JP5975522B2 - Dynamic focus shift optical coherence tomography microscope - Google Patents

Dynamic focus shift optical coherence tomography microscope Download PDF

Info

Publication number
JP5975522B2
JP5975522B2 JP2012268665A JP2012268665A JP5975522B2 JP 5975522 B2 JP5975522 B2 JP 5975522B2 JP 2012268665 A JP2012268665 A JP 2012268665A JP 2012268665 A JP2012268665 A JP 2012268665A JP 5975522 B2 JP5975522 B2 JP 5975522B2
Authority
JP
Japan
Prior art keywords
light
optical
frequency
variable
optical coherence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012268665A
Other languages
Japanese (ja)
Other versions
JP2014115161A (en
Inventor
八木 生剛
生剛 八木
勇一 岡部
勇一 岡部
今井 欽之
欽之 今井
正光 春名
正光 春名
雅人 近江
雅人 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Osaka University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Osaka University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012268665A priority Critical patent/JP5975522B2/en
Publication of JP2014115161A publication Critical patent/JP2014115161A/en
Application granted granted Critical
Publication of JP5975522B2 publication Critical patent/JP5975522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、光干渉断層撮影法(Optical Coherence Tomography:OCT)を用いた動的焦点移動型光干渉断層顕微鏡に関する。   The present invention relates to a dynamic focal shift optical coherence tomography microscope using optical coherence tomography (OCT).

従来、医療における生体断層撮影、製造業における内部応力検査や内部構造検査において、光干渉断層撮影法(Optical Coherence Tomography:OCT)が用いられてきた。   Conventionally, optical coherence tomography (OCT) has been used in living body tomography in medical treatment, internal stress inspection and internal structure inspection in manufacturing industry.

OCTは、大きく二つに分類するとTime Domain OCT(TD−OCT)とFourier Domain OCT(FD−OCT)に分けられる。前者のTD−OCTは、可干渉距離の短い光源を二光束に分け、一方を信号光、もう一方を参照光とする。参照光は参照ミラーによって反射され、信号光は測定対象物によって反射され、両者の光を干渉させ、干渉信号の大きさで対象物の反射率を求める。ここで、使用光の可干渉距離が短いので、参照光と信号光の光路長が等しいときのみ干渉信号が現れる。参照ミラーを光軸方向に前後させることで、対象物の異なる深さの反射率を求めることができる。   OCT can be broadly classified into two types: Time Domain OCT (TD-OCT) and Fourier Domain OCT (FD-OCT). In the former TD-OCT, a light source having a short coherence distance is divided into two light beams, one of which is signal light and the other is reference light. The reference light is reflected by the reference mirror, the signal light is reflected by the measurement object, the two lights are interfered, and the reflectance of the object is obtained by the magnitude of the interference signal. Here, since the coherence distance of the used light is short, an interference signal appears only when the optical path lengths of the reference light and the signal light are equal. By moving the reference mirror back and forth in the optical axis direction, it is possible to obtain reflectances of different depths of the object.

対象物による反射は参照ミラーの位置にかかわらず常に生じているが、参照ミラーの位置に対応していない反射光は使われずに捨てられる。従って、TD−OCTの光利用効率は高くないが、一般的に後者のFD−OCTに比べて奥行き方向の解像度がよい。TD−OCTでは、特長である高分解能を進ませ、奥行き方向を法線とする面内方向の分解能を向上させ、かつ、深達度を高める方法として、レンズを用いたインフォーカスOCTと呼ばれる手法も検討されている(非特許文献1)。   Reflection by the object always occurs regardless of the position of the reference mirror, but reflected light that does not correspond to the position of the reference mirror is discarded without being used. Therefore, although the light utilization efficiency of TD-OCT is not high, the resolution in the depth direction is generally better than that of the latter FD-OCT. In TD-OCT, a method called in-focus OCT using a lens is used as a method of advancing high resolution, which is a feature, improving resolution in the in-plane direction normal to the depth direction, and increasing the depth of penetration. Has also been examined (Non-patent Document 1).

また、TD−OCTに比べて感度の良いFD−OCTは、さらにSpectral Domain OCT(SD−OCT)とSwept Source OCT(SS−OCT)に分類され、SD−OCTはTD−OCTと同様に可干渉距離の短い光源を用いるが、SS−OCTは可干渉距離の長い光源を用い、その中心波長を掃引する。FD−OCTは、光の有効活用による高感度性に特長を持つが、干渉信号取得にTD−OCTの様な参照ミラー移動機構を必要としないことから、TD−OCTよりも高速な測定が可能である。   In addition, FD-OCT, which is more sensitive than TD-OCT, is further classified into Spectral Domain OCT (SD-OCT) and Swept Source OCT (SS-OCT). Although a light source with a short distance is used, SS-OCT uses a light source with a long coherence distance and sweeps its center wavelength. FD-OCT is characterized by high sensitivity by the effective use of light, but it does not require a reference mirror movement mechanism like TD-OCT to acquire interference signals, so it can measure faster than TD-OCT. It is.

