JP5972108B2 - Joint structure of bridge girder and substructure - Google Patents

Joint structure of bridge girder and substructure Download PDF

Info

Publication number
JP5972108B2
JP5972108B2 JP2012188160A JP2012188160A JP5972108B2 JP 5972108 B2 JP5972108 B2 JP 5972108B2 JP 2012188160 A JP2012188160 A JP 2012188160A JP 2012188160 A JP2012188160 A JP 2012188160A JP 5972108 B2 JP5972108 B2 JP 5972108B2
Authority
JP
Japan
Prior art keywords
lower structure
bridge girder
ribs
floor slab
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012188160A
Other languages
Japanese (ja)
Other versions
JP2014043752A (en
Inventor
平 陽兵
陽兵 平
山野辺 慎一
慎一 山野辺
一宮 利通
利通 一宮
一正 矢野
一正 矢野
寛 白浜
寛 白浜
田島 新一
新一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2012188160A priority Critical patent/JP5972108B2/en
Publication of JP2014043752A publication Critical patent/JP2014043752A/en
Application granted granted Critical
Publication of JP5972108B2 publication Critical patent/JP5972108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は隣接する橋台間、もしくは橋脚間等、隣接する下部構造間に架設されるプレキャストコンクリート製の橋桁の端部を各下部構造に剛に接合する橋桁と下部構造との接合部構造に関するものである。   The present invention relates to a joint structure between a bridge girder and a lower structure that rigidly joins the end of a precast concrete bridge girder constructed between adjacent lower structures such as between adjacent abutments or between piers. It is.

例えば歩道橋、車道橋等のように橋桁(主桁)の両端が橋台等の下部構造に剛に接合される1径間のラーメン橋では、橋桁の端部に生ずる曲げモーメントとせん断力が下部構造に集中して伝達されることから、多径間連続橋の場合より下部構造の負担が大きくなるため、橋桁と下部構造との接合部には両者間での力の伝達が確実に行われるだけの能力を持たせる必要がある。   For example, in the case of a single-frame rigid frame bridge where both ends of the bridge girder (main girder) are rigidly joined to the lower structure such as an abutment, such as a pedestrian bridge and a roadway bridge, the bending moment and shear force generated at the end of the bridge girder are lower structures. Since it is transmitted in a concentrated manner, the burden on the lower structure is greater than in the case of multi-span continuous bridges, so only the transmission of force between the bridge girder and the lower structure is ensured. It is necessary to have the ability.

この場合、橋桁から接合部を経て下部構造に曲げモーメントを伝達させる上では、接合部における引張力に対する耐力を確保することが不可欠になるため、耐力を鋼材に依存し、鋼材を橋桁と下部構造の双方に跨るように接合部に配置することが多い(特許文献1〜3参照)。   In this case, in order to transmit the bending moment from the bridge girder through the joint to the lower structure, it is essential to ensure the yield strength against the tensile force at the joint, so the strength depends on the steel material, and the steel material is used for the bridge girder and the lower structure. In many cases, it is arranged at the joint so as to straddle both sides (see Patent Documents 1 to 3).

但し、特許文献1〜3のように例えば鋼材を橋桁の端部に埋設しておき、鋼材を橋台に接合する方法では橋桁と橋台との接合時に鋼材周辺に存在するコンクリートに対する補強のための鉄筋を配筋する必要もあり、施工が煩雑化する他、橋桁への鋼材の埋設がある分、橋桁の製作も複雑化する。   However, as disclosed in Patent Documents 1 to 3, for example, in a method in which steel material is embedded in the end portion of the bridge girder and the steel material is joined to the abutment, the reinforcing bars for reinforcing the concrete existing around the steel material when the bridge girder and the abutment are joined. In addition to the complexity of construction, the construction of the bridge girder is also complicated by the amount of steel embedded in the girder.

これに対し、橋桁と橋台間に跨ってPC鋼材を配置し、橋桁端部と橋台上部に生ずる曲げモーメントに伴う引張力を相殺するプレストレスを導入することにより接合部を単純化させる方法もある(特許文献4参照)。   On the other hand, there is also a method of simplifying the joint by placing PC steel straddling between the bridge girder and the abutment and introducing prestress that cancels the tensile force accompanying the bending moment generated at the end of the bridge girder and the upper part of the abutment. (See Patent Document 4).

特開2007−132046号公報(請求項1、段落0031、図2〜図5)JP 2007-132046 A (Claim 1, paragraph 0031, FIGS. 2 to 5) 特開2007−284914号公報(請求項1、段落0034〜0038、0045、図2、図8)JP 2007-284914 A (Claim 1, paragraphs 0034 to 0038, 0045, FIG. 2, FIG. 8) 特開2010−101094号公報(請求項1、段落0020〜0032、0045〜0071、図16〜図8)JP 2010-101094 A (Claim 1, paragraphs 0020 to 0032, 0045 to 0071, FIGS. 16 to 8) 特開2002−266503号公報(請求項1、2、段落0007〜0014、図1〜図3)JP 2002-266503 A (Claims 1 and 2, paragraphs 0007 to 0014, FIGS. 1 to 3)

しかしながら、プレストレスの導入によって接合部に生ずる曲げモーメントに抵抗させる方法では、1本のPC鋼材によってプレストレスを橋桁と下部構造の軸方向に同時に作用させることが難しいため、接合部を経由させてPC鋼材を橋桁と下部構造間に連続的に配置することができず、橋桁に添って配置されるPC鋼材と、橋台に添って配置されるPC鋼材を必要とする(特許文献4の段落0016、図1、図5)。1本のPC鋼材を、接合部を経由させて橋桁と下部構造間に連続的に配置した場合、PC鋼材配置上の隅角部である接合部に外周側から内部へ向けて不必要な圧縮力(腹圧力)を加えることになり、合理的な補強ができないことによる。   However, in the method of resisting the bending moment generated at the joint by introducing prestress, it is difficult to simultaneously act on the axial direction of the bridge girder and the substructure with one PC steel material. PC steel cannot be continuously arranged between the bridge girder and the lower structure, and requires PC steel arranged along the bridge girder and PC steel arranged along the abutment (paragraph 0016 of Patent Document 4). FIG. 1 and FIG. 5). When one PC steel material is continuously arranged between the bridge girder and the lower structure via the joint, unnecessary compression is applied from the outer peripheral side to the inside at the joint, which is a corner portion on the PC steel material arrangement. This is because force (abdominal pressure) is applied and rational reinforcement is not possible.

一方、特許文献4において橋桁自体の曲げ変形抑制のために、あるいは曲げ変形抑制効果に伴う薄肉化のために、橋桁の内部に橋軸直角方向(幅方向)に並列するPC鋼材を配置しようとする場合には、接合部に役割の異なる2種類のPC鋼材を混在させて定着することになるため、橋桁と橋台の双方に、PC鋼材の配置と定着に十分な断面を持たせることが必要になり、薄肉化の要請に反する結果を招く。   On the other hand, in Patent Document 4, in order to suppress the bending deformation of the bridge girder itself or to reduce the thickness due to the bending deformation suppressing effect, an attempt is made to arrange the PC steel material parallel to the bridge axis perpendicular direction (width direction) inside the bridge girder. In this case, since two types of PC steels with different roles are mixed and fixed in the joint, it is necessary that both the bridge girder and the abutment have a sufficient cross section for the placement and fixing of the PC steel. As a result, the result is contrary to the demand for thinning.

本発明は上記背景より、橋桁自体の薄肉化を可能にしながらも、単純な構造で橋桁の端部を下部構造に剛に接合することを可能にするプレキャストコンクリート製の橋桁と下部構造との接合部構造を提案するものである。   In the present invention, the bridge girder made of precast concrete and the lower structure that enables the end of the bridge girder to be rigidly joined to the lower structure with a simple structure while allowing the wall girder itself to be thinned. A partial structure is proposed.

請求項1に記載の発明の橋桁と下部構造との接合部構造は、隣接する下部構造上に架設され、両端において前記下部構造に剛に接合されるプレキャストコンクリート製の橋桁と前記下部構造との接合部構造であり、
前記橋桁は床版部と、この床版部の幅方向両側の少なくとも下側に、前記床版部の橋軸方向を向いて突設された両側リブとを備え、前記下部構造の天端からは縦筋が突出し、
前記橋桁は前記両側リブにおいて前記下部構造の天端上に載置され、前記下部構造の縦筋が前記両側リブ間に配筋されると共に、前記両側リブ間に、前記縦筋を埋設するコンクリート、もしくはモルタルが一体化して前記橋桁が前記下部構造に接合され
前記床版部下側の前記両側リブ間の、少なくとも前記床版部の端部寄りの、前記下部構造の天端上の領域を含む区間に、前記床版部の橋軸方向を向く中間部リブが突設され、前記下部構造の前記縦筋が前記中間部リブ以外の前記コンクリート、もしくはモルタル中に配筋され、
前記下部構造の天端上に位置する部分に前記縦筋に直交して配筋され、前記両側リブに定着された横筋が前記中間部リブを幅方向に挿通していることを構成要件とする。
The joint structure between the bridge girder and the lower structure according to the first aspect of the present invention includes a bridge girder made of precast concrete, which is constructed on an adjacent lower structure and rigidly joined to the lower structure at both ends, and the lower structure. A joint structure,
The bridge girder includes a floor slab portion, and at least a lower side of both sides in the width direction of the floor slab portion, and both side ribs projecting toward the bridge axis direction of the floor slab portion, from the top end of the lower structure Has a protruding vertical line,
The bridge girder is placed on the top end of the lower structure on the both side ribs, and the vertical bars of the lower structure are arranged between the side ribs, and the vertical bars are embedded between the side ribs. Or the mortar is integrated and the bridge girder is joined to the substructure ,
An intermediate rib that faces the bridge axis direction of the floor slab in a section that includes a region on the top end of the lower structure, at least near the end of the floor slab, between the side ribs below the floor slab Projecting, and the vertical bars of the lower structure are arranged in the concrete or mortar other than the intermediate ribs,
It is a structural requirement that the horizontal stripes arranged perpendicular to the vertical bars in the portion located on the top end of the lower structure and fixed to the both side ribs pass through the intermediate ribs in the width direction. .

橋桁は下部構造と共に1径間、もしくは多径間のラーメン橋を構成するため、橋の形態としては橋桁が歩道橋、車道橋等のように橋台間に架設される形式と、橋桁が隣接する橋台と橋脚間、及び隣接する橋脚間に架設され、同一の橋脚上に隣接する橋桁が支持される形式がある。よって橋桁は橋台と橋脚間、または橋脚間に架設される場合があるため、下部構造には橋台と橋脚が含まれる。多径間のラーメン橋は橋軸方向中間の橋脚がシュー構造(滑り支承)の場合を含む。   Since the bridge girder constitutes a single-span or multi-span ramen bridge together with the substructure, the bridge form is such that the bridge girder is built between abutments, such as pedestrian bridges, road bridges, etc. There is a type in which the bridge girder is supported between the bridge piers and between the adjacent piers, and adjacent bridge girders are supported on the same pier. Therefore, since the bridge girder may be installed between the abutment and the pier, or between the piers, the substructure includes the abutment and the pier. The multi-frame ramen bridge includes the case where the bridge pier in the axial direction of the bridge has a shoe structure (sliding support).

「床版部の幅方向両側の少なくとも下側に突設された両側リブ」とは、床版部の幅方向両側の下側(下面側)にのみ両側リブが突設される場合と、図1等に示すように下側と上側(上面側)に突設される場合があることを言う。「床版部の橋軸方向を向く」とは、両側リブが床版部の橋軸方向に沿って形成されることを言う。「床版部の幅方向」は主に橋軸直角方向を指すが、床版部が例えば平行四辺形状の場合には短辺方向を指す。   “Both side ribs projecting at least below both sides in the width direction of the floor slab” means that both side ribs project only on the lower side (bottom side) of both sides in the width direction of the floor slab. As shown in 1 etc., it means that it may be provided on the lower side and the upper side (upper surface side). “Towards the bridge axis direction of the floor slab portion” means that both side ribs are formed along the bridge axis direction of the floor slab portion. The “width direction of the floor slab portion” mainly refers to a direction perpendicular to the bridge axis, but when the floor slab portion is, for example, a parallelogram, it refers to the short side direction.

橋桁は床版部の幅方向両側に両側リブを有することで、橋軸方向に見たときに溝形(逆溝形)、もしくはH形の断面形状をし、橋桁が受ける曲げモーメントを両側リブが床版部と共に負担しながら、下部構造に伝達する働きをする。橋桁は両側リブが床版部の下側にのみ形成される場合に、溝形の断面形状をし、上側にも形成される場合にH形の断面形状をするが、両側リブの形状は後述のように基本的には床版部上の荷重による橋桁の曲げモーメント分布に対応して決められる。両側リブは床版部の橋軸方向の全長に亘って形成される場合と、床版部の端部寄りの区間に形成される場合がある。「床版部の端部寄りの区間」は橋桁の橋軸方向中間部(中央部)の位置から下部構造上の端部にかけての区間であり、下部構造の天端上の領域を含む場合と含まない場合がある。   The bridge girder has ribs on both sides in the width direction of the floor slab, so that it has a groove shape (reverse groove shape) or H-shaped cross section when viewed in the bridge axis direction, and the bending moment received by the bridge girder on both sides ribs It works to transmit to the lower structure while burdening with the floor slab part. The bridge girder has a groove-shaped cross-sectional shape when both side ribs are formed only on the lower side of the floor slab part, and has an H-shaped cross-sectional shape when formed on the upper side. Basically, it is determined according to the bending moment distribution of the bridge girder due to the load on the floor slab. Both side ribs may be formed over the entire length of the floor slab in the bridge axis direction, or may be formed in a section near the end of the floor slab. The “section near the edge of the floor slab” is the section from the position of the bridge girder in the axial direction (center) of the bridge girder to the edge of the lower structure, including the area on the top edge of the lower structure May not include.

橋桁の両側リブは床版部と共に橋桁の曲げモーメントを負担しながら、下部構造に伝達することで、床版部のみが曲げモーメントを負担することから解放させ、床版部を薄肉化することに寄与する。床版部の薄肉化は図2、図5、図7に示す、床版部31の内部に橋軸方向に配置されるPC鋼材等の緊張材35によるプレストレスの導入によっても可能になっている。   The ribs on both sides of the bridge girder are transferred to the lower structure while bearing the bending moment of the bridge girder together with the floor slab part, so that only the floor slab part is freed from the bending moment, and the floor slab part is made thinner. Contribute. Thinning of the floor slab portion is also possible by introducing prestress by a tension member 35 such as a PC steel material arranged in the bridge axis direction inside the floor slab portion 31 as shown in FIGS. Yes.

両側リブは橋軸方向の曲げモーメントに対する剛性を橋桁に付与し、橋桁の曲げ変形を抑制する働きもする。両側リブ32は図8に示すように橋桁3に生ずる曲げモーメントの分布に対応し、橋桁3の橋軸方向中間部側から端部へかけて次第に高さ(成)が大きくなる形状に形成されることで、橋桁3の端部の桁高を増し、橋桁3端部における剛性と耐力を高める。   The ribs on both sides give the bridge girder rigidity with respect to the bending moment in the direction of the bridge axis and also serve to suppress bending deformation of the bridge girder. As shown in FIG. 8, the ribs 32 on both sides correspond to the distribution of bending moment generated in the bridge girder 3 and are formed in a shape in which the height (composition) gradually increases from the bridge axial direction intermediate side to the end of the bridge girder 3. This increases the girder height at the end of the bridge girder 3 and increases the rigidity and yield strength at the end of the bridge girder 3.

床版部31下側の両側リブ32、32間の、少なくとも床版部31の端部寄りの区間には、両側リブ32、32に平行に、中間部リブ33が突設され。中間部リブ33は両側リブ32、32の役割を補い、床版部31及び両側リブ32、32と共に床版部31に作用する曲げモーメントを負担しながら、下部構造1に伝達する働きをする。 Between the side ribs 32, 32 of the floor plate portion 31 downward, towards the end portions of the section of at least the floor plate 31, parallel to each side ribs 32, 32, intermediate ribs 33 Ru is projected. The intermediate rib 33 supplements the roles of the both side ribs 32 and 32 and functions to transmit the bending force acting on the floor slab 31 together with the floor slab 31 and the both side ribs 32 and 32 to the lower structure 1.

中間部リブ33は床版部31の橋軸方向を向き、両側リブ32に平行に1枚、もしくは複数枚、突設される。中間部リブ33は両側リブ32と同様、橋桁3に生ずる橋軸方向の曲げモーメントに対する抵抗要素でもあるため、少なくとも床版部31の端部寄りの区間に突設され。少なくとも端部寄りの区間であるから、中間部リブ33は下部構造1の天端上の領域を含めて、あるい床版部31の全長に形成されることもある。中間部リブ33の高さは図1、図4に示すように曲げモーメント分布に対応し、橋桁3の端部から中間部側へかけて次第に小さくなる形に形成されることが合理的である。床版部31に中間部リブ33が形成される場合、下部構造1の縦筋2は図2、図5に示すように中間部リブ33以外のコンクリート4等中に配筋される One or a plurality of intermediate ribs 33 are provided so as to face the bridge axis direction of the floor slab portion 31 and are parallel to both side ribs 32. Similarly the intermediate ribs 33 and the both side ribs 32, since that is also a resistive element for the bridge axis direction of bending moments generated in the bridge girder 3, Ru is projected towards the end portions of the section of at least the floor plate 31. Since a period of at least an end portion near the intermediate ribs 33, including the area on the top end of the lower structure 1, there have is sometimes formed on the entire length of the deck portion 31. As shown in FIGS. 1 and 4, the height of the intermediate rib 33 corresponds to the bending moment distribution, and it is rational that the intermediate rib 33 is formed in a shape that gradually decreases from the end of the bridge girder 3 toward the intermediate portion. . When the intermediate ribs 33 are formed on the floor slab 31, the vertical bars 2 of the lower structure 1 are arranged in the concrete 4 other than the intermediate ribs 33 as shown in FIGS. 2 and 5.

床版部31下側の両側リブ32、32間に突設される中間部リブ33は前記のように床版部31下側の、下部構造1の天端上の領域(接合部30)に、図4、図5に示すように横桁部34としてのコンクリート4等が床版部31の一部として一体的に形成されている場合(請求項)と、図1、図2に示すように中間部リブ33が床版部31の中間部寄りの位置から下部構造1の天端上の領域(接合部30)を含む区間にまで連続して形成されている場合(請求項)がある。 The intermediate ribs 33 projecting between the both side ribs 32, 32 below the floor slab 31 are located in the region above the top end of the lower structure 1 (joint 30) below the floor slab 31 as described above. 4 and 5, the concrete 4 or the like as the cross beam portion 34 is integrally formed as a part of the floor slab portion 31 (Claim 2 ), and shown in FIGS. Thus, when the intermediate part rib 33 is continuously formed from the position near the intermediate part of the floor slab part 31 to the section including the region (joint part 30) on the top end of the lower structure 1 (Claim 3 ). There is.

また橋桁3に一体化するコンクリート4等の一体化の方法で分類すれば、コンクリート4等は図4、図5に示すように橋桁3の一部の横桁部34として橋桁3の製作時に予め形成されている場合(請求項)と、図1、図2、及び図6、図7に示すように下部構造1との接合時に現場で充填(打設)されることにより一体化する場合(請求項)がある。現場で一体化する場合(請求項)には、コンクリート4等が下部構造1上の接合部30にのみ充填される場合(請求項)と、接合部30を含め、請求項の中間部リブ33の形成区間に充填される場合(請求項)がある。図4〜図7は中間部リブ33が下部構造1の天端上にまで連続していない様子を示しているため、図4〜図7自体は本発明の参考例を示しているが、図4〜図7においても下部構造1の天端上に中間部リブ33が形成されていると考えれば、これらを本発明を示す図面として見ることができる。 If the concrete 4 or the like to be integrated into the bridge girder 3 is classified, the concrete 4 or the like is preliminarily produced when the bridge girder 3 is formed as a part of the cross girder part 34 of the bridge girder 3 as shown in FIGS. When formed (Claim 2 ) and when integrated by being filled (placed) on-site at the time of joining to the lower structure 1 as shown in FIG. 1, FIG. 2, FIG. 6, and FIG. (Claims 3 and 4 ). In the case of integrating in the field (claim 3, 4), including the case where the concrete 4 and the like is filled only to the joint 30 on the lower structure 1 (claim 3), the joint portion 30, claim 1 when filling the forming section of the intermediate ribs 33 of ~ 3 is (claim 4). 4 to 7 show a state in which the intermediate ribs 33 are not continuous up to the top end of the lower structure 1, FIGS. 4 to 7 themselves show a reference example of the present invention. 4 to 7, if it is considered that the intermediate ribs 33 are formed on the top end of the lower structure 1, these can be seen as drawings showing the present invention.

図4、図5に示す例の場合(請求項)、コンクリート4等からなる横桁部34が床版部31下側の両側リブ32、32間の、下部構造1の天端上の領域(接合部30)に、床版部31の幅方向を向いて橋桁3の一部として形成され、床版部31と両側リブ32、32間に一体化する。「床版部31の幅方向を向く」とは、横桁部34の長さ方向が床版部31の幅方向を向くことを言う。この場合、下部構造1の縦筋2は図5に示すように中間部リブ33以外の横桁部34中に配筋され、埋設される In the case of the example shown in FIGS. 4 and 5 (Claim 2 ), the region on the top end of the lower structure 1 where the cross beam portion 34 made of concrete 4 or the like is between the side ribs 32, 32 below the floor slab portion 31. It is formed in the (joining part 30) as a part of the bridge girder 3 facing the width direction of the floor slab part 31, and is integrated between the floor slab part 31 and both side ribs 32 and 32. “Towards the width direction of the floor slab portion 31” means that the length direction of the cross beam portion 34 faces the width direction of the floor slab portion 31. In this case, the vertical bars 2 of the lower structure 1 are arranged and embedded in the cross beams 34 other than the intermediate ribs 33 as shown in FIG .

図4、図5に示す例では横桁部34の、縦筋2の挿入部分には挿通孔34aが形成され、挿通孔34a内に縦筋2が挿入され、現場でモルタル等の充填材が充填されることにより縦筋2がコンクリート4等の横桁部34に埋設され、定着される。横桁部34は下部構造1の厚さ方向には下部構造1の天端部分の厚さと同等の厚さを持ち、下部構造1の幅方向(橋桁3の幅方向(幅方向))に床版部31の幅と同等の長さを持つ。   In the example shown in FIGS. 4 and 5, an insertion hole 34a is formed in the insertion portion of the vertical bar 2 of the cross beam 34, and the vertical bar 2 is inserted into the insertion hole 34a, and a filler such as mortar is used on the site. By filling, the vertical bars 2 are embedded in the cross beam 34 such as concrete 4 and fixed. The horizontal girder 34 has a thickness in the thickness direction of the lower structure 1 that is equal to the thickness of the top end portion of the lower structure 1, and the floor in the width direction of the lower structure 1 (width direction (width direction) of the bridge girder 3) It has a length equivalent to the width of the printing plate 31.

図1、図2に示す例の場合(請求項)は、中間部リブ33が床版部31の中間部寄りの位置から下部構造1の天端上の領域(接合部30)を含む区間にまで連続することで、床版部31の幅方向に隣接する両側リブ32と中間部リブ33間、及び中間部リブ33、33間にコンクリート4等が充填される。この中間部リブ33で区画された領域毎に充填されるコンクリート4等が中間部リブ33の下部構造1の天端上の部分(端部33a)と共に、図4、図5に示す例の横桁部34を構成する。下部構造1の縦筋2は図2に示すように中間部リブ33で区画された領域毎のコンクリート4等中に埋設され、定着される。 In the case of the example shown in FIGS. 1 and 2 (Claim 3 ), the intermediate rib 33 includes a region (joint portion 30) on the top end of the lower structure 1 from a position near the intermediate portion of the floor slab portion 31. The concrete 4 or the like is filled between the side ribs 32 and the intermediate ribs 33 adjacent to each other in the width direction of the floor slab portion 31 and between the intermediate ribs 33 and 33. The concrete 4 or the like to be filled in each region defined by the intermediate ribs 33 along with the portion (end portion 33a) on the top end of the lower structure 1 of the intermediate ribs 33 is the side of the example shown in FIGS. The digit part 34 is configured. As shown in FIG. 2, the vertical bars 2 of the lower structure 1 are embedded and fixed in the concrete 4 or the like for each region defined by the intermediate ribs 33.

図1、図2に示す例における中間部リブ33は下部構造1の天端上の領域にまで連続することで、両側リブ32と中間部リブ33間に充填されるコンクリート4等の打設時の型枠を兼ねるため、コンクリート4等の充填領域が区画され、限られた領域に効率的にコンクリート4等を充填することを可能にする。   The intermediate ribs 33 in the example shown in FIGS. 1 and 2 are continuous up to the region on the top edge of the lower structure 1, so that the concrete 4 filled between the side ribs 32 and the intermediate ribs 33 is placed. Therefore, the filling region of concrete 4 or the like is partitioned, and it is possible to efficiently fill the limited region with the concrete 4 or the like.

図6、図7に示す例の場合(請求項)、コンクリート4等は床版部31下側の両側リブ32、32間の、少なくとも下部構造1の天端上の領域を含む床版部31の端部寄りの区間に充填され、下部構造1の天端上のコンクリート4等中に下部構造1の縦筋2が埋設される。「下部構造1の天端上の領域(区間)」は橋桁3の内、下部構造1との接合部30を指し、この領域に充填されるコンクリート4等が図4、図5に示す例の横桁部34を構成する。「少なくとも」とは、図6に示すように下部構造1の天端上の領域(接合部30)から床版部31の橋軸方向中間部寄りの区間にかけて充填されることがある趣旨である。 In the case of the examples shown in FIGS. 6 and 7 (Claim 4 ), the concrete 4 or the like includes a floor slab part including at least a region on the top edge of the lower structure 1 between both side ribs 32, 32 below the floor slab part 31. A section near the end of 31 is filled, and the vertical bars 2 of the lower structure 1 are embedded in the concrete 4 or the like on the top end of the lower structure 1. "Area (section) on the top edge of the lower structure 1" refers to the joint 30 of the bridge girder 3 with the lower structure 1, and concrete 4 or the like filled in this area is an example shown in FIGS. The cross beam portion 34 is configured. “At least” means that there is a case where filling is performed from a region (joint portion 30) on the top end of the lower structure 1 to a section near the intermediate portion in the bridge axis direction of the floor slab portion 31 as shown in FIG. .

図6、図7に示す例では、コンクリート4等は橋桁3との一体化により床版部31の全幅に亘る幅を持ち、結果として、橋桁3の少なくとも端部寄りの区間においてコンクリート4等が床版部31の厚さを増す形になるため、橋桁3の少なくとも端部寄りの区間における剛性と耐力を上昇させることが可能になる。この場合、橋桁3には現場でコンクリート4等が一体化するため、横桁部34が予め一体化している請求項の場合より橋桁3自体の軽量化が図られる。 In the example shown in FIGS. 6 and 7, the concrete 4 or the like has a width over the entire width of the floor slab portion 31 by being integrated with the bridge girder 3. As a result, the concrete 4 or the like is at least in the section near the end of the bridge girder 3. Since the thickness of the floor slab portion 31 is increased, it is possible to increase the rigidity and proof stress in the section of the bridge girder 3 at least near the end. In this case, since the concrete 4 and the like are integrated with the bridge girder 3 at the site, the weight of the bridge girder 3 itself can be reduced as compared with the case of claim 2 in which the horizontal girder portion 34 is integrated in advance.

下部構造1の天端上の接合部30上で両側リブ32、32に一体化するコンクリート4等は、中間部リブ33の一部が下部構造1上の接合部30にまで連続する場合(図1、図2)に、その中間部リブ33の一部と共に横桁部34を構成する In the concrete 4 or the like that is integrated with both side ribs 32, 32 on the joint 30 on the top end of the lower structure 1, a part of the intermediate rib 33 continues to the joint 30 on the lower structure 1 (see FIG. 1 and FIG. 2), a cross beam portion 34 is formed together with a part of the intermediate rib 33 .

換言すれば、横桁部34を含め、「両側リブ32、32間に一体化するコンクリート4等」は図4、図5に示すように床版部31の両側リブ32、32間に、橋桁3の一部として予め一体化している場合(請求項)と、図1、図2、及び図6、図7に示すように現場で両側リブ32、32間に打設(充填)されて橋桁3に一体化する場合(請求項)がある。コンクリート4等が現場で打設される場合(請求項)には、コンクリート4等は少なくとも下部構造1の厚さ(橋桁3の橋軸方向の距離)の範囲で(下部構造1の天端上の接合部30上で)、橋桁3の対向する両側リブ32、32間に一体化するため、下部構造1の天端上の部分が横桁部34として橋桁3の一部になる。 In other words, the “concrete 4 etc. integrated between the side ribs 32, 32” including the cross beam part 34 is a bridge girder between the side ribs 32, 32 of the floor slab part 31 as shown in FIGS. 4 and 5. 3 is preliminarily integrated as a part of claim 3 (Claim 2 ), and is inserted (filled) between the ribs 32, 32 on the site as shown in FIG. 1, FIG. 2, FIG. 6, and FIG. In some cases, the bridge girder 3 is integrated (claims 3 and 4 ). When concrete 4 or the like is placed on site (Claims 3 and 4 ), the concrete 4 or the like is at least within the range of the thickness of the lower structure 1 (distance in the bridge axis direction of the bridge girder 3). On the joint 30 on the top end), the part on the top end of the lower structure 1 becomes a part of the bridge girder 3 as a horizontal girder part 34 so as to be integrated between the opposite side ribs 32, 32 of the bridge girder 3. .

図6、図7に示す請求項におけるコンクリート4等は下部構造1の天端上の領域から床版部31の橋軸方向中間部寄りの区間にまで充填(打設)されることで、橋桁3の橋軸方向には請求項における横桁部34を含む中間部リブ33の区間に亘り、幅方向には床版部31の全幅に亘って床版部31に一体化するため、橋桁3の少なくとも端部寄りの区間における剛性と耐力を上昇させる。この場合もコンクリート4等が橋桁3の剛性と耐力を増す働きをするため、橋桁3の端部から中間部にかけ、橋桁3を幅方向に見たときに図6、図8に示すように曲げモーメント分布に対応した断面形状が与えられることが合理的である。 The concrete 4 or the like in claim 4 shown in FIGS. 6 and 7 is filled (placed) from a region on the top edge of the lower structure 1 to a section near the intermediate portion in the bridge axis direction of the floor slab portion 31. The bridge girder 3 is integrated with the floor slab portion 31 over the entire width of the floor slab portion 31 in the width direction over the section of the intermediate rib 33 including the transverse girder portion 34 in claims 2 and 3 . Therefore, the rigidity and proof stress in the section near the end of the bridge girder 3 are increased. Also in this case, the concrete 4 or the like works to increase the rigidity and proof strength of the bridge girder 3, so it is bent from the end of the bridge girder 3 to the middle part and bent as shown in FIGS. 6 and 8 when the bridge girder 3 is viewed in the width direction. It is reasonable to give a cross-sectional shape corresponding to the moment distribution.

橋桁3と下部構造1からなる構造体を1径間のラーメン橋として見れば、橋桁3上の荷重による曲げモーメントは橋桁3の端部寄りで上側に引張応力が生じ、中間部では下側に引張応力が生ずる分布になる。このことから、図8に示すように床版部31に一体化する両側リブ32、32を床版部31の軸方向中間部寄りで床版部31に関して上側に形成し、軸方向端部寄りで床版部31に関して下側に形成することで、曲げモーメントによる引張応力を床版部31に負担させることが可能になる。この場合、上部構造としての橋桁3は、橋桁3に生ずる橋軸方向の曲げモーメントの引張応力を図2に示すように床版部31内に挿通している緊張材35によるプレストレスで相殺させることに適した構造になる。   If the structure consisting of the bridge girder 3 and the lower structure 1 is viewed as a single-frame rigid frame bridge, the bending moment due to the load on the bridge girder 3 generates a tensile stress on the upper side near the end of the bridge girder 3 and on the lower side in the middle part. A distribution in which tensile stress is generated. Accordingly, as shown in FIG. 8, both side ribs 32, 32 integrated with the floor slab 31 are formed on the upper side with respect to the floor slab 31 near the axial middle of the floor slab 31, and closer to the end in the axial direction. Thus, the floor slab portion 31 is formed on the lower side, so that the tensile stress caused by the bending moment can be borne on the floor slab portion 31. In this case, the bridge girder 3 as the upper structure cancels the tensile stress of the bending moment in the bridge axis direction generated in the bridge girder 3 by the prestress due to the tension member 35 inserted in the floor slab portion 31 as shown in FIG. It becomes a suitable structure.

図8に示すように上部構造としての橋桁3を側面(立面)で見たとき、両側リブ32が全体として上に凸に湾曲した形状をし、水平版である床版部31が両側リブ32の端部寄りでは両側リブ32の上側に位置し、中間部寄りで両側リブ32の下側に位置することで、橋桁3は中路形式になっている。このように床版部31が両側リブ32の端部寄りでは両側リブ32の上側に位置することで、橋桁3を両側リブ32において下部構造1上に載置したときに、下部構造1の縦筋2を床版部31下のコンクリート4等中に深く配筋することと、横筋5を高さ方向に多く配筋することが可能になり、下部構造1と橋桁3との一体性を確保することが容易になっている。   As shown in FIG. 8, when the bridge girder 3 as the upper structure is viewed from the side (elevation), the side ribs 32 have a curved shape that is convex upward as a whole, and the floor slab portion 31 that is a horizontal version has both side ribs. The bridge girder 3 is in the form of a middle path by being positioned on the upper side of the both side ribs 32 near the end of 32 and below the both side ribs 32 near the intermediate part. In this way, the floor slab portion 31 is positioned above the both side ribs 32 near the ends of the both side ribs 32, so that when the bridge girder 3 is placed on the lower structure 1 on the both side ribs 32, It is possible to place the reinforcement 2 deeply in the concrete 4 or the like under the floor slab 31 and to arrange many transverse reinforcements 5 in the height direction, ensuring the integrity of the lower structure 1 and the bridge girder 3. It is easy to do.

請求項ではまた、中間部リブ33の、下部構造1の天端上に位置する部分(端部33a)が幅方向に、下部構造1の縦筋2に直交して配筋される横筋5(配力筋)を挿通させ、係合させるために利用される。横筋5を、中間部リブ33(端部33a)を貫通させて床版部31に幅方向に配筋することで、橋桁3に作用する曲げモーメントを幅方向に分散させて下部構造1の縦筋2に伝達することができるため、下部構造1の負担を幅方向に分散させる効果が向上する。また横筋5を中間部リブ33に係合させることができることで、縦筋2が負担する引張力を橋桁3に伝達する効果と、橋桁3が負担する引張力を下部構造1の縦筋2に伝達する効果も向上する。 According to the third aspect of the present invention , a portion (end portion 33 a) of the intermediate rib 33 located on the top end of the lower structure 1 is arranged in the width direction so as to be perpendicular to the vertical stripe 2 of the lower structure 1. It is used to insert (engage the force distribution muscle) and engage. By arranging the transverse bars 5 through the intermediate ribs 33 (ends 33a) in the width direction in the floor slab part 31, the bending moment acting on the bridge girder 3 is dispersed in the width direction, so that the vertical structure of the lower structure 1 is obtained. Since it can transmit to the muscle | muscle 2, the effect of distributing the burden of the lower structure 1 in the width direction improves. Further, since the horizontal bars 5 can be engaged with the intermediate ribs 33, the tensile force borne by the vertical bars 2 is transmitted to the bridge girder 3 and the tensile forces borne by the bridge girder 3 are applied to the vertical bars 2 of the lower structure 1. The effect of transmission is also improved.

床版部31の横桁部34となるコンクリート4等が橋桁3と下部構造1との接合時に現場で充填(打設)される、図1、図2、及び図6、図7に示す場合(請求項)にはこの他、床版部31の両側リブ32、32間に幅方向にPC鋼材等の緊張材を挿通させてこれに緊張力を与え、コンクリート4等にプレストレスを与えることで、両側リブ32、32とコンクリート4等との一体性を強化させることも可能である。その場合、図1、図2、図6等に示す横筋5を緊張材として利用することも可能である。 In the case shown in FIGS. 1, 2, 6, and 7, the concrete 4 or the like that becomes the cross girder portion 34 of the floor slab portion 31 is filled (placed) on-site when the bridge girder 3 and the lower structure 1 are joined. (Claims 2 and 3 ), in addition to this, a tension material such as a PC steel material is inserted in the width direction between both side ribs 32, 32 of the floor slab portion 31 to give a tension to it, and prestress is applied to the concrete 4 and the like. It is also possible to reinforce the integrity between the ribs 32, 32 and the concrete 4 or the like. In that case, it is also possible to use the transverse muscle 5 shown in FIG. 1, FIG. 2, FIG.

横筋5を配筋することは、図4、図5の例(請求項)においても横桁部34内に予め埋設しておくことで可能であり、図6、図7の例(請求項)においても現場でのコンクリート4等の打設時に縦筋2に交差させて配筋しておくことで可能である。 It is possible to arrange the horizontal bars 5 by embedding in the cross beam portion 34 in the examples of FIGS. 4 and 5 (Claim 2 ) as well, and the examples of FIGS. 6 and 7 (Claims). Also in 4 ), it is possible to arrange the bars by crossing the vertical bars 2 when placing concrete 4 or the like on site.

図4、図5に示す請求項では下部構造1天端上の横桁部34が図1、図2に示す請求項4における中間部リブ33の下部構造1上の部分(端部33a)と、現場打ちのコンクリート4等によって形成され、横桁部34は現場で橋桁3の一部として完成する 4, the lower structure 1 on the portion of the intermediate ribs 33 in the claim 4, crossbeam 34 on claim 2, the lower structure 1 crest shown in FIG. 5 is shown in FIG. 1, FIG. 2 (end 33a) The cross girder portion 34 is completed as a part of the bridge girder 3 on the site .

以上のように橋桁3は少なくとも両側リブ32、32の形成によって自重と活荷重による曲げモーメントに対する一定の抵抗力を確保した上で、両側リブ32、32間に充填(打設)、もしくは形成され、一体化するコンクリート4等と両側リブ32、32とによって高い剛性と耐力を確保するため、橋桁3自身が曲げモーメントに対する抵抗力と、下部構造1との間での曲げモーメントの伝達能力を保有することになる。橋桁3自身が曲げモーメントに対する抵抗力と、曲げモーメントの伝達能力を持つことで、橋桁3に対しては鋼材の埋設、曲げモーメント用のPC鋼材の配置等、曲げモーメントに抵抗させるための格別な補強を施すことが必要ではなくなる。   As described above, the bridge girder 3 is filled (placed) or formed between the side ribs 32 and 32 while ensuring a certain resistance against bending moment due to its own weight and live load by forming the side ribs 32 and 32 at least. The bridge girder 3 itself has the resistance to the bending moment and the ability to transmit the bending moment to the lower structure 1 in order to ensure high rigidity and proof strength by the integrated concrete 4 and the like and the side ribs 32, 32. Will do. The bridge girder 3 itself has a resistance to bending moment and the ability to transmit the bending moment, so that the bridge girder 3 has a special resistance to resist the bending moment, such as the embedding of steel and the placement of PC steel for the bending moment. It is no longer necessary to apply reinforcement.

橋桁3に対する格別な補強が不要になることで、橋桁3は基本的に、両側リブ32、32において下部構造1の天端上に載置され、下部構造1の天端から突出した縦筋2が両側リブ32、32間に配筋されることと、両側リブ間32、32に、縦筋2を埋設するコンクリート4等が一体化することのみによって下部構造1に剛に接合されることになる。両側リブ32、32間に一体化するコンクリート4等は橋桁3と下部構造1との間で圧縮力を伝達し、橋桁3と下部構造1との間の引張力は下部構造1から突出する縦筋2がコンクリート4等内に埋設され、定着されることにより伝達する。   By eliminating the need for special reinforcement for the bridge girder 3, the bridge girder 3 is basically placed on the top end of the lower structure 1 on both side ribs 32, 32 and protrudes from the top end of the lower structure 1. Is rigidly joined to the lower structure 1 only by arranging the bars between the ribs 32, 32 and by integrating the concrete 4 or the like in which the vertical bars 2 are embedded in the ribs 32, 32. Become. The concrete 4 or the like integrated between the ribs 32 and 32 transmits the compressive force between the bridge girder 3 and the lower structure 1, and the tensile force between the bridge girder 3 and the lower structure 1 protrudes from the lower structure 1. The streak 2 is embedded in the concrete 4 or the like, and is transmitted by being fixed.

図1〜図7に示すいずれの例(請求項1〜)においても、橋桁3が両側リブ32、32を持ち、橋桁3の両側リブ32、32間にコンクリート4等の横桁部34が一体化する結果として橋桁3に対する格別な補強が不要になることで、下部構造1の天端上の、両側リブ32、32に挟まれた空間(領域)に、下部構造1から突出する縦筋2の配筋の障害になり得る、何らかの補強要素(部材)を配置する必要性が解消される。 In any of the examples shown in FIGS. 1 to 7 (Claims 1 to 4 ), the bridge girder 3 has both side ribs 32, 32, and a cross girder 34 such as concrete 4 is provided between the side ribs 32, 32 of the bridge girder 3. As a result of the integration, no special reinforcement is required for the bridge girder 3, so that the vertical bars projecting from the lower structure 1 in the space (region) sandwiched between the ribs 32, 32 on the top end of the lower structure 1. The need to arrange any reinforcing elements (members) that could be an obstacle to the second bar arrangement is eliminated.

この結果、図1、図2の例を含むいずれの例(請求項1〜5)においても、実質的に縦筋2を橋桁3の両側リブ32、32に挟まれた領域(空間)内の全体に配筋することが可能になるため、橋桁3と下部構造1との接合部30の引張抵抗要素としての十分な数の縦筋2を配筋することが可能になり、下部構造1に対しても格別な補強材を配置(付加)する必要がなくなる。   As a result, in any of the examples (Claims 1 to 5) including the examples of FIGS. 1 and 2, the longitudinal bars 2 are substantially in the region (space) sandwiched between the ribs 32 and 32 on both sides of the bridge girder 3. Since it is possible to arrange the entire bar, it becomes possible to arrange a sufficient number of vertical bars 2 as tensile resistance elements of the joint 30 between the bridge girder 3 and the lower structure 1. On the other hand, it is not necessary to arrange (add) a special reinforcing material.

結局、請求項1〜のいずれの場合も、下部構造1の天端上の領域の、両側リブ32、32間に下部構造1の縦筋2を埋設するコンクリート4等が一体化することの結果として、橋桁3の下部構造1との接合部30は補強要素を要しない鉄筋コンクリート造でありながらも高い剛性を確保し、コンクリート4等内に下部構造1の縦筋2が密に配筋可能であることと併せ、曲げモーメントによる引張力と圧縮力に対する高い耐力を保有する。 After all, in any case of Claims 1-4 , concrete 4 etc. which embed the vertical stripe 2 of lower structure 1 between both side ribs 32 and 32 of the field on the top end of lower structure 1 are integrated. As a result, the joint portion 30 of the bridge girder 3 with the lower structure 1 is reinforced concrete structure that does not require a reinforcing element, but ensures high rigidity, and the vertical bars 2 of the lower structure 1 can be closely arranged in the concrete 4 or the like. In addition, it possesses high proof strength against tensile and compressive forces due to bending moments.

橋桁3は基本的にプレキャストコンクリート(鉄筋コンクリート造(プレストレストコンクリート造を含む))で製作されるが、コンクリートに代わり、引張強度を増すための補強繊維が混入されたモルタルが使用されることもある。その場合も橋桁3はプレキャスト化されるため、実質的にはプレキャストコンクリートと同等である。補強繊維が混入されたモルタルが使用される場合には、床版部31の一層の薄肉化が図られる。図示する橋桁3は前記のように床版部31の軸方向に緊張材35が配置されたプレストレストコンクリート造になっている。   The bridge girder 3 is basically made of precast concrete (reinforced concrete (including prestressed concrete)), but mortar mixed with reinforcing fibers for increasing tensile strength may be used instead of concrete. Even in that case, the bridge girder 3 is precast, so it is substantially equivalent to precast concrete. When a mortar mixed with reinforcing fibers is used, the floor slab portion 31 can be made thinner. The bridge girder 3 shown in the figure has a prestressed concrete structure in which the tension members 35 are arranged in the axial direction of the floor slab portion 31 as described above.

コンクリートと並列的な関係にあるモルタルはコンクリート中に混入される粗骨材が不在であることで、図4、図5に示すように縦筋2が埋設されるコンクリート4等が床版部31に一体化している場合の挿通孔34a内に充填される充填材としても使用される。またモルタルへの繊維混入等によりコンクリートに劣らない程度の高い圧縮強度、並びに引張強度を得ることができることからも、コンクリートに代わる材料として使用される。繊維混入モルタルはコンクリートの引張強度以上の引張強度を持つこともある。   The mortar in parallel relation with the concrete is free of coarse aggregate mixed in the concrete. As shown in FIGS. 4 and 5, the concrete 4 or the like in which the vertical bars 2 are embedded is the floor slab portion 31. It is also used as a filler that fills the insertion hole 34a in the case of being integrated into the insertion hole 34a. Moreover, it can be used as a material to replace concrete because it can obtain high compressive strength and tensile strength that are not inferior to concrete due to fiber mixing in mortar. Fiber mixed mortar may have a tensile strength higher than that of concrete.

下部構造に剛に接合されるべきプレキャストコンクリート製の橋桁が幅方向両側の少なくとも下側に床版部の橋軸方向を向いて突設された両側リブを備えることで、橋桁が受ける曲げモーメントを両側リブが負担しながら、下部構造に伝達する働きをするため、橋桁に対し、曲げモーメントに抵抗させるための格別な補強を施すことが不要になる。従って下部構造の天端上の、橋桁の両側リブに挟まれた空間(領域)から何らかの補強要素(部材)を不在にすることができるため、両側リブに挟まれた空間内の全体に、橋桁と下部構造間の引張抵抗要素としての十分な数の縦筋を配筋することができる。   The bridge girder made of precast concrete to be rigidly joined to the substructure is equipped with ribs on both sides projecting toward the bridge axis direction of the floor slab at least on both sides in the width direction. Since the ribs on both sides serve to transmit to the lower structure while being borne, it is not necessary to give the bridge girder extraordinary reinforcement to resist bending moment. Therefore, it is possible to eliminate any reinforcing element (member) from the space (region) sandwiched between the ribs on both sides of the bridge girder on the top edge of the substructure. A sufficient number of longitudinal bars as tensile resistance elements between the lower structure and the lower structure can be arranged.

この結果、橋桁を両側リブにおいて下部構造の天端上に載置し、下部構造の天端から突出した縦筋が両側リブ間に配筋されることと、両側リブ間に、縦筋を埋設するコンクリート、もしくはモルタルが一体化することのみにより下部構造に剛に接合することが可能になる。
As a result, the bridge girder is placed on the top edge of the lower structure on both side ribs, and the vertical bars protruding from the top edge of the lower structure are arranged between both side ribs, and the vertical bars are embedded between both side ribs It becomes possible to rigidly join the substructure only by integrating the concrete or mortar to be integrated.

中間部リブが床版部の端部寄りの区間から下部構造の天端上の領域にまで連続して形成された橋桁と下部構造との接合部を示した、幅方向に見た縦断面図であり、図2−(a)のz−z線断面図である。Longitudinal sectional view seen in the width direction showing the joint between the bridge girder and the lower structure in which the intermediate ribs are continuously formed from the section near the edge of the floor slab to the area on the top edge of the lower structure FIG. 2 is a cross-sectional view taken along the line zz in FIG. (a)は図1のx−x線断面図、(b)は図1のy−y線断面図である。(A) is the xx sectional view taken on the line of FIG. 1, (b) is the yy sectional view taken on the line of FIG. 図1に示す橋桁の中間部リブにおける挿通孔の形成例を示した縦断面図である。It is the longitudinal cross-sectional view which showed the example of formation of the penetration hole in the intermediate part rib of the bridge girder shown in FIG. 両側リブ間の、下部構造の天端上の領域に、幅方向を向くコンクリート等からなる横桁部が形成された橋桁と下部構造との接合部を示した、幅方向に見た縦断面図であり、図5−(a)のz−z線断面図である。Longitudinal sectional view seen in the width direction showing the joint between the bridge girder and the lower structure where the transverse girder made of concrete or the like facing the width direction is formed in the region on the top edge of the lower structure between the ribs on both sides FIG. 6 is a cross-sectional view taken along the line z-z in FIG. (a)は図4のx−x線断面図、(b)は図4のy−y線断面図である。(A) is the xx sectional view taken on the line of FIG. 4, (b) is the yy sectional view taken on the line of FIG. 両側リブ間の、下部構造の天端上の領域を含む床版部の端部寄りの区間に、横桁部を有するコンクリート等が充填された橋桁と下部構造との接合部を示した、幅方向に見た縦断面図であり、図7−(a)のz−z線断面図である。The width between the ribs on both sides, showing the joint between the bridge girder filled with concrete, etc. with a transverse girder in the section near the edge of the floor slab, including the area on the top edge of the lower structure, and the lower structure It is the longitudinal cross-sectional view seen to the direction, and is the zz sectional view taken on the line of Fig.7 (a). (a)は図6のx−x線断面図、(b)は図6のy−y線断面図である。(A) is the xx sectional view taken on the line of FIG. 6, (b) is the yy sectional view taken on the line of FIG. ラーメン橋の例としての歩道橋の全体を示した立面図である。It is the elevation which showed the whole pedestrian bridge as an example of a ramen bridge. (a)〜(d)は図1、図2に示す接合方法により橋桁を下部構造としての橋台に接合する施工手順を示した斜視図である。(A)-(d) is the perspective view which showed the construction procedure which joins a bridge girder to the abutment as a lower structure with the joining method shown in FIG. 1, FIG. 図9に示す施工手順を経て完成したラーメン橋としての歩道橋の完成状態を示した斜視図である。It is the perspective view which showed the completion state of the footbridge as a ramen bridge completed through the construction procedure shown in FIG.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1、図4、図6は隣接する下部構造1、1上に架設され、両端において下部構造1、1に剛に接合される、図8に示すラーメン橋を構成するプレキャストコンクリート製の橋桁3と下部構造1との接合部の例を示す。   1, 4, and 6 are precast concrete bridge girders 3 that constitute a ramen bridge shown in FIG. 8 that is constructed on adjacent lower structures 1 and 1 and rigidly joined to the lower structures 1 and 1 at both ends. The example of the junction part of and the lower structure 1 is shown.

本発明が対象とするラーメン橋は形式的には1径間のラーメン橋とそれが連続的に配置された形態のラーメン橋が含まれ、下部構造1は橋台の場合と橋脚の場合がある。図8は歩道橋の例を示しているが、用途上は車道橋、鉄道橋等も含まれる。図示する例での下部構造1は橋台を表している。橋桁3は主に鉄筋コンクリート造で製作されるが、コンクリートに代わり、補強繊維が混入されたモルタルを使用した超強度繊維補強コンクリート造で製作されることもある。   The ramen bridge to which the present invention is directed includes a ramen bridge of one span and a ramen bridge in a form in which it is continuously arranged, and the lower structure 1 may be an abutment or a pier. Although FIG. 8 shows an example of a pedestrian bridge, a roadway bridge, a railway bridge, and the like are included for use. The substructure 1 in the illustrated example represents an abutment. The bridge girder 3 is mainly made of reinforced concrete, but may be made of super strength fiber reinforced concrete using mortar mixed with reinforcing fibers instead of concrete.

図1のx−x線の断面とy−y線の断面を図2−(a)、(b)に示す。同様に図4のx−x線の断面とy−y線の断面を図5−(a)、(b)に、図6のx−x線の断面とy−y線の断面を図7−(a)、(b)に示す。図3は図1における橋桁3の単体を示している。図1は図2−(a)のz−z線の断面を示しており、図4は図5−(a)のz−z線の断面を、図6は図7−(a)のz−z線の断面を示している。図2−(a)、(b)、図5−(a)、(b)、図7−(a)、(b)中、橋桁3の床版部31内にある○の印は床版部31中に橋軸方向に添って配置され、床版部31にプレストレスを導入するためのPC鋼材等の緊張材35を表している。   A cross section taken along line xx and a line taken along line yy in FIG. 1 are shown in FIGS. Similarly, FIGS. 5A and 5B show a cross section taken along line xx and a line y-y in FIG. 4, and FIG. 7 shows a cross section taken along line xx and a line y-y in FIG. -Shown in (a) and (b). FIG. 3 shows a single bridge girder 3 in FIG. 1 shows a cross section taken along line zz in FIG. 2- (a), FIG. 4 shows a cross section taken along line zz in FIG. 5- (a), and FIG. 6 shows z in FIG. The cross section of the -z line is shown. 2- (a), (b), FIG. 5- (a), (b), FIG. 7- (a), (b), the mark in the floor slab 31 of the bridge girder 3 indicates the floor slab. A tension material 35 such as a PC steel material, which is arranged in the portion 31 along the bridge axis direction and introduces prestress to the floor slab portion 31 is shown.

橋桁3は図2−(a)、(b)に示すように床版部31と、床版部31の幅方向両側の少なくとも下側に、床版部31の橋軸方向を向いて突設された両側リブ32、32とを備え、下部構造1とは下部構造1の天端上に位置し、橋桁3の橋軸方向端部の両側リブ32、32に挟まれた区間において接合される。下部構造1の天端上に位置し、下部構造1に接合される橋桁3の橋軸方向端部の区間を以下、接合部30と言う。   As shown in FIGS. 2A and 2B, the bridge girder 3 is provided so as to face the bridge axis direction of the floor slab portion 31 on at least the lower side of both sides of the floor slab portion 31 in the width direction. The lower structure 1 is located on the top end of the lower structure 1 and is joined in a section sandwiched between the both side ribs 32 and 32 at the bridge axial direction end of the bridge girder 3. . The section of the bridge axial direction end portion of the bridge girder 3 that is located on the top end of the lower structure 1 and is joined to the lower structure 1 is hereinafter referred to as a joint 30.

橋桁3は図9−(b)に示すように両側リブ32、32において下部構造1の天端上に載置されるため、下部構造1上の接合部30を区画する橋桁3橋軸方向端部の区間(接合部30)の長さは下部構造1の天端の厚さ(橋桁3の橋軸方向の距離)に等しいか、それ以下の範囲内にある。   Since the bridge girder 3 is placed on the top end of the lower structure 1 at both side ribs 32 and 32 as shown in FIG. 9- (b), the bridge girder 3 bridge end in the axial direction that defines the joint 30 on the lower structure 1 The length of the section (joint portion 30) is equal to or less than the thickness of the top end of the lower structure 1 (the distance in the bridge axis direction of the bridge girder 3).

両側リブ32、32が接合部30の区間において下部構造1の天端上に載置されることで、両側リブ32、32の全長の内、接合部30を区画する端部32aの下端面は下部構造1の天端の上面に合わせた面を持ち、例えば下部構造1の天端面が平坦な水平面であれば、両側リブ32、32の端部32aの下端面も平坦な水平面に形成され、天端面が水平に対して傾斜した平面、もしくは曲面をなしている場合には、端部32aの下端面もそれに応じた平面、もしくは曲面に形成される。図1では下部構造1の天端と床版部31に挟まれた領域が両側リブ32を表し、その内、下部構造1の厚さを示す線の延長線上の破線に挟まれた範囲が端部32aである。   Since the both side ribs 32 and 32 are placed on the top end of the lower structure 1 in the section of the joint portion 30, the lower end surface of the end portion 32 a that divides the joint portion 30 out of the total length of the both side ribs 32 and 32 is For example, if the top end surface of the lower structure 1 has a flat horizontal surface, the lower end surfaces of the end portions 32a of the side ribs 32 and 32 are also formed in a flat horizontal surface. When the top end surface is a flat surface or a curved surface that is inclined with respect to the horizontal, the lower end surface of the end portion 32a is also formed into a flat surface or a curved surface corresponding thereto. In FIG. 1, the region sandwiched between the top end of the lower structure 1 and the floor slab portion 31 represents both side ribs 32, and the range sandwiched between the broken lines on the extension line of the line indicating the thickness of the lower structure 1 is the end. Part 32a.

図面では両側リブ32、32を図8に示すように橋桁3に自重を含む長期荷重により生じる曲げモーメント分布に対応させ、高さが床版部31の橋軸方向中央部から端部にかけて次第に大きくなるように形成し、橋軸方向の各断面での曲げモーメントに対する抵抗力(曲げ応力度)が一様になるようにしている。図面ではまた、両側リブ32、32を床版部31の上側にも形成し、両側リブ32、32の下側への突出量が大きくならないようにしている。両側リブ32、32の床版部31の上側に突出した部分は高欄として利用される。   In the drawing, the ribs 32, 32 are made to correspond to the bending moment distribution caused by the long-term load including the weight of the bridge girder 3 as shown in FIG. 8, and the height is gradually increased from the center part to the end part in the bridge axis direction of the floor slab part 31. In this way, the resistance (bending stress degree) to the bending moment in each cross section in the bridge axis direction is made uniform. In the drawing, both side ribs 32 and 32 are also formed on the upper side of the floor slab portion 31 so that the amount of protrusion to the lower side of both side ribs 32 and 32 does not increase. The part which protruded above the floor slab part 31 of the both-sides ribs 32 and 32 is utilized as a handrail.

橋桁3が接合される下部構造1の天端からは、両側リブ32、32の端部32a、32a間の接合部30の範囲内に配筋される縦筋2が突出し、この端部32a、32a間の接合部30の範囲内にコンクリート4、もしくはモルタル(以下、コンクリート4等)が予め、もしくは現場で一体化することにより橋桁3が下部構造1に接合される。橋桁3の接合部30に一体化するコンクリート4等は図1、図6に示す例のように橋桁3の下部構造1上への載置後に現場で充填(打設)される場合と、図4に示す例のように予め橋桁3の一部を構成する横桁部34として後述の中間部リブ33と共に橋桁3に一体的に形成されている場合がある。   From the top end of the lower structure 1 to which the bridge girder 3 is joined, the vertical bars 2 arranged within the joint portion 30 between the end portions 32a and 32a of the both side ribs 32 and 32 protrude, and this end portion 32a, The bridge girder 3 is joined to the lower structure 1 by integrating concrete 4 or mortar (hereinafter, concrete 4 or the like) in advance or on site within the range of the joint portion 30 between 32a. The concrete 4 or the like integrated into the joint 30 of the bridge girder 3 is filled (placed) on site after being placed on the lower structure 1 of the bridge girder 3 as in the examples shown in FIGS. As in the example shown in FIG. 4, there is a case in which the cross girder part 34 constituting a part of the bridge girder 3 is formed integrally with the bridge girder 3 together with an intermediate part rib 33 described later.

図1、図4は橋桁3の両側リブ32、32間の、少なくとも接合部30を含む床版部31の端部寄りの区間に、床版部31の橋軸方向を向く中間部リブ33が突設されている場合の例であり、図6は橋桁3の両側リブ32、32間の、少なくとも接合部30を含む床版部31の端部寄りの区間にコンクリート4等が充填される場合の例である。「床版部31の端部寄りの区間」は接合部30から、または接合部30付近から橋桁3の橋軸方向中間部、あるいは中央部側へかけての区間を指し、中間部リブ33は床版部31の橋軸方向中間部(中央部)側から端部側へかけて形成される。「少なくとも」であるから、中間部リブ33は橋桁3の全長に亘って形成されることもある。   In FIGS. 1 and 4, intermediate ribs 33 facing the bridge axis direction of the floor slab 31 are provided in a section near the end of the floor slab 31 including at least the joint 30 between both side ribs 32, 32 of the bridge girder 3. FIG. 6 shows an example in the case of being protruded, and FIG. 6 shows a case where concrete 4 or the like is filled in a section between both side ribs 32, 32 of the bridge girder 3 and at least an end portion of the floor slab portion 31 including the joint portion 30. It is an example. The “section near the end of the floor slab portion 31” refers to a section from the joint portion 30 or from the vicinity of the joint portion 30 to the intermediate portion in the bridge axial direction of the bridge girder 3 or the central portion side. It is formed from the bridge axis direction intermediate part (center part) side of the floor slab part 31 to the end part side. Since it is “at least”, the intermediate rib 33 may be formed over the entire length of the bridge girder 3.

中間部リブ33は床版部31の橋軸方向の中央部側から端部にまで連続して形成されるが、図1に示すように下部構造1上の接合部30を含む範囲にまで連続する
The intermediate rib 33 is continuously formed from the center side in the bridge axis direction of the floor slab portion 31 to the end portion, but continues to the range including the joint portion 30 on the lower structure 1 as shown in FIG. To do .

「床版部31の端部寄りの区間」は下部構造1との接合部30を含め、あるいは接合部30を除き、床版部31の端部側から床版部31の橋軸方向中間部、あるいは橋軸方向中央部までに移行する区間であり、橋桁3の全長に亘る場合と、図1等に示すように橋軸方向中央部に至る手前の区間までに亘る場合がある。中間部リブ33は両側リブ32と共に橋桁3の曲げ剛性を上昇させる役目を持つが、中間部リブ33の形状と区間、高さは両側リブ32の形状と高さ等に応じ、自由に決められる。   The “section near the end of the floor slab 31” includes the joint 30 with the lower structure 1 or excludes the joint 30, and the intermediate portion in the bridge axis direction of the floor slab 31 from the end of the floor slab 31. Alternatively, it is a section that transitions to the center part in the bridge axis direction, and may extend to the entire length of the bridge girder 3 or to a section before the center part in the bridge axis direction as shown in FIG. The intermediate rib 33 has a role of increasing the bending rigidity of the bridge girder 3 together with the both-side ribs 32, but the shape, section and height of the intermediate rib 33 can be freely determined according to the shape and height of the both-side ribs 32. .

図1、図2は特に中間部リブ33が床版部31の橋軸方向中間部側から下部構造1の天端上の領域(接合部30)にまで連続して形成され、中間部リブ33に、下部構造1の天端上に位置し、接合部30を区画する端部33aが連続して形成されている場合の例を示している。中間部リブ33の端部33aは両側リブ32の端部32aに幅方向に対向する。図1では中間部リブ33の橋軸方向端部側の端面(端部33aの端面)が両側リブ32の端面(端部32aの端面)に揃えられているが、必ずしもその必要はない。   1 and 2, in particular, the intermediate rib 33 is continuously formed from the bridge axis direction intermediate portion side of the floor slab portion 31 to a region (joint portion 30) on the top end of the lower structure 1. The example in which the edge part 33a which lies on the top end of the lower structure 1 and divides the junction part 30 is formed continuously is shown. The end portion 33 a of the intermediate rib 33 faces the end portion 32 a of the both side ribs 32 in the width direction. In FIG. 1, the end surface (end surface of the end portion 33 a) of the intermediate rib 33 on the bridge axis direction end side is aligned with the end surfaces of the both-side ribs 32 (end surface of the end portion 32 a).

図1、図2の例では中間部リブ33が両側リブ32の端部32aに対向する端部33aを持つことで、中間部リブ33は下部構造1上の接合部30の領域(空間)を幅方向に区分するため、コンクリート4等は区分された領域毎に、すなわち床版部31の幅方向に隣接する両側リブ32の端部32aと中間部リブ33の端部33a間、及び中間部リブ33、33の端部33a、33a間単位で充填(打設)される。   In the example of FIGS. 1 and 2, the intermediate rib 33 has an end portion 33 a that faces the end portions 32 a of both side ribs 32, so that the intermediate rib 33 has a region (space) of the joint portion 30 on the lower structure 1. Since the concrete 4 and the like are divided in the width direction, the concrete 4 or the like is divided into divided areas, that is, between the end portions 32a of the side ribs 32 and the end portions 33a of the intermediate ribs 33 adjacent to each other in the width direction of the floor slab portion 31 and the intermediate portion. The ribs 33 and 33 are filled (placed) in units between the end portions 33a and 33a.

この場合、中間部リブ33の端部33aが両側リブ32の端部32aと共に下部構造1の天端上に配置されることで、各端部33a、32aは下部構造1の天端上に打設されるコンクリート4等の打設領域と縦筋2の配筋領域を幅方向に区画し、コンクリート4等の充填時の幅方向の堰板(型枠)を兼ねるため、コンクリート4等は下部構造1の厚さ方向両側(橋桁3橋軸方向)に堰板(型枠)を配置した状態で充填される。   In this case, the end portion 33a of the intermediate rib 33 is disposed on the top end of the lower structure 1 together with the end portions 32a of the both side ribs 32, so that each end portion 33a, 32a hits the top end of the lower structure 1. Since the placement area of concrete 4 and the like and the bar arrangement area of the vertical bars 2 are divided in the width direction, and also serves as a weir plate (formwork) in the width direction when filling the concrete 4 etc., the concrete 4 etc. It is filled in a state in which weir plates (framework) are arranged on both sides in the thickness direction of the structure 1 (bridge girder 3 bridge axis direction).

下部構造1の縦筋2は両側リブ32の端部32aと中間部リブ33の端部33aとで区画された領域のコンクリート4等中に埋設され、定着される。下部構造1上の接合部30の領域に充填されたコンクリート4等は両側リブ32の端部32aと中間部リブ33の端部33aと共に、図4の例における横桁部34に相当する部分となる。   The vertical bars 2 of the lower structure 1 are embedded and fixed in the concrete 4 or the like in a region defined by the end portions 32 a of the both side ribs 32 and the end portions 33 a of the intermediate ribs 33. The concrete 4 or the like filled in the region of the joint portion 30 on the lower structure 1 includes a portion corresponding to the cross beam portion 34 in the example of FIG. 4 together with the end portions 32a of the both-side ribs 32 and the end portions 33a of the intermediate ribs 33. Become.

中間部リブ33の端部33aが下部構造1の天端面から浮く等、天端面上に直接、載置されないような場合には、中間部リブ33の下端面が下部構造1の天端面に合わせた形状をする必要はないが、下部構造1の天端面上に載置される場合には、中間部リブ33の端部33aの下端面も両側リブ32の端部32aの下端面と同じく、天端面に合わせた平面状、もしくは曲面状に形成される。   In the case where the end 33a of the intermediate rib 33 is not directly placed on the top end surface, such as floating from the top end surface of the lower structure 1, the lower end surface of the intermediate rib 33 is aligned with the top end surface of the lower structure 1. However, when placed on the top end surface of the lower structure 1, the lower end surface of the end portion 33 a of the intermediate rib 33 is the same as the lower end surface of the end portions 32 a of the both side ribs 32. It is formed in a flat shape or a curved shape matching the top end surface.

中間部リブ33は接合部30の領域を幅方向に区画することで、橋桁3に生じる曲げモーメントを幅方向に分散させて下部構造1に伝達させる横筋(配力筋)5を配筋する場合に、横筋5を保持し、横筋5が負担する縦筋2からの力を受けるためにも利用される。図1、図2では両側リブ32、32間に中間部リブ33を貫通させて床版部31の幅方向に横筋5を配筋している。   In the case where the intermediate rib 33 divides the region of the joint portion 30 in the width direction, the transverse bars (distribution bars) 5 that distribute the bending moment generated in the bridge girder 3 in the width direction and transmit it to the lower structure 1 are arranged. In addition, it is also used to hold the transverse muscle 5 and receive a force from the longitudinal muscle 2 borne by the transverse muscle 5. In FIG. 1 and FIG. 2, the horizontal stripes 5 are arranged in the width direction of the floor slab 31 by passing the intermediate ribs 33 between the ribs 32, 32.

図1における接合部30の橋桁3の橋軸方向に見たときの断面を示す図2−(a)では、下部構造1の縦筋2を省略しているが、縦筋2は図9−(a)に示すように中間部リブ33(端部33a)で区画された領域単位で配筋される。縦筋2は橋桁3からの曲げモーメントによる引張力を下部構造1に伝達する働きをするため、下部構造1の厚さ方向には2列以上、配列し、それに合わせ、中間部リブ33の端部33aを挿通する横筋5も下部構造1の厚さ方向には2列以上、配列する。横筋5は縦筋2との間でコンクリート4等による付着力により、または係合により両者間での引張力の伝達が可能なように、直接、あるいはコンクリート4等を介して互いに交差するように配筋される。   In FIG. 2- (a) which shows a cross section when the bridge 30 of the joint 30 in FIG. 1 is viewed in the direction of the bridge axis, the vertical bars 2 of the lower structure 1 are omitted, but the vertical bars 2 are not shown in FIG. As shown to (a), it arrange | positions by the area unit divided by the intermediate part rib 33 (end part 33a). Since the vertical bars 2 function to transmit the tensile force generated by the bending moment from the bridge girder 3 to the lower structure 1, two or more rows are arranged in the thickness direction of the lower structure 1, and the ends of the intermediate ribs 33 are arranged accordingly. The horizontal stripes 5 that pass through the portion 33a are also arranged in two or more rows in the thickness direction of the lower structure 1. The transverse bars 5 cross each other directly or via the concrete 4 or the like so that a tensile force can be transmitted to or from the longitudinal bars 2 by the adhesive force of the concrete 4 or the like. Arranged.

図2−(a)では代表的な横筋5のみを示しているが、中間部リブ33の端部33aには図3に示すように横筋5を挿通させるための挿通孔33bが高さ方向と下部構造1の厚さ方向(橋桁3の橋軸方向)にそれぞれ複数個、形成される。図3では挿通孔33bを縦筋2の配列数に合わせ、下部構造1の厚さ方向に2列、配列させ、高さ方向に複数段、形成しているが、下部構造1の厚さ方向に3列以上、配列させることもある。   In FIG. 2A, only the representative horizontal stripe 5 is shown, but the end 33a of the intermediate rib 33 has an insertion hole 33b for inserting the horizontal stripe 5 as shown in FIG. A plurality of lower structures 1 are formed in the thickness direction (the bridge axis direction of the bridge girder 3). In FIG. 3, the insertion holes 33b are arranged in two rows in the thickness direction of the lower structure 1 according to the number of arrangement of the vertical bars 2 and are formed in a plurality of stages in the height direction. In some cases, three or more rows are arranged.

図1、図2に示す例では橋桁3から伝達される曲げモーメントにより縦筋2が負担する引張力を横筋5がその橋軸方向である下部構造1の幅方向に分散させるため、中間部リブ33で区画されたいずれかの領域に引張力(応力)が集中する事態が回避され、応力の分散により接合部30の耐力が上昇することが期待される。   In the example shown in FIG. 1 and FIG. 2, since the tensile force borne by the longitudinal bars 2 due to the bending moment transmitted from the bridge girder 3 is distributed in the width direction of the lower structure 1 that is the direction of the bridge axis, the intermediate ribs It is expected that the situation where the tensile force (stress) is concentrated in any of the regions partitioned by 33 is avoided, and the yield strength of the joint portion 30 is expected to increase due to the dispersion of the stress.

図1、図2に示す橋桁3と下部構造1の接合部の施工工程を示す図9−(a)〜(d)により施工手順を説明する。図9に示す工程を経て完成した図8に示す、ラーメン橋としての歩道橋の完成状態を図10に示す。下部構造1は前記のように橋台である。   The construction procedure will be described with reference to FIGS. 9- (a) to 9 (d) showing the construction process of the joint between the bridge girder 3 and the lower structure 1 shown in FIGS. FIG. 10 shows a completed state of the pedestrian bridge as the ramen bridge shown in FIG. 8 completed through the steps shown in FIG. The lower structure 1 is an abutment as described above.

下部構造1の天端からは、図9−(a)に示すように下部構造1の天端上における、橋桁3の両側リブ32の端部32aと中間部リブ33の端部33aが載る部分以外の、両側リブ32と中間部リブ33で区画された領域毎に縦筋2が突出している。下部構造1の天端からの縦筋2の突出長さは、下部構造1の天端から橋桁3の床版部31の底面までの距離以下である。この下部構造1、1間に、予め製作されている橋桁3が吊り込まれて図8に示すように架設され、図9−(b)に示すように各下部構造1の天端上に橋桁3の端部が両側リブ32の端部32aと中間部リブ33の端部33aにおいて載置される。   From the top end of the lower structure 1, as shown in FIG. 9A, a portion on the top end of the lower structure 1 where the end portions 32 a of both side ribs 32 of the bridge girder 3 and the end portions 33 a of the intermediate ribs 33 are placed. The vertical streak 2 protrudes for every area | region divided by the both-side rib 32 and the intermediate part rib 33 other than. The protruding length of the vertical bars 2 from the top end of the lower structure 1 is equal to or shorter than the distance from the top end of the lower structure 1 to the bottom surface of the floor slab portion 31 of the bridge girder 3. A prefabricated bridge girder 3 is suspended between the lower structures 1 and 1 and is erected as shown in FIG. 8, and as shown in FIG. 3 end portions are placed on the end portions 32 a of the both side ribs 32 and the end portions 33 a of the intermediate ribs 33.

橋桁3の載置後、図9−(c)に示すように中間部リブ33の端部33aの挿通孔33bを挿通させ、縦筋2と互いに交差するように横筋5が配筋される。横筋5の両側の端部は両側リブ32の端部32aに定着させられる。   After placing the bridge girder 3, as shown in FIG. 9C, the horizontal bars 5 are arranged so as to pass through the insertion holes 33 b of the end portions 33 a of the intermediate ribs 33 and intersect with the vertical bars 2. The end portions on both sides of the horizontal stripe 5 are fixed to the end portions 32 a of the both side ribs 32.

横筋5の端部は例えば両側リブ32の端部32aの、中間部リブ33側から穿設された、または端部32aを貫通して形成された定着孔32bに挿入させられ、定着孔32bにモルタル、接着剤等の充填材が充填されることにより定着孔32b内に定着される。床版部31両側の両側リブ32、32の定着孔32b、32bの内、少なくとも一方が端部32aを貫通して形成されることで、横筋5を両側リブ32の厚さ方向外側から定着孔32bに差し込み、配筋することができる。   For example, the end of the horizontal stripe 5 is inserted into a fixing hole 32b which is formed from the end 32a of the both-side rib 32 from the intermediate rib 33 side or formed through the end 32a. The fixing hole 32b is fixed by filling with a filler such as mortar or adhesive. At least one of the fixing holes 32b, 32b of the both side ribs 32, 32 on both sides of the floor slab 31 is formed through the end portion 32a, so that the lateral stripe 5 is fixed to the fixing hole from the outside in the thickness direction of the both side ribs 32. It can be inserted into 32b and placed.

横筋5の配筋後、下部構造1の厚さ方向両側に堰板が配置された状態で、両側リブ32の端部32aと中間部リブ33の端部33aとで区画された領域毎にコンクリート4等が充填(打設)され、縦筋2と横筋5がコンクリート4等中に埋設される。コンクリート4等の充填によって橋桁3と下部構造1の接合が完了し、図10に示すラーメン橋(歩道橋)が完成する。   After arranging the horizontal bars 5, the concrete is made for each region divided by the end portions 32 a of the both side ribs 32 and the end portions 33 a of the intermediate ribs 33 in a state where the barrier plates are arranged on both sides in the thickness direction of the lower structure 1. 4 or the like is filled (placed), and the vertical bars 2 and the horizontal bars 5 are embedded in the concrete 4 or the like. The filling of the concrete 4 or the like completes the joining of the bridge girder 3 and the lower structure 1, and the ramen bridge (pedestrian bridge) shown in FIG. 10 is completed.

図4、図5は図1における中間部リブ33が橋桁3の橋軸方向中間部側から下部構造1上の接合部30の手前まで形成され、下部構造1の天端上、すなわち接合部30の領域の両側リブ32、32間に床版部31の幅方向を向く横桁部34が形成され、横桁部34が床版部31と両側リブ32、32、及び中間部リブ33に一体化した橋桁3の下部構造1との接合例を示す。中間部リブ33は横桁部34の、橋桁3の橋軸方向中間部側の側面から張り出すように形成され、横桁部34に一体化する。   4 and 5, the intermediate rib 33 in FIG. 1 is formed from the bridge axial direction intermediate portion side of the bridge girder 3 to the front of the joint portion 30 on the lower structure 1, and on the top end of the lower structure 1, ie, the joint portion 30. A lateral girder portion 34 facing the width direction of the floor slab portion 31 is formed between the both side ribs 32, 32 in the region of FIG. An example of joining of the bridge girder 3 with the lower structure 1 is shown. The intermediate rib 33 is formed so as to protrude from the side surface of the cross beam portion 34 on the intermediate portion side of the bridge girder 3 in the bridge axis direction, and is integrated with the cross beam portion 34.

横桁部34は橋桁3の製作時に床版部31、両側リブ32、中間部リブ33と共に形成され、床版部31に一体化するため、横桁部34の、縦筋2に対応した位置には縦筋2が挿入される挿入孔34aが形成されており、橋桁3の下部構造1上への載置時に挿入孔34a内に縦筋2が挿入される。挿入孔34a内には橋桁3の載置後にモルタル、接着剤等の充填材が充填されることにより縦筋2が横桁部34に定着される。挿入孔34aは橋桁3の製作時に例えば横桁部34を構成するコンクリート4等中にスリーブ34b等の筒状の部品を埋設しておくことで形成される。   The cross beam portion 34 is formed together with the floor slab portion 31, the side ribs 32, and the intermediate rib 33 when the bridge girder 3 is manufactured, and is integrated with the floor slab portion 31. Is formed with an insertion hole 34 a into which the vertical bar 2 is inserted, and the vertical bar 2 is inserted into the insertion hole 34 a when the bridge girder 3 is placed on the lower structure 1. After the bridge girder 3 is placed in the insertion hole 34a, the vertical bars 2 are fixed to the horizontal girder part 34 by filling with a filler such as mortar and adhesive. The insertion hole 34a is formed by, for example, embedding a cylindrical part such as a sleeve 34b in the concrete 4 or the like constituting the cross girder 34 when the bridge girder 3 is manufactured.

図4の例では横桁部34に埋設され、挿入孔34aを構成するスリーブ34b等の床版部31側に縦筋34cを溶接等により固定しておくことで、挿入孔34a内に下部構造1の縦筋2が挿入されたときに、スリーブ34bを介して双方の縦筋2、34cが連結(接続)される状態にしている。この場合、スリーブ34bの長さ(挿入孔34aの深さ)と、下部構造1から突出する縦筋2の突出長さを小さくし、縦筋34cの長さを相対的に大きくしておくことで、下部構造1上への橋桁3の落とし込み時に、挿入孔34a内への縦筋2の挿入をし易くすることが可能である。   In the example of FIG. 4, a vertical structure 34c is fixed to the side of the floor slab 31 such as a sleeve 34b constituting the insertion hole 34a by being welded or the like, so that the lower structure is formed in the insertion hole 34a. When one vertical bar 2 is inserted, both vertical bars 2 and 34c are connected (connected) via the sleeve 34b. In this case, the length of the sleeve 34b (depth of the insertion hole 34a) and the protruding length of the vertical stripe 2 protruding from the lower structure 1 are reduced, and the length of the vertical stripe 34c is relatively increased. Thus, when the bridge girder 3 is dropped onto the lower structure 1, it is possible to facilitate the insertion of the vertical bars 2 into the insertion hole 34a.

図4の例においては、縦筋2の挿入位置、すなわち挿入孔34aの形成位置に合わせ、横桁部34の内部に図1、図2の例における横筋5を予め埋設しておくことができ、横筋5の埋設により橋桁3に生じる曲げモーメントを、横筋5を通じて幅方向に分散させる効果を得ることができる。   In the example of FIG. 4, the horizontal stripe 5 in the example of FIGS. 1 and 2 can be embedded in advance in the inside of the cross beam portion 34 in accordance with the insertion position of the vertical stripe 2, that is, the formation position of the insertion hole 34 a. The bending moment generated in the bridge girder 3 due to the embedding of the horizontal bars 5 can be distributed in the width direction through the horizontal bars 5.

図6は橋桁3の両側リブ32、32間の、少なくとも下部構造1上の接合部30を含む床版部31の端部寄りの区間にコンクリート4等が橋桁3の設置後に充填(打設)されることにより橋桁3が下部構造1に接合される場合の接合例を示す。この例ではコンクリート4等は橋桁3を幅方向に見たときの断面上、図6に示すように図1に示す例における中間部リブ33の形成区間に亘り、両側リブ32、32に挟まれた区間に現場で打設される。コンクリート4等の全体の内、接合部30に存在する部分は図4に示す例における横桁部34に相当する。   FIG. 6 shows that the concrete 4 or the like is filled (placed) after the bridge girder 3 is installed in a section between the ribs 32, 32 of the bridge girder 3 and at least the end portion of the floor slab 31 including the joint 30 on the lower structure 1. An example of joining when the bridge girder 3 is joined to the lower structure 1 is shown. In this example, the concrete 4 or the like is sandwiched between the ribs 32 and 32 on the cross section when the bridge girder 3 is viewed in the width direction and over the section where the intermediate rib 33 is formed in the example shown in FIG. Will be placed on site at the site. Of the entire concrete 4 or the like, the portion present at the joint 30 corresponds to the cross beam portion 34 in the example shown in FIG.

図6の例では、両側リブ32、32のみがコンクリート4等の打設時の型枠(堰板)になるため、下部構造1上には厚さ方向片側と、それと対になる橋桁3橋軸方向中間部側に堰板が配置され、その状態でコンクリート4等が打設される。この例ではコンクリート4等が橋桁3の全幅に亘って橋桁3に一体化し、橋桁3を補剛するため、下部構造1への接合後の橋桁3の剛性と耐力が図1、図4に示す例より向上する利点がある。   In the example of FIG. 6, only the ribs 32 and 32 on both sides serve as a formwork (dam plate) for placing concrete 4 or the like, and therefore, on the lower structure 1, one side in the thickness direction and three bridge girder bridges paired with it. A dam plate is disposed on the axially intermediate portion side, and concrete 4 or the like is placed in that state. In this example, concrete 4 or the like is integrated into the bridge girder 3 over the entire width of the bridge girder 3 and stiffens the bridge girder 3. Therefore, the rigidity and strength of the bridge girder 3 after joining to the lower structure 1 are shown in FIGS. There are advantages over the examples.

図6の例においても、コンクリート4等の内、接合部30(横桁部34)に相当する部分内に図1、図2の例における横筋5を配筋することで、橋桁3に生じる曲げモーメントを橋桁3の幅方向に分散させる効果を得ることができる。   Also in the example of FIG. 6, the bending that occurs in the bridge girder 3 by arranging the horizontal bars 5 in the example of FIGS. 1 and 2 in the portion corresponding to the joint 30 (the horizontal girder part 34) of the concrete 4 or the like. The effect of dispersing the moment in the width direction of the bridge girder 3 can be obtained.

1……下部構造、2……縦筋、
3……橋桁、30……接合部、31……床版部、
32……両側リブ、32a……端部、32b……定着孔、
33……中間部リブ、33a……端部、33b……挿通孔、
34……横桁部、34a……挿入孔、34b……スリーブ、34c……縦筋、35……緊張材、
4……コンクリート、もしくはモルタル、
5……横筋。
1 ... substructure, 2 ... longitudinal bars,
3 ... Bridge girder, 30 ... Joint, 31 ... Floor slab,
32 …… Ribs on both sides, 32a …… End, 32b …… Fixing hole,
33: Intermediate rib, 33a: End, 33b: Insertion hole,
34 ... Cross beam part, 34a ... Insertion hole, 34b ... Sleeve, 34c ... Longitudinal muscle, 35 ... Tension material,
4 …… Concrete or mortar,
5: Horizontal stripes.

Claims (4)

隣接する下部構造上に架設され、両端において前記下部構造に剛に接合されるプレキャストコンクリート製の橋桁と前記下部構造との接合部構造であり、
前記橋桁は床版部と、この床版部の幅方向両側の少なくとも下側に、前記床版部の橋軸方向を向いて突設された両側リブとを備え、前記下部構造の天端からは縦筋が突出し、
前記橋桁は前記両側リブにおいて前記下部構造の天端上に載置され、前記下部構造の縦筋が前記両側リブ間に配筋されると共に、前記両側リブ間に、前記縦筋を埋設するコンクリート、もしくはモルタルが一体化して前記橋桁が前記下部構造に接合され
前記床版部下側の前記両側リブ間の、少なくとも前記床版部の端部寄りの、前記下部構造の天端上の領域を含む区間に、前記床版部の橋軸方向を向く中間部リブが突設され、前記下部構造の前記縦筋が前記中間部リブ以外の前記コンクリート、もしくはモルタル中に配筋され、
前記下部構造の天端上に位置する部分に前記縦筋に直交して配筋され、前記両側リブに定着された横筋が前記中間部リブを幅方向に挿通していることを特徴とする橋桁と下部構造との接合部構造。
It is a joint structure of a bridge girder made of precast concrete that is installed on an adjacent lower structure and is rigidly joined to the lower structure at both ends, and the lower structure,
The bridge girder includes a floor slab portion, and at least a lower side of both sides in the width direction of the floor slab portion, and both side ribs projecting toward the bridge axis direction of the floor slab portion, from the top end of the lower structure Has a protruding vertical line,
The bridge girder is placed on the top end of the lower structure on the both side ribs, and the vertical bars of the lower structure are arranged between the side ribs, and the vertical bars are embedded between the side ribs. Or the mortar is integrated and the bridge girder is joined to the substructure ,
An intermediate rib that faces the bridge axis direction of the floor slab in a section that includes a region on the top end of the lower structure, at least near the end of the floor slab, between the side ribs below the floor slab Projecting, and the vertical bars of the lower structure are arranged in the concrete or mortar other than the intermediate ribs,
A bridge girder that is arranged perpendicularly to the longitudinal bars in a portion located on the top end of the lower structure, and transverse bars fixed to the both side ribs pass through the intermediate ribs in the width direction. And joint structure of the substructure.
前記床版部下側の前記両側リブ間の、前記下部構造の天端上の領域に、前記床版部の幅方向を向き、前記両側リブ間に一体化するコンクリート、もしくはモルタルからなる横桁部が形成され、この横桁部内に前記下部構造の前記縦筋が挿入され、埋設されていることを特徴とする請求項に記載の橋桁と下部構造との接合部構造。 A cross beam portion made of concrete or mortar that is integrated between the ribs in the width direction of the floor slab portion in a region on the top edge of the lower structure between the ribs on the lower side of the floor slab portion. The joint structure of the bridge girder and the lower structure according to claim 1 , wherein the vertical bars of the lower structure are inserted and embedded in the horizontal girder part. 記床版部の幅方向に隣接する前記両側リブと前記中間部リブ間、及び前記中間部リブ間にコンクリート、もしくはモルタルが充填され、このコンクリート、もしくはモルタル中に前記下部構造の前記縦筋が埋設されていることを特徴とする請求項に記載の橋桁と下部構造との接合部構造。 Ago Kiyuka plate portion and the both side ribs and the intermediate ribs that are adjacent in the width direction, and the concrete or mortar is filled between the intermediate ribs, the longitudinal muscle of the lower structure to the concrete or mortar, The joint structure of the bridge girder and the lower structure according to claim 1 , wherein 前記床版部下側の前記両側リブ間の、少なくとも前記下部構造の天端上の領域を含む前記床版部の端部寄りの区間にコンクリート、もしくはモルタルが充填され、このコンクリート、もしくはモルタル中に前記下部構造の前記縦筋が埋設されていることを特徴とする請求項1乃至請求項3のいずれかに記載の橋桁と下部構造との接合部構造 Concrete or mortar is filled in a section near the end of the floor slab including at least the region on the top end of the lower structure between the ribs on the lower side of the floor slab, and the concrete or mortar The junction structure of the bridge girder and the lower structure according to any one of claims 1 to 3 , wherein the vertical bars of the lower structure are embedded.
JP2012188160A 2012-08-29 2012-08-29 Joint structure of bridge girder and substructure Expired - Fee Related JP5972108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188160A JP5972108B2 (en) 2012-08-29 2012-08-29 Joint structure of bridge girder and substructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188160A JP5972108B2 (en) 2012-08-29 2012-08-29 Joint structure of bridge girder and substructure

Publications (2)

Publication Number Publication Date
JP2014043752A JP2014043752A (en) 2014-03-13
JP5972108B2 true JP5972108B2 (en) 2016-08-17

Family

ID=50395213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188160A Expired - Fee Related JP5972108B2 (en) 2012-08-29 2012-08-29 Joint structure of bridge girder and substructure

Country Status (1)

Country Link
JP (1) JP5972108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107386133B (en) * 2017-06-14 2019-03-05 暨南大学 A kind of the oblique pull ruggedized construction and its construction method of continuous rigid frame bridge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634465Y2 (en) * 1990-10-18 1994-09-07 日開技研株式会社 Simple PC panel
JPH11229412A (en) * 1998-02-10 1999-08-24 Takaaki Endo Construction method of large-sized box culvert
JP2004092078A (en) * 2002-08-29 2004-03-25 Nippon Ps:Kk Structure and construction method for bridge
JP2004324216A (en) * 2003-04-24 2004-11-18 Shimizu Corp Viaduct and construction method therefor
JP4491820B2 (en) * 2005-08-01 2010-06-30 興建産業株式会社 Precast bridge

Also Published As

Publication number Publication date
JP2014043752A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US8370983B2 (en) Rigid connection structure of bridge pier and concrete girder
EP1845199B1 (en) Floor slab bridge structure
KR100743832B1 (en) Bridge construction method using preflex girder and integral abutment
KR101007708B1 (en) Semi-hinge rahman bridge and method for constructing the same
KR100839439B1 (en) Moment connection structure combining a superstructure with substructure in the prefabricated rahmen bridge and method constructing rahmen bridge with the structure
KR100969586B1 (en) Rhamen bridge and construction method there of
KR102061224B1 (en) Sectionally devided precast box culverts and the construction method thereof
CN104727475A (en) Modified concrete superposition board floor structure with shear keys and connection method
JP2007016594A (en) Synthetic panel structure, panel bridge structure, and construction method for continuous synthetic beam bridge
JP2019199710A (en) Joint structure for precast composite floor slab in direction perpendicular to bridge axis and construction method for same
KR20140144035A (en) The hybrid girder structures prestressed by using the external prestressing mechanism, and the construction method by rigid connection
KR101998822B1 (en) Composite rahmen bridge, steel girder for that and construction method of composite rahmen bridge
JP5833616B2 (en) Construction method of joint structure of concrete precast slab for bridge
KR101735077B1 (en) Bridge deck using precast concrete panel
KR101259137B1 (en) Rahmen bridge with structure for joining concrete beams and walls
CN209854527U (en) Assembled hollow slab bridge structure
JP5972108B2 (en) Joint structure of bridge girder and substructure
JP4651974B2 (en) Precast concrete floor slab and synthetic floor slab using the same
KR20080111686A (en) Bridge using phc girder and slab-phc complex girder
KR101583401B1 (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
CN113403943B (en) Guardrail roadbed integrated configuration for bridge
KR101517889B1 (en) Rhamen bridge construction method using prestressed concrete girder of arch-shaped
JP4728453B1 (en) Main girder continuous structure
KR101693266B1 (en) Hybrid girder
JP5668252B2 (en) Joint structure of steel superstructure and concrete column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R150 Certificate of patent or registration of utility model

Ref document number: 5972108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees