JP5973607B1 - Vacuum suction casting method - Google Patents

Vacuum suction casting method Download PDF

Info

Publication number
JP5973607B1
JP5973607B1 JP2015058889A JP2015058889A JP5973607B1 JP 5973607 B1 JP5973607 B1 JP 5973607B1 JP 2015058889 A JP2015058889 A JP 2015058889A JP 2015058889 A JP2015058889 A JP 2015058889A JP 5973607 B1 JP5973607 B1 JP 5973607B1
Authority
JP
Japan
Prior art keywords
molten metal
mold
cavity
melting furnace
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015058889A
Other languages
Japanese (ja)
Other versions
JP2016175116A (en
Inventor
友三 陳
友三 陳
Original Assignee
美達工業股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美達工業股▲ふん▼有限公司 filed Critical 美達工業股▲ふん▼有限公司
Priority to JP2015058889A priority Critical patent/JP5973607B1/en
Application granted granted Critical
Publication of JP5973607B1 publication Critical patent/JP5973607B1/en
Publication of JP2016175116A publication Critical patent/JP2016175116A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】鋳物の薄型化を実現し、生産コストを低下させ、生産量を高め、製造工程を簡素化し、鋳物の品質を高めることができる減圧吸引鋳造方法を提供する。【解決手段】先ず、溶解炉2内に溶融した溶湯9を充填し、吸上げ管4を有する平板3を溶解炉2の上端に被せ、吸上げ管4の底端を溶湯9中に進入させる。次に、通気性を有する鋳型5を平板3上に設置し、鋳型5の流路53と吸上げ管4の上端とを連通させる。次に、カバー体6を鋳型5及び平板3の上方に被せ、カバー体6内の空気を抽出してカバー体6及びキャビティ5内の空気圧力を下げる。キャビティ5内が減圧されることにより、溶解炉2内の溶湯9が吸上げ管4及び流路53からキャビティ51内に吸入され、冷却された後、鋳物が成型される。【選択図】図1Disclosed is a vacuum suction casting method that can reduce the thickness of castings, reduce production costs, increase production, simplify manufacturing processes, and improve casting quality. First, molten metal 9 is filled in a melting furnace 2, a flat plate 3 having a suction pipe 4 is placed on the upper end of the melting furnace 2, and the bottom end of the suction pipe 4 is made to enter the molten metal 9. . Next, the mold 5 having air permeability is placed on the flat plate 3 so that the flow path 53 of the mold 5 and the upper end of the suction pipe 4 are communicated. Next, the cover body 6 is placed over the mold 5 and the flat plate 3, the air in the cover body 6 is extracted, and the air pressure in the cover body 6 and the cavity 5 is lowered. When the inside of the cavity 5 is depressurized, the molten metal 9 in the melting furnace 2 is sucked into the cavity 51 from the suction pipe 4 and the flow path 53 and cooled, and then the casting is molded. [Selection] Figure 1

Description

本発明は、鋳造方法に関し、特に、減圧によって溶湯を吸い上げて鋳型内に進入させ、鋳物を形成する減圧吸引鋳造方法に関する。   The present invention relates to a casting method, and more particularly, to a vacuum suction casting method for forming a casting by sucking up molten metal by pressure reduction and entering the mold.

図5を参照する。図5は、従来の鋼鉄鋳造工場における重力鋳造方法を示す断面図である。従来の重力鋳造方法では、先ず、溶解炉で鋼材を1450℃〜1700℃に溶融した後、高温の溶湯を鋳込みバケットd内に充填する。次に、バケットdを傾斜させて溶湯を予め製作した鋳型a内に鋳込みし、重力によって流路bの湯溜まり部b1、湯口b2及び湯道b3を通過させ、堰(gate)b4からキャビティc内に進入させる。溶湯が冷却されて凝固した後、鋳型aから取り出し、適切な清掃及び加工を行うと、所望の鋳物が取得される。   Please refer to FIG. FIG. 5 is a cross-sectional view showing a gravity casting method in a conventional steel foundry. In the conventional gravity casting method, first, a steel material is melted at 1450 ° C. to 1700 ° C. in a melting furnace, and then a high temperature molten metal is filled in the casting bucket d. Next, the bucket d is tilted and the molten metal is cast into a prefabricated mold a, and is allowed to pass through the hot water pool b1, the sprue b2 and the runner b3 of the flow path b by gravity, and from the dam b4 to the cavity c Enter inside. After the molten metal is cooled and solidified, it is taken out from the mold a and subjected to appropriate cleaning and processing to obtain a desired casting.

