JP5977104B2 - Brightness adjustment method for wavelength conversion nanoparticles - Google Patents

Brightness adjustment method for wavelength conversion nanoparticles Download PDF

Info

Publication number
JP5977104B2
JP5977104B2 JP2012158031A JP2012158031A JP5977104B2 JP 5977104 B2 JP5977104 B2 JP 5977104B2 JP 2012158031 A JP2012158031 A JP 2012158031A JP 2012158031 A JP2012158031 A JP 2012158031A JP 5977104 B2 JP5977104 B2 JP 5977104B2
Authority
JP
Japan
Prior art keywords
solution
nanoparticles
wavelength conversion
wavelength
mixing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012158031A
Other languages
Japanese (ja)
Other versions
JP2014019759A (en
Inventor
高木 知己
高木  知己
進 祖父江
進 祖父江
英一 奥野
英一 奥野
正一 川井
川井  正一
大貴 金
大貴 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Osaka City University
Original Assignee
Denso Corp
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Osaka City University filed Critical Denso Corp
Priority to JP2012158031A priority Critical patent/JP5977104B2/en
Publication of JP2014019759A publication Critical patent/JP2014019759A/en
Application granted granted Critical
Publication of JP5977104B2 publication Critical patent/JP5977104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、吸収した光とは異なる波長の光を発生する波長変換ナノ粒子の輝度(発光輝度)を向上させることができる波長変換ナノ粒子の輝度調整方法に関する。 The present invention relates to absorbent luminance adjusting how the wavelength conversion nanoparticles can improve the luminance (light emission luminance) of the wavelength conversion nanoparticles for generating light of a different wavelength from the light.

吸収した光とは異なる波長の光を発生する波長変換ナノ粒子は、LEDの表面に配設されて当該LEDの発光色を変更したり、太陽電池の表面に設けられて入射光の波長を変換することにより当該太陽電池の効率を向上させたりと、種々の用途に応用されている。   Wavelength-converting nanoparticles that generate light with a wavelength different from the absorbed light are placed on the surface of the LED to change the emission color of the LED, or provided on the surface of the solar cell to convert the wavelength of incident light This improves the efficiency of the solar cell and is applied to various applications.

従来、このような波長変換ナノ粒子としては、CdSを含むものが提案されているが、Cdは廃棄処理を誤ると環境に悪影響を与えるため、ZnSe等を使用して波長変換ナノ粒子を製造することが提案されている。   Conventionally, as such wavelength conversion nanoparticles, those containing CdS have been proposed. However, since Cd has an adverse effect on the environment if the disposal process is mistaken, wavelength conversion nanoparticles are manufactured using ZnSe or the like. It has been proposed.

ところが、この種の製造方法では、有機溶媒中で波長変換ナノ粒子を製造しているため、その有機溶媒の廃棄処理を誤るとPRTR法に抵触する可能性がある。そこで、水系溶媒中で波長変換ナノ粒子を製造することが提案されている(非特許文献1参照)。   However, since this type of production method produces wavelength conversion nanoparticles in an organic solvent, there is a possibility of conflicting with the PRTR method if the organic solvent is discarded. Therefore, it has been proposed to produce wavelength conversion nanoparticles in an aqueous solvent (see Non-Patent Document 1).

Narayan Pradhan,David M. Battaglia,Yongcheng Liu, and Xiaogang Peng,Nano Lett., Vol.7,No.2,2007,312-317Narayan Pradhan, David M. Battaglia, Yongcheng Liu, and Xiaogang Peng, Nano Lett., Vol. 7, No. 2, 2007, 312-317

しかしながら、前記非特許文献1に記載の方法では、100℃以下の温度で波長変換ナノ粒子を製造しており、得られた波長変換ナノ粒子は、それほど良好な発光輝度(発光強度)を有していなかった。   However, in the method described in Non-Patent Document 1, wavelength-converted nanoparticles are produced at a temperature of 100 ° C. or less, and the obtained wavelength-converted nanoparticles have a very good emission luminance (emission intensity). It wasn't.

そこで、本発明者等は、良好な発光輝度を有する波長変換ナノ粒子を、水系溶媒中で製造可能とするための研究を行って、高い発光輝度を有する波長変換ナノ粒子を開発している。   Therefore, the present inventors have conducted research to make it possible to produce wavelength conversion nanoparticles having good emission luminance in an aqueous solvent, and have developed wavelength conversion nanoparticles having high emission luminance.

ところが、最近の研究によれば、溶液中の波長変換ナノ粒子は、作成後に外部環境等の各種の影響によって輝度変動があることが分かってきており、特に、波長変換ナノ粒子の発光輝度を一層高めることができる技術が望まれている。   However, according to recent research, it has been found that wavelength-converted nanoparticles in a solution have luminance fluctuations due to various influences such as the external environment after preparation. A technology that can be enhanced is desired.

本発明は、前記課題を解決するためになされたものであり、その目的は、製造された溶液中の波長変換ナノ粒子の発光輝度を一層高めることができる波長変換ナノ粒子の輝度調整方法を提供することにある。 The present invention has been made to solve the above problems, and its object is brightness adjustment how the wavelength conversion nanoparticles can increase the emission luminance of the wavelength conversion nanoparticles prepared solution further the It is to provide.

本発明の波長変換ナノ粒子の輝度調整方法では、特定の波長の光を発生する発光中心となる金属イオンを無機ナノ粒子にドープした波長変換ナノ粒子を、所定のpHに調整した溶液中にて製造した後に、その波長変換ナノ粒子が分散した溶液のpHを、製造時の所定のpHよりも低下させるpH低下処理を行う。
さらに、波長変換ナノ粒子を製造する製造工程として、発光中心となる金属イオンを提供するイオン源と、無機ナノ粒子を構成する原子を提供するイオン源と、無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、pH調整後の前記溶液を高圧下で150℃〜250℃に加熱して、溶液中にて波長変換ナノ粒子を生成する加熱工程とを有する。
そして、混合工程では、N−アセチル−L−システインとイオン源中のMnイオンとを1:1のモル比で含む溶液と、N−アセチル−L−システインと前記ン源中のZn原子とを1:4.8のモル比で含む溶液とを混合する。
In the method of adjusting the brightness of the wavelength conversion nanoparticle of the present invention, the wavelength conversion nanoparticle doped with a metal ion serving as a light emission center for generating light of a specific wavelength in an inorganic nanoparticle is adjusted in a solution adjusted to a predetermined pH. After the production, a pH lowering treatment is performed to lower the pH of the solution in which the wavelength conversion nanoparticles are dispersed to a predetermined pH at the time of production.
Furthermore, as a manufacturing process for producing wavelength conversion nanoparticles, an ion source that provides a metal ion that becomes a luminescent center, an ion source that provides atoms that constitute the inorganic nanoparticle, and a hydrophilic substance that coordinates to the inorganic nanoparticle. A ligand is mixed in an aqueous solvent and the pH of the resulting solution is adjusted, and the solution after pH adjustment is heated to 150 ° C. to 250 ° C. under high pressure, Heating step of generating wavelength conversion nanoparticles.
In the mixing step, a solution containing N-acetyl-L-cysteine and Mn ions in the ion source at a molar ratio of 1: 1, N-acetyl-L-cysteine and Zn atoms in the source are included. Mix with a solution containing a molar ratio of 1: 4.8.

このpH低下処理を行うことによって、後述する実験例からも明かな様に、波長変換ナノ粒子の発光輝度を、製造時の発光輝度よりも向上させることができる。
このように、pHを低下させることによって発光輝度が向上する理由は、後に詳述する様に、溶液中に分散している波長変換ナノ粒子が、濃度消光によって発光輝度が低くなっている場合には、この溶液に対してpH低下処理を行うことによって、波長変換ナノ粒子から溶液中に金属イオンを析出させ、それによって、濃度消光の影響を低減できるからと推定される。
By performing this pH reduction treatment, the emission luminance of the wavelength conversion nanoparticles can be improved from the emission luminance at the time of manufacture, as is apparent from the experimental examples described later.
As described above, the reason why the emission luminance is improved by lowering the pH is that the wavelength conversion nanoparticles dispersed in the solution have a low emission luminance due to concentration quenching, as will be described in detail later. It is presumed that by performing a pH lowering treatment on this solution, metal ions are precipitated in the solution from the wavelength conversion nanoparticles, thereby reducing the influence of concentration quenching.

従って、この様に輝度調整されて発光輝度が高くなった波長変換ナノ粒子を、例えば太陽電池等に応用すれば、紫外線を可視光線に変換して太陽電池の効率を向上させることができるという顕著な効果を奏する。   Therefore, if the wavelength-converted nanoparticles whose luminance is adjusted in this way and whose emission luminance is increased are applied to, for example, a solar cell, the efficiency of the solar cell can be improved by converting ultraviolet rays into visible light. Has an effect.

実施例1の波長変換ナノ粒子の製造方法を示す説明図である。FIG. 3 is an explanatory diagram illustrating a method for producing wavelength conversion nanoparticles of Example 1. 実施例1の製造方法で製造された波長変換ナノ粒子の発光スペクトルを示すグラフである。2 is a graph showing an emission spectrum of wavelength conversion nanoparticles produced by the production method of Example 1. FIG. 実施例1の波長変換ナノ粒子の輝度調整方法を示す説明図である。FIG. 3 is an explanatory diagram showing a method for adjusting the luminance of wavelength-converted nanoparticles in Example 1. 実施例1の輝度調整方法で調整された波長変換ナノ粒子の発光スペクトルを示すグラフである。4 is a graph showing an emission spectrum of wavelength conversion nanoparticles adjusted by the luminance adjustment method of Example 1. FIG. 実施例2の輝度調整方法によって輝度が向上する理由を示す説明図である。It is explanatory drawing which shows the reason which a brightness | luminance improves by the brightness | luminance adjustment method of Example 2. FIG. 実験例1において、炭酸ガスによってpHを変更した場合の発光輝度の経時変化を示すグラフである。In Experimental example 1, it is a graph which shows the time-dependent change of the light-emission brightness | luminance at the time of changing pH with a carbon dioxide gas. 実験例2において、塩酸によってpHを変更した場合の発光輝度の経時変化を示すグラフである。In Experimental example 2, it is a graph which shows the time-dependent change of the luminescent brightness at the time of changing pH with hydrochloric acid. 実験例3において、希釈の倍率を変更した場合の発光輝度の経時変化を示すグラフである。In Experimental example 3, it is a graph which shows the time-dependent change of the luminescent brightness at the time of changing the magnification of dilution.

以下に、本発明の波長変換ナノ粒子の輝度調整方法と、この輝度調整方法によって発光輝度が調整された波長変換ナノ粒子の実施形態について説明する。
[実施形態]
・本発明では、製造時におけるpHが例えば9〜11の溶液に対して、pH低下処理によって、溶液のpHを例えば6〜8の範囲に低下させることができる。これにより、後述する実験例から明かな様に、製造時における波長変換ナノ粒子の発光輝度を大きく向上することができる。
Below, the brightness | luminance adjustment method of the wavelength conversion nanoparticle of this invention and embodiment of the wavelength conversion nanoparticle by which light emission brightness | luminance was adjusted by this brightness | luminance adjustment method are demonstrated.
[Embodiment]
-In this invention, pH of a solution can be reduced to the range of 6-8, for example with the pH reduction process with respect to the solution of pH 9-9 at the time of manufacture, for example. Thereby, as will be apparent from the experimental examples described later, the emission luminance of the wavelength conversion nanoparticles during production can be greatly improved.

このpH低下処理としては、「波長変換ナノ粒子が分散した溶液に、酸性溶液を加えてpHを低下させる方法」、「波長変換ナノ粒子が分散した溶液に、希釈溶液を加えることによって溶液を希釈して、pHを低下させる方法」、「波長変換ナノ粒子が分散した溶液に、その溶液に溶解することによってpHを低下させるガスを供給する方法」を用いることができる。   As the pH lowering treatment, “a method of lowering pH by adding an acidic solution to a solution in which wavelength conversion nanoparticles are dispersed”, “dilution of a solution by adding a diluted solution to a solution in which wavelength conversion nanoparticles are dispersed” The method for lowering the pH "and" the method for supplying the solution in which the wavelength conversion nanoparticles are dispersed with the gas for lowering the pH by dissolving in the solution "can be used.

なお、pHを低下させるために用いる酸性溶液としては、塩酸が挙げられるが、それ以外にも、硫酸や硝酸などが考えられる。このうち、塩酸は、ドープされた金属(例えばMn)と沈殿物を生成する恐れがないので好適である。   In addition, hydrochloric acid is mentioned as an acidic solution used in order to lower pH, but sulfuric acid, nitric acid, etc. can be considered besides that. Of these, hydrochloric acid is preferred because it has no fear of forming a precipitate with a doped metal (for example, Mn).

一方、pHを低下させるために用いるガスとしては、炭酸ガス(二酸化炭素)が挙げられるが、それ以外にも、硫化水素や塩酸ガスなどが考えられる。このうち、炭酸ガスは、安全上扱い易いので好適である。   On the other hand, examples of the gas used for lowering the pH include carbon dioxide (carbon dioxide), but hydrogen sulfide, hydrochloric acid gas, and the like are also conceivable. Of these, carbon dioxide is preferable because it is easy to handle for safety.

更に、発光中心となる金属イオンとしては、Mnイオンを採用でき、無機ナノ粒子を構成する原子としては、Znを含むことができる。Znを含む無機ナノ粒子は、紫外領域の光を良好に吸収し、その無機ナノ粒子にMnイオンがドープされていると、紫外領域の光を可視領域の光に変換して発生することができる。従って、その場合、太陽電池の効率を向上させるなどの用途に良好に応用することができる。   Furthermore, Mn ions can be employed as the metal ions that serve as the emission center, and Zn can be included as the atoms constituting the inorganic nanoparticles. Inorganic nanoparticles containing Zn absorb light in the ultraviolet region well, and when the inorganic nanoparticles are doped with Mn ions, they can be generated by converting light in the ultraviolet region into light in the visible region. . Therefore, in that case, it can be favorably applied to uses such as improving the efficiency of solar cells.

・また、波長変換ナノ粒子を製造した後に、溶液中又はその周囲に、例えばアルゴン(Ar)ガス、窒素(N2)ガス等の不活性ガスを供給し、その後、pH低下処理を行ってもよい。この不活性ガスの供給により輝度変動を抑制することができるので、pH低下処理を行うまでは、その輝度を保持することができる。 In addition, after the wavelength conversion nanoparticles are manufactured, an inert gas such as argon (Ar) gas or nitrogen (N 2 ) gas is supplied in or around the solution, and then pH reduction treatment is performed. Good. Since the luminance fluctuation can be suppressed by supplying the inert gas, the luminance can be maintained until the pH lowering process is performed.

・更に、上述した波長変換ナノ粒子の輝度変動を完全に停止させて、その輝度を保持する場合には、波長変換ナノ粒子が分散した溶液を固化させればよい。この固化させる方法としては、ガラスをバインダーとするゾルゲル法や、ポリ水酸化ビニルに混入し固化させる方法などが挙げられる。   Furthermore, when the above-described luminance variation of the wavelength conversion nanoparticles is completely stopped and the luminance is maintained, the solution in which the wavelength conversion nanoparticles are dispersed may be solidified. Examples of the solidification method include a sol-gel method using glass as a binder and a method of mixing and solidifying in polyvinyl hydroxide.

・また、波長変換ナノ粒子を製造する製造工程としては、発光中心となる金属イオンを提供するイオン源と、無機ナノ粒子を構成する原子を提供するイオン源と、無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、pH調整後の溶液を高圧下で150℃〜250℃に加熱して、溶液中にて波長変換ナノ粒子を生成する加熱工程とを採用できる。   In addition, as a manufacturing process for producing wavelength conversion nanoparticles, an ion source that provides a metal ion serving as a luminescent center, an ion source that provides atoms constituting the inorganic nanoparticles, and a hydrophilic coordinated to the inorganic nanoparticles A mixing step of adjusting the pH of the resulting solution, and heating the pH-adjusted solution at 150 to 250 ° C. under high pressure to bring the solution into the solution. And a heating step for generating wavelength conversion nanoparticles.

つまり、水系溶媒中で波長変換ナノ粒子を製造する場合に、150℃〜250℃に加熱して製造すると、良好な発光輝度を有する波長変換ナノ粒子が得られる。
なお、配位子としては、N−アセチル−L−システインを採用できるが、N−アセチル−L−システインの他、メルカプト酢酸,メルカプトプロピオン酸,メルカプトこはく酸等が使用可能である。
That is, when the wavelength conversion nanoparticles are produced in an aqueous solvent, if they are produced by heating to 150 ° C. to 250 ° C., wavelength conversion nanoparticles having good emission luminance can be obtained.
In addition, N-acetyl-L-cysteine can be adopted as the ligand, but in addition to N-acetyl-L-cysteine, mercaptoacetic acid, mercaptopropionic acid, mercaptosuccinic acid, and the like can be used.

