JP5978650B2 - Method for surface treatment of steel materials - Google Patents

Method for surface treatment of steel materials Download PDF

Info

Publication number
JP5978650B2
JP5978650B2 JP2012038554A JP2012038554A JP5978650B2 JP 5978650 B2 JP5978650 B2 JP 5978650B2 JP 2012038554 A JP2012038554 A JP 2012038554A JP 2012038554 A JP2012038554 A JP 2012038554A JP 5978650 B2 JP5978650 B2 JP 5978650B2
Authority
JP
Japan
Prior art keywords
steel
treated
metal material
oxide layer
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012038554A
Other languages
Japanese (ja)
Other versions
JP2013173977A (en
Inventor
名越 正泰
正泰 名越
佐藤 馨
馨 佐藤
精一 渡辺
精一 渡辺
壮貴 吉田
壮貴 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012038554A priority Critical patent/JP5978650B2/en
Publication of JP2013173977A publication Critical patent/JP2013173977A/en
Application granted granted Critical
Publication of JP5978650B2 publication Critical patent/JP5978650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属材料表面に酸化層を形成する金属材料の表面処理方法、およびこの表面処理方法により形成された酸化層を表面に備える金属材料に関するものである。   The present invention relates to a surface treatment method of a metal material for forming an oxide layer on the surface of the metal material, and a metal material having an oxide layer formed by the surface treatment method on the surface.

鉄鋼材料や合金材料などの金属材料に対しては、表面の性質を変える目的、若しくは製品の製造過程で、表面に酸化層を形成する処理が施されることがある。例えば、特許文献1には、金属材料表面の黒化処理のために、金属材料表面にFeO主体の酸化層を形成する技術が開示されている。また、特許文献2には、Siなどの易酸化元素を多く含む鋼材に溶融亜鉛めっき処理を施す際、鋼材表面を酸化させた後、還元処理によって易酸化元素の表面濃化を抑制することにより、めっき性を向上させる技術が開示されている。また、特許文献3には、鋼板を加工する際、鋼板表面に酸化層を形成することによって、鋼板同士の凝着を防止し、プレス成形性を向上させる技術が開示されている。   Metal materials such as steel materials and alloy materials may be subjected to a treatment for forming an oxide layer on the surface for the purpose of changing the properties of the surface or in the manufacturing process of the product. For example, Patent Document 1 discloses a technique for forming an oxide layer mainly composed of FeO on a metal material surface for blackening treatment on the metal material surface. Further, in Patent Document 2, when a hot dip galvanizing treatment is performed on a steel material containing a large amount of an easily oxidizable element such as Si, the surface of the easily oxidizable element is suppressed by reduction treatment after oxidizing the steel surface. A technique for improving plating properties is disclosed. Patent Document 3 discloses a technique for preventing adhesion between steel sheets and improving press formability by forming an oxide layer on the surface of the steel sheet when processing the steel sheet.

一方、材料の表層のみを軟らかくする表面軟化処理は、表面のノッチ感受性を低下させ、耐衝撃性を向上させる。また、表面軟化処理は、液体アンモニア貯蔵タンクの応力腐食割れを抑制することが知られている。さらに、高強度鋼の表面に軟化層を形成することによって、曲げ加工時に表面にクラックが発生することが抑制され、曲げ加工性が向上することが知られている。以上のことから、表面軟化処理は多くの製品にとって重要な技術となっている。なお、軟化層の形成方法としては、表面に脱炭層を形成した後に焼入れをする方法などが知られており、鋼片の加熱・圧延・冷却条件の制御による方法、熱処理によって高炭素鋼の表面に脱炭層を形成する方法、母材部より軟らかい材料を母材表面に組み合わせる方法が知られている(特許文献4、非特許文献1,2参照)。   On the other hand, the surface softening treatment that softens only the surface layer of the material lowers the notch sensitivity of the surface and improves the impact resistance. The surface softening treatment is known to suppress stress corrosion cracking of the liquid ammonia storage tank. Furthermore, it is known that by forming a softened layer on the surface of high-strength steel, the occurrence of cracks on the surface during bending is suppressed, and bending workability is improved. From the above, surface softening treatment is an important technology for many products. In addition, as a softening layer forming method, a method of quenching after forming a decarburized layer on the surface is known, a method by controlling the heating, rolling, and cooling conditions of the steel slab, the surface of the high carbon steel by heat treatment There are known a method of forming a decarburized layer and a method of combining a material softer than the base material portion with the surface of the base material (see Patent Document 4, Non-Patent Documents 1 and 2).

特開平02−228466号公報Japanese Patent Laid-Open No. 02-228466 特開2010−196083号公報JP 2010-196083 A 特開平03−285024号公報Japanese Patent Laid-Open No. 03-285024 特開昭61−139622号公報JP-A 61-139622

脱炭処理、「オープン焼鈍による表面軟化高炭素鋼帯の製造」、川崎製鉄技法、vol.13、No.2、p.210-217(1981)Decarburization treatment, “Manufacture of surface softened high carbon steel strip by open annealing”, Kawasaki Steel Technology, vol.13, No.2, p.210-217 (1981) クラッド鋼板、「表面軟化二層クラッド鋼板の液体アンモニアタンクへの適用」、川崎製鉄技法、vol.15、No.1、p.19-28(1983)Clad steel sheet, "Application of surface softened double-layer clad steel sheet to liquid ammonia tank", Kawasaki Steel Technology, vol.15, No.1, p.19-28 (1983)

一般に、金属材料表面に酸化層を形成する処理は、バッチ式や連続式の加熱炉を用いて金属材料を直接又は間接的に加熱することによって行われている。加熱による表面酸化処理によれば、加熱温度、加熱雰囲気、若しくは加熱時間を制御することによって、酸化層の厚さや組成を容易に変化させることができる。しかしながら、加熱による表面酸化処理では、酸化層表面の微細構造を制御することは困難である。酸化層表面の微細構造は、金属材料の外観、摺動性、塗装を施す場合には塗装密着性に影響を及ぼす。また、表面に酸化層が形成された金属材料を基材として触媒基板を形成した場合には、酸化層表面の微細構造に応じて表面積が変化するために、酸化層表面の微細構造は触媒性能に影響を及ぼす。このため、酸化層表面に所望の微細構造を形成可能な金属材料の表面処理方法の提供が期待されていた。   In general, the treatment for forming an oxide layer on the surface of a metal material is performed by directly or indirectly heating the metal material using a batch-type or continuous-type heating furnace. According to the surface oxidation treatment by heating, the thickness and composition of the oxide layer can be easily changed by controlling the heating temperature, the heating atmosphere, or the heating time. However, in the surface oxidation treatment by heating, it is difficult to control the fine structure of the oxide layer surface. The fine structure on the surface of the oxide layer affects the appearance of the metal material, slidability, and coating adhesion when applied. In addition, when a catalyst substrate is formed using a metal material with an oxide layer formed on the surface as a base material, the surface area changes according to the microstructure of the oxide layer surface. Affects. For this reason, provision of the surface treatment method of the metal material which can form a desired fine structure on the oxide layer surface was anticipated.

一方、表面軟化処理技術のうち、鋼片の加熱・圧延・冷却条件の制御による従来技術は鋼材の温度を制御しながらの複雑な圧延技術が必要となり方法として簡便なものではなく、脱炭を利用した従来技術は、炭素を多く含む鋼にしか適用できない。また、脱炭後に焼入れする技術では、表層の炭素を0.3質量%以下にしないと焼き割れが発生するなど、脱炭層の制御に多くの労力を要する。また、母材部より軟らかい材料を母材表面に組み合わせる技術は、その製造工程も多くなり多くのコストを要する。このため、複雑な圧延処理や脱炭処理を用いることなく、低コストで表面軟化層を形成可能な金属材料の表面処理方法の提供が期待されていた。   On the other hand, among the surface softening treatment techniques, the conventional technique by controlling the heating, rolling, and cooling conditions of the steel slab requires a complicated rolling technique while controlling the temperature of the steel material, and is not a simple method. The prior art used can only be applied to steels rich in carbon. Further, in the technique of quenching after decarburization, a lot of labor is required for controlling the decarburized layer, for example, if the surface layer carbon is not reduced to 0.3 mass% or less, a burning crack occurs. In addition, the technique of combining a material softer than the base material portion with the surface of the base material requires many manufacturing steps and requires a lot of cost. For this reason, provision of the surface treatment method of the metal material which can form a surface softening layer at low cost without using a complicated rolling process and a decarburization process was anticipated.

本発明は、上記課題に鑑みてなされたものであって、その目的は、所望の微細構造を有する酸化層を表面に備える金属材料を形成可能な金属材料の表面処理方法、およびこの表面処理方法により形成された酸化層を表面に備える金属材料を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is a surface treatment method for a metal material capable of forming a metal material having an oxide layer having a desired microstructure on the surface, and the surface treatment method. Another object is to provide a metal material having an oxide layer formed on the surface thereof.

また、本発明の他の目的は、脱炭処理を用いることなく、低コストで表面軟化層を形成可能な金属材料の表面処理方法、およびこの表面処理方法により形成された軟化層を表面に備える金属材料を提供することにある。   Another object of the present invention is to provide a surface treatment method for a metal material capable of forming a surface softening layer at low cost without using a decarburization treatment, and a softening layer formed by this surface treatment method on the surface. It is to provide a metal material.

上記課題を解決し、目的を達成するために、本発明に係る金属材料の表面処理方法は、被処理表面を有する金属材料からなる陰極電極としての被処理材と陽極電極とを電解溶液中に浸漬させるステップと、前記陰極電極と前記陽極電極との間に、完全プラズマ状態が形成されると共に、前記被処理表面が酸化され、且つ、熔解しない電圧を印加することによって、前記被処理表面に酸化層を形成するステップと、を含むことを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the surface treatment method for a metal material according to the present invention comprises a material to be treated as a cathode electrode made of a metal material having a surface to be treated and an anode electrode in an electrolytic solution. A complete plasma state is formed between the step of dipping and the cathode electrode and the anode electrode, and the surface to be treated is oxidized, and a voltage that does not melt is applied to the surface to be treated. Forming an oxide layer.

本発明に係る金属材料の表面処理方法は、上記発明において、前記被処理材が、ステンレス鋼、低合金鋼、又は炭素鋼であることを特徴とする。   The surface treatment method for a metal material according to the present invention is characterized in that, in the above invention, the material to be treated is stainless steel, low alloy steel, or carbon steel.

本発明に係る金属材料の表面処理方法は、上記発明において、前記被処理材が、引っ張り強度440MPa以上の高強度鋼であることを特徴とする。   The metal material surface treatment method according to the present invention is characterized in that, in the above invention, the material to be treated is high strength steel having a tensile strength of 440 MPa or more.

上記課題を解決し、目的を達成するために、本発明に係る金属材料は、金属材料基材と、前記金属材料基材の表面上に形成された酸化層と、を備え、前記酸化層は、前記金属材料基材と陽極電極とを電解溶液中に浸漬させ、前記金属材料基材と前記陽極電極との間に、完全プラズマ状態が形成されると共に、前記金属材料基材表面が酸化され、且つ、熔解しない電圧を印加することによって形成されていることを特徴とする。   In order to solve the above problems and achieve the object, a metal material according to the present invention includes a metal material substrate and an oxide layer formed on a surface of the metal material substrate, and the oxide layer includes: The metal material substrate and the anode electrode are immersed in an electrolytic solution, and a complete plasma state is formed between the metal material substrate and the anode electrode, and the surface of the metal material substrate is oxidized. And it is formed by applying the voltage which is not melted.

本発明によれば、所望の微細構造を有する酸化層を表面に備える金属材料を形成可能な金属材料の表面処理方法、およびこの表面処理方法により形成された酸化層を表面に備える金属材料を提供することができる。   According to the present invention, there is provided a metal material surface treatment method capable of forming a metal material provided with an oxide layer having a desired microstructure on the surface, and a metal material provided with an oxide layer formed by the surface treatment method on the surface. can do.

本発明によれば、低コストで表面軟化層を形成可能な金属材料の表面処理方法、およびこの表面処理方法により形成された軟化層を表面に備える金属材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface treatment method of the metal material which can form a surface softening layer at low cost, and the metal material which equips the surface with the softening layer formed by this surface treatment method can be provided.

図1は、本発明の一実施形態である金属材料の表面処理の流れを示すフローチャートである。FIG. 1 is a flowchart showing a flow of surface treatment of a metal material according to an embodiment of the present invention. 図2は、本発明の一実施形態である金属材料の表面処理方法において用いられる処理装置の一構成例を示す模式図である。FIG. 2 is a schematic diagram showing a configuration example of a processing apparatus used in the metal material surface treatment method according to an embodiment of the present invention. 図3は、印加電圧を145Vとしたときの実施例1の試料表面を示すSEM写真図である。FIG. 3 is a SEM photograph showing the sample surface of Example 1 when the applied voltage is 145V. 図4は、印加電圧を135Vとしたときの実施例2の試料表面の二次電子像およびEDSスペクトルを示す図である。FIG. 4 is a diagram showing a secondary electron image and an EDS spectrum on the sample surface of Example 2 when the applied voltage is 135V. 図5は、実施例3の試験片表面の二次電子像、EDSスペクトル、および摩擦係数の測定結果を示す図である。FIG. 5 is a diagram showing the measurement results of the secondary electron image, EDS spectrum, and friction coefficient on the surface of the test piece of Example 3. 図6は、比較例の試験片表面の二次電子像、EDSスペクトル、および摩擦係数の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of the secondary electron image, EDS spectrum, and friction coefficient on the surface of the test piece of the comparative example. 図7は、実施例4の試験片表面の二次電子像と摩擦係数の測定結果とを示す図である。FIG. 7 is a diagram showing a secondary electron image on the surface of the test piece of Example 4 and a measurement result of the friction coefficient. 図8は、実施例5の試験片の硬さ測定結果を示す図である。FIG. 8 is a diagram showing the hardness measurement results of the test piece of Example 5. 図9は、液面から深さ5mmの位置における実施例5の試験片のSEM写真図である。FIG. 9 is an SEM photograph of the test piece of Example 5 at a position 5 mm deep from the liquid surface.

以下、図面を参照して、本発明の一実施形態である金属材料の表面処理方法について説明する。   Hereinafter, a metal material surface treatment method according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態である金属材料の表面処理の流れを示すフローチャートである。図2は、本発明の一実施形態である金属材料の表面処理方法において用いられる処理装置の一構成例を示す模式図である。図1に示すように、本発明の一実施形態である金属材料の表面処理では、始めに、被処理表面を有する金属材料からなる陰極電極としての被処理材と陽極電極とを電解溶液中に浸漬させる(ステップS1)。そして、陰極電極と陽極電極との間に、完全プラズマ状態が形成されると共に、被処理表面が酸化され、且つ、熔解しない電圧を印加することにより、微細構造を有する酸化層を被処理材の表面に形成する(ステップS2)。より具体的には、図2に示すように、本発明の一実施形態である金属材料の表面処理では、容器1内の電解溶液2中に陽極電極3と被処理材4とを浸漬し、銅ワイヤーなどの導線5を介して電源6から陽極電極3と被処理材4とに電圧を印加することによって、微細構造を有する酸化層を被処理材4の表面に形成する。   FIG. 1 is a flowchart showing a flow of surface treatment of a metal material according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a configuration example of a processing apparatus used in the metal material surface treatment method according to an embodiment of the present invention. As shown in FIG. 1, in the surface treatment of a metal material according to an embodiment of the present invention, first, a material to be treated as a cathode electrode made of a metal material having a surface to be treated and an anode electrode are placed in an electrolytic solution. Immerse (step S1). Then, a complete plasma state is formed between the cathode electrode and the anode electrode, and the surface to be processed is oxidized and a voltage that does not melt is applied, so that an oxide layer having a fine structure is applied to the material to be processed. Form on the surface (step S2). More specifically, as shown in FIG. 2, in the surface treatment of the metal material according to an embodiment of the present invention, the anode electrode 3 and the material to be treated 4 are immersed in the electrolytic solution 2 in the container 1, An oxide layer having a fine structure is formed on the surface of the material to be processed 4 by applying a voltage from the power source 6 to the anode electrode 3 and the material to be processed 4 through the conductive wire 5 such as a copper wire.

電解溶液2は、特に限定されないが、電気伝導性を有し、且つ、被処理材4の表面処理を行う際に、被処理材4の表面を過度にエッチングしたり、陽極電極および被処理材4の表面に付着や析出したり、沈殿物を形成したりし難い溶液である。このような電解溶液2の電解質としては、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、炭酸アンモニウム((NHCO)、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化アンモニウム(NHOH)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩化アンモニウム(NHCl)、硫酸のナトリウム塩、硫酸のカリウム塩、硫酸のアンモニウム塩、硝酸のナトリウム塩、硝酸のカリウム塩、硝酸のアンモニウム塩、クエン酸ナトリウム(NaH(CO(COO))などのクエン酸のナトリウム塩、クエン酸のカリウム塩、クエン酸のアンモニウム塩、硝酸、および塩酸などを例示できる。 The electrolytic solution 2 is not particularly limited, but has electrical conductivity, and when the surface treatment of the material to be treated 4 is performed, the surface of the material to be treated 4 is excessively etched, or the anode electrode and the material to be treated are treated. It is a solution that hardly adheres to or precipitates on the surface of 4 or forms a precipitate. Examples of the electrolyte of the electrolytic solution 2 include potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), water Lithium oxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), sodium chloride (NaCl), potassium chloride (KCl), ammonium chloride (NH 4 Cl), sulfuric acid Citric acid such as sodium salt of sodium, potassium salt of sulfuric acid, ammonium salt of sulfuric acid, sodium salt of nitric acid, potassium salt of nitric acid, ammonium salt of nitric acid, sodium citrate (NaH 2 (C 3 H 5 O (COO) 3 )) Examples of sodium salt, potassium salt of citric acid, ammonium salt of citric acid, nitric acid, and hydrochloric acid Can show.

電解溶液2は、被処理材4の表面に酸化層を形成可能であれば、任意のpHおよび濃度とすることができる。例えば炭酸カリウム水溶液を電解溶液2として用いる場合、その濃度は、特に限定されることなく、0.001mol/L以上、より好ましくは0.005mol/L以上とすることができる。これは、電解溶液2の濃度が低すぎると、陽極電極3と被処理材4との間に電圧を印加した際に好適な放電状態を維持することが困難となる場合があるためである。電解溶液2の濃度の上限は特に設けないが、例えば0.5mol/L以下とすることができる。電解溶液2のpHは、電極の過度の腐食やエッチングを起こさなければ任意の値とすることができ、例えばpH10〜12とすることができる。   The electrolytic solution 2 can have any pH and concentration as long as an oxide layer can be formed on the surface of the material to be treated 4. For example, when a potassium carbonate aqueous solution is used as the electrolytic solution 2, the concentration thereof is not particularly limited and can be 0.001 mol / L or more, more preferably 0.005 mol / L or more. This is because if the concentration of the electrolytic solution 2 is too low, it may be difficult to maintain a suitable discharge state when a voltage is applied between the anode electrode 3 and the material to be processed 4. The upper limit of the concentration of the electrolytic solution 2 is not particularly set, but can be set to 0.5 mol / L or less, for example. The pH of the electrolytic solution 2 can be set to an arbitrary value unless excessive corrosion or etching of the electrode is caused, for example, pH 10 to 12.

陽極電極3は、放電に際して熱的および化学的に安定な材料によって形成されている。このような陽極電極3としては、Pt、Ir、黒鉛などを例示できる。   The anode electrode 3 is formed of a material that is thermally and chemically stable during discharge. Examples of such an anode electrode 3 include Pt, Ir, and graphite.

被処理材4は、金属材料であれば特に限定されず、鉄鋼材料であれば冷間圧延材、熱間圧延材、若しくは鋳造材、およびその加工物(溶接など含む)を用いることができる。鋼種は特に限定されず、炭素鋼、低合金鋼、ステンレス鋼、若しくは引っ張り強度440MPa以上の高強度鋼などを利用できる。電気亜鉛めっき鋼板をはじめとするめっき鋼板も利用できる。被処理材4の形状は特に限定されず、板状、線状、棒状、パイプ状、若しくは加工部品を利用することができる。被処理材4は電解溶液2中に浸漬されていることが必要で、少なくとも液面から1mm以上深くする必要がある。   The material to be treated 4 is not particularly limited as long as it is a metal material, and a cold-rolled material, a hot-rolled material, a cast material, and a processed product thereof (including welding) can be used if it is a steel material. The steel type is not particularly limited, and carbon steel, low alloy steel, stainless steel, or high strength steel having a tensile strength of 440 MPa or more can be used. Plated steel sheets including electrogalvanized steel sheets can also be used. The shape of the to-be-processed material 4 is not specifically limited, A plate shape, linear shape, rod shape, pipe shape, or a processed component can be utilized. The to-be-processed material 4 needs to be immersed in the electrolyte solution 2, and needs to be deepened at least 1 mm or more from the liquid level.

放電条件は、完全プラズマ状態が形成されると共に、被処理材4の表面が酸化され、且つ、熔解しない電圧範囲を利用できる。具体的には、被処理材4が暗所でオレンジ色の点発光を示す電圧から被処理材4全体が赤熱する直前の電圧までの範囲内で放電電圧を調整する。放電電圧は、被処理材4の大きさを1mm×1mm×20mmとした場合、約110〜160Vの範囲が好適であり、より望ましくは135〜160Vの範囲である。この電圧範囲は、ステンレス鋼などの合金鋼を含むほとんどの鉄鋼材料に適用できる。この電圧範囲は、被処理材4の種類や配置によって変化し場合によっては上記値を越えて変化するため、電圧条件を変更して処理した被処理材4の表面を走査電子顕微鏡(Scanning Electron Microscope : SEM)で観察することによって決定すると良い。   As the discharge condition, a complete plasma state is formed, and the voltage range in which the surface of the material to be processed 4 is oxidized and not melted can be used. Specifically, the discharge voltage is adjusted within a range from a voltage at which the material to be processed 4 exhibits orange point light emission in a dark place to a voltage immediately before the entire material to be processed 4 is heated red. The discharge voltage is preferably in the range of about 110 to 160 V, more preferably in the range of 135 to 160 V, when the size of the material to be processed 4 is 1 mm × 1 mm × 20 mm. This voltage range is applicable to most steel materials including alloy steels such as stainless steel. This voltage range changes depending on the type and arrangement of the material to be processed 4 and in some cases exceeds the above value. Therefore, the surface of the material to be processed 4 processed by changing the voltage condition is scanned with a scanning electron microscope (Scanning Electron Microscope). : Determined by observation with SEM).

放電電圧は、被処理材4の表面に酸化層を形成できる電圧であることが必要条件である。下限の電圧未満では被処理材4の表面はほとんど酸化されないため、下限の電圧以上の電圧を印加する必要がある。下限の電圧は表面が酸化される電圧をSEMおよびSEMに付属したエネルギー分散型X線分光装置(EDS)を用いて調べることで容易に決定できる。被処理材4の酸化物と同程度のX線強度で酸素が検出された場合、表面は酸化されていると判断する。また、被処理材4の酸化物(例えば冷延鋼板や低合金鋼ではFeの酸化物を意味する)のFeのL線の強度で規格化した酸素のX線強度に対して、被処理材4における酸素のFe−L線強度で規格化したX線強度が1/3以下である場合、表面は酸化されていないと判断する。上記の表面調査は、電圧を変更して30分間放電した後、被処理材4を取出し水洗、乾燥した後、SEMに導入して観察することにより行う。一方、印加電圧が上限の電圧を超えると被処理材4の表面が熔解してしまう。従って、被処理材4の表面が熔解する電圧を上限の電圧として決定することができる。   It is a necessary condition that the discharge voltage is a voltage that can form an oxide layer on the surface of the material to be treated 4. If the voltage is lower than the lower limit voltage, the surface of the material to be treated 4 is hardly oxidized, so that a voltage higher than the lower limit voltage needs to be applied. The lower limit voltage can be easily determined by examining the voltage at which the surface is oxidized using an SEM and an energy dispersive X-ray spectrometer (EDS) attached to the SEM. When oxygen is detected with the same X-ray intensity as the oxide of the material 4 to be processed, it is determined that the surface is oxidized. In addition, the material to be treated with respect to the X-ray intensity of oxygen normalized by the intensity of the L-line of Fe of the oxide of the material to be treated 4 (for example, it means an oxide of Fe in cold-rolled steel sheet or low alloy steel) When the X-ray intensity normalized with the Fe-L line intensity of oxygen in 4 is 1/3 or less, it is determined that the surface is not oxidized. The surface inspection is performed by changing the voltage and discharging for 30 minutes, taking out the material 4 to be treated, washing it with water, drying it, introducing it into the SEM, and observing it. On the other hand, when the applied voltage exceeds the upper limit voltage, the surface of the workpiece 4 is melted. Therefore, the voltage at which the surface of the workpiece 4 is melted can be determined as the upper limit voltage.

放電処理時間は3秒以上必要である。但し、放電処理時間は例えば60分などの長い時間も可能であるが、放電処理時間が長すぎると被処理材4が損耗する場合があるため30分以上の処理時間は好ましくない。   The discharge processing time needs 3 seconds or more. However, the discharge treatment time can be as long as, for example, 60 minutes. However, if the discharge treatment time is too long, the material to be treated 4 may be worn out, so a treatment time of 30 minutes or longer is not preferable.

〔実施例1〕
実施例1では、厚さ0.8mmの市販の冷延鋼板を幅2mm、長さ25mmに切断し、銅ワイヤーにより導通をとり陰極電極とした。陽極電極は長さ50cmのPtワイヤーを互いに接触しないように折り曲げて面状に成型したものを用いた。冷延鋼板と銅ワイヤーとの接続部は耐熱樹脂を加熱圧着し銅ワイヤーが電解溶液に触れないようにして電極の20mmの長さ部分を電解溶液に浸漬した。電解溶液は濃度0.3mol/LのKCO水溶液を用い、印加電圧を変化させながら30分間放電を行い、終了後直ちに水洗した。
[Example 1]
In Example 1, a commercially available cold-rolled steel sheet having a thickness of 0.8 mm was cut into a width of 2 mm and a length of 25 mm, and conduction was made with a copper wire to form a cathode electrode. The anode electrode used was a 50-cm long Pt wire bent so as not to contact each other and formed into a planar shape. The connecting portion between the cold-rolled steel plate and the copper wire was heat-pressed with a heat resistant resin so that the copper wire did not touch the electrolytic solution, and the 20 mm long portion of the electrode was immersed in the electrolytic solution. The electrolytic solution used was an aqueous K 2 CO 3 solution having a concentration of 0.3 mol / L, and was discharged for 30 minutes while changing the applied voltage.

図3(a),(b)は、印加電圧を145Vとしたときの冷延鋼板の被処理面の表面を示すSEM写真図である。図3(a),(b)に示すように、印加電圧を145Vとした場合、表面のいたる所にクレーター状の円形構造が形成されていることが確認された。また、SEMに装着したEDSによる元素分析の結果、冷延鋼板の表面が酸化されていることが確認された。また、140V以下の印加電圧では冷延鋼板の表面は酸化されず、160V以上の印加電圧では冷延鋼板の先端部が溶断した。以上のことから、この実験条件および試料においては、印加電圧の下限値および上限値はそれぞれ145Vおよび160Vであることが確認された。   3A and 3B are SEM photograph diagrams showing the surface of the surface to be treated of the cold-rolled steel sheet when the applied voltage is 145V. As shown in FIGS. 3 (a) and 3 (b), it was confirmed that a crater-like circular structure was formed everywhere on the surface when the applied voltage was 145V. Further, as a result of elemental analysis by EDS mounted on the SEM, it was confirmed that the surface of the cold rolled steel sheet was oxidized. Moreover, the surface of the cold-rolled steel sheet was not oxidized at an applied voltage of 140 V or lower, and the tip of the cold-rolled steel sheet was blown at an applied voltage of 160 V or higher. From the above, it was confirmed that the lower limit value and the upper limit value of the applied voltage were 145 V and 160 V, respectively, in this experimental condition and sample.

〔実施例2〕
実施例2では、厚さ1mmの市販のSUS430ステンレス鋼を幅2mm、長さ100mmに切断し、先端から20mmまでを鏡面研摩した後、銅ワイヤーにより導通をとり陰極電極とした。陰極電極の先端(電解溶液浸漬時の下部側)から約3mmはヤスリを用いて尖らせた。陽極電極は長さ50cmのPtワイヤーを互いに接触しないように折り曲げて面状に成型したものを用いた。なお、陰極電極の先端から15mmの長さ部分を電解溶液に浸漬した。電解溶液は濃度0.1mol/LのKCO水溶液を用い、印加電圧を変化させながら30分間放電を行い、終了後直ちに水洗した。
[Example 2]
In Example 2, a commercially available SUS430 stainless steel having a thickness of 1 mm was cut into a width of 2 mm and a length of 100 mm, and mirror polishing was performed up to 20 mm from the tip, and then conduction was made with a copper wire to obtain a cathode electrode. About 3 mm from the tip of the cathode electrode (lower side when immersed in the electrolytic solution) was sharpened with a file. The anode electrode used was a 50-cm long Pt wire bent so as not to contact each other and formed into a planar shape. A 15 mm long portion from the tip of the cathode electrode was immersed in the electrolytic solution. The electrolytic solution was a K 2 CO 3 aqueous solution having a concentration of 0.1 mol / L, discharged for 30 minutes while changing the applied voltage, and washed with water immediately after completion.