上述の従来の鋳造方法は、主に鉄鋼の鋳造に使用される。しかし、鋳造のコスト及び品質に関して以下(1)〜(3)に示す欠点を有する。   The conventional casting method described above is mainly used for casting steel. However, it has the following drawbacks (1) to (3) regarding the cost and quality of casting.

(1)肉厚が約3.5mm以下の鋳物を鋳造する場合に欠点を有する。重力によって溶湯が砂型内に鋳込みされる際、溶湯が流路を通過する必要があるが、キャビティ内の空気によって阻止されるため、溶湯の流速があまり速くならず、肉厚が薄いほど、流速が遅くなり、流路が長いほど、溶湯が早く冷却されるため、溶湯の温度が低くて流動性が不足する場合、鋳物を肉薄に成型するのが難しく、優良な製品を鋳造するのが難しい。   (1) There is a drawback in casting a casting having a wall thickness of about 3.5 mm or less. When the molten metal is cast into the sand mold by gravity, the molten metal needs to pass through the flow path. However, since the molten metal is blocked by the air in the cavity, the flow rate of the molten metal is not so high and the thinner the wall thickness, The longer the flow path, the faster the molten metal cools. Therefore, when the molten metal temperature is low and the fluidity is insufficient, it is difficult to mold the casting thinly, and it is difficult to cast a good product. .

(2)溶解温度が1700℃より高い温度になると、溶湯の流動性が増すため、肉薄の鋳物を鋳造しやすくなるが、溶解温度を高くするためには、電力を多く使用する必要がある上、溶解炉の耐火材料の寿命が大幅に短くなり、耐火材料の交換頻度が高くなる。これにより、耐火材料の交換にコストが多くかかる上、交換することによって生産を中断する必要があるため、生産能力が低下する。また、溶湯の溶解温度が1700℃を超えた場合、溶解炉内の耐火材料が溶湯内に溶け出すため、溶湯内の酸化物を含む不純物が増加し、鋳物の純度及び機械的性能が影響を受ける。   (2) When the melting temperature is higher than 1700 ° C., the fluidity of the molten metal increases, so that it becomes easy to cast a thin casting. However, in order to increase the melting temperature, it is necessary to use a lot of electric power. The life of the refractory material of the melting furnace is greatly shortened, and the replacement frequency of the refractory material is increased. As a result, it takes a lot of cost to replace the refractory material, and it is necessary to interrupt the production by replacing the refractory material. In addition, when the melting temperature of the molten metal exceeds 1700 ° C., the refractory material in the melting furnace starts to melt into the molten metal, so that impurities including oxides in the molten metal increase, which affects the purity and mechanical performance of the casting. receive.

(3)鋳込み過程中、溶湯を湯溜まり部、湯口、湯道などの流路に充満させなければ、キャビティ内に流れない。しかし、流路内の溶湯は、キャビティ内の溶湯と同時に冷却されて凝固する。即ち、溶湯が流路に残留するために、溶湯が浪費され、鋳物と鋳込みした溶湯の総量との比率(即ち歩留まり)を有効に高めることができない。即ち、溶湯を有効に節約し、資源を有効に節約して生産コストを低下させることができない。   (3) During the casting process, the molten metal does not flow into the cavity unless the molten metal is filled in the flow path such as the pool, the gate, and the runner. However, the molten metal in the flow path is cooled and solidified simultaneously with the molten metal in the cavity. That is, since the molten metal remains in the flow path, the molten metal is wasted, and the ratio between the casting and the total amount of the molten molten metal (that is, the yield) cannot be effectively increased. That is, it is not possible to effectively save molten metal, effectively save resources, and reduce production costs.

上述の従来技術の欠点に鑑み、本発明の発明者は、長年に渡る経験及び弛まぬ研究から、本発明を案出した。   In view of the above-mentioned drawbacks of the prior art, the inventors of the present invention have devised the present invention from many years of experience and unremitting research.

特開2014−34057号公報JP 2014-34057 A

本発明の第1の目的は、従来技術における溶湯の温度が低い場合、肉薄の鋳物を成型することが難しい問題を解決することができ、鋳物の薄型化を実現することができる減圧吸引鋳造方法を提供することにある。
本発明の第2の目的は、従来技術における溶解温度が高すぎる場合の欠点を解決することができ、消費電力を低減し、耐火材料の損壊及び交換頻度を減少させ、鋳物の純度及び機械的性能を高め、生産コストを低下させることができる減圧吸引鋳造方法を提供することにある。
本発明の第3の目的は、従来技術における過多の溶湯が流路内に停留して歩留まりを高められない問題を解決することができ、溶湯を回収して再製造するコストを節約し、生産量を有効に高めることができる減圧吸引鋳造方法を提供することにある。
本発明の第4の目的は、従来技術の鋳造がバケットで鋳込みを行わなければならない欠点を解決することができ、バケット及び関連設備を使用する必要がなく、生産コストを低下させることができる減圧吸引鋳造方法を提供することにある。
The first object of the present invention is to provide a vacuum suction casting method capable of solving the problem that it is difficult to mold a thin casting when the temperature of the molten metal in the prior art is low, and realizing a reduction in the thickness of the casting. Is to provide.
The second object of the present invention is to solve the drawbacks in the prior art when the melting temperature is too high, reduce the power consumption, reduce the damage and replacement frequency of the refractory material, and improve the purity and mechanical properties of the casting. An object of the present invention is to provide a vacuum suction casting method capable of improving performance and reducing production cost.
The third object of the present invention is to solve the problem that the excess molten metal in the prior art is not retained in the flow path and the yield cannot be increased, and the cost of collecting and remanufacturing the molten metal is saved. The object is to provide a vacuum suction casting method capable of effectively increasing the amount.
The fourth object of the present invention is to solve the disadvantage that the prior art casting has to be cast in the bucket, no need to use the bucket and related equipment, and to reduce the production cost It is to provide a suction casting method.

上述の課題を解決するために、本発明は、減圧吸引鋳造方法を提供するものである。本発明の減圧吸引鋳造方法には、少なくとも1つの鋳物を成型する鋳型が準備される。鋳型内には、互いに連通するキャビティ及び流路が設けられる。本発明の減圧吸引鋳造方法は、以下(a)、(b)、(c)及び(d)のステップを含む。
(a)吸上げ管を有する平板を溶解炉の上端に被せる。溶解炉内には、溶融した溶湯が充填されており、吸上げ管の底端は、溶湯中に進入している。
(b)鋳型上にキャビティに連通する空気通路を形成し、鋳型を平板上に設置し、鋳型の流路と吸上げ管の上端とを連通させる。
(c)カバー体を鋳型及び平板の上方に被せ、カバー体内の空気を抽出してカバー体及びキャビティ内の空気圧力を下げ、吸上げ管から溶解炉内の溶湯を上方に吸上げてキャビティ内に流入させる。
(d)所定時間静置し、流路とキャビティとの間の堰を凝固させ、カバー体内の空気の減圧状態を解放し、流路中の溶湯を溶解炉内に逆流させる。
In order to solve the above-described problems, the present invention provides a vacuum suction casting method. In the vacuum suction casting method of the present invention, a mold for molding at least one casting is prepared. A cavity and a flow path communicating with each other are provided in the mold. The vacuum suction casting method of the present invention includes the following steps (a), (b), (c) and (d).
(A) A flat plate having a suction pipe is placed on the upper end of the melting furnace. The melting furnace is filled with molten molten metal, and the bottom end of the suction pipe enters the molten metal.
(B) An air passage communicating with the cavity is formed on the mold, the mold is placed on a flat plate, and the flow path of the mold is communicated with the upper end of the suction pipe.
(C) Cover the cover body over the mold and the flat plate, extract the air in the cover body to lower the air pressure in the cover body and the cavity, and suck up the molten metal in the melting furnace upward from the suction pipe. To flow into.
(D) Let stand for a predetermined time, solidify the weir between the flow path and the cavity, release the reduced pressure state of the air in the cover body, and reversely flow the molten metal in the flow path into the melting furnace.

本発明は、ステップ(d)の後、カバー体を移動させ、鋳型と平板とを分離させるステップを更に含む。   The present invention further includes a step of moving the cover body and separating the mold and the flat plate after the step (d).

鋳型は、砂型である。鋳型上の空気通路は、砂型の各砂粒の隙間である。溶解炉内の溶湯を溶融する温度は、1400℃〜1600℃の間である。   The mold is a sand mold. The air passage on the mold is a gap between the sand grains. The temperature for melting the molten metal in the melting furnace is between 1400 ° C and 1600 ° C.

本発明は、以下(1)〜(5)に示す効果を実現することができる。
(1)本発明は、減圧吸引する方式で溶湯をキャビティ内に吸入するため、鋳物の肉厚を2.5mm以下に縮減させることができる。即ち、鋳物の薄型化を実現させることができるため、特殊な製品の製作にも対応することができる。
(2)本発明は、減圧吸引する方式で溶湯をキャビティ内に吸入するため、溶湯の温度が1400℃〜1600℃の間でも流路内をスムーズに流動させることができる。即ち、溶湯の溶解温度を下げることによって電力消費量を低減させて省エネを実現することができ、耐火材料が損壊して溶湯内に溶入するのを減少させることができるため、鋳物の純度及び機械的性能を高めることができる上、溶解炉の耐火材料の交換頻度を減少させて生産コストを低減させることができる。
(3)本発明は、鋳造が完了した後、凝固していない溶湯が溶解炉内に逆流して次回の鋳造に使用することができるため、歩留まりを有効に高め、回収して再製造するコストを低減させ、生産量を高めることができる。
(4)本発明は、減圧吸引する方式で溶湯をキャビティ内に吸入するため、溶湯の溶解温度を下げることができ、流路を短くすることができるため、凝固していない溶湯が溶解炉内に逆流する際、溶湯内に不純物が混合することがない。即ち、不純物が鋼材鋳物の機械的性能に影響を与えることがない。
(5)本発明の溶解炉は、コイルで加熱する溶解炉であるため、溶解した溶湯を直接提供し、吸上げ管によって吸上げて鋳物に成型することができる。即ち、鋳造工程を簡単で効率的にすることができ、バケット及び関連設備を使用する必要がないため、生産コストを低減させることができる。
The present invention can realize the following effects (1) to (5).
(1) In the present invention, since the molten metal is sucked into the cavity by suction under reduced pressure, the thickness of the casting can be reduced to 2.5 mm or less. That is, since the casting can be thinned, it is possible to manufacture special products.
(2) In the present invention, since the molten metal is sucked into the cavity by a method of sucking under reduced pressure, the flow path can be smoothly flowed even when the temperature of the molten metal is between 1400 ° C and 1600 ° C. That is, by lowering the melting temperature of the molten metal, it is possible to reduce the power consumption and realize energy saving, and it is possible to reduce the refractory material from being broken and entering into the molten metal. The mechanical performance can be improved, and the production cost can be reduced by reducing the replacement frequency of the refractory material of the melting furnace.
(3) In the present invention, after the casting is completed, the non-solidified molten metal flows back into the melting furnace and can be used for the next casting. Therefore, the yield is effectively increased, and the cost for recovering and remanufacturing is increased. The production volume can be increased.
(4) In the present invention, since the molten metal is sucked into the cavity by a vacuum suction method, the melting temperature of the molten metal can be lowered and the flow path can be shortened. When backflowing, no impurities are mixed in the molten metal. That is, the impurities do not affect the mechanical performance of the steel casting.
(5) Since the melting furnace of the present invention is a melting furnace heated by a coil, the molten metal can be directly provided and sucked up by a suction pipe and molded into a casting. That is, the casting process can be made simple and efficient, and it is not necessary to use buckets and related equipment, so that production costs can be reduced.

本発明を実施する際に使用される各部材を示す分解断面図である。It is an exploded sectional view showing each member used when carrying out the present invention. 本発明を実施する際に使用される各部材を示す断面図である。It is sectional drawing which shows each member used when implementing this invention. 本発明の減圧時の状態を示す断面図である。It is sectional drawing which shows the state at the time of pressure reduction of this invention. 本発明の溶湯が溶解炉に逆流する状態を示す断面図である。It is sectional drawing which shows the state which the molten metal of this invention flows backward into a melting furnace. 従来の砂型鋳造法の鋳型内に溶湯を鋳込みする状態を示す断面図である。It is sectional drawing which shows the state which casts a molten metal in the casting_mold | template of the conventional sand type | mold casting method.

本発明の目的、特徴及び効果を示す実施形態を図面に沿って詳細に説明する。   DESCRIPTION OF EMBODIMENTS Embodiments showing the objects, features, and effects of the present invention will be described in detail with reference to the drawings.

図1〜図4を参照する。図1〜図4に示すように、本発明の減圧吸引鋳造方法は、以下(a)、(b)、(c)及び(d)のステップを含む。   Please refer to FIGS. As shown in FIGS. 1 to 4, the vacuum suction casting method of the present invention includes the following steps (a), (b), (c) and (d).

(a)吸上げ管4を有する平板3を溶解炉2の上端に被せる。溶解炉2内には、溶融した溶湯9が充填されており、吸上げ管4の底端は、溶湯9中に進入している。   (A) The flat plate 3 having the suction pipe 4 is placed on the upper end of the melting furnace 2. The melting furnace 2 is filled with a molten metal 9, and the bottom end of the suction pipe 4 enters the molten metal 9.

(b)鋳型5上にキャビティ51に連通する空気通路52を形成し、鋳型5を平板3上に設置し、鋳型5の流路53と吸上げ管4の上端とを連通させる。   (B) An air passage 52 communicating with the cavity 51 is formed on the mold 5, the mold 5 is placed on the flat plate 3, and the flow path 53 of the mold 5 and the upper end of the suction pipe 4 are communicated.

(c)カバー体6を鋳型5及び平板3の上方に被せ、カバー体6内の空気を抽出してカバー体6及びキャビティ51内の空気圧力を下げ、吸上げ管4から溶解炉2内の溶湯9を上方に吸上げてキャビティ51内に流入させて鋳物を成型する。   (C) Cover the cover body 6 over the mold 5 and the flat plate 3, extract the air in the cover body 6 to lower the air pressure in the cover body 6 and the cavity 51, and reduce the air pressure in the melting furnace 2 from the suction pipe 4. The molten metal 9 is sucked upward and flows into the cavity 51 to mold a casting.

(d)所定時間静置し、流路53とキャビティ51との間の堰54を凝固させ、カバー体6内の空気の減圧状態を解放し、流路53中の溶湯9を溶解炉2内に逆流させる。   (D) Let stand for a predetermined time, solidify the weir 54 between the flow path 53 and the cavity 51, release the reduced pressure state of the air in the cover body 6, and melt the molten metal 9 in the flow path 53 in the melting furnace 2. To reverse flow.

ステップ(a)の溶解炉2は、コイルで加熱する溶解炉である。溶湯9の溶融温度は、1400℃〜1600℃の間に制御する。吸上げ管4は、平板3を垂直に貫通する。吸上げ管4の底端の開口は、溶湯9中に進入する。吸上げ管4の上端の開口と平板3の上面とは、略同一平面上に位置する。   The melting furnace 2 in step (a) is a melting furnace heated by a coil. The melting temperature of the molten metal 9 is controlled between 1400 ° C and 1600 ° C. The suction pipe 4 penetrates the flat plate 3 vertically. The opening at the bottom end of the suction pipe 4 enters the molten metal 9. The opening at the upper end of the suction pipe 4 and the upper surface of the flat plate 3 are located on substantially the same plane.

ステップ(b)の鋳型5は、砂型である。鋳型5上の空気通路52は、砂型の各砂粒間の隙間であり、通気性を有する。鋳型5の流路53の入口531は、鋳型5の底面に形成される。これにより、鋳型5を平板3上に設置すると、入口531が吸上げ管4の上端の開口に位置合わせされ、鋳型5の流路53と吸上げ管4の上端とが連通する。   The mold 5 in step (b) is a sand mold. The air passage 52 on the mold 5 is a gap between sand grains of the sand mold and has air permeability. An inlet 531 of the flow path 53 of the mold 5 is formed on the bottom surface of the mold 5. Thus, when the mold 5 is placed on the flat plate 3, the inlet 531 is aligned with the opening at the upper end of the suction pipe 4, and the flow path 53 of the mold 5 and the upper end of the suction pipe 4 communicate with each other.

ステップ(c)中、カバー体6は、底面に開口が形成された中空容器である。カバー体6の上端には、吸気管61が接続される。これにより、カバー体6が鋳型5及び平板3の上方に被せられると、真空ポンプでカバー体6内の空気を抽出することができる。この際、鋳型5が通気性を有するため、カバー体6内の空気圧力は、キャビティ51、流路53及び吸上げ管4内の空気圧力と同一となる。
これにより、溶解炉2内の溶湯9を減圧吸引し、溶湯9を吸上げ管4から上方に流動させ、流路53からキャビティ51内に流入させることができる。実施時、キャビティ51を複数設置し、複数の鋳物を同時に成型することができる。
During step (c), the cover body 6 is a hollow container having an opening formed on the bottom surface. An intake pipe 61 is connected to the upper end of the cover body 6. Thereby, when the cover body 6 is placed over the mold 5 and the flat plate 3, the air in the cover body 6 can be extracted by the vacuum pump. At this time, since the mold 5 has air permeability, the air pressure in the cover body 6 is the same as the air pressure in the cavity 51, the channel 53 and the suction pipe 4.
As a result, the molten metal 9 in the melting furnace 2 is sucked under reduced pressure, and the molten metal 9 can flow upward from the suction pipe 4 and flow into the cavity 51 from the flow path 53. At the time of implementation, a plurality of cavities 51 can be installed and a plurality of castings can be molded simultaneously.

ステップ(d)中、溶湯9をキャビティ51内に流入させた後、先ず、所定時間静置し、キャビティ51内の溶湯9が完全に凝固しておらず、流路53とキャビティ51との間の堰54が凝固した際、カバー体6内の空気減圧状態を解放し、流路53中の凝固していない溶湯9を溶解炉2内に逆流させる。   During the step (d), after the molten metal 9 flows into the cavity 51, first, the molten metal 9 is left to stand for a predetermined time, and the molten metal 9 in the cavity 51 is not completely solidified. When the weir 54 solidifies, the air decompression state in the cover body 6 is released, and the non-solidified molten metal 9 in the flow path 53 flows back into the melting furnace 2.

溶湯9が溶解炉2内に完全に逆流した後、カバー体6を移動させ、鋳型5と平板3とを分離させ、鋳型5内の溶湯9を継続して冷却する。また、平板3上に新しい鋳型5を設置し、次の鋳造作業を行う。   After the molten metal 9 completely flows back into the melting furnace 2, the cover body 6 is moved, the mold 5 and the flat plate 3 are separated, and the molten metal 9 in the mold 5 is continuously cooled. Moreover, the new casting_mold | template 5 is installed on the flat plate 3, and the next casting operation is performed.

本発明は、以下(1)〜(5)に示す効果を実現することができる。   The present invention can realize the following effects (1) to (5).

(1)本発明は、減圧吸引する方式で溶湯をキャビティ内に吸入するため、鋳物の肉厚を2.5mm以下に縮減させることができる。即ち、鋳物の薄型化を実現させることができるため、特殊な製品の製作にも対応することができる。   (1) In the present invention, since the molten metal is sucked into the cavity by suction under reduced pressure, the thickness of the casting can be reduced to 2.5 mm or less. That is, since the casting can be thinned, it is possible to manufacture special products.

(2)本発明は、減圧吸引する方式で溶湯をキャビティ内に吸入するため、溶湯の温度が1400℃〜1600℃の間でも流路内をスムーズに流動させることができる。即ち、溶湯の溶解温度を下げることによって電力消費量を低減させて省エネを実現することができ、耐火材料が損壊して溶湯内に溶入するのを減少させることができるため、鋳物の純度及び機械的性能を高めることができる上、溶解炉の耐火材料の交換頻度を減少させて生産コストを低減させることができる。   (2) In the present invention, since the molten metal is sucked into the cavity by a method of sucking under reduced pressure, the flow path can be smoothly flowed even when the temperature of the molten metal is between 1400 ° C and 1600 ° C. That is, by lowering the melting temperature of the molten metal, it is possible to reduce the power consumption and realize energy saving, and it is possible to reduce the refractory material from being broken and entering into the molten metal. The mechanical performance can be improved, and the production cost can be reduced by reducing the replacement frequency of the refractory material of the melting furnace.

(3)本発明は、鋳造が完了した後、凝固していない溶湯が溶解炉内に逆流して次回の鋳造に使用することができるため、歩留まりを有効に高め、回収して再製造するコストを低減させ、生産量を高めることができる。   (3) In the present invention, after the casting is completed, the non-solidified molten metal flows back into the melting furnace and can be used for the next casting. Therefore, the yield is effectively increased, and the cost for recovering and remanufacturing is increased. The production volume can be increased.

(4)本発明は、減圧吸引する方式で溶湯をキャビティ内に吸入するため、溶湯の溶解温度を下げることができ、流路を短くすることができるため、凝固していない溶湯が溶解炉内に逆流する際、溶湯内に不純物が混合することがない。即ち、不純物が鋼材鋳物の機械的性能に影響を与えることがない。   (4) In the present invention, since the molten metal is sucked into the cavity by a vacuum suction method, the melting temperature of the molten metal can be lowered and the flow path can be shortened. When backflowing, no impurities are mixed in the molten metal. That is, the impurities do not affect the mechanical performance of the steel casting.

(5)本発明の溶解炉は、コイルで加熱する溶解炉であるため、溶解した溶湯を直接提供し、吸上げ管によって吸上げて鋳物に成型することができる。即ち、鋳造工程を簡単で効率的にすることができ、バケット及び関連設備を使用する必要がないため、生産コストを低減させることができる。   (5) Since the melting furnace of the present invention is a melting furnace heated by a coil, the molten metal can be directly provided and sucked up by a suction pipe and molded into a casting. That is, the casting process can be made simple and efficient, and it is not necessary to use buckets and related equipment, so that production costs can be reduced.

上述の説明から分かるように、本発明は、所望の目的を実現することができ、鋳物の薄型化を実現し、生産コストを低下させ、生産量を高め、製造工程を簡素化し、鋳物の品質を高めることができる減圧吸引鋳造方法を提供するものである。本発明は、極めて高い産業上の利用性を有する。   As can be seen from the above description, the present invention can achieve the desired purpose, achieve a thinner casting, reduce production costs, increase production, simplify the manufacturing process, and improve casting quality. It is intended to provide a vacuum suction casting method capable of increasing the pressure. The present invention has extremely high industrial applicability.

2 溶解炉
3 平板
4 吸上げ管
5 鋳型
51 キャビティ
52 空気通路
53 流路
531 入口
54 堰
6 カバー体
61 吸気管
9 溶湯
a 鋳型
b 流路
b1 湯溜まり部
b2 湯口
b3 湯道
b4 堰
c キャビティ
d バケット
2 Melting furnace 3 Flat plate 4 Suction pipe 5 Mold 51 Cavity 52 Air passage 53 Flow path 531 Inlet 54 Weir 6 Cover body 61 Intake pipe 9 Molten metal a Mold b Flow path b1 Hot water reservoir b2 Hot water tap b3 Hot water b4 Weir c Cavity d bucket

Claims (2)

減圧吸引鋳造方法であって、少なくとも1つの鋳物を成型する鋳型が準備され、前記鋳型内には、互いに連通するキャビティ及び流路が設けられ、
(a)吸上げ管を有する平板を溶解炉の上端に被せるステップと、ここで、前記溶解炉内には、溶融した溶湯が充填されており、前記吸上げ管の底端は、前記溶湯中に進入しており、
(b)鋳型上に前記キャビティに連通する空気通路を形成し、前記鋳型を前記平板上に設置し、前記鋳型の流路と前記吸上げ管の上端とを連通させ、前記鋳型は、砂型であり、前 記鋳型上の空気通路は、前記砂型の各砂粒の隙間であるステップと、
(c)カバー体を前記鋳型及び前記平板の上方に被せ、前記カバー体内の空気を抽出して前記カバー体及び前記キャビティ内の空気圧力を下げ、前記吸上げ管から前記溶解炉内の前記溶湯を上方に吸上げて前記キャビティ内に流入させるステップと、
(d)所定時間静置し、前記流路と前記キャビティとの間の堰(gate)を凝固させ、キャビ ティ内に溶湯が完全に凝固していない時、前記カバー体内の空気の減圧状態を解放し、前記流路中の前記溶湯を前記溶解炉内に逆流させ、溶湯が溶解炉内に完全に逆流した後、カ バー体を移動させ、鋳型と平板とを分離させ、鋳型内の溶湯を継続して冷却するステップと、を含むことを特徴とする減圧吸引鋳造方法。
A vacuum suction casting method, wherein a mold for molding at least one casting is prepared, and a cavity and a channel communicating with each other are provided in the mold,
(A) A step of covering a flat plate having a suction pipe over the upper end of the melting furnace, wherein the melting furnace is filled with a molten metal, and the bottom end of the suction pipe is in the molten metal Has entered
(B) An air passage communicating with the cavity is formed on the mold, the mold is installed on the flat plate, the flow path of the mold and the upper end of the suction pipe are communicated , and the mold is a sand mold There, the air passage on the front SL template includes the steps Ru gap der each sand of the sand mold,
(C) A cover body is placed over the mold and the flat plate, the air in the cover body is extracted to lower the air pressure in the cover body and the cavity, and the molten metal in the melting furnace from the suction pipe Sucking upward and flowing into the cavity;
(D) a predetermined time is allowed to stand, the flow channel and solidify the weir (Gate) between the cavity when the molten metal in cavity within tee is not completely solidified, the vacuum of air in the cover body released, the melt of the flow path is flowing back into the melting furnace, after completely flow back into the molten metal melting furnace, to move the cover member, to separate the mold and a flat plate, the molten metal in the mold vacuum suction casting method characterized by comprising the the steps you cool to continue.
前記溶解炉内の前記溶湯を溶融する温度は、1400℃〜1600℃の間であることを特徴とする請求項1に記載の減圧吸引鋳造方法。  The vacuum suction casting method according to claim 1, wherein a temperature at which the molten metal in the melting furnace is melted is between 1400 ° C and 1600 ° C.
JP2015058889A 2015-03-23 2015-03-23 Vacuum suction casting method Active JP5973607B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015058889A JP5973607B1 (en) 2015-03-23 2015-03-23 Vacuum suction casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058889A JP5973607B1 (en) 2015-03-23 2015-03-23 Vacuum suction casting method

Publications (2)

Publication Number Publication Date
JP5973607B1 true JP5973607B1 (en) 2016-08-23
JP2016175116A JP2016175116A (en) 2016-10-06

Family

ID=56708091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058889A Active JP5973607B1 (en) 2015-03-23 2015-03-23 Vacuum suction casting method

Country Status (1)

Country Link
JP (1) JP5973607B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109719276A (en) * 2017-10-30 2019-05-07 科华控股股份有限公司 Process for suction casting filling time Simple measurement device
CN109719277A (en) * 2017-10-30 2019-05-07 科华控股股份有限公司 The anti-gravity feeding shell structure of heat resisting steel volute process for suction casting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347666A (en) * 1989-07-14 1991-02-28 Daido Steel Co Ltd Mold for reduced pressure sucking-up casting
JPH04251655A (en) * 1990-08-28 1992-09-08 General Motors Corp <Gm> Differential anti-gravity casting needing introduction of treating material
JPH07256430A (en) * 1994-03-22 1995-10-09 Daido Steel Co Ltd Reduced pressure suction casting apparatus using sand mold
JPH09239517A (en) * 1996-03-05 1997-09-16 Hitachi Metals Ltd Reduced pressure suction casting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347666A (en) * 1989-07-14 1991-02-28 Daido Steel Co Ltd Mold for reduced pressure sucking-up casting
JPH04251655A (en) * 1990-08-28 1992-09-08 General Motors Corp <Gm> Differential anti-gravity casting needing introduction of treating material
JPH07256430A (en) * 1994-03-22 1995-10-09 Daido Steel Co Ltd Reduced pressure suction casting apparatus using sand mold
JPH09239517A (en) * 1996-03-05 1997-09-16 Hitachi Metals Ltd Reduced pressure suction casting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109719276A (en) * 2017-10-30 2019-05-07 科华控股股份有限公司 Process for suction casting filling time Simple measurement device
CN109719277A (en) * 2017-10-30 2019-05-07 科华控股股份有限公司 The anti-gravity feeding shell structure of heat resisting steel volute process for suction casting

Also Published As

Publication number Publication date
JP2016175116A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
CN104985128B (en) One kind casting multi-laminate pours running gate system and technique
CN106623806A (en) Casting foundry process
CN108941513A (en) Metallic pressure conveys shell moulded casting method
JP5973607B1 (en) Vacuum suction casting method
CN205464198U (en) Casting die
CN108620540B (en) Gravity casting device of zinc alloy tap
CN110899671A (en) Casting solidification control method
CN205032675U (en) Improve die casting die that pit distributes
CN209110156U (en) Shell moulded casting device of the vacuum in conjunction with pressure
CN204953824U (en) A mould for casing casting parts
CN206732076U (en) A kind of crystallizer for being used to produce copper alloy ingot casting
CN201807706U (en) Dual-section type crystallizer for hollow cast ingot
CN205763656U (en) Continuous casting machine is with accepting mould
KR101667871B1 (en) Negative Pressure Updraught Pouring Method
TWI580497B (en) Negative pressure suction method
US20160243614A1 (en) Negative Pressure Updraught Pouring Method
CN210045957U (en) Gating system for controlling steering gear shell to produce shrinkage porosity and sand washing
CN210146983U (en) Argon protection device for mould casting ladle nozzle
CN205074522U (en) Negative pressure updraft type pouring device
CN207086857U (en) A kind of mould of automobile clutch pump
CN202517002U (en) Sand mold with multifunctional open riser on steel wire rope winding roller
CN202762962U (en) Casting mould
EP3059029B1 (en) Negative pressure updraught pouring method
CN110076293B (en) Pouring system for controlling steering gear shell to generate shrinkage porosity and sand washing and process method thereof
US20190240728A1 (en) Negative pressure updraught pouring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250