特開2010−286730号公報JP 2010-286730 A

近江雅人、垣本晃宏、西垣恵、春名正光、「照射レンズの集光効果を利用したインフォーカスOCT」、第32回光波センシング技術研究会講演論文集、pp.59−64、Dec.2003Masami Omi, Akihiro Kakimoto, Megumi Nishigaki, Masamitsu Haruna, “In-Focus OCT Using the Condensing Effect of Irradiating Lenses”, Proc. 59-64, Dec. 2003

しかしながら、このインフォーカスOCTでは、レンズによる集光深さを高速に移動させることが困難であって光利用効率が悪いこと、かつ、参照ミラーを機械的に駆動する必要があることから、高速化が困難であるという課題がある。   However, in this in-focus OCT, it is difficult to move the focusing depth by the lens at high speed, the light use efficiency is low, and the reference mirror needs to be mechanically driven, so that the speed is increased. There is a problem that is difficult.

また、SS−OCTでは、フォトディテクタ(PD)で受光した干渉信号をフーリエ変換したとき、周波数が奥行きに対応することを用いているため、SS−OCTでは機械的可動部分がないので高速化に適している一方で、電気処理の負荷は大きい。通常、PDの信号はAD変換され、フーリエ変換は高速フーリエ変換(FFT)を行うDSPやFPGAにて行われる。例えば、波長掃引が2.5μsで行われ、それを4096点のサンプリングにて実行する場合、ADコンバーターは1.64GSPSのサンプリング速度を持たねばならないし、4096サンプル点のFFTをデータ転送を含めて2.5μsで完了しなければならない。これらは、現在では実現可能な値ではあるが、数百万円を要し、高コストであるという課題がある。   In SS-OCT, when the interference signal received by the photodetector (PD) is subjected to Fourier transform, the frequency corresponds to the depth. Therefore, SS-OCT is suitable for high speed because there is no mechanically movable part. On the other hand, the load of electrical processing is large. Usually, the PD signal is AD-converted, and the Fourier transform is performed by a DSP or FPGA that performs fast Fourier transform (FFT). For example, if the wavelength sweep is performed at 2.5 μs and it is performed with 4096 points of sampling, the AD converter must have a sampling rate of 1.64 GSPS, including an FFT of 4096 sample points including data transfer. Must complete in 2.5 μs. These are values that can be realized at present, but they require several million yen and are expensive.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、高分解能、高速、かつ安価な、光干渉断層撮影法を用いた動的焦点移動型光干渉断層顕微鏡を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a high-resolution, high-speed, and low-cost dynamic focal shift optical coherence tomography microscope using optical coherence tomography. It is to provide.

上記の課題を解決するために、本発明は、測定対象物内で焦点を持つレンズを備えた光干渉断層顕微鏡であって、光の中心周波数が時間的に掃引される波長掃引光を出力する光源と、前記波長掃引光を前記測定対象物の焦点位置に照射し、前記焦点位置からの反射光を選択的に取り出す共焦点光学系と、前記焦点位置を光軸方向に移動可能な可変焦点レンズと、前記焦点位置からの反射光を受光するフォトディテクタと、前記焦点位置と同期してフィルタ周波数を変化させる周波数可変バンドパスフィルタであって、前記可変焦点レンズにより前記焦点位置が変調されているときに、前記フォトディテクタから出力された信号から前記フィルタ周波数の成分のみを抽出する、前記周波数可変バンドパスフィルタと、を備えたことを特徴とする。 In order to solve the above-described problems, the present invention is an optical coherence tomographic microscope including a lens having a focal point in a measurement object, and outputs wavelength swept light in which the center frequency of light is swept in time. A light source, a confocal optical system that irradiates the focus position of the measurement object with the wavelength-swept light and selectively extracts reflected light from the focus position, and a variable focus that can move the focus position in the optical axis direction A lens, a photodetector that receives reflected light from the focal position, and a frequency variable bandpass filter that changes a filter frequency in synchronization with the focal position, the focal position being modulated by the variable focal lens when, to extract only a component of the filter frequency from a signal output from the photodetector, characterized by comprising, with the frequency variable band-pass filter

請求項2に記載の発明は、請求項1に記載の動的焦点移動型光干渉断層顕微鏡において、光合分波器と、ミラーと、をさらに備え、前記光合分波器は、前記波長掃引光を前記測定対象物に照射する光と前記ミラーに照射する光とに分波し、前記測定対象物および前記ミラーからの反射光を合波して前記フォトディテクタに出射し、前記ミラーは、前記光合分波器からの光路長が前記光合分波器と前記測定対象物の焦点位置間の光路長と等しくなるよう配置されていることを特徴とする。   According to a second aspect of the present invention, in the dynamic focus shift optical coherence tomographic microscope according to the first aspect, the optical multi / demultiplexer and a mirror are further included, and the optical multi / demultiplexer includes the wavelength swept light. Is split into light that irradiates the object to be measured and light that irradiates the mirror, and the reflected light from the object to be measured and the mirror is combined and emitted to the photodetector. The optical path length from the demultiplexer is arranged to be equal to the optical path length between the optical multiplexer / demultiplexer and the focal position of the measurement object.

請求項3に記載の発明は、請求項1に記載の動的焦点移動型光干渉断層顕微鏡において、前記可変焦点レンズは、電気光学結晶KTa 1-x Nb x 3 を用いた可変焦点レンズを含むことを特徴とする。 According to a third aspect of the present invention, in the dynamic focus shift optical coherence tomographic microscope according to the first aspect, the variable focus lens is a variable focus lens using an electro-optic crystal KTa 1-x Nb x O 3. It is characterized by including.

請求項4に記載の発明は、請求項に記載の動的焦点移動型光干渉断層顕微鏡において、前記光合分波器は、光導波路型の合分波器およびビームスプリッタのいずれかであることを特徴とする。 It invention according to claim 4, in a dynamic focus movement optical coherence tomography microscope according to claim 2, wherein the optical demultiplexer is either a demultiplexer and a beam splitter of the optical waveguide type It is characterized by.

請求項5に記載の発明は、請求項1に記載の動的焦点移動型光干渉断層顕微鏡において、前記周波数可変バンドパスフィルタは、前記フィルタ周波数が前記焦点位置からの反射光のビート周波数と一致するよう設定されることを特徴とする。   According to a fifth aspect of the present invention, in the dynamic focus shift optical coherence tomographic microscope according to the first aspect, the frequency variable bandpass filter has the filter frequency that matches the beat frequency of the reflected light from the focal position. It is set to do.

本発明は、高分解能、高速、かつ安価な光干渉断層撮影法を用いた動的焦点移動型光干渉断層顕微鏡を実現できる。   The present invention can realize a dynamic focal shift optical coherence tomography microscope using optical coherence tomography with high resolution, high speed, and low cost.

本発明の一実施形態に係る動的焦点移動型光干渉断層顕微鏡の光学系を示す図である。It is a figure which shows the optical system of the dynamic focus movement type | mold optical coherence tomographic microscope which concerns on one Embodiment of this invention. フォトディテクタに接続された周波数可変バンドパスフィルタの構成を示す図である。It is a figure which shows the structure of the frequency variable band pass filter connected to the photodetector. (a)は、フォトディテクタから出力された信号強度の時間変化を示す図であり、(b)は、バンドパスフィルタから出力された信号強度の時間変化を示す図である。(A) is a figure which shows the time change of the signal strength output from the photodetector, (b) is a figure which shows the time change of the signal strength output from the band pass filter. 本発明の一実施形態に係る動的焦点移動型光干渉断層顕微鏡の光学系を示す図である。It is a figure which shows the optical system of the dynamic focus movement type | mold optical coherence tomographic microscope which concerns on one Embodiment of this invention. 本発明の一実施例に係る動的焦点移動型光干渉断層顕微鏡の光学系を示す図である。It is a figure which shows the optical system of the dynamic focal movement type | mold optical coherence tomography microscope which concerns on one Example of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、TD−OCTで用いられているインフォーカスOCTと、奥行き情報を取得するときに機械駆動部分のないSS−OCTの利点を組合せ、高速でかつ高精細なOCT像を取得することを特徴とする。   The present invention combines in-focus OCT used in TD-OCT with the advantages of SS-OCT without a mechanical drive part when acquiring depth information, and acquires a high-speed and high-definition OCT image. Features.

(実施形態1)
図1に、本発明の一実施形態に係る動的焦点移動型光干渉断層顕微鏡の光学系を示す。図1では、奥行き方向のデータ取得に関する部分のみを示しており、奥行き方向を法線とする面内方向のデータ取得は示されていない。
(Embodiment 1)
FIG. 1 shows an optical system of a dynamic focus shift optical coherence tomographic microscope according to an embodiment of the present invention. In FIG. 1, only the part related to data acquisition in the depth direction is shown, and data acquisition in the in-plane direction with the depth direction as a normal line is not shown.

シングルモードファイバ101に、線幅δλのレーザー光が入射される。このレーザー光は周期T、波長掃引幅Δλ、中心波長λ0にて波長が掃引されているものとする。入射された光はファイバカプラ102によって分割され、一方は被測定物120に向かい、もう一方は参照光としてミラー108で反射される。被測定物120に向かった光は、レンズ103でコリメートされた後、可変焦点レンズ104と焦点距離が固定のレンズ105を経由して、被測定物120の内側で集光される。 Laser light having a line width δλ is incident on the single mode fiber 101. It is assumed that the wavelength of this laser light is swept at a period T, a wavelength sweep width Δλ, and a center wavelength λ 0 . The incident light is divided by the fiber coupler 102, one of which is directed to the device under test 120, and the other is reflected by the mirror 108 as reference light. The light directed to the object to be measured 120 is collimated by the lens 103 and then condensed inside the object to be measured 120 via the variable focus lens 104 and the lens 105 having a fixed focal length.

被測定物120内で反射された光は、レンズ105、可変焦点レンズ104、レンズ103を経由してシングルモードファイバ101に再結合する。この時、シングルモードファイバ入射位置と被測定物内の焦点とは共焦点の関係にあり、被測定物120内からの反射光のうちシングルモードファイバ101に再結合するのは焦点位置からの反射光のみであり、焦点位置以外からの反射光はシングルモードファイバ101に再結合しない。焦点位置は、可変焦点レンズ104を用いて変更可能であり、奥行き方向の反射率分布を求めることが可能である。   The light reflected in the DUT 120 is recombined with the single mode fiber 101 via the lens 105, the variable focus lens 104, and the lens 103. At this time, the incident position of the single mode fiber and the focal point in the object to be measured are in a confocal relationship, and it is the reflection from the focal position that recombines with the single mode fiber 101 in the reflected light from the object to be measured 120. Only the light is reflected, and the reflected light from other than the focal position does not recombine with the single mode fiber 101. The focal position can be changed using the variable focus lens 104, and the reflectance distribution in the depth direction can be obtained.

散乱や吸収の小さな被測定物120の場合、参照光との干渉を使わなくても通常の共焦点顕微鏡と同じ分解能を達成可能である。しかし、散乱や吸収の大きな被測定物120の場合、表面近傍からの反射光が強いために迷光の強度レベルが大きく、焦点位置からの反射光が埋もれてしまい、測定が出来なくなる。   In the case of the measurement object 120 with small scattering and absorption, the same resolution as a normal confocal microscope can be achieved without using interference with the reference light. However, in the case of the object 120 to be measured that is highly scattered and absorbed, the intensity of stray light is large because the reflected light from the vicinity of the surface is strong, and the reflected light from the focal position is buried, making measurement impossible.

そこで、迷光の中から信号光を取り出すために、参照光との干渉を用いる。被測定物120からの反射光と、ミラー108からの反射光はファイバカプラ102を通じて合波され、フォトディテクタ109にて受光される。   Therefore, in order to extract signal light from stray light, interference with reference light is used. The reflected light from the DUT 120 and the reflected light from the mirror 108 are combined through the fiber coupler 102 and received by the photodetector 109.

フォトディテクタ109以降の信号処理について、図2、3を用いて説明する。   Signal processing after the photodetector 109 will be described with reference to FIGS.

図2に、フォトディテクタに接続された周波数可変バンドパスフィルタの構成を示す。周波数可変バンドパスフィルタ110は、フィルタ周波数を調整することで、フォトディテクタ109から出力された信号から任意の周波数成分のみ抽出することができる。被測定物120の表面にて、参照光との光路長差が0として、表面からの深さLからの反射光と参照光のビート周波数fは、   FIG. 2 shows the configuration of a frequency variable bandpass filter connected to the photodetector. The frequency variable bandpass filter 110 can extract only an arbitrary frequency component from the signal output from the photodetector 109 by adjusting the filter frequency. On the surface of the object 120 to be measured, the optical path length difference from the reference light is 0, and the beat frequency f of the reflected light from the depth L from the surface and the reference light is

Figure 0005975522
Figure 0005975522

で表される。ここで、nは被測定物120の屈折率である。可変焦点レンズ104によって、焦点位置がLの時に、周波数可変バンドパスフィルタ110のフィルタ周波数を(1)式で与えられるfにすれば、表面からの迷光とは関係なく、焦点位置からの信号のみビート信号として抽出することが可能である。例えば、典型的な例として、被測定物120の表面からの深さL=1mm、屈折率n=1.3、およびレーザー光の波長掃引幅Δλ=100nm、周期T=5μs、中心波長λ0=1.3μmのとき、ビート周波数f=30MHzである。 It is represented by Here, n is the refractive index of the DUT 120. If the filter frequency of the frequency variable bandpass filter 110 is set to f given by the equation (1) when the focal position is L by the variable focus lens 104, only the signal from the focal position is obtained regardless of the stray light from the surface. It can be extracted as a beat signal. For example, as a typical example, the depth L = 1 mm from the surface of the object 120 to be measured, the refractive index n = 1.3, the wavelength sweep width Δλ = 100 nm of laser light, the period T = 5 μs, and the center wavelength λ 0. When = 1.3 μm, the beat frequency f = 30 MHz.

さらに、実際には、増幅周波数と可変焦点レンズ104のレンズパワーは、波長掃引光源の波長掃引と同期して変調する。図3(a)に、フォトディテクタから出力された信号強度の時間変化を示し、図3(b)に、バンドパスフィルタから出力された信号強度の時間変化を示す。フォトディテクタ109からの信号が図3(a)に示されるような迷光を含む複数の反射面からの合成であるとき、波長掃引に同期してフィルタ周波数と焦点位置を変調された信号は図3(b)の様に、奥行き情報が時間に変換されて得られる。この方法により、高価な高速AD変換器や高速FFT回路無しに、対象物の異なる深さの反射率を高速に測定可能としている。   Further, in practice, the amplification frequency and the lens power of the variable focus lens 104 are modulated in synchronization with the wavelength sweep of the wavelength swept light source. FIG. 3A shows a time change of the signal intensity output from the photodetector, and FIG. 3B shows a time change of the signal intensity output from the bandpass filter. When the signal from the photodetector 109 is a composite from a plurality of reflecting surfaces including stray light as shown in FIG. 3A, the signal whose filter frequency and focus position are modulated in synchronization with the wavelength sweep is shown in FIG. As in b), the depth information is obtained by converting it into time. By this method, it is possible to measure the reflectance at different depths of the object at high speed without an expensive high-speed AD converter or high-speed FFT circuit.

ここで、可変焦点レンズ104として、KTN結晶を用いた可変焦点レンズを用いると、高速焦点移動が可能となる(特許文献1参照)。   Here, when a variable focus lens using a KTN crystal is used as the variable focus lens 104, high-speed focus movement is possible (see Patent Document 1).

また、図1において、シングルモードファイバ101とファイバカプラ102を用いた光学系を例示したが、本発明で重要なのは、共焦点光学系、参照光と信号光の干渉、波長掃引光源の組合せであり、他の空間光学系を用いた構成においても実施可能である。   1 illustrates an optical system using the single mode fiber 101 and the fiber coupler 102. What is important in the present invention is a combination of a confocal optical system, interference between reference light and signal light, and a wavelength swept light source. The present invention can also be implemented in a configuration using other spatial optical systems.

(実施形態2)
図4に、本発明の一実施形態に係る動的焦点移動型光干渉断層顕微鏡の光学系を示す。波長掃引光はビームスプリッタ201によって2つに分岐され、一方は参照光としてミラー202で反射されフォトディテクタ203へ進む。もう一方の光束はレンズ204によってピンホール205に集光され、レンズ206でコリメートされた後、可変焦点レンズ207とレンズ208によって被測定物220内で集光される。反射光はレンズ208、可変焦点レンズ207、レンズ206を通ってピンホール205を透過後、レンズ204、ビームスプリッタ201を経由してフォトディテクタ203に進む。フォトディテクタ203以降の処理は、実施形態1と同じである。
(Embodiment 2)
FIG. 4 shows an optical system of a dynamic focus shift optical coherence tomographic microscope according to an embodiment of the present invention. The wavelength swept light is split into two by the beam splitter 201, one of which is reflected by the mirror 202 as reference light and proceeds to the photodetector 203. The other light beam is condensed in the pinhole 205 by the lens 204, collimated by the lens 206, and then condensed in the measured object 220 by the variable focus lens 207 and the lens 208. The reflected light passes through the lens 208, the variable focus lens 207, and the lens 206, passes through the pinhole 205, and proceeds to the photodetector 203 through the lens 204 and the beam splitter 201. The processes after the photodetector 203 are the same as those in the first embodiment.

図5に、本発明の一実施例に係る動的焦点移動型光干渉断層顕微鏡の光学系を示す。波長掃引光は、中心波長1.3μm、掃引幅100nm、掃引周波数200kHz(デューティ90%)、ビーム径3mmφの直線偏光した光とする。   FIG. 5 shows an optical system of a dynamic focus shift optical coherence tomographic microscope according to one embodiment of the present invention. The wavelength swept light is linearly polarized light having a center wavelength of 1.3 μm, a sweep width of 100 nm, a sweep frequency of 200 kHz (duty 90%), and a beam diameter of 3 mmφ.

ビームは偏向ビームスプリッタ301によって2光束に分岐され、図面上方に進行する光を参照光、図面右方向に進む光を信号光とする。   The beam is split into two light beams by the deflecting beam splitter 301, and light traveling upward in the drawing is referred to as reference light, and light traveling in the right direction in the drawing is referred to as signal light.

参照光は、λ/4波長板302を経由し、ミラー303で反射され、再びλ/4波長板302と偏向ビームスプリッタ301を経由してフォトディテクタ304に達する。   The reference light passes through the λ / 4 wavelength plate 302, is reflected by the mirror 303, and reaches the photodetector 304 again through the λ / 4 wavelength plate 302 and the deflecting beam splitter 301.

信号光は、λ/4波長板302を経由し、焦点距離7.5mmのレンズ305を経由し、直径7μmのピンホール306を経由し、同じく焦点距離7.5mmのレンズ307によってコリメートされる。KTN可変焦点レンズ308は4個用い、中央に半波長板309を挟む。4個のKTN可変焦点レンズ308と半波長板309とは、それら全体として焦点距離が∞〜20cmの間で変化可能なように電圧制御される。   The signal light passes through the λ / 4 wavelength plate 302, passes through the lens 305 having a focal length of 7.5 mm, passes through the pinhole 306 having a diameter of 7 μm, and is collimated by the lens 307 having the focal length of 7.5 mm. Four KTN variable focus lenses 308 are used, and a half-wave plate 309 is sandwiched between them. The four KTN variable focus lenses 308 and the half-wave plate 309 are voltage-controlled so that the focal length can be changed between ∞ and 20 cm as a whole.

次いで、信号光は、1kHzで駆動する可動ミラー(ガルバノミラー)310によって方向を変調させる機構を経由して、焦点距離20mmのレンズ311を経由して被測定物320内で集光させる。   Next, the signal light is condensed in the measured object 320 via a lens 311 having a focal length of 20 mm via a mechanism whose direction is modulated by a movable mirror (galvanometer mirror) 310 driven at 1 kHz.

KTN可変焦点レンズ308とレンズ311の合成による、焦点位置可変幅は約2mmとなる。被測定物320の屈折率を1.3とすると、集光スポットサイズは13μmであるから、面内分解能は約10μmとなる。焦点深度は130μmであるから、参照光との干渉を用いなければ、奥行き方向の分解能は面内方向に比べて格段に劣化する。   The focal position variable width obtained by combining the KTN variable focal lens 308 and the lens 311 is about 2 mm. If the refractive index of the object 320 to be measured is 1.3, the focused spot size is 13 μm, so the in-plane resolution is about 10 μm. Since the depth of focus is 130 μm, the resolution in the depth direction is significantly degraded compared to the in-plane direction unless interference with the reference light is used.

200kHzのデューティ90%にて、ビームの周期T=4.5μsであるから、奥行き分解能ΔL=10μmを要求すると、周波数可変バンドパスフィルタのバンド幅は340kHzが要求される。尚、波長掃引、可変焦点レンズ、周波数可変バンドパスフィルタの波長は、実施形態1,2と同様に同期させている。   Since the beam period T = 4.5 μs at a duty of 90% at 200 kHz, if a depth resolution ΔL = 10 μm is required, the bandwidth of the frequency variable bandpass filter is required to be 340 kHz. Note that the wavelengths of the wavelength sweep, the variable focus lens, and the frequency variable bandpass filter are synchronized as in the first and second embodiments.