この結果、印加電圧が130〜160Vの範囲内でステンレス鋼の表面が酸化されることが確認された。図4(a),(b)はそれぞれ、印加電圧を135Vで処理したときの陰極電極の被処理面の二次電子像およびEDSスペクトルを示す図である。図4(a),(b)に示すように、被処理材4をステンレス鋼とし、且つ、印加電圧を変更することによって、実施例1とは異なる微細構造を有する酸化層を形成できることが確認された。すなわち、図4(a)に示すように、本実施例では、窪みを有する入り組んだ微細構造が表面に形成されていた。これにより、実施例2の試料は、比表面積が大きいことから、触媒基板としての利用が期待できる。   As a result, it was confirmed that the surface of the stainless steel was oxidized within an applied voltage range of 130 to 160V. 4A and 4B are diagrams showing a secondary electron image and an EDS spectrum of the surface to be processed of the cathode electrode when the applied voltage is processed at 135V, respectively. As shown in FIGS. 4A and 4B, it is confirmed that an oxide layer having a fine structure different from that of Example 1 can be formed by changing the applied voltage to stainless steel as the material 4 to be processed. It was done. That is, as shown in FIG. 4A, in this embodiment, an intricate fine structure having a depression is formed on the surface. Thereby, since the sample of Example 2 has a large specific surface area, utilization as a catalyst substrate can be expected.

〔実施例3〕
実施例3では、Cを0.02質量%、Mnを0.14質量%含む厚さ0.7mmの冷延鋼板から幅約3mm、長さ70mmの試験片を陰極電極として切り出した。試験片の一方の端部(電解溶液浸漬時下部になる側)をヤスリによって削り尖らせた後、希塩酸で1秒間酸洗脱脂した。電解溶液を濃度0.1mol/LのKCO水溶液とし、陽極電極にPtを用いて印加電圧115V で30分間放電を行い、終了後直ちに水洗した。本実施例では、電極の先端より10mmの長さ部分を電解溶液に浸漬した。そして、得られた試験片の表面をSEMで観察し、表面酸化の有無をEDSによる元素分析で評価した。また、試料の先端(電解溶液浸漬時の下部側)から5mmの位置の摩擦係数をCSM社製のナノトライボメーターを用いて評価した。具体的には、直径1.5mmの金属球(材質SUJ2)を試験片の表面に5mNの荷重で押し付け、直径が0.5mmの円周上を速度5mm/sで回転させて、金属球を試験片上で合計9m摺動させた。そして、押し付け荷重に対する引っ張り荷重の比率を摩擦係数として求め、9m摺動させる間の摩擦係数の変化を記録し、摩擦係数の平均値と標準偏差σとを求めた。なお、塗油は行っていない。
Example 3
In Example 3, a test piece having a width of about 3 mm and a length of 70 mm was cut out as a cathode electrode from a cold rolled steel sheet having a thickness of 0.7 mm containing 0.02% by mass of C and 0.14% by mass of Mn. One end of the test piece (the side that becomes the lower part when immersed in the electrolytic solution) was shaved with a file and then pickled and degreased with dilute hydrochloric acid for 1 second. The electrolytic solution was a K 2 CO 3 aqueous solution having a concentration of 0.1 mol / L, and the anode electrode was discharged using Pt at an applied voltage of 115 V for 30 minutes, and immediately after completion, washed with water. In this example, a portion 10 mm long from the tip of the electrode was immersed in the electrolytic solution. And the surface of the obtained test piece was observed by SEM, and the presence or absence of surface oxidation was evaluated by the elemental analysis by EDS. In addition, the friction coefficient at a position of 5 mm from the tip of the sample (lower side when immersed in the electrolytic solution) was evaluated using a nano tribometer manufactured by CSM. Specifically, a metal sphere having a diameter of 1.5 mm (material SUJ2) is pressed against the surface of the test piece with a load of 5 mN, and rotated on a circumference having a diameter of 0.5 mm at a speed of 5 mm / s. A total of 9 m was slid on the test piece. Then, the ratio of the tensile load to the pressing load was obtained as a friction coefficient, the change of the friction coefficient during sliding for 9 m was recorded, and the average value of the friction coefficient and the standard deviation σ were obtained. In addition, oiling is not performed.

図5,図6はそれぞれ、上述の処理を行った実施例3の試験片表面と上述の処理を行っていない比較例の試料片表面との二次電子像、EDSスペクトル、および摩擦係数の測定結果を示す。図5と図6との比較から明らかなように、実施例3の試験片表面にはクレーター構造を有する酸化層が形成されていることが確認された。また、実施例3の試験片表面は比較例の試験片表面と比較して摩擦係数が低位で推移し、摺動性に優れていることが確認された。また、実施例3の試験片の外観は均一な灰色で良好であることが確認された。   5 and 6 show measurement of secondary electron images, EDS spectra, and friction coefficient between the surface of the test piece of Example 3 subjected to the above-described treatment and the surface of the sample piece of the comparative example not subjected to the above-described treatment, respectively. Results are shown. As is clear from the comparison between FIG. 5 and FIG. 6, it was confirmed that an oxide layer having a crater structure was formed on the surface of the test piece of Example 3. Further, it was confirmed that the surface of the test piece of Example 3 had a low friction coefficient compared with the surface of the test piece of the comparative example, and was excellent in slidability. Further, it was confirmed that the appearance of the test piece of Example 3 was uniform gray and good.

〔実施例4〕
実施例4では、Crをおよそ13質量%含む市販の工具鋼SKD11から1.5mm角、長さ50mmの角材状の試験片を陰極電極として切り出し、実施例3と同様に先端を尖らせた。電解溶液を濃度0.1mol/LのKCO水溶液とし、陽極電極にPtを用いて印加電圧125V で60分間放電を行った。放電の際、電解溶液に浸漬した電極の長さを12mmとした。なお、本実施例では処理後の水洗は行なっていない。そして、処理した試験片について実施例3と同様の評価を行ない、未処理の試験片との比較を行なった。
Example 4
In Example 4, a 1.5 mm square and 50 mm long square-shaped test piece was cut out as a cathode electrode from a commercially available tool steel SKD11 containing approximately 13% by mass of Cr, and the tip was sharpened in the same manner as in Example 3. The electrolytic solution was a K 2 CO 3 aqueous solution having a concentration of 0.1 mol / L, and discharge was performed at an applied voltage of 125 V for 60 minutes using Pt for the anode electrode. During discharge, the length of the electrode immersed in the electrolytic solution was 12 mm. In the present embodiment, washing after the treatment is not performed. And the evaluation similar to Example 3 was performed about the processed test piece, and the comparison with an untreated test piece was performed.

EDSにより測定した結果、実施例4の試験片表面には酸化層が形成されていることが確認された。図7(a),(b)はそれぞれ、実施例4の試験片表面の二次電子像と摩擦係数の測定結果とを示す図である。図7(a)に示すように、実施例4の試験片表面には、図4(a)に示すような微細構造を有する酸化層が形成されていることが確認された。また、図7(b)に示すように、実施例4の試験片表面の摩擦係数は、摺動距離が短い間は上述の処理をしていない比較例の試験片表面の摩擦係数より大きいが、摺動距離が伸びても摩擦係数の増加が比較例より小さく、約2.5mの摺動距離で両者は逆転した。このため、本実施例の試験片表面は長摺動距離の摺動において摩擦係数の変化が小さいことから、例えば連続プレス成型する際の金型や何度も摺動を繰返す接触部において、接触状態を長期間安定に保つ効果が期待できる。   As a result of measurement by EDS, it was confirmed that an oxide layer was formed on the surface of the test piece of Example 4. 7A and 7B are diagrams showing a secondary electron image on the surface of the test piece of Example 4 and a measurement result of the friction coefficient, respectively. As shown in FIG. 7A, it was confirmed that an oxide layer having a fine structure as shown in FIG. 4A was formed on the surface of the test piece of Example 4. Moreover, as shown in FIG.7 (b), although the friction coefficient of the test piece surface of Example 4 is larger than the friction coefficient of the test piece surface of the comparative example which is not performing the above-mentioned process while the sliding distance is short. Even when the sliding distance increased, the increase in the coefficient of friction was smaller than that of the comparative example, and both reversed at a sliding distance of about 2.5 m. For this reason, the surface of the test piece of this example has a small change in the coefficient of friction when sliding over a long sliding distance. For example, in the mold during continuous press molding or the contact portion that repeatedly slides, The effect of keeping the state stable for a long time can be expected.

〔実施例5〕
実施例5では、Cを0.6質量%、Siを2質量%、Crを2質量%含む鋼を圧下率80%で冷間圧延した圧延材料から厚さ1mm、幅約2mm、長さ20mmの試験片を陰極電極として切り出した。電解溶液を濃度0.3mol/LのKCO水溶液とし、陽極にPtを用いて印加電圧150V で30分間放電を行った。そして、得られた試験片の液面から深さ5mmの位置で断面試料を作成し、SEMで断面試料の組織を観察して表面層を確認した。また、荷重25gのマイクロビッカース法により試料断面における表面層と内部との硬さを測定した。硬さ測定は表面層と内部についてそれぞれ5点実施し、その平均値を計算した。
Example 5
In Example 5, a steel material containing 0.6% by mass of C, 2% by mass of Si, and 2% by mass of Cr was cold-rolled at a reduction rate of 80%, and the thickness was 1 mm, the width was about 2 mm, and the length was 20 mm The test piece was cut out as a cathode electrode. The electrolytic solution was an aqueous solution of K 2 CO 3 having a concentration of 0.3 mol / L, and discharge was performed at an applied voltage of 150 V for 30 minutes using Pt as the anode. And the cross-sectional sample was created in the position of depth 5mm from the liquid level of the obtained test piece, the structure of the cross-sectional sample was observed with SEM, and the surface layer was confirmed. Moreover, the hardness of the surface layer in the sample cross section and the inside was measured by a micro Vickers method with a load of 25 g. The hardness was measured at 5 points for each of the surface layer and the inside, and the average value was calculated.

図8は、実施例5の試験片の硬さ測定結果を示す図である。図9は、試験片の液面から深さ5mmの位置における実施例5の試験片のSEM写真図である。図9に示すように、試験片の液面から深さ5mmの位置では、厚さ約 30μmの表面層と厚さ約15μmの酸化層とが形成されていた。また、図8に示すように、断面中央部と表面層とのマイクロビッカース硬度は、試験片の液面から深さ5mmの位置でそれぞれ900および200であり、内部の1/4以下の硬さを有する表面軟化層が形成されていることが確認された。このことより、本実施例の試験片は、2GPaを超える超高強度鋼板を基本とし、耐衝撃性、耐曲げ割れ性、および高い表面潤滑性を有することが期待できる。また、表面軟化層は、例えば加工時に金型のビードで板を固定する際、ビードが食い込み、固定しやすくするメリットも期待できる。また、本実施例では軟化層の表面にFeの酸化層が形成されていた。この酸化層は前述する実施例4に類似する微細構造を有していたことから、長距離の摺動性などを高める効果としてそのまま使用することができる。また、上記表面層は酸化層の内側に形成されているため、酸化層が不要又は塗装などの際に悪影響を及ぼす場合には、放電処理の後にインヒビターを添加した酸などを用いて酸化層を除去すればよい。   FIG. 8 is a diagram showing the hardness measurement results of the test piece of Example 5. FIG. 9 is an SEM photograph of the test piece of Example 5 at a depth of 5 mm from the liquid level of the test piece. As shown in FIG. 9, a surface layer having a thickness of about 30 μm and an oxide layer having a thickness of about 15 μm were formed at a position 5 mm deep from the liquid surface of the test piece. Moreover, as shown in FIG. 8, the micro Vickers hardness of a cross-sectional center part and a surface layer is 900 and 200 in the position of a depth of 5 mm from the liquid level of a test piece, respectively, and the hardness below 1/4 of an inside It was confirmed that the surface softening layer which has this was formed. From this, it can be expected that the test piece of this example is based on an ultra-high strength steel plate exceeding 2 GPa and has impact resistance, bending crack resistance, and high surface lubricity. In addition, the surface softening layer can be expected to have a merit that the bead bites into and fixes easily when the plate is fixed with a bead of a mold at the time of processing, for example. In this example, an Fe oxide layer was formed on the surface of the softened layer. Since this oxide layer had a fine structure similar to that of Example 4 described above, it can be used as it is as an effect of improving long-distance slidability. Further, since the surface layer is formed inside the oxide layer, if the oxide layer is unnecessary or has an adverse effect when painting, the oxide layer is formed using an acid to which an inhibitor is added after the discharge treatment. Remove it.

1 容器
2 電解溶液
3 陽極電極
4 被処理材(陰極電極)
5 導線
6 電源
7 温度計
DESCRIPTION OF SYMBOLS 1 Container 2 Electrolytic solution 3 Anode electrode 4 Material to be processed (cathode electrode)
5 Conductor 6 Power supply 7 Thermometer

Claims (3)

被処理表面を有する鉄鋼材料からなる陰極電極としての被処理材と陽極電極とを電解溶液中に浸漬させるステップと、
前記陰極電極と前記陽極電極との間に、完全プラズマ状態が形成されると共に、前記被処理表面が酸化され、且つ、熔解しない電圧を印加することによって、前記被処理表面にバナジウム、モリブデン、およびタングステン成分を含まない酸化層を形成するステップと、
を含むことを特徴とする鉄鋼材料の表面処理方法。
A step of immersing a material to be treated as a cathode electrode made of a steel material having a surface to be treated and an anode electrode in an electrolytic solution;
A complete plasma state is formed between the cathode electrode and the anode electrode, and the surface to be treated is oxidized and applied with a voltage that does not melt, thereby applying vanadium, molybdenum, and Forming an oxide layer free of tungsten components;
A method for surface treatment of a steel material, comprising:
前記被処理材が、ステンレス鋼、低合金鋼、又は炭素鋼であることを特徴とする請求項1に記載の鉄鋼材料の表面処理方法。 The steel material surface treatment method according to claim 1, wherein the material to be treated is stainless steel, low alloy steel, or carbon steel. 前記被処理材が、引っ張り強度440MPa以上の高強度鋼であることを特徴とする請求項2に記載の鉄鋼材料の表面処理方法。 The surface treatment method for a steel material according to claim 2, wherein the material to be treated is high-strength steel having a tensile strength of 440 MPa or more.
JP2012038554A 2012-02-24 2012-02-24 Method for surface treatment of steel materials Expired - Fee Related JP5978650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038554A JP5978650B2 (en) 2012-02-24 2012-02-24 Method for surface treatment of steel materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038554A JP5978650B2 (en) 2012-02-24 2012-02-24 Method for surface treatment of steel materials

Publications (2)

Publication Number Publication Date
JP2013173977A JP2013173977A (en) 2013-09-05
JP5978650B2 true JP5978650B2 (en) 2016-08-24

Family

ID=49267137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038554A Expired - Fee Related JP5978650B2 (en) 2012-02-24 2012-02-24 Method for surface treatment of steel materials

Country Status (1)

Country Link
JP (1) JP5978650B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699793B2 (en) * 1989-02-28 1994-12-07 新日本製鐵株式会社 Blackening method for cold rolled steel sheet
DE69302253T2 (en) * 1992-10-29 1996-09-19 Babcock & Wilcox Co Passivation of metal tubes
SE500657C2 (en) * 1992-12-07 1994-08-01 Nobelpharma Ab Method and apparatus for preparing implant surfaces using gas discharge plasma
JPH0753206A (en) * 1993-08-18 1995-02-28 Mitsubishi Heavy Ind Ltd Recovering equipment for carbon dioxide
JPH09256137A (en) * 1996-03-21 1997-09-30 Sumitomo Metal Ind Ltd Corrosion resisting iron and steel material for indoor use
JPH11106893A (en) * 1997-09-30 1999-04-20 Daido Steel Co Ltd Blackening treatment of shadow mask
SE0101910D0 (en) * 2001-05-29 2001-05-29 Young Taeg Sul Modified oxide
JP2007301566A (en) * 2006-05-08 2007-11-22 Nippon Steel Corp Method of laser peening treatment
JP5365153B2 (en) * 2008-11-19 2013-12-11 Jfeスチール株式会社 Surface-treated steel with excellent corrosion resistance
JP2010215438A (en) * 2009-03-15 2010-09-30 Tokyo Institute Of Technology Titanium oxide film and method for forming the same
JP5696447B2 (en) * 2010-11-25 2015-04-08 Jfeスチール株式会社 Method for producing surface-treated metal material

Also Published As

Publication number Publication date
JP2013173977A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP7067543B2 (en) Steel sheet for cans and its manufacturing method
JP5434537B2 (en) High Si content alloyed hot-dip galvanized steel sheet excellent in weldability and method for producing the same
EP1595969B1 (en) Galvannealed steel sheet excellent in coating adhesion and manufacturing method thereof
KR20140136509A (en) Method for producing galvanized steel sheet for hot stamping, alloyed hot-dipped galvanized steel sheet for hot stamping and method for producing same, and hot stamped component
TWI627289B (en) Steel sheet for can and manufacturing method therefor
JP5696447B2 (en) Method for producing surface-treated metal material
JP5081570B2 (en) Titanium material and titanium material manufacturing method
JPWO2013125657A1 (en) Surface treatment method of metal material and metal material
WO2016129598A1 (en) Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator
JP7024807B2 (en) Steel sheet for cans and its manufacturing method
JP5978650B2 (en) Method for surface treatment of steel materials
TWI472424B (en) A metal material, a surface treatment method of a metal material, a method of manufacturing a water repellent material using a metal material as a substrate, and a manufacturing apparatus for a metal material
JP2011102411A (en) Stainless steel product having conductivity, and method for manufacturing the same
JP2005264235A (en) Conductive and corrosion resistant metallic sheet and manufacturing method therefor
JP6885511B1 (en) Ni-plated steel sheet and manufacturing method of Ni-plated steel sheet
JP2007302935A (en) Ni plated steel sheet for positive electrode can of alkali battery and method of manufacturing the same
JP2011157576A (en) Method of producing hot-pressed steel
WO2010070742A1 (en) Titanium material and method for producing titanium material
JP7277823B2 (en) hot stamped body
JP7281929B2 (en) Stainless steel sheet and method for manufacturing stainless steel sheet
JP7368712B2 (en) Plated steel plate for hot press forming
WO2022118770A1 (en) Surface-treated steel sheet
JP7445113B2 (en) Plated steel plate for hot press forming
JP2018076589A (en) Al-CONTAINING FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SURFACE PROPERTY AND SULFIDE CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees