Shell and plate heat exchanger
CN210569384U (en) Heat exchange structure and evaporative condenser with same
KR20090008794A (en) Flat tube of heat exchanger
CN201992914U (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5979578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160717

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250