101 シングルモードファイバ
102 ファイバカプラ
103、105、106、107、204、206、208、305、307、311 レンズ
104、207 可変焦点レンズ
108、202、303 ミラー
109、203、304 フォトディテクタ
120、220、320 被測定物
110 周波数可変バンドパスフィルタ
201、301 ビームスプリッタ
205、306 ピンホール
302 λ/4波長板
308 KTN可変焦点レンズ
309 半波長板
310 可動ミラー
101 Single mode fiber 102 Fiber coupler 103, 105, 106, 107, 204, 206, 208, 305, 307, 311 Lens 104, 207 Variable focus lens 108, 202, 303 Mirror 109, 203, 304 Photo detector 120, 220, 320 DUT 110 Frequency variable bandpass filter 201, 301 Beam splitter 205, 306 Pinhole 302 λ / 4 wavelength plate 308 KTN variable focus lens 309 Half wavelength plate 310 Movable mirror

Claims (5)

測定対象物内で焦点を持つレンズを備えた光干渉断層顕微鏡であって、
光の中心周波数が時間的に掃引される波長掃引光を出力する光源と、
前記波長掃引光を前記測定対象物の焦点位置に照射し、前記焦点位置からの反射光を選択的に取り出す共焦点光学系と、
前記焦点位置を光軸方向に移動可能な可変焦点レンズと、
前記焦点位置からの反射光を受光するフォトディテクタと、
前記焦点位置と同期してフィルタ周波数を変化させる周波数可変バンドパスフィルタであって、前記可変焦点レンズにより前記焦点位置が変調されているときに、前記フォトディテクタから出力された信号から前記フィルタ周波数の成分のみを抽出する、前記周波数可変バンドパスフィルタと、
を備えたことを特徴とする動的焦点移動型光干渉断層顕微鏡。
An optical coherence tomography microscope having a lens having a focal point in a measurement object,
A light source that outputs wavelength-swept light in which the center frequency of light is swept in time;
A confocal optical system that irradiates the focus position of the measurement object with the wavelength swept light and selectively extracts reflected light from the focus position;
A variable focus lens capable of moving the focal position in the optical axis direction;
A photodetector for receiving reflected light from the focal position;
A frequency variable bandpass filter that changes a filter frequency in synchronization with the focal position, and a component of the filter frequency from a signal output from the photodetector when the focal position is modulated by the variable focus lens Extracting only the frequency variable bandpass filter ; and
A dynamic focal shift optical coherence tomographic microscope characterized by comprising:
光合分波器と、
ミラーと、
をさらに備え、前記光合分波器は、前記波長掃引光を前記測定対象物に照射する光と前記ミラーに照射する光とに分波し、前記測定対象物および前記ミラーからの反射光を合波して前記フォトディテクタに出射し、前記ミラーは、前記光合分波器からの光路長が前記光合分波器と前記測定対象物の焦点位置間の光路長と等しくなるよう配置されていることを特徴とする請求項1に記載の動的焦点移動型光干渉断層顕微鏡。
Optical multiplexer / demultiplexer,
Mirror,
The optical multiplexer / demultiplexer demultiplexes the wavelength swept light into light that irradiates the object to be measured and light that irradiates the mirror, and combines the reflected light from the object to be measured and the mirror. And the mirror is arranged such that the optical path length from the optical multiplexer / demultiplexer is equal to the optical path length between the optical multiplexer / demultiplexer and the focal position of the measurement object. The dynamic focus shift optical coherence tomographic microscope according to claim 1, wherein
前記可変焦点レンズは、電気光学結晶KTa 1-x Nb x 3 を用いた可変焦点レンズを含むことを特徴とする請求項1に記載の動的焦点移動型光干渉断層顕微鏡。 The variable focus lens, the electro-optic crystal KTa 1-x Nb x O 3 dynamic focus moving optical coherence tomography microscope according to claim 1, characterized in that it comprises a variable focus lens using. 前記光合分波器は、光導波路型の合分波器およびビームスプリッタのいずれかであることを特徴とする請求項に記載の動的焦点移動型光干渉断層顕微鏡。 3. The dynamic focus shift optical coherence tomography microscope according to claim 2 , wherein the optical multiplexer / demultiplexer is one of an optical waveguide type multiplexer / demultiplexer and a beam splitter. 前記周波数可変バンドパスフィルタは、前記フィルタ周波数が前記焦点位置からの反射光のビート周波数と一致するよう設定されることを特徴とする請求項1に記載の動的焦点移動型光干渉断層顕微鏡。   2. The dynamic focus shift optical coherence tomography microscope according to claim 1, wherein the variable frequency bandpass filter is set so that the filter frequency matches a beat frequency of reflected light from the focal position.
JP2012268665A 2012-12-07 2012-12-07 Dynamic focus shift optical coherence tomography microscope Active JP5975522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012268665A JP5975522B2 (en) 2012-12-07 2012-12-07 Dynamic focus shift optical coherence tomography microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268665A JP5975522B2 (en) 2012-12-07 2012-12-07 Dynamic focus shift optical coherence tomography microscope

Publications (2)

Publication Number Publication Date
JP2014115161A JP2014115161A (en) 2014-06-26
JP5975522B2 true JP5975522B2 (en) 2016-08-23

Family

ID=51171319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268665A Active JP5975522B2 (en) 2012-12-07 2012-12-07 Dynamic focus shift optical coherence tomography microscope

Country Status (1)

Country Link
JP (1) JP5975522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144217A (en) * 2017-04-25 2017-09-08 西安交通大学 Fiber optic interferometric confocal system for optical element crudy on-line checking

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467279B2 (en) * 2015-04-22 2019-02-13 日本電信電話株式会社 Signal processing device
CN105091776B (en) * 2015-08-28 2017-07-18 中国科学院半导体研究所 The optical-fiber laser static strain beat frequency demodulating system modulated based on single-side belt frequency sweep
WO2017086442A1 (en) * 2015-11-18 2017-05-26 株式会社ニコン Imaging capture element, measurement device, and measurement method
JP6848488B2 (en) * 2017-01-31 2021-03-24 株式会社ニデック Optical coherence tomography
DE102017109554A1 (en) * 2017-05-04 2018-11-08 Leica Microsystems Cms Gmbh Optical arrangement for a confocal microscope, confocal microscope and method of operating a confocal microscope
WO2019181553A1 (en) * 2018-03-22 2019-09-26 ソニー株式会社 Surgical microscope system
CN109827643B (en) * 2019-04-11 2024-10-11 中国计量大学 Contact temperature insensitive balance based on white light interference
JP7443156B2 (en) 2020-05-18 2024-03-05 株式会社ミツトヨ Measuring device and method
GB202020740D0 (en) 2020-12-30 2021-02-10 Occuity Ltd Optical measurement apparatus and method of rapid measurement
GB2607041B (en) 2021-05-26 2024-08-14 Occuity Ltd Optical measurement apparatus and method of rapid measurement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933336B2 (en) * 2007-04-13 2012-05-16 サンテック株式会社 Optical tomographic image display system and optical tomographic image display method
CN102449536B (en) * 2009-06-12 2015-03-25 日本电信电话株式会社 Variable focus lens and microscope
JP5679686B2 (en) * 2010-03-18 2015-03-04 キヤノン株式会社 Optical coherence tomography system
US20120075639A1 (en) * 2010-09-24 2012-03-29 Jeffrey Brennan Imaging systems and methods incorporating non-mechanical scanning beam actuation
EP2485009A1 (en) * 2011-02-04 2012-08-08 Haag-Streit Ag Frequency domain OCT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144217A (en) * 2017-04-25 2017-09-08 西安交通大学 Fiber optic interferometric confocal system for optical element crudy on-line checking
CN107144217B (en) * 2017-04-25 2019-05-24 西安交通大学 Fiber optic interferometric confocal system for optical element processing quality on-line checking

Also Published As

Publication number Publication date
JP2014115161A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5975522B2 (en) Dynamic focus shift optical coherence tomography microscope
US9835840B2 (en) Methods for optical amplified imaging using a two-dimensional spectral brush
US10317656B2 (en) Optical coherence tomography apparatus and method using line confocal filtering
KR102326133B1 (en) Common-path integrated low coherence interferometry system and method therefor
US10533837B2 (en) Multichannel optical receivers
JP4869896B2 (en) Optical tomographic imaging system
JP4344829B2 (en) Polarized light receiving image measuring device
JP5541831B2 (en) Optical tomographic imaging apparatus and operating method thereof
JP6125981B2 (en) Sample clock generator for optical tomographic imaging apparatus, and optical tomographic imaging apparatus
JP2007101250A (en) Optical tomographic imaging method
EP1780530A1 (en) Multiplexing spectrum interference optical coherence tomography
US20140125983A1 (en) Interferometery on a planar substrate
JP2008128708A (en) Optical tomographic imaging apparatus
JP2008298767A (en) Image forming method using optical interference tomograph meter, and optical interference tomogram
JP2011528801A (en) Extended range imaging
CN103175837B (en) Method and device for detecting defect in matrix
KR20120018359A (en) Imaging device and imaging method
US20230341222A1 (en) Systems, methods, and media for multiple beam optical coherence tomography
US20200359903A1 (en) Coherence gated photoacoustic remote sensing (cg-pars)
JP2016090280A (en) Optical tomographic image imaging device and imaging method using the same
US9234840B2 (en) Determination of a material characteristic with the use of second-order photon correlation
KR20080076303A (en) Spatial-domain optical coherence tomography
KR100849193B1 (en) Optical coherence tomography system
JP2012202910A (en) Reflected light measuring apparatus
JP2009300097A (en) Optical tomographic imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5975522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250