・ここで、無機ナノ粒子にMnイオンがドープされている場合は、混合工程では、N−アセチル−L−システインとイオン源中のMnイオンとを1:1のモル比で含む溶液と、N−アセチル−L−システインとイオン源中のZn原子とを1:4.8のモル比で含む溶液とを混合してもよい。   Here, when inorganic nanoparticles are doped with Mn ions, in the mixing step, a solution containing N-acetyl-L-cysteine and Mn ions in the ion source in a molar ratio of 1: 1; A solution containing acetyl-L-cysteine and Zn atoms in the ion source in a molar ratio of 1: 4.8 may be mixed.

・また、無機ナノ粒子を構成する原子として、SとSeとを含む場合は、混合工程は、無機ナノ粒子を構成するSe以外の各原子を各々提供する各イオン源と、配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第1混合工程と、無機ナノ粒子を構成するS以外の各原子を各々提供する各イオン源と、配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う第2混合工程と、第1混合工程で得られたpH調整後の溶液と、第2混合工程で得られたpH調整後の溶液とを混合する第3混合工程と、からなり、発光中心となる金属イオンを提供するイオン源は、第1混合工程または第2混合工程で溶液に混合してもよい。   -Moreover, when including S and Se as an atom which comprises an inorganic nanoparticle, a mixing process, each ion source which provides each atom other than Se which comprises an inorganic nanoparticle, respectively, a ligand, A first mixing step of adjusting the pH of the resulting solution, each ion source that provides each atom other than S constituting the inorganic nanoparticles, and a ligand. A second mixing step of adjusting the pH of the solution obtained by mixing in a solvent, a solution after pH adjustment obtained in the first mixing step, and a solution after pH adjustment obtained in the second mixing step; And an ion source that provides metal ions serving as the emission center may be mixed into the solution in the first mixing step or the second mixing step.

こうすることによって、前述のような混晶からなる波長変換ナノ粒子を良好に製造することができる。   By doing so, it is possible to satisfactorily produce wavelength conversion nanoparticles made of mixed crystals as described above.

以下に、本発明の波長変換ナノ粒子の輝度調整方法と、この輝度調整方法によって発光輝度が調整された波長変換ナノ粒子の具体的な実施例について説明する。
a)まず、実施例1の波長変換ナノ粒子の製造方法について説明する。
Below, the brightness | luminance adjustment method of the wavelength conversion nanoparticle of this invention and the specific Example of the wavelength conversion nanoparticle by which light emission brightness | luminance was adjusted with this brightness | luminance adjustment method are demonstrated.
a) First, the manufacturing method of the wavelength conversion nanoparticle of Example 1 is demonstrated.

図1(A)に示す様に、本実施例では、先ず、Znイオン源(例えば、過塩素酸亜鉛)とN−アセチル−L−システイン(以下、NACという)とを1:4.8のモル比で含む水溶液と、Mnイオン源(例えば、過塩素酸マンガン)とNACとを1:1のモル比で含む水溶液とを混合した。なお、前者の水溶液と後者の水溶液とは10:1の割合で混合し、混合後の水溶液全体に対するMnの濃度が2mol%となるようにした。   As shown in FIG. 1 (A), in this example, first, a Zn ion source (for example, zinc perchlorate) and N-acetyl-L-cysteine (hereinafter referred to as NAC) are 1: 4.8. An aqueous solution containing a molar ratio was mixed with an aqueous solution containing a Mn ion source (eg, manganese perchlorate) and NAC at a molar ratio of 1: 1. The former aqueous solution and the latter aqueous solution were mixed at a ratio of 10: 1 so that the Mn concentration with respect to the entire aqueous solution after mixing was 2 mol%.

次に、図1(B)に示す様に、その水溶液にNaOHを添加することによってpH8.5に調整した。
次に、図1(C)に示す様に、Seイオン源(例えばNaHSe)を1.2mmol添加した。なお、このときのZn:Seのモル比は(1:0.6)である。また、この水溶液、即ち、ZnMnSeの前駆体(Precursor)では、金属原子にNACのSH基が配位し、NACのカルボキシル基が水系溶媒への溶解を促進しているものと推定される。
Next, as shown in FIG. 1 (B), the pH was adjusted to 8.5 by adding NaOH to the aqueous solution.
Next, as shown in FIG. 1C, 1.2 mmol of Se ion source (for example, NaHSe) was added. In this case, the molar ratio of Zn: Se is (1: 0.6). Further, in this aqueous solution, that is, a ZnMnSe precursor (Precursor), it is presumed that the SH group of NAC is coordinated to a metal atom, and the carboxyl group of NAC promotes dissolution in an aqueous solvent.

次に、図1(D)に示す様に、前記水溶液に更にNaOHを添加することによって、pH10.5に調整した後、高圧下(例えば6気圧)で200℃に加熱することによって、波長変換ナノ粒子(ZnSe:Mn)を製造した。なお、加熱時間は10分とした。   Next, as shown in FIG. 1 (D), the pH is adjusted to 10.5 by further adding NaOH to the aqueous solution, and then heated to 200 ° C. under high pressure (for example, 6 atmospheres) to convert the wavelength. Nanoparticles (ZnSe: Mn) were produced. The heating time was 10 minutes.

そして、この様にして製造した波長変換ナノ粒子に対して、蛍光分光測定器(日立ハイテクノロジー社製のF2500)を用いて、波長325nmの紫外線を当て、波長変換ナノ粒子の発光スペクトルを調べた。   Then, the wavelength conversion nanoparticles produced in this manner were irradiated with UV light having a wavelength of 325 nm using a fluorescence spectrometer (F2500, manufactured by Hitachi High-Technology Corporation), and the emission spectrum of the wavelength conversion nanoparticles was examined. .

その結果を、図2に示すが、ZnSe系の無機ナノ粒子にMnイオンがドープされた実施例1の波長変換ナノ粒子(ZnSe:Mn)では、540nm〜640nmの可視領域(特に582nm)に、発光輝度(以下、発光スペクトルの大きさを示す場合は、発光強度と記すこともある)のピークが現れた。なお、同図ではピークの強度は16000である。   The results are shown in FIG. 2. In the wavelength conversion nanoparticles (ZnSe: Mn) of Example 1 in which Mn ions are doped into ZnSe-based inorganic nanoparticles, in the visible region of 540 nm to 640 nm (particularly 582 nm), A peak of emission luminance (hereinafter sometimes referred to as emission intensity when showing the size of the emission spectrum) appeared. In the figure, the peak intensity is 16000.

このように、本実施例の波長変換ナノ粒子では、従来の水系溶媒中で製造された波長変換ナノ粒子よりも極めて強い発光輝度(発光強度)が得られた。これは、高温でナノ粒子を生成することにより、きれいな結晶ができるためと考えられる。   Thus, in the wavelength conversion nanoparticle of the present Example, extremely strong emission luminance (emission intensity) was obtained compared to the wavelength conversion nanoparticle produced in the conventional aqueous solvent. This is thought to be because clean crystals can be formed by producing nanoparticles at a high temperature.

なお、以下に述べる発光スペクトル及び(ピークの)発光強度の測定方法は、特に記載しない限りは、前記と同様である。
また、グラフ縦軸の発光強度は、必ずしもカンデラ等の単位と1対1に対応するものではなく、当該グラフ中で対比された強度同士を相対的に比較した値である(以下同様)。従って、同じ試料であっても、強度等の値は後述のグラフ等における値と必ずしも一致しない。
The emission spectrum and the method for measuring the (peak) emission intensity described below are the same as described above unless otherwise specified.
Also, the emission intensity on the vertical axis of the graph does not necessarily correspond to a unit such as candela, but is a value obtained by relatively comparing the intensities compared in the graph (the same applies hereinafter). Therefore, even for the same sample, values such as intensity do not always match values in graphs and the like described later.

b)次に、上述の様にして製造された波長変換ナノ粒子の輝度調整方法について説明する。
この輝度調整方法とは、製造時の発光輝度を更に向上させるための処理方法であり、本実施例では、炭酸ガス(CO2)を用いて発光輝度を向上させる。
b) Next, a method for adjusting the luminance of the wavelength conversion nanoparticles produced as described above will be described.
This brightness adjustment method is a processing method for further improving the light emission brightness at the time of manufacture. In this embodiment, the light emission brightness is improved by using carbon dioxide gas (CO 2 ).

まず、図3(A)に示す様に、上述した製造方法によって製造された波長変換ナノ粒子を含む水溶液、即ち、波長変換ナノ粒子が分散したpH10.5の水溶液を5mlとり、容積10mlのガラス容器1に入れた。   First, as shown in FIG. 3 (A), 5 ml of an aqueous solution containing the wavelength conversion nanoparticles produced by the production method described above, that is, an aqueous solution having a pH of 10.5 in which the wavelength conversion nanoparticles are dispersed, is taken and glass having a volume of 10 ml. Placed in container 1.

なお、ガラス容器1の容積は、投入する水溶液の量より多いので、ガラス容器1内の水溶液の上方には、ガス(ここでは空気)が存在する空間3がある。
次に、ガラス容器1の開口5をゴム栓7で封をするとともに、ゴム栓7が外れないように、ゴム栓7の周囲にパラフィルム(図示せず)を巻き、ゴム栓7をガラス容器3に固定した。
Since the volume of the glass container 1 is larger than the amount of the aqueous solution to be charged, there is a space 3 in which gas (here, air) exists above the aqueous solution in the glass container 1.
Next, the opening 5 of the glass container 1 is sealed with a rubber stopper 7, and a parafilm (not shown) is wound around the rubber stopper 7 so that the rubber stopper 7 is not removed. 3 was fixed.

また、このゴム栓7には、ガラス容器1中の水溶液のpHを測定できるように、pH測定器(pHメータ)9が挿入されている。
なお、この時点で、ガラス容器1内に、例えばアルゴン(Ar)ガス、窒素(N2)ガス等の不活性ガスを充填して密閉することにより、波長変換ナノ粒子の輝度の劣化(低下)を防止することができる。即ち、その時点の輝度を保持することができる。
In addition, a pH measuring device (pH meter) 9 is inserted into the rubber stopper 7 so that the pH of the aqueous solution in the glass container 1 can be measured.
At this point, the glass container 1 is filled with an inert gas such as argon (Ar) gas or nitrogen (N 2 ) gas and sealed, thereby degrading (decreasing) the luminance of the wavelength conversion nanoparticles. Can be prevented. That is, the brightness at that time can be maintained.

これとは別に、図3(B)に示す様に、炭酸ガスボンベ11に配管13を接続し、配管13の先端に第1注射針15を取り付けた。
そして、図3(C)に示す様に、ガラス容器1のゴム栓7に第2注射針17を刺し、ガラス容器3内のガスがガラス容器1外に排出されるようにした。
Separately from this, as shown in FIG. 3B, the pipe 13 was connected to the carbon dioxide cylinder 11, and the first injection needle 15 was attached to the tip of the pipe 13.
Then, as shown in FIG. 3C, the second injection needle 17 was inserted into the rubber stopper 7 of the glass container 1 so that the gas in the glass container 3 was discharged out of the glass container 1.

次に、図3(D)に示す様に、ガラス容器1のゴム栓7に第1注射針15を刺し、炭酸ガスボンベ13から第1注射針15を介してガラス容器1内に炭酸ガスを供給した。詳しくは、炭酸ガスを毎分1000ccで5分間供給した。これにより、ガラス容器1中のガス(ここでは水溶液上方の空間3の空気)を炭酸ガスに入れ替えた。   Next, as shown in FIG. 3 (D), the first injection needle 15 is inserted into the rubber stopper 7 of the glass container 1, and carbon dioxide gas is supplied from the carbon dioxide gas cylinder 13 into the glass container 1 through the first injection needle 15. did. Specifically, carbon dioxide was supplied at 1000 cc / min for 5 minutes. Thereby, the gas in the glass container 1 (here, the air in the space 3 above the aqueous solution) was replaced with carbon dioxide.

この状態で、水溶液のpHの変化を測定したところ、炭酸ガスを注入してから徐々にpHが低下し、炭酸ガスの注入から5分後に、溶液のpHが7.0となった。
そこで、このpH7.0となった水溶液に対して、前記と同様にして、蛍光分光測定器を用いて、波長変換ナノ粒子の発光スペクトルを調べた。
When the change in pH of the aqueous solution was measured in this state, the pH gradually decreased after the carbon dioxide gas was injected, and the pH of the solution became 7.0 5 minutes after the carbon dioxide gas was injected.
Therefore, the emission spectrum of the wavelength-converted nanoparticles was examined with respect to this aqueous solution having a pH of 7.0 using a fluorescence spectrometer in the same manner as described above.

その結果、pHを7.0に低下させた溶液中の波長変換ナノ粒子の発光強度(具体的には582nmにおける発光ピーク強度)は、約1.4倍であり(図6参照)、pH10.5の水溶液中の製造直後の波長変換ナノ粒子に比べて大きく向上していた。なお、図6は、pH7.5に調整した例であるが、同様に大きく発光強度が向上する。   As a result, the emission intensity (specifically, the emission peak intensity at 582 nm) of the wavelength conversion nanoparticles in the solution whose pH was lowered to 7.0 was about 1.4 times (see FIG. 6). Compared with the wavelength-converted nanoparticles immediately after production in the aqueous solution No. 5 were greatly improved. FIG. 6 shows an example in which the pH is adjusted to 7.5. Similarly, the emission intensity is greatly improved.

c)次に、本実施例の作用効果について説明する。
本実施例では、上述した様に、波長変換ナノ粒子の製造工程において、pHを従来より高いpH10.5に調整した後、高圧(例えば6気圧)及び高温(例えば200℃)にて処理することにより、従来より発光輝度を高めることができる。
c) Next, the function and effect of this embodiment will be described.
In this example, as described above, in the wavelength conversion nanoparticle production process, the pH is adjusted to pH 10.5, which is higher than the conventional one, and then treated at high pressure (for example, 6 atm) and high temperature (for example, 200 ° C.). As a result, the emission luminance can be increased as compared with the prior art.

特に本実施例では、波長変換ナノ粒子を製造した後に、この波長変換ナノ粒子が分散した水溶液に炭酸ガスを供給することにより、水溶液のpHを(例えばpH7.0に)低下させるので、後述する実験例からも明らかな様に、製造直後の波長変換ナノ粒子の発光輝度を更に高めることができる。   In particular, in this embodiment, after the wavelength conversion nanoparticles are produced, the pH of the aqueous solution is lowered (for example, to pH 7.0) by supplying carbon dioxide gas to the aqueous solution in which the wavelength conversion nanoparticles are dispersed. As is clear from the experimental examples, the emission luminance of the wavelength conversion nanoparticles immediately after production can be further increased.

従って、このように輝度調整されて発光輝度が高くなった波長変換ナノ粒子を、太陽電池等に応用すれば、紫外線を可視光線に変換して太陽電池の効率を向上させることができるという顕著な効果を奏する。   Therefore, if the wavelength-converting nanoparticles whose luminance is adjusted and the emission luminance is increased in this way are applied to a solar cell or the like, it is remarkable that the efficiency of the solar cell can be improved by converting ultraviolet rays into visible light. There is an effect.

d)次に、本実施例の変形例について説明する。
例えば、Znイオン源としては、前述の過塩素酸亜鉛の他、塩化亜鉛,酢酸亜鉛,硝酸亜鉛等が使用できる。また、Mnイオン源としては、前述の過塩素酸マンガンの他、塩化マンガン,酢酸マンガン,臭化マンガン等が使用できる。
d) Next, a modification of the present embodiment will be described.
For example, as the Zn ion source, zinc chloride, zinc acetate, zinc nitrate, etc. can be used in addition to the above-described zinc perchlorate. In addition to the above-described manganese perchlorate, manganese chloride, manganese acetate, manganese bromide, and the like can be used as the Mn ion source.

また、Seイオン源としては、前述のNaHSeの他、セレノウレア,セレン化水素ガス等が使用できる。更に、配位子としては、前述のNACの他、メルカプト酢酸,メルカプトプロピオン酸,メルカプトこはく酸等が使用できる。   Further, as the Se ion source, selenourea, hydrogen selenide gas, etc. can be used in addition to the above-mentioned NaHSe. Further, as the ligand, mercaptoacetic acid, mercaptopropionic acid, mercaptosuccinic acid and the like can be used in addition to the aforementioned NAC.

更に、Seの代わりにSを使用してもよい。その場合も、図1(A)の工程の後にはpHを10.5に調整するのが望ましい。また、その場合、図1(B)の工程で用いるSイオン源としては、硫化ナトリウム,チオ尿素,硫化水素ガス等が使用でき、Zn:Sのモル比が1:0.6となるようにするのが望ましい。   Furthermore, S may be used instead of Se. Even in that case, it is desirable to adjust the pH to 10.5 after the step of FIG. In that case, sodium sulfide, thiourea, hydrogen sulfide gas, or the like can be used as the S ion source used in the step of FIG. 1B so that the molar ratio of Zn: S is 1: 0.6. It is desirable to do.

次に、実施例2について説明するが、前記実施例1と同様な内容の説明は省略又は簡易化する。
前述の様に、無機ナノ粒子を構成するアニオンとして、Seを用いる場合とSを用いる場合とでは、図1(A)の工程の後において調整すべきpHの値が異なる。
Next, the second embodiment will be described, but the description of the same contents as the first embodiment will be omitted or simplified.
As described above, the pH value to be adjusted after the step of FIG. 1A differs between when Se is used as the anion constituting the inorganic nanoparticles and when S is used.

そこで、本実施例2では、次のような方法により、アニオンとしてSeとSとの両方を用いていわゆる混晶半導体としての無機ナノ粒子をMnイオンでドープした波長変換ナノ粒子を製造した。   Therefore, in Example 2, wavelength conversion nanoparticles in which inorganic nanoparticles as a so-called mixed crystal semiconductor were doped with Mn ions using both Se and S as anions were produced by the following method.

a)まず、実施例2の波長変換ナノ粒子の製造方法について説明する。
本実施例では、前述の図1(A),(B)の工程によって製造されたZnMnSeの前駆体水溶液と、その図1(A),(B)の工程において前述の様にSeの代わりにSを使用して製造されたZnS:Mnの前駆体水溶液とを、別々に製造した。
a) First, the manufacturing method of the wavelength conversion nanoparticle of Example 2 is demonstrated.
In this example, the precursor aqueous solution of ZnMnSe produced by the steps of FIGS. 1A and 1B described above, and in place of Se as described above in the steps of FIGS. 1A and 1B. A ZnS: Mn precursor aqueous solution prepared using S was prepared separately.

そして、pH10.5に調整の後、両者を混合して200℃で10分加熱することによって波長変換ナノ粒子を得た。この波長変換ナノ粒子では、SeとSとの比は自由に調整でき、ZnSex1-x:Mn(0<X<1)なる一般式で表すことができる。なお、以下では、ZnSex1-xをZnSeSと記す。 And after adjusting to pH10.5, both were mixed and the wavelength conversion nanoparticle was obtained by heating at 200 degreeC for 10 minutes. In this wavelength conversion nanoparticle, the ratio of Se and S can be freely adjusted and can be expressed by a general formula of ZnSe x S 1-x : Mn (0 <X <1). Hereinafter, ZnSe x S 1-x is referred to as ZnSeS.

この製造直後の波長変換ナノ粒子の製造直後の発光スペクトルを測定した。その結果を、図4に示すが(この図4では混合比(X)が異なる例を示している)、波長変換ナノ粒子(ZnSe:Mn)にSを加えることで、400nm近傍の発光強度のピークが減少し、600nm近傍の発光強度のピークが強くなることが分かった。   The emission spectrum immediately after the production of the wavelength conversion nanoparticles immediately after the production was measured. The result is shown in FIG. 4 (in FIG. 4, an example in which the mixing ratio (X) is different) is shown. By adding S to the wavelength conversion nanoparticles (ZnSe: Mn), the emission intensity in the vicinity of 400 nm is obtained. It was found that the peak decreased and the peak of the emission intensity near 600 nm became stronger.

つまり、例えばX=0.6の場合、波長変換ナノ粒子の発光強度(具体的には587nmにおける発光ピーク強度)は、52000であった。
b)次に、上述の様にして製造された波長変換ナノ粒子の輝度調整方法について説明する。
That is, for example, when X = 0.6, the emission intensity of the wavelength conversion nanoparticles (specifically, the emission peak intensity at 587 nm) was 52,000.
b) Next, a method for adjusting the luminance of the wavelength conversion nanoparticles produced as described above will be described.

本実施例における輝度調整方法は、前記実施例1と同様である。
具体的には、前記図3に示す様に、波長変換ナノ粒子が分散したpH10.5の水溶液を5mlとり、容積10mlのガラス容器1に入れた後に、ガラス容器1をゴム栓7で封止する。
The brightness adjustment method in this embodiment is the same as that in the first embodiment.
Specifically, as shown in FIG. 3, 5 ml of a pH 10.5 aqueous solution in which wavelength conversion nanoparticles are dispersed is taken and placed in a glass container 1 having a volume of 10 ml, and then the glass container 1 is sealed with a rubber stopper 7. To do.

その後、ゴム栓7に第2注射針17を刺した後に、第1注射針15を刺し、炭酸ガスボンベ13から第1注射針15を介してガラス容器1内に炭酸ガスを供給した。
この状態で、pHの変化を測定したところ、炭酸ガスの注入から5分後に、溶液のpHが7.0となった。
Thereafter, after the second injection needle 17 was inserted into the rubber stopper 7, the first injection needle 15 was inserted, and carbon dioxide gas was supplied from the carbon dioxide gas cylinder 13 into the glass container 1 through the first injection needle 15.
When the change in pH was measured in this state, the pH of the solution became 7.0 after 5 minutes from the injection of carbon dioxide gas.

そこで、このpH7.0となった水溶液に対して、前記と同様にして、蛍光分光測定器を用いて、波長変換ナノ粒子の発光スペクトルを調べた。
その結果、pHを7.0に低下させた溶液中の波長変換ナノ粒子の発光強度(具体的には587nmにおける発光ピーク強度)は、約80000(図7参照)であり、pH10.5の水溶液中の製造直後の波長変換ナノ粒子に比べて大きく向上していた。
Therefore, the emission spectrum of the wavelength-converted nanoparticles was examined with respect to this aqueous solution having a pH of 7.0 using a fluorescence spectrometer in the same manner as described above.
As a result, the emission intensity (specifically, the emission peak intensity at 587 nm) of the wavelength conversion nanoparticles in the solution whose pH was lowered to 7.0 was about 80000 (see FIG. 7), and the aqueous solution with pH 10.5. It was greatly improved compared to the wavelength-converted nanoparticles immediately after production.

この様に、SeとSとの両者を用いた波長変換ナノ粒子(ZnSeS:Mn)では、実施例1より一層良好な発光強度が得られ、太陽電池等に応用すればその効率を一層向上させられることが分かった。   Thus, wavelength conversion nanoparticles (ZnSeS: Mn) using both Se and S can provide better emission intensity than Example 1, and further improve the efficiency when applied to solar cells and the like. I found out that

c)ここで、上述したpH低下処理によって発光輝度を高めることができる原理について説明する。
図5(A)に示す様に、本実施例の製造方法の場合は、Zn、Se、S、Mnを含む前駆体の水溶液を、pH10.5に調整して、6気圧にて、200℃で加熱すると、波長変換ナノ粒子(ZnSeS:Mn)が生成される。
c) Here, the principle by which the light emission luminance can be increased by the above-described pH lowering process will be described.
As shown in FIG. 5 (A), in the case of the production method of this example, an aqueous solution of a precursor containing Zn, Se, S, and Mn was adjusted to pH 10.5 and 200 ° C. at 6 atmospheres. When heated at, wavelength converted nanoparticles (ZnSeS: Mn) are produced.

この状態では、図5(B)に示す様に、ZnSeS中に多くのMnが含まれるので、多数のMnが影響し合って発光が低減するいわゆる濃度消光によって、発光輝度が低下する。なお、濃度消光については、例えば”N.Pradhan,J.A.M.CHEM.SOC.129,11,2007,3339”に開示されている。   In this state, as shown in FIG. 5B, since a large amount of Mn is contained in ZnSeS, the emission luminance is reduced by so-called concentration quenching in which light emission is reduced by the influence of a large number of Mn. Concentration quenching is disclosed in, for example, “N. Pradhan, J. A. M. CHEM. SOC. 129, 11, 2007, 3339”.

その後、図5(C)に示す様に、水溶液を例えば炭酸ガスに晒すことによりpHを低下させると、ZnSeSから過剰のMnが水溶液中に溶け出す。なお、Mnが水溶液中に溶け出す理由は、Mnは、酸(希酸)や中性など、(高アルカリに比べて)酸性に近い方が溶出し易い特性があると考えられるからである。   Thereafter, as shown in FIG. 5C, when the pH is lowered by exposing the aqueous solution to, for example, carbon dioxide gas, excess Mn is dissolved from the ZnSeS into the aqueous solution. The reason why Mn is dissolved in the aqueous solution is that Mn is considered to have a characteristic that it is more likely to be eluted when it is close to acidity (compared to high alkali) such as acid (dilute acid) or neutrality.

これによって、ZnSeS中のMnが少なくなるので、濃度消光の影響が低下し、よって、発光輝度が向上すると推定される。   As a result, the amount of Mn in ZnSeS is reduced, so that the influence of concentration quenching is reduced, and it is estimated that the light emission luminance is improved.

次に、実施例3について説明するが、前記実施例2と同様な内容の説明は省略する。
本実施例では、波長変換ナノ粒子の製造方法は、前記実施例2と同様であるが、その後の輝度調整方法において、炭酸ガスではなく塩酸(HCl)を用いる点が異なるので、異なる輝度調整方法について説明する。
Next, the third embodiment will be described, but the description of the same contents as the second embodiment will be omitted.
In this example, the method for producing wavelength-converting nanoparticles is the same as in Example 2. However, in the subsequent luminance adjustment method, the difference is that hydrochloric acid (HCl) is used instead of carbon dioxide gas. Will be described.

まず、前記実施例2と同様な製造方法で波長変換ナノ粒子(ZnSeS:Mn)を作製し、その波長変換ナノ粒子が分散した水溶液を、5ml容器に投入した。
そして、その水溶液をスターラーバーで回転させながら、1NのHClを10μl投入して混合した。
First, wavelength conversion nanoparticles (ZnSeS: Mn) were produced by the same production method as in Example 2, and an aqueous solution in which the wavelength conversion nanoparticles were dispersed was put into a 5 ml container.
Then, 10 μl of 1N HCl was added and mixed while rotating the aqueous solution with a stirrer bar.

次に、混合した水溶液のpHを測定した。
そして、前記HClの投入とpHの測定とを繰り返し、目標のpH(例えばpH7.0)に達した時点で、その処理を終了した。
Next, the pH of the mixed aqueous solution was measured.
Then, the introduction of HCl and the measurement of pH were repeated, and when the target pH (for example, pH 7.0) was reached, the treatment was terminated.

このpH低下処理の後に、pH7.0の水溶液中の波長変換ナノ粒子の発光強度(具体的には582nmにおける発光ピーク強度)を調べたところ、約1.4倍であり(図6参照)、pHが10.5の水溶液中の製造直後の波長変換ナノ粒子に比べて大きく向上していた。   After this pH lowering treatment, when the emission intensity of the wavelength conversion nanoparticles in the aqueous solution of pH 7.0 (specifically, the emission peak intensity at 582 nm) was examined, it was about 1.4 times (see FIG. 6). Compared with the wavelength-converted nanoparticles immediately after production in an aqueous solution having a pH of 10.5, it was greatly improved.

なお、この方法では、HClの濃度を希釈することにより、pHを微調整することができる。しかし、そうすると、投入量が多くなり、最初の波長変換ナノ粒子(ZnSeS:Mn)濃度が希釈されてしまうので、高濃度に保つには、高濃度のHClを用いた方が有利である。   In this method, the pH can be finely adjusted by diluting the concentration of HCl. However, if it does so, since the input amount will increase and the initial wavelength conversion nanoparticle (ZnSeS: Mn) density | concentration will be diluted, in order to keep high concentration, it is more advantageous to use high concentration HCl.

本実施例においては、塩酸によるpH低下処理によって輝度調整された波長変換ナノ粒子は、実施例1より一層良好な発光輝度を有しているので、太陽電池等に応用すればその効率を一層向上させられる。   In the present example, the wavelength-converted nanoparticles whose brightness is adjusted by the pH lowering treatment with hydrochloric acid have a light emission brightness that is better than that of Example 1, so that the efficiency can be further improved if applied to solar cells and the like. Be made.

次に、実施例4について説明するが、前記実施例2と同様な内容の説明は省略する。
本実施例では、波長変換ナノ粒子の製造方法は、前記実施例2と同様であるが、その後の輝度調整方法において、炭酸ガスではなく純水(H2O)を用いて希釈する点が異なるので、異なる輝度調整方法について説明する。
Next, the fourth embodiment will be described, but the description of the same contents as the second embodiment will be omitted.
In this example, the method for producing wavelength-converting nanoparticles is the same as that in Example 2, except that in the subsequent luminance adjustment method, dilution is performed using pure water (H 2 O) instead of carbon dioxide. Therefore, different brightness adjustment methods will be described.

まず、前記実施例2と同様な製造方法で波長変換ナノ粒子(ZnSeS:Mn)を作製し、その波長変換ナノ粒子が分散した水溶液を、5ml容器に投入した。
そして、その水溶液をスターラーバーで回転させながら、純水を10μl投入して混合し希釈した。
First, wavelength conversion nanoparticles (ZnSeS: Mn) were produced by the same production method as in Example 2, and an aqueous solution in which the wavelength conversion nanoparticles were dispersed was put into a 5 ml container.
Then, while rotating the aqueous solution with a stirrer bar, 10 μl of pure water was added, mixed and diluted.

次に、希釈した水溶液のpHを測定した。
そして、前記純水の投入とpHの測定とを繰り返し、目標のpH(例えばpH7.0)に達した時点で、その処理を終了した。
Next, the pH of the diluted aqueous solution was measured.
Then, the introduction of the pure water and the measurement of the pH were repeated, and when the target pH (for example, pH 7.0) was reached, the treatment was terminated.

このpH低下処理の後に、pH7.0の水溶液中の波長変換ナノ粒子の発光強度(具体的には582nmにおける発光ピーク強度)を調べたところ、約3倍(図8の100倍希釈)であり、pHが10.5の水溶液中の製造直後の波長変換ナノ粒子に比べて大きく向上していた。   After this pH lowering treatment, the emission intensity (specifically, the emission peak intensity at 582 nm) of the wavelength conversion nanoparticles in an aqueous solution of pH 7.0 was examined, and was about 3 times (100 times dilution in FIG. 8). As compared with the wavelength conversion nanoparticles immediately after the production in an aqueous solution having a pH of 10.5, it was greatly improved.

本実施例においては、希釈によるpH低下処理によって輝度調整された波長変換ナノ粒子は、実施例1より一層良好な発光輝度を有しているので、太陽電池等に応用すればその効率を一層向上させられる。
[実験例1]
次に、本発明の効果を確認するために行った実験例1について説明する。
In this example, the wavelength-converted nanoparticles whose brightness is adjusted by the pH reduction treatment by dilution have a better light emission brightness than that of Example 1, so that the efficiency can be further improved if applied to solar cells and the like. Be made.
[Experiment 1]
Next, Experimental Example 1 performed for confirming the effect of the present invention will be described.

本実験例は、前記実施例2の輝度調整方法を用いて、pHと発光輝度(発光強度)の径時変化との関係を調べたものである。
具体的には、実施例2の方法で製造された波長変換ナノ粒子(Zn:Se:S:Mn=1:0.3:x:0.05、x=0.3)が分散した水溶液(pH10.5)に対して、最初に窒素ガスを封入し、1日後に窒素ガスとアルゴンガスとを入れ換えた。
In this experimental example, the relationship between pH and time-dependent change in emission luminance (emission intensity) was examined using the luminance adjustment method of Example 2.
Specifically, an aqueous solution in which wavelength conversion nanoparticles (Zn: Se: S: Mn = 1: 0.3: x: 0.05, x = 0.3) produced by the method of Example 2 are dispersed ( With respect to pH 10.5), nitrogen gas was first sealed, and nitrogen gas and argon gas were replaced after one day.

次に、製造から6日後に、アルゴンガスに換えて炭酸ガスを封入し、水溶液のpH10.5を、pH7.5に低下させた。
そして、上述した試料における発光強度(Mn発光ピーク強度:582nm)の径時変化を調べた。その結果を、図6に示す。
Next, 6 days after the production, carbon dioxide gas was sealed instead of argon gas, and the pH of the aqueous solution was lowered to pH 7.5.
Then, the change with time in the emission intensity (Mn emission peak intensity: 582 nm) in the above-described sample was examined. The result is shown in FIG.

図6に示す様に、pH7.5に調整した試料の発光強度は、pHを低下させた直後に大きく上昇し、その後徐々に大きくなった。なお、白濁は生じなかった。
この実験から、製造直後に窒素ガス(又はアルゴンガス)を充填した場合は、発光強度が維持され殆ど低下しないことが分かった。
As shown in FIG. 6, the emission intensity of the sample adjusted to pH 7.5 increased greatly immediately after the pH was lowered, and then gradually increased. In addition, white turbidity did not arise.
From this experiment, it was found that when nitrogen gas (or argon gas) was filled immediately after production, the emission intensity was maintained and hardly decreased.

また、その後、アルゴンガスを炭酸ガスに入れ換えてpHをpH7.5に低下させると、発光強度が大きく上昇することが分かった。
[実験例2]
次に、本発明の効果を確認するために行った実験例2について説明する。
Further, it was found that when the argon gas was replaced with carbon dioxide gas and the pH was lowered to pH 7.5, the emission intensity increased greatly.
[Experiment 2]
Next, Experimental Example 2 performed to confirm the effect of the present invention will be described.

本実験例は、前記実施例3の輝度調整方法を用いて、pHと発光輝度(発光強度)の径時変化との関係を調べたものである。
具体的には、実施例3の方法で製造された波長変換ナノ粒子が分散した水溶液に対して、塩酸を加えることによって、その水溶液のpH10.5を、pH8、pH7、pH6に低下させた試料を作製した。また、比較例として、塩酸を加えない試料も作製した。
In this experimental example, the relationship between the pH and the time-dependent change in emission luminance (emission intensity) was examined using the luminance adjustment method of Example 3.
Specifically, a sample in which pH 10.5 of the aqueous solution was lowered to pH 8, pH 7, and pH 6 by adding hydrochloric acid to the aqueous solution in which the wavelength conversion nanoparticles produced by the method of Example 3 were dispersed. Was made. Moreover, the sample which does not add hydrochloric acid as a comparative example was also produced.

そして、各試料における発光強度(Mn発光ピーク強度:582nm)の径時変化を調べた。その結果を、図7に示す。
図7に示す様に、pH8、pH7、pH6の試料の発光強度は、pHを低下させた直後に大きく上昇し、その後徐々に大きくなり、約30日後にほぼ上限に達した。
And the change with time of the emission intensity (Mn emission peak intensity: 582 nm) in each sample was examined. The result is shown in FIG.
As shown in FIG. 7, the luminescence intensity of the samples of pH 8, pH 7, and pH 6 increased greatly immediately after the pH was lowered, then gradually increased, and reached the almost upper limit after about 30 days.

このうち、特にpH6の試料は、最初に発光強度が最も大きく上昇し、その後もpH8、pH7の試料に比べて発光強度が大きかった。
それに対して、pH10、5の比較例の試料は、6日〜10日は、急激に発光強度が上昇するが、10日を過ぎると発光強度が低下し、白濁した。
Among these samples, particularly, the pH 6 sample showed the largest increase in emission intensity at first, and thereafter, the emission intensity was higher than that of the pH 8 and pH 7 samples.
On the other hand, in the samples of Comparative Examples having pH of 10 and 5, the emission intensity rapidly increased from 6 to 10 days, but after 10 days, the emission intensity decreased and became cloudy.

この実験から、製造直後のpHよりもpHをpH6〜8に低下させたものは、発光強度の上昇が大きく、しかも、長時間(2ヶ月以上)経過した場合でも、発光強度の低下が見られず、好適であった。   From this experiment, when the pH was lowered to pH 6-8 from the pH immediately after production, the emission intensity increased greatly, and the emission intensity decreased even after a long time (two months or more). It was suitable.

なお、本実験例では、製造時のpHを10.5としたが、本発明者等の研究によれば、製造時のpHを9〜11とした場合でも、同様な効果が得られることが分かっている。
[実験例3]
次に、他の実験例3について説明する。
In this experimental example, the pH at the time of production was set to 10.5. However, according to the study by the present inventors, the same effect can be obtained even when the pH at the time of production is set to 9 to 11. I know.
[Experiment 3]
Next, another experimental example 3 will be described.

本実験例は、前記実施例4の輝度調整方法を用いて、pHと輝度の径時変化との関係を調べたものである。
具体的には、実験に用いる原液として、前記実施例3の製造方法によって、波長変換ナノ粒子(Zn:Se:S:Mn=1:0.3:0.3:0.05)が分散した水溶液を作製するとともに、前記実施例3と同様にして、1NHClを加えることによってpH7.0の水溶液とした。
In this experimental example, the relationship between pH and luminance change with time was examined using the luminance adjustment method of Example 4.
Specifically, wavelength conversion nanoparticles (Zn: Se: S: Mn = 1: 0.3: 0.3: 0.05) were dispersed by the manufacturing method of Example 3 as a stock solution used in the experiment. An aqueous solution was prepared, and an aqueous solution having a pH of 7.0 was obtained by adding 1N HCl in the same manner as in Example 3.

そして、この水溶液に対して、pH7.0のHCl溶液を用いて、1倍、2倍、5倍、10倍、100倍、200倍に希釈した。
そして、各希釈溶液を、超純水を用いて薄めて、原液の200倍となるように調整し(即ち波長変換ナノ粒子の濃度が揃うように調整し)、前記と同様に発光強度(Mn発光ピーク強度:582nm)を調べた。その結果を、図8に示す。なお、図8は、超純水を加えて調整してからの発光強度の経時変化を示す。
And this aqueous solution was diluted 1 time, 2 times, 5 times, 10 times, 100 times, and 200 times using a pH 7.0 HCl solution.
Then, each diluted solution is diluted with ultrapure water and adjusted to be 200 times that of the stock solution (that is, adjusted so that the concentrations of the wavelength conversion nanoparticles are uniform). Emission peak intensity: 582 nm). The result is shown in FIG. In addition, FIG. 8 shows the time-dependent change of the emitted light intensity after adjusting by adding ultrapure water.

この図8から、希釈の程度が大きいほど、発光強度が上昇しているのが分かる。
尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
It can be seen from FIG. 8 that the emission intensity increases as the degree of dilution increases.
Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the scope of the present invention.

(1)例えば、上記各実施例では、カチオンとしてZn,Mnを使用しているが、Mnの代わりにCdを用いるなど、カチオンの種類も種々に変更することができる。また、SまたはSeと、Mnと、Znとは、どういう順番で混ぜてもよい。   (1) For example, in each of the above embodiments, Zn and Mn are used as cations, but the type of cation can be variously changed, such as using Cd instead of Mn. Further, S or Se, Mn, and Zn may be mixed in any order.

(2)また、本発明の輝度調整方法は、例えば上述した非特許文献1に記載の製造方法で製造された波長変換ナノ粒子などの輝度調整にも利用することができる。
つまり、所定のpH値の溶液中で製造された波長変換ナノ粒子に対して、上述したpH低下処理を行うことにより、発光輝度を向上させることができる。
(2) Moreover, the brightness | luminance adjustment method of this invention can be utilized also for brightness | luminance adjustment of the wavelength conversion nanoparticle etc. which were manufactured with the manufacturing method of the nonpatent literature 1 mentioned above, for example.
That is, the emission luminance can be improved by performing the above-described pH reduction treatment on the wavelength conversion nanoparticles produced in a solution having a predetermined pH value.

1…ガラス容器
3…空間
5…開口
7…ゴム栓
9…pH測定器
DESCRIPTION OF SYMBOLS 1 ... Glass container 3 ... Space 5 ... Opening 7 ... Rubber stopper 9 ... pH meter

Claims (7)

特定の波長の光を発生する発光中心となる金属イオンを無機ナノ粒子にドープした波長変換ナノ粒子を、所定のpHに調整した溶液中にて製造した後に、
前記波長変換ナノ粒子が分散した溶液のpHを、前記製造時の所定のpHよりも低下させるpH低下処理を行う波長変換ナノ粒子の輝度調整方法であって、
前記波長変換ナノ粒子を製造する製造工程として、
前記発光中心となる金属イオンを提供するイオン源と、前記無機ナノ粒子を構成する原子を提供するイオン源と、前記無機ナノ粒子に配位する親水性の配位子と、を水系溶媒中で混合し、得られた溶液のpH調整を行う混合工程と、
前記pH調整後の前記溶液を高圧下で150℃〜250℃に加熱して、前記溶液中にて波長変換ナノ粒子を生成する加熱工程と、
を有し、
前記混合工程では、N−アセチル−L−システインと前記イオン源中のMnイオンとを1:1のモル比で含む溶液と、N−アセチル−L−システインと前記イオン源中のZn原子とを1:4.8のモル比で含む溶液とを、混合することを特徴とする波長変換ナノ粒子の輝度調整方法。
After producing wavelength-converting nanoparticles in which inorganic nanoparticles are doped with metal ions that are emission centers that generate light of a specific wavelength, in a solution adjusted to a predetermined pH,
Wherein the pH of the solution wavelength converting nanoparticles are dispersed, the pH reduction process to reduce below a predetermined pH during manufacturing a brightness adjusting method of line power sale wavelength conversion nanoparticles,
As a manufacturing process for manufacturing the wavelength conversion nanoparticles,
In an aqueous solvent, an ion source that provides a metal ion serving as the emission center, an ion source that provides an atom constituting the inorganic nanoparticle, and a hydrophilic ligand that coordinates to the inorganic nanoparticle. A mixing step of mixing and adjusting the pH of the resulting solution;
Heating the pH-adjusted solution to 150 ° C. to 250 ° C. under high pressure to produce wavelength conversion nanoparticles in the solution; and
Have
In the mixing step, a solution containing N-acetyl-L-cysteine and Mn ions in the ion source in a molar ratio of 1: 1; N-acetyl-L-cysteine and Zn atoms in the ion source; A method for adjusting the luminance of wavelength-converting nanoparticles, comprising mixing a solution containing a molar ratio of 1: 4.8.
前記製造時に前記溶液のpHを9〜11に調整し、その後、前記pH低下処理によってpHを6〜8の範囲に低下させることを特徴とする請求項1に記載の波長変換ナノ粒子の輝度調整方法。   The brightness adjustment of the wavelength conversion nanoparticles according to claim 1, wherein the pH of the solution is adjusted to 9 to 11 during the production, and then the pH is reduced to a range of 6 to 8 by the pH reduction treatment. Method. 前記波長変換ナノ粒子が分散した溶液に、酸性溶液を加えることにより、前記pHを低下させることを特徴とする請求項1又は2に記載の波長変換ナノ粒子の輝度調整方法。   The method for adjusting the brightness of wavelength-converted nanoparticles according to claim 1 or 2, wherein the pH is lowered by adding an acidic solution to a solution in which the wavelength-converted nanoparticles are dispersed. 前記波長変換ナノ粒子が分散した溶液に、希釈溶液を加えることによって前記溶液を希釈して、前記pHを低下させることを特徴とする請求項1〜3のいずれか1項に記載の波長変換ナノ粒子の輝度調整方法。   The wavelength-converting nanoparticle according to any one of claims 1 to 3, wherein the pH is lowered by diluting the solution by adding a diluted solution to the solution in which the wavelength-converting nanoparticles are dispersed. Particle brightness adjustment method. 前記波長変換ナノ粒子が分散した溶液に、該溶液に溶解することによって該溶液のpHを低下させるガスを供給することにより、前記pHを低下させることを特徴とする請求項1又は2に記載の波長変換ナノ粒子の輝度調整方法。   The pH is lowered by supplying a gas that lowers the pH of the solution by dissolving in the solution into the solution in which the wavelength conversion nanoparticles are dispersed. Brightness adjustment method of wavelength conversion nanoparticle. 前記波長変換ナノ粒子を製造した後に、前記溶液の周囲に不活性ガスを供給し、その後、前記pH低下処理を行うことを特徴とする請求項1〜5のいずれか1項に記載の波長変換ナノ粒子の輝度調整方法。   The wavelength conversion according to any one of claims 1 to 5, wherein after the wavelength conversion nanoparticles are manufactured, an inert gas is supplied around the solution, and then the pH reduction treatment is performed. Nanoparticle brightness adjustment method. 前記無機ナノ粒子を構成する原子として、SとSeとを含み、
前記混合工程は、
前記無機ナノ粒子を構成するSe以外の各原子を各々提供する前記各イオン源と、前記N−アセチル−L−システインと、を水系溶媒中で混合し、得られた溶液のpH調整を行う第1混合工程と、
前記無機ナノ粒子を構成するS以外の各原子を各々提供する前記各イオン源と、前記N−アセチル−L−システインと、を水系溶媒中で混合し、得られた溶液のpH調整を行う第2混合工程と、
前記第1混合工程で得られた前記pH調整後の溶液と、前記第2混合工程で得られた前記pH調整後の溶液とを混合する第3混合工程と、
からなり、
前記発光中心となる金属イオンを提供するイオン源は、前記第1混合工程または前記第2混合工程で前記溶液に混合されることを特徴とする請求項1〜6のいずれか1項に記載の波長変換ナノ粒子の輝度調整方法。
As atoms constituting the inorganic nanoparticles, S and Se are included,
The mixing step includes
The ion source that provides each atom other than Se constituting the inorganic nanoparticles and the N-acetyl-L-cysteine are mixed in an aqueous solvent, and the pH of the resulting solution is adjusted. One mixing step,
The ion source that provides each atom other than S constituting the inorganic nanoparticles and the N-acetyl-L-cysteine are mixed in an aqueous solvent, and the pH of the resulting solution is adjusted. Two mixing steps;
A third mixing step of mixing the solution after pH adjustment obtained in the first mixing step and the solution after pH adjustment obtained in the second mixing step;
Consists of
Ion source to provide a metal ion to be the light emitting center, according to any one of claims 1 to 6, characterized in that it is mixed with the solution in the first mixing step or the second mixing step Brightness adjustment method of wavelength conversion nanoparticle.
JP2012158031A 2012-07-13 2012-07-13 Brightness adjustment method for wavelength conversion nanoparticles Expired - Fee Related JP5977104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158031A JP5977104B2 (en) 2012-07-13 2012-07-13 Brightness adjustment method for wavelength conversion nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158031A JP5977104B2 (en) 2012-07-13 2012-07-13 Brightness adjustment method for wavelength conversion nanoparticles

Publications (2)

Publication Number Publication Date
JP2014019759A JP2014019759A (en) 2014-02-03
JP5977104B2 true JP5977104B2 (en) 2016-08-24

Family

ID=50195045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158031A Expired - Fee Related JP5977104B2 (en) 2012-07-13 2012-07-13 Brightness adjustment method for wavelength conversion nanoparticles

Country Status (1)

Country Link
JP (1) JP5977104B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285233A (en) * 2003-03-24 2004-10-14 Sumitomo Chem Co Ltd Process for producing fluorescent substance
JP4445716B2 (en) * 2003-05-30 2010-04-07 日立ソフトウエアエンジニアリング株式会社 Nanoparticle production method
JP2005306713A (en) * 2003-10-22 2005-11-04 Fuji Photo Film Co Ltd Method of producing inorganic semiconductor- or phosphor-primary particle and inorganic semiconductor- or phosphor-primary particle
KR100768632B1 (en) * 2006-10-30 2007-10-18 삼성전자주식회사 Method for dispersing nanoparticles and method for producing nanoparticles thin film using the same

Also Published As

Publication number Publication date
JP2014019759A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
Mir et al. Postsynthesis Mn-doping in CsPbI 3 nanocrystals to stabilize the black perovskite phase
Ntwaeaborwa et al. Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles
Jia et al. CsPbX 3/Cs 4 PbX 6 core/shell perovskite nanocrystals
Komaraiah et al. Effect of particle size and dopant concentration on the Raman and the photoluminescence spectra of TiO2: Eu3+ nanophosphor thin films
Lin et al. Luminescent manganese-doped CsPbCl3 perovskite quantum dots
Pradhan et al. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals
Wei et al. Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals
Fang et al. Synthesis of highly luminescent Mn: ZnSe/ZnS nanocrystals in aqueous media
Zhu et al. Recent Advances in Enhancing and Enriching the Optical Properties of Cl‐Based CsPbX3 Nanocrystals
Cao et al. Mn 2+-doped Zn–In–S quantum dots with tunable bandgaps and high photoluminescence properties
Kumar et al. A facile single injection Hydrothermal method for the synthesis of thiol capped CdTe Quantum dots as light harvesters
Hu et al. Co-doping of Ag into Mn: ZnSe quantum dots: Giving optical filtering effect with improved monochromaticity
CN106947485A (en) A kind of synthetic method of quantum dot photonic crystal laminated film
Wang et al. Improved ultraviolet radiation stability of Mn 2+-doped CsPbCl 3 nanocrystals via B-site Sn doping
Hile et al. The effect of annealing time on zinc selenide thin films deposited by photo-assisted chemical bath deposition
Chen et al. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs
Qu et al. Towards improved waterproofness of Mn 4+-activated fluoride phosphors
Ovchinnikov et al. Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules
Abbass et al. White luminescence from sol–gel silica doped with silver
Fan et al. Efficient dual‐mode up‐conversion and down‐shifting emission in β‐NaYF4: Yb3+, Er3+ microcrystals via ion exchange
Bai et al. Synthesis of Er 3+/Yb 3+ codoped NaMnF 3 nanocubes with single-band red upconversion luminescence
Smirnov et al. Control over the Size Effect in the Spectroscopic Properties of Zn x Cd 1–x S Colloidal Quantum Dots
CN105315996A (en) ZnTe/ZnSe core-shell type quantum dot and preparation method thereof
Kim et al. Two‐Step Sequential Process for Fabricating Graphene Nanosheets Decorated with Copper Halide Nanocrystals and Their Optoelectronic Applications
Zheng et al. Mn4+-activated (K1-xCsx) 2NbF7 red phosphors with high color purity and excellent moisture resistance for WLEDs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5977